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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Noise induced hearing loss

Noised induced hearing loss is hearing loss as a result of exposure to harmful

noise. This harmful noise can be either impulse sounds like explosions or long

duration exposure such as that experienced on the deck of an aircraft carrier.

As a result of this exposure, the hair cells in the cochlea are damaged and

cannot be repaired [1]. The Occupational Safety and Health Administration

(OSHA) standard 29 CFR 1926.52(d)(1) specifies the permissible noise ex-

posures as a function of the duration of the exposure. The values from this

standard are shown in Table 1.1. OSHA standard 29 CFR 1926.52(e) also

specifies that exposure to impulse or impact noise should not exceed 140 dB

peak SPL.

Table 1.1: OSHA Standard for Permissible Noise Exposures.
Duration Per Sound Level
Day (hours) (dBA slow response)

8 90
6 92
4 95
3 97
2 100

1 1/2 102
1 105

1/2 110
1/4 or less 115
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1.1.2 Current hearing protection devices (HPDs)

The majority of HPDs used today can be broken down into two categories:

passive and active. Passive devices such as earplugs and earmuffs reduce the

sound level reaching the inner ear by blocking the air conduction pathways.

Active noise reduction (ANR) devices use noise canceling circuitry and trans-

ducers to add an out-of-phase version of the noise so that when summed the

noise is cancelled out [2].

Failures of current HPDs

Multiple factors contribute to reduce the effectiveness of passive HPDs when

used in the real world. Air leaks between an earplug and the pinna can re-

duce the attenuation by 5 to 15 dB. Vibration of the HPD can also reduce

the attenuation of the device. This occurs in earplugs due to the flexibility

of the ear canal which can cause the earplug to vibrate like a piston. This

also occurs with earmuffs due the mass-spring system of the earmuff head-

band and the earmuff cushions. As a result of vibration, the attenuation

limit for earmuffs and earplugs at 125 Hz becomes 25 dB and 40 dB, re-

spectively. A less common reduction in attenuation is due to transmission

through the material of the HPD. This reduction is most noticeable when us-

ing materials with lower attenuation and for earmuffs at certain frequencies.

The final factor contributing to the reduced effectiveness of HPDs is bone

conduction. Current HPDs are designed to attenuate sound transmission via

the air conduction pathways but not the bone conduction pathways. For cer-

tain frequencies, bone conduction may become the dominant pathway, thus

reducing the effectiveness of the HPD [3].

ANR devices appear to be a promising technology, but devices available

today are unable to achieve the performance of passive devices. Earmuffs

with ANR added have been shown to improve real-ear attenuation compared

to earmuffs or earplugs used by themselves at low frequencies, but the com-

bination of earplugs and earmuffs has better attenuation than the earmuffs

with ANR [2].

Crews on aircraft carrier flight decks can be subjected to noise levels as

high as 150 dB. Due to limits in attenuation achievable by current HPDs,

it is still possible for noise induced hearing loss to occur even when wearing
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earplugs and earmuffs due to bone conduction [3, 4]. The goal of this project

is to determine the dominant bone conduction pathways. Once these path-

ways have been determined it may be possible to design HPDs that reduce

the sound propagated through them.

1.2 Methods

1.2.1 Finite element analysis (FEA)

The human head is a complex scatterer composed of multiple layers and has

a complex geometry. As a result of this, analytic solutions to sound scatter-

ing do not exist and a numerical method must be used. The finite element

method (FEM) was chosen for this project. The finite element method can

compute the approximate solution to scattering from an arbitrary geometry

with multiple layers. The idea behind FEM is to divide the continuous vol-

ume into a finite number of discrete volumes, called elements. Each of these

elements has properties associated with it such as sound speed and density.

Each of these elements will have a series of nodes associated with it, each

having a position in space associated with it. FEM then uses the equations

governing acoustic wave propagation to compute the pressure at these nodes.

The pressure between nodes can also be approximated by interpolating the

pressure of the surrounding nodes.

The finite element method has other advantages besides the ability to

simulate arbitrary volumes. It can also be used to compute solutions to

numerous sources such as plane waves and point sources. Both time-harmonic

and transient problems can be solved using the finite element method as well.

