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Abstract—The accuracy of displacement and velocity data in
ultrasonic motion detection systems depends on a combination
of ultrasonic imaging parameters. These include magnitude and
direction of target motion, target region dimensions, scattering
media, ultrasonic frequency of interrogation, digital sampling
frequency, and signal type (envelope detected or RF). Because
the impact of scattering media in particular has heretofore
received little or no attention, we provide experimental results
and computer analysis to evaluate the influence of different
scattering media on the accuracy of ultrasonic displacement and
velocity estimates using porcine liver, porcine muscle, and woolen
sea sponge samples. Our experimental results show that for
identical target dimensions and displacements, the accuracy of
ultrasonic displacement and velocity estimates in porcine muscle
samples are substantially higher than in porcine liver samples.
Analysis of experimentally derived autocovariance curves for
each tissue type indicates that the improvement in accuracy
for muscle samples is not, in fact, due to differences in the
speckle characteristics for each tissue type. The improvement is
attributed to the presence of well-defined and resolvable image
structures from muscle and the lack of such resolvable structures
in porcine liver tissue. We provide a summary of the factors
impacting ultrasonic displacement and velocity measurements,
and discuss why and how a combination of one or more imaging
parameters affects these measurements.

I. INTRODUCTION

N many medical ultrasound imaging systems, clinical data

are computed from estimates of tissue displacement and
tissue velocity. These data are often interpreted by the physi-
cian en route to diagnosis. An often overlooked aspect of the
process is the importance for the clinician to understand to
what degree the data are reliable. Clinical diagnoses are only
as good as the data on which they are based. There are a
number of important factors that contribute to the accuracy
of ultrasonic tissue displacement and velocity estimates, and
many of these have been reported.

Chen et al. [1]-[3] discuss the importance of tracking
targets over small distances and through a large number of
positions, as opposed to tracking over large distances and
through fewer positions. This result is due to the fact that
ultrasonic displacement and velocity estimates deteriorate with
increasing target displacements.
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Ramamurthy and Trahey [4] have reported an improved
accuracy for measurements taken in the axial direction over
the lateral direction. They also note a substantial improvement
in both directions when using RF data instead of envelope-
detected signals. Wagner et al. [5] have provided theoretical
predictions on the statistics of speckle, and their results have
been experimentally verified [4], [5].

Foster et al. [6] found that scatters moving at different
velocities in the target region or range cell limit the accuracy
of velocity estimates. Chen er al. [1]-[3] and Ramamurthy
and Trahey [4] have reported that ultrasonic displacement
estimates deteriorate with decreasing region of interest (ROI)
dimensions in two-dimensional tissue tracking, and Foster et
al. [6] reported similar results for one-dimensional blood flow
measurements. Here, ROI dimensions refer to the dimensions
of a region of interest selected from an image, not the physical
size of the object being imaged.

Parilla et al. [7] compared the performance of L1 norm,
L2 norm, and correlation techniques in ultrasonic range mea-
surements in air. They report that for low signal-to-noise
environments, correlation techniques (locating the time shift
producing the highest correlation between the transmitted
and received echoes) provide more accurate range estimates
than L1 norm or L2 norm techniques. In their study, L1
and L2 norm techniques consisted of locating the time shift
producing the smallest absolute difference and squared dif-
ference between the transmitted and received echoes. Their
simulation results also suggest that by sampling four—five
times the fundamental signal frequency noise becomes the
limiting factor with regard to accuracy. In low signal-to-noise
ratio environments, Ferrara [8] and Ramamurthy and Trahey
[4] have reported that correlation techniques perform similarly
to Doppler-based techniques.

Chen et al. [1]-[3], Ramamurthy and Trahey [4], and Foster
et al. [6] suggest that accuracy will improve with increasing
ultrasonic frequency of interrogation. This result stems from
the increase in spatial resolution which is traded off against a
decrease in depth of penetration.

The impact of scattering media on ultrasonic displacement
and velocity measurements has not received significant atten-
tion. To evaluate the effect of different scattering media on ul-
trasonic displacement and velocity estimates, we have assessed
the accuracy of ultrasonic displacement estimates of ROI's in
porcine liver, porcine muscle, and woolen sea sponge samples.
Our results show that ultrasonic displacement estimates were
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best in muscle samples and worst in liver samples. This
result is attributed to the heterogeneous composition of muscle
which contains thousands of well-defined fibers, in various
orientations, surrounded by connective tissue, and the more
homogeneous composition of liver which is predominantly
composed of more structurally generic parenchymal cells
[10]-{14].

II. ULTRASONIC MOTION DETECTION METHOD

A. Ultrasonic Time Domain Correlation
Speckle-Tracking Technique

The cross-correlation speckle-tracking technique is based
on the normalized correlation coefficient and can be used to
detect motion [1]-[4]. To illustrate the technique, we consider
a number of ultrasonic images, taken temporally in series, from
a moving target. A user-defined region of interest (ROI) is
selected or windowed out from the first image [Fig. 1(a)~(d)].
The windowed region of the first image is spatially shifted and
correlated with identically sized regions of the second image.
A rectangular search area centered on the starting position of
the ROI, and extending out by 1.0 cm in each dimension, is
automatically selected, regardless of the ROI dimensions. At
each spatial shift, the normalized correlation coefficient (1) is
computed between the ROI from the first image and the “range
cell” or “target region” from the second image, giving
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The normalized correlation coefficient (1) has been imple-
mented in two-dimensional search algorithms [1]-[4]. Here,
z(%,7) represents the amplitude inside the first image at the
pixel coordinates (,7), and y(¢ + k,j + ) represents the
amplitude inside the second image at the pixel coordinates
(i + k,7 +1). This is further illustrated in Fig. 1(e).

Assuming the object being imaged covers most or all of the
field of view of the image, the physical size (dimensions) of
the object will typically be much larger than the dimensions
of any ROI selected from an image. In this paper, the terms
“ROI dimensions” and “target region dimensions” refer to the
dimensions of regions of interest selected from images. They
do not refer to the physical size (dimensions) of the object
being imaged.

By plotting the normalized correlation coefficients as a
function of the spatial shifts, a cross-correlation function
between the two images can be generated. The spatial shift
corresponding to the peak correlation value can be used with
the elapsed time between the initiation of ultrasonic images to
determine both displacement and velocity.

B. Incremental Tracking Strategy

We now consider the problem of tracking the position of
a moving target in one or two dimensions, given a number
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Fig. 1. Two-step procedure for frame-to-frame correlation speckle tracking.
(a) A user-defined region of interest (ROI) with coordinates (z1,y1) is
selected from the first frame. (b) The position of the best correlated match
(2, y2) inside the search area is computed. (c), (d) The procedure is repeated
using the new position of the ROI (22, y2). (¢), (f) Definition of variables
for the time-domain correlation formula.

of reflected echoes of the target received at different times.
If the echoes are received at roughly equally spaced temporal
intervals, and if the target is moving with constant velocity,
then the movement of the ROI between the first and last
echoes can be estimated in two ways. The direct approach is
to window out the portion of the first echo which corresponds
to the target, and then apply a cross-correlation search to the
first and last echoes [1], [2]. This is shown schematically in
Fig. 2(a) by a pair of square pulses. Using a cross-correlation
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Fig. 2. Two ultrasonic echoes of a target before (echo 1) and after (echo 2)
it has moved. (a) Echo 2 remains similar to echo 1 after the target has moved
a small distance S. (b) For T >> S, echo 2 looks decorrelated from echo 1
after the target has moved a large distance T

search, the temporal shift between the initiation of two echoes
can be used to estimate both displacement and velocity. Note
that echo 2 remains similar to echo 1 after the target has moved
a smalld distance. The problem with this method is that the
ultrasonic speckle signature of a target changes with increasing
target translations [3], [4]. In Fig. 2(b), this is represented
schematically by a square pulse becoming a triangle. Echo
2 is not only temporally shifted from echo 1, but now also
appears different from echo 1.

The problem can be reduced by tracking the target over
shorter distances. This is done by computing the ROI’s dis-
placement between successive echoes. In Fig. 3(a) and (b), the
target moves a small distance (on the order of a few wave-
lengths). As a result, the second echo becomes only slightly
decorrelated from the first echo. This is shown schematically
as a square pulse becoming a trapezoid and as a trapezoid
becoming a triangle. The large target displacement [Fig. 3(c)]
can be estimated by incrementally tracking the target dis-
placement in smaller steps. By incrementally estimating the
target’s displacements and then summing the displacements,
a good estimate of the target’s ner displacement can be
obtained. It is important to note that incremental tracking can
improve performance by reducing the component of speckle
decorrelation that is due to target motion. It cannot compensate
for the component of speckle decorrelation that is due to
random noise generated by electrical and acoustical sources.