The finite element method does have some drawbacks, though. The so-

lution step of the finite element procedure requires solving a system of N

equations, where N is the number of nodes. In general, as the number of

nodes is increased the accuracy of the solution increases. A tradeoff exists

between computational efficiency and accuracy. For transient analysis, error

can also be introduced if the time step is chosen too large. In general, as the

time step decreases, the accuracy increases but requires more computation.
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1.2.2 Ray tracing

One method of visualizing the propagation of acoustic energy is ray trac-

ing. Ray tracing is often used in geometrical acoustics when the size of the

scatterer is much larger than a wavelength. If this is the case, the full wave

equation does not need to be solved and the simpler Eikonal equation is used

instead. In doing so, the problem is solved in terms of the propagation of

rays instead of waves. For the case of plane wave incidence, a uniform grid

of rays normal to the wavefront at time t = 0 is drawn. As the wave prop-

agates, these rays are bent according to the Eikonal equation and thus the

wave is propagated. If the intensity at time t = 0 is I0 and the density of rays

passing through an area at this time is N0 rays/m2, and if the density of rays

at a time t = τ is N1, then the intensity is N1I0/N0. Thus the areas with

high concentrations of rays intersecting the wavefront have a higher intensity

[5]. By finding the points with the highest ray density, we can determine the

dominant pathways through which sound travels to reach the cochlea.

For the case of the human head, the wavelength is on the order of the size

of the human head for audible frequencies. As a result, the small wavelength

assumption required for use of the Eikonal equation does not apply to the

current problem and the full wave equation must be solved. Even though the

Eikonal equation cannot be used, ray tracing can still be performed in the

following way. Start with a uniform grid of rays normal to the wavefront at

time t = 0. Find the intersection of these rays with the wavefront at some

small time increment, dt. Next compute the normal to the wavefront at time

t = dt at the intersection points. Compute the intersection of these normals

with the wavefront at time t = 2dt. These two steps are repeated until the

end of the domain is reached. The result will be a set of ray paths that can be

interpreted in the same way as those computed using the Eikonal equation.
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CHAPTER 2

THEORY

2.1 Sound Scattering from Two Concentric

Fluid Spheres

In order to verify the ray tracing code, the solution to scattering of plane

waves by two concentric fluid spheres is solved. For computational simplicity,

the spheres are located at the origin of a spherical coordinate system (r, θ,

φ) as shown in Fig. 2.1. The source is either a plane wave propagating in the

−z direction or a point source located at (0, 0, R). Both source placements

eliminate any dependence on φ.

x

y

z

c0
ρ0

c1
ρ1

c2
ρ2 r2

r1

Figure 2.1: Concentric fluid sphere geometry. Infinite medium with density
ρ0, sound speed c0, and absorption coefficient α0. The outer sphere has
density ρ1, sound speed c1, absorption coefficient α1, and radius r1. The
inner sphere has density ρ2, sound speed c2, absorption coefficient α2, and
radius r2. The spheres are centered at the origin of a spherical coordinate
system (r, θ, φ) where r is the radial coordinate, θ the azimuthal coordinate,
and φ the polar coordinate.
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The pressure in the medium, p0, is the sum of the incident pressure p0i,

and the scattered pressure p0r [6].

p0 = p0i + p0r (2.1)

p0i = P0

∞∑
m=0

(2m + 1)LmPm (µ) jm ((k0 + iα0)r) e−iωt (2.2)

p0r =

∞∑
m=0

AmPm (µ)h(1)
m ((k0 + iα0)r) e−iωt (2.3)

where µ = cos (θ) and Lm is given by [7]

Lm =


(−i)m , plane wave

h
(1)
m ((k0 + iα0)R) , monopole

(2.4)

The pressure in the outer sphere, p1, is the sum of an outward traveling

wave p1r and an inward traveling wave p1i.

p1 = p1i + p1r (2.5)

p1i =
∞∑

m=0

BmPm (µ)h(2)
m ((k1 + iα1)r) e−iωt (2.6)

p1r =
∞∑

m=0

CmPm (µ)h(1)
m ((k1 + iα1)r) e−iωt (2.7)