A user-defined search region can be employed to reduce
both computational time and the number of computations. In
this study, a search region extending out 1.0 cm from the
target, in each dimension, was automatically selected. The
increased accuracy achieved using the incremental tracking
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Fig. 3. Ultrasonic measurement of target motion using incremental tracking.
(a), (b) Echo 2 remains similar to echo 1 after the target has moved a small
distance S1 or S2. (c) Echo 2 looks decorrelated from echo 1 after the
target has moved a large distance T. The movement can be estimated by
incrementally tracking the target in smaller steps S1,.52 and then summing
the steps T = S1 + S2.

strategy was experimentally verified and documented in a
previous study [1]. Fig. 4 (adapted from [1]) illustrates the im-
proved performance of the incremental technique for tracking
a 1.25 x 1.25 cm sponge target.

III. ULTRASONIC MEASUREMENT OF TISSUE DISPLACEMENT

Sections of porcine longissimus muscle and porcine liver
were obtained from the Meat Science Laboratory, Depart-
ment of Animal Sciences, at the University of Illinois. The
porcine samples were obtained within 24 h of death, and were
vacuum sealed. All measurements were made at room temper-
ature (=222°C). Samples of porcine liver, porcine muscle, and
woolen sea sponge were placed in a water tank and secured on
top of sound-absorbing slabs. Ultrasonic B-mode sector scans
(video-detected signals) were obtained using a 5 MHz, 724A
ATL servocontrolled rotary transducer coupled to an ATL MK
500 ultrasonic imaging system.

Each of the sample types was placed in contact with the
imaging transducer, and was positioned in the center of the
transducer’s beam axis. Porcine liver and muscle samples were
imaged in a manner that covered the entire field of view of
the B scans. The physical dimensions of the porcine liver
and muscle samples were many times larger (an order of
magnitude) than the dimensions of the ROI’s selected from
the image.

To simulate axial displacements, the imaging transducer was
translated along the beam axis using a high-precision Daedal
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Fig. 4. Performance of the incremental tracking strategy in estimating axial
displacement. Data points are the linearly weighted average of 10 minus d
measurements for each data point, where d represents the axial displacement
(in millimeters) of a sponge sample. Error bars represent two standard
deviations. Lateral results show a similar trend.

motorized positioning system (precision of 1 pum for axial and
lateral motions). The positioning system is computer controlled
and has 5 degrees of freedom, three translational and two
rotational. Video-detected signals were digitized and saved
using a Targa 16 frame-grabbing system and a Compaq 386
computer. Once all of the data were acquired, the data were
transported to a Sun Sparc 2 workstation. 24 different ROI’s
were selected from individual samples of porcine liver, porcine
muscle, and woolen sea sponge. The ROI’s had dimensions
ranging from 1.0 mm (approximately three times the axial
resolution of the imaging system) to 5.0 cm (approximately
160 times the axial resolution of the imaging system). The
time-domain correlation technique was implemented in C
language code on a Sun Sparc 2 workstation and was used
to estimate ROI displacements.

IV. RESULTS

A. Accuracy of Ultrasonic Displacement Estimates
as a Function of Scattering Media

Fig. 5 shows the tracking error in ultrasonic displacement
estimates for 6 of the 24 ROI’s selected from images of porcine
liver and muscle samples and woolen sea sponge. The results
from these ROI’s were representative of the results from all
24 ROI’s tested in the experiment.

For identical target dimensions and sample displacements,
ultrasonic displacement estimates in muscle samples produced

liver 2cm

liver 4cm

muscle 2cm

muscle 4cm
sponge 2cm

sponge 4cm

Tracking error (mm)

Sample displacement (mm)

Fig. 5. Performance of the time-domain correlation technique for 6 of the 24
ROT’s tested. The 6 ROI’s were representative of the results from all 24 ROI's
tested in the experiment. For identical target dimensions and displacements,
ROI’s in liver produced the largest tracking errors.

smaller errors than in liver samples. ROI’s from the sponge
showed errors between those found for ROI's in liver and
muscle. Muscle tissue is composed of thousands of cylindrical
muscle fibers, with diameters ranging from 10 to 100 ym and
with lengths extending as long as 30 cm [10]-[13]. Inside the
muscle fibers themselves are cylindrical elements (myofibrils)
1-2 pm in diameter. Myofibrils occupy approximately 80%
of fiber volume.

The structured morphology of muscle tissue appears to
provide more high spatial frequency information, which corre-
sponds to more textural detail than liver tissue. This seems to
improve the performance of the cross-correlation technique.
This result is not surprising if we consider the fact that it
should be easier to perform two-dimensional tracking in areas
that contain distinct landmarks rather than in areas that are
more uniform. The improvement in ultrasonic displacement
estimates in porcine muscle samples can thus be partially
attributed to the internal composition of porcine muscle,
which contains well-defined fibers [10}-{13]. Liver tissue is
predominantly composed of hepatic and kupfer cells. The cells
are polyhedral in shape and have dimensions ranging from
approximately 200 to 400 pm. Despite the presence of portal
and hepatic veins, the internal composition of liver is mostly
homogeneous [14]-[17]. It follows that the deterioration of
ultrasonic displacement estimates in porcine liver may be a
result of the more homogeneous composition of porcine liver
compared to muscle tissue.
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It has been established that the performance of ultrasonic
displacement and velocity estimation algorithms generally
improves with increasing signal-to-noise ratio (SNR) [4], [7],
[8]. Because ultrasonic echoes result from internal tissue
variations of acoustic properties, differences in the variation of
propagation velocity inside porcine liver and porcine muscle
may result in a higher SNR in echoes received from muscle
compared to liver. The propagation velocities for the three
sample types are all within 5% of one another; however, there
may still be a nominal effect on displacement estimates.

Finally, it is known that the accuracy of ultrasonic dis-
placement and velocity estimates generally improves with
increasing frequency of interrogation [4], [5], [7]. Attenuation
effects in liver and muscle tissue can result in a downshift
of the center frequency of the spectrum of received echoes.
Differences in the variation of acoustical properties inside
porcine liver and porcine muscle tissues may result in dif-
ferent downshifts in the center frequency in echoes received
from muscle compared to liver. The difference in attenuation
between porcine liver and porcine muscle is relatively small
(less than 10% [18]-[19]), and the downshift in frequency due
to attenuation is usually small (on the order of a few hundred
kilohertz in liver tissue for a center frequency of 5.0 MHz)
so the contribution from these effects should remain relatively
minor.

B. Accuracy of Ultrasonic Displacement Estimates
as a Function of Displacement

Fig. 6 provides a measure of how much the speckle patterns
from each of the sample type change with distance. Because
speckle-tracking algorithms rely on a minimal distortion in
speckle patterns after target translations [4], displacement
estimates are therefore accurate only to the extent that speckle
patterns remain stable or do not change significantly with
tissue translations. We observe that in the range of 0.0-3.0 mm,
liver speckle patterns decorrelated more rapidly than muscle
speckle patterns. This suggests that for a given displacement,
and with all other factors held constant, ROI's in liver samples
become less recognizable when compared to a reference signal
than ROI’s in muscle samples. As a result, it is not surprising
that displacement estimates in muscle samples were found to
be better than in liver samples.

For all 24 targets tested, the accuracy of ultrasonic displace-
ment estimates deteriorated with increasing sample displace-
ments. The increase in tracking errors for increasing sample
displacements makes sense because all target speckle patterns
decorrelated with increasing sample displacements.

The decorrelation of speckle patterns with increasing dis-
placement are similar to those reported by Ramamurthy and
Trahey [4] for liver-mimicking samples.

C. Accuracy of Ultrasonic Displacement Estimates
as a Function of Target Dimensions

For all 24 targets tested, the accuracy of ultrasonic displace-
ment estimates improved with increasing target dimensions.
The improved performance of the cross-correlation technique
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Fig. 6. Decorrelation of speckle patterns in liver, muscle, and woolen sea
sponge samples with increasing sample displacements. Data points were
averaged from five 4.0 cm ROI’s for each sample type. Error bars represent
one standard deviation.

for large target regions can be attributed to the large number
of pixels or information present in large ROI’s.

A useful conceptualization is that the ROI can be thought
of as a missing person. Each pixel value in the ROI represents
a characteristic used to describe the person such as height,
weight, age, etc. Each possible target region in the search
area can be thought of as a single person in a crowd of
people. In this scenario, we are given a description or list of
characteristics that describe the missing person (i.e., the pixel
values in the ROI), and we are told that the missing person
has walked into a crowd of people. The goal is to find the
person in the crowd (search area) who “best fits” (correlates
to) the description of the missing

As the number of pixels in the ROI (or descriptors of the
missing person) increases, so does our confidence that the
person in the crowd best matching the description is actually
the missing person. In addition, as ROI dimensions increase,
the number of possible target regions in a fixed size search area
decreases. Conceptually, the number of people in the crowd
decreases. This also contributes to the improved accuracy for
large ROI’s (dimensions large relative to the resolution of the
imaging system). However, given a large number of pixels in
the ROI (or descriptors), the person in the crowd (or target
region in the serch area) best matching the description may
not match all of the descriptors (low correlation coefficients,
not an exact match) of the missing person.

As the number of pixels or descriptors decreases, the easier
it becomes to find a person in the crowd who matches



298 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 41, NO. 3, MAY 1994

most or all of the descriptors of the missing person (high
correlation coefficient). However, with a smaller list of de-
scriptors, the number of people in the crowd matching the
description of the missing person now increases (number of
false peaks increases, accuracy decreases as dimensions of ROI
are reduced). In addition, as ROI dimensions decrease, the
number of possible target regions in a fixed size search region
increases, and this can also contribute to reduced accuracy for
small ROI’s.

From our experimental results, we note that large ROI’s
(ROI dimensions greater than ten times the axial resolu-
tion of the imaging system) generally tended to produce a
low-amplitude correlation peak. The low amplitude of the
correlation peak indicates difficulty in finding a target region
in the search area providing an exact match to the ROI. For the
case of large ROI’s, the central lobe of the correlation peak as
well defined with low-amplitude sidelobes. The clearly defined
peak and low sidelobes indicate a high degree of confidence
that the target region in the search area, best matching the
ROI, does indeed correspond to the ROL.

Speckle tracking small ROI's (ROI dimensions on the order
of the axial resolution of the imaging system) typically pro-
duced a high-amplitude (peak amplitude > 0.90) correlation
peak with a large number of high-amplitude sidelobes. The
high amplitude of the correlation peak indicates a good match
between the corresponding pixel values in the ROI and the
best correlated target region. Both the large number and high
amplitude of the sidelobes indicate a low degree of confidence
that the best correlated target region in the search area actually
corresponds to the ROI Smaller ROI's appear to be more
susceptible to false matches. This is in agreement with the
findings of Foster et al. [6] for one-dimensional signals and
Chen et al. [1], [2] and Ramamurthy and Trahey [4] for
two-dimensional signals.

The results of applying the cross-correlation speckle-
tracking technique in tracking rectangular ROI'’s with axial
dimensions of 75 times, 15 times, and 1.5 times the axial
resolution of the imaging system are shown in Fig. 7(a)(c),
respectively. The axial resolution of the imaging system used
was approximately 0.3 mm. ROI dimensions are thus provided
in terms of the axial resolution.

The starting position of each target was the center of the
rectangular grid. Each target was translated axially downward
by 1.0 mm. A user-defined search region, which extended
out by 1.0 cm in both dimensions, was centered on the
starting position of each target. The contour plots represent the
magnitude of the correlations at each position inside the search
region. The horizontal and vertical axes represent a pixel
coordinate system, where each pixel represents approximately
0.25 mm.

For the 5 cm target, the contour plot in Fig. 7(a) indicates a
low-amplitude correlation peak that is well defined. For the 1
m target, Fig. 7(b) depicts a higher amplitude correlation peak.
However, the correlation peak has been partially obscured by a
number of secondary peaks that result from false matches. For
the 1 mm target, the contour plot in Fig. 7(c) indicates that the
location of the true correlation peak has now been completely
obscure by a large number of high-amplitude false peaks.
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Fig. 7. Results from a typical frame-to-frame correlation search for 5 x 5
cm, 1X1cm, and 1 X1 mm targets selected from a sponge sample undergoing
a 1.0 mm axial displacement. 1 pixel = 0.25 mm. (a) 5 cm target produces a
low-amplitude correlation peak that is well defined. (b) For the 1 cm target, the
position of the true correlation peak is partially obscured by secondary peaks
that result from false matches. (c) For the 1 mm target, the plot is saturated by
a large number of high-amplitude secondary “false” peaks. Position of true
correlation peak is lost.

Fig. 7(a)~(c) illustrates that by selecting smaller target
regions, the number of areas matching the target region
increases. This produces an increasing number of ambiguous
secondary correlation peaks until the position of the actual
peak is lost. In this limiting case, the correlation search results
are similar to an underdetermined system of equations where
there is not a unique solution. Each correlation peak can be
thought of as one possible solution to the system of equations
which has not been given enough constraints (large enough
target dimensions). The underdetermined system, therefore,
does not have a unique solution because many different
solutions (target regions) may satisfy the constraints (match
the region of interest).

As target dimensions approach the resolution of the imaging
system, the target becomes comparable to the dimension of
individual speckle cells. At these dimensions, the speckle pat-
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terns from separate targets become indistinguishable from one
another. For most tissues with large speckle cells, the number
of independent speckles contained in a target region may be
reduced [5], and a large speckle cell size may contribute to less
information being available per unit area for target regions.
This is in agreement with the theory for object structures that
are correlated [5].

D. Covariance Curves for Liver and Muscle Samples

The autocovariance functions for liver, muscle, and sponge
samples were generated by correlating ROI’s from each sam-
ple type with shifted versions of itself. Data points were
averaged from covariances computed from ten images for each
sample type.

For video-detected signals, a sharp and narrow sample
covariance curve suggests that speckle tracking might produce
sharp cross-correlation peaks with low sidelobes. This would
reduce tracking errors due to false peaks and jitters as defined
by Ramamurthy and Trahey [4]. A broad autocovariance
curve suggests that speckle-tracking targets would result in
correlation peaks consisting of a broad central lobe with higher
sidelobes. This would increase tracking errors due to jitter and
false peaks.

A narrow covariance curve also implies a small speckle
cell size (using the full-width half-max FWHM definition [5]).
In the lateral dimension, the speckle cell size is inversely
proportional to the frequency of interrogation. Thus, for the
same sample types and target dimensions, target regions will
likely contain more independent speckles, and thus more
information per unit area at higher frequencies.

Based on this discussion, we would expect porcine liver to
produce the broadest autocovariance curve and porcine muscle
to produce the narrowest autocovariance curve if differences
in the speckle characteristics (and their first- and second-order
statistics) for each tissue type are actually responsible for the
improved accuracy observed when tracking ROI’s in porcine
muscle compared to porcine liver.

The actual covariance curves are, in fact, virtually identical
(Fig. 8). This is not completely surprising since the propaga-
tion velocities (and wavelengths) for the three tissue types are
within 5% of each other (liver = 1560 m/s, muscle = 1570
m/s, sponge = 1480 m/s), and the theoretical full-width at
half-max (FWHM) point on the covariance curves predicted
by Wagner et al. [5] is approximately 0.33 mm, close to the
axial resolution of the imaging system.

The fact that the autocovariance curves for the three tissue
types are virtually identical suggests that the improvement in
displacement estimates in muscle samples is not, in fact, due to
differences in the speckle characteristics and statistics between
liver and muscle. The covariance curves do not, however, rule
out the possibility that the improved displacement estimates in
muscle may be attributed to the presence of well-defined and
resolvable muscle fibers, whose lengths fall in the range of
2-30 cm [10]-{13], much larger than the axial resolution of
the imaging system, and the complete /ack of such resolvable
internal structures in liver tissue which is largely homogeneous
[14]-[17].
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Fig. 8. Autocovariance curves for porcine liver, porcine muscle, and woolen
sea sponge. Data points are the average of covariances computed from ten
images for each sample type. Error bars represent two standard deviations.

E. Other Factors

We have primarily focused our attention on the influence of
different tissue types on displacement and velocity estimation.
However, the accuracy of ultrasonic displacement and velocity
estimates depends on many factors, some of which have been
studied by other investigators. We now review the impact
of some of the other factors on displacement and velocity
estimation that have been reported to date.

The accuracy of ultrasonic displacement and velocity esti-
mates deteriorates for lateral sample displacements [4], [S].
This is attributed to the lower resolution achieved when
imaging in the lateral direction. Higher ultrasonic frequencies
of interrogation increase both axial and lateral resolution, and
this results in improved accuracy in ultrasonic displacement
estimates [2], [4]-[6].

The digital sampling frequency, or the rate at which the
backscattered RF signal is digitized, determines the smallest
steps or units of temporal shift in which signals may be
correlated. Thus, while ultrasonic frequency of interrogation,
tissue propagation speed, and transducer geometry establish
the physical resolution limits of the imaging system, the digital
sampling frequency similarly establishes the resolution limit
for computational analysis. Parilla er al. [7] have reported
reduced errors in ultrasonic range measurements in air with
increasing digital sampling frequency. They also suggest that
sampling above five times the ultrasonic frequency of in-
terrogation should make the system signal-to-noise ratio the
limiting factor.
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TABLE 1

Parameter Impact

Displacement (Magnitude) Backscattered signal decorrelates
with increasing displacement,
causing accuracy of ultrasonic
displacement and velocity estimates
to deteriorate with displacement.
Displacement (Direction) Improved accuracy in axial
dimension due to higher resolution in
that dimension.

Accuracy improves with increasing
target dimensions. Small target
dimensions may result in an
underdetermined system and false
correlation peaks.

Target Dimensions

Scattering Media Liver samples (homogeneous-type
media) produced largest errors.
Muscle samples (containing
well-defined and highly resolvable
fibers) had smallest errors.
Ultrasonic Frequency Increasing ultrasonic frequency of
interrogation increases accuracy due
to improved axial and lateral
Digital Sampling Frequency Higher digital sampling frequency
results in smaller errors due to
improved resolution in computational
analysis. Sampling above five times
the ultrasonic frequency of
interrogation causes the system
signal-to-noise ratio to be the
limiting factor.

Signal Type Higher accuracy is achieved in all
cases by processing RF signals.
Averaging and lower resolution
reduce accuracy in envelope-detected
signals.

Ultrasonic displacement and velocity measurements ob-
tained from processing RF data will be substantially better than
those obtained by processing envelope-detected signals. The
RF data provide a larger number of data points, corresponding
to a smaller unit of distance between points, which improves
the resolution in computational analysis. Smaller details in the
RF signal may also be averaged out in the detection process,
and may not appear in the envelope signal. These results
have been predicted by Wagner et al. [5], and experimentally
verified by Ramamurthy and Trahey

F. Summary of Imaging Factors Impacting Ultrasonic
Displacement and Velocity Estimation

Table I is a summary of the impact of various imaging
parameters on ultrasonic displacement and velocity estimates.
This is based on the results reported by Chen et al. [1]-[3],
Ramamurthy and Trahey [4], Wagner et al. [5], Foster et al. [6],
Parilla et al. [7], Ferrara [8], and Bonnefous and Pesque [9].

V. CONCLUSION

The impact of important imaging parameters on ultrasonic
displacement and velocity measurements has been discussed.
The impact of different scattering media, which has not

received significant attention in the past, has been explored
with experimental results and computer analysis. The accuracy
of ultrasonic displacement estimates was found to be better
in porcine muscle samples than in porcine liver samples.
Analysis of experimentally derived autocovariance curves for
each tissue type indicates that the improvement in accuracy
for muscle samples was not, in fact, due to differences in the
speckle characteristics for each tissue type. The improvement
was attributed to the presence of well-defined and resolvable
image structures (possibly from muscle fibers) and the lack
of such resolvable internal structures in porcine liver tissue. In
addition to tissue morphology, differences in tissue reflectivity,
which may affect SNR, and tissue attenuation, which can
shift center frequency, may also contribute significantly to the
influence of different tissue types on ultrasonic displacement
and velocity estimation.

Although we have focused attention on the influence of
different tissue types, the accuracy of ultrasonic displacement
and velocity estimates depends on many factors. Many of these
have been studied, and a compilation of results from our work
and those of other investigators has shown several fundamental
results.

The accuracy of ultrasonic displacement and velocity esti-
mates improves with increasing target dimensions, ultrasonic
frequency of interrogation, and digital sampling frequency.
Performance deteriorates for increasing displacements. There
is a significant improvement in all estimates for measurements
taken in the axial direction, and for ultrasonic displacement
and velocity estimates obtained by processing RF data instead
of envelope-detected data.
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