The pressure in the inner sphere can be written as

p2i =

∞∑
m=0

DmPm (µ) jm ((k2 + iα2)r) e−iωt (2.8)

Four boundary conditions are applicable to the current problem. The

first involves the pressure at the boundary between the outer sphere and the

medium:

p0i (r1) + p0r (r1) = p1i (r1) + p1r (r1) (2.9)

The second boundary condition involves the pressure at the boundary be-

tween the inner and outer spheres:

p1i (r2) + p1r (r2) = p2i (r2) (2.10)

6



The third boundary condition involves the radial velocity at the boundary

between the outer sphere and the medium:

u0,rad (r1) = u1,rad (r1) (2.11)

The final boundary condition involves the radial velocity at the boundary

between the inner and outer spheres:

u1,rad (r2) = u2,rad (r2) (2.12)

For the time harmonic case, the radial velocity becomes

urad = −
(

i

Zn

)
p′ (2.13)

where the ′ symbol denotes derivative with respect to the total argument and

Zn =
ρncn

1 + iαcn

ω

(2.14)

The radial velocities then become

u0i = − i

Z0
P0

∞∑
m=0

(2m + 1)LmPm (µ) j′m
(
k̃0r
)

e−iωt (2.15)

u0r = − i

Z0

∞∑
m=0

AmPm (µ) h(1)′
m

(
k̃0r
)

e−iωt (2.16)

u1i = − i

Z1

∞∑
m=0

BmPm (µ)h(2)′
m

(
k̃1r
)

e−iωt (2.17)

u1r = − i

Z1

∞∑
m=0

CmPm (µ)h(1)′
m

(
k̃1r
)

e−iωt (2.18)

u2i = − i

Z2

∞∑
m=0

DmPm (µ) j′m
(
k̃2r
)

e−iωt (2.19)

where k̃n = kn + iαn. The boundary conditions result in the following system

7



of equations:

P0

Z0
(2m + 1)Lmj′m

(
k̃0r1

)
+

1

Z0
Amh(1)′

m

(
k̃0r1

)
=

1

Z1
Bmh(2)′

m

(
k̃1r1

)
+

1

Z1
Cmh(1)′

m

(
k̃1r1

)
(2.20)

1

Z1
Bmh(2)′

m

(
k̃1r2

)
+

1

Z1
Cmh(1)′

m

(
k̃1r2

)
=

1

Z2
Dmj′m

(
k̃2r2

)
(2.21)

P0 (2m + 1)Lmjm

(
k̃0r1

)
+ Amh(1)

m

(
k̃0r1

)
= Bmh(2)

m

(
k̃1r1

)
+ Cmh(1)

m

(
k̃1r1

)
(2.22)

Bmh(2)
m

(
k̃1r2

)
+ Cmh(1)

m

(
k̃1r2

)
= Dmjm

(
k̃2r2

)
(2.23)

These equations can then be arranged into matrix form:




h
(1)′
m (k̃0r1)

Z0

h
(2)′
m (k̃1r1)

−Z1

h
(1)′
m (k̃1r1)

−Z1
0

−h
(1)
m

(
k̃0r1

)
h

(2)
m

(
k̃1r1

)
h

(1)
m

(
k̃1r1

)
0

0
h
(2)′
m (k̃1r2)

Z1

h
(1)′
m (k̃1r2)

Z1

j′m(k̃2r2)
−Z2

0 h
(2)
m

(
k̃1r2

)
h

(1)
m

(
k̃1r2

)
−jm

(
k̃2r2

)




×




Am

Bm

Cm

Dm


 =




−P0

Z0
(2m + 1)Lmj′m

(
k̃0r1

)
P0 (2m + 1) Lmjm

(
k̃0r1

)
0

0


 (2.24)

The coefficients can then be solved for analytically using Cramer’s rule or

numerically using LU decomposition.

2.1.1 Verification

By setting the outer sphere to have the same properties of the medium, or

setting the two spheres to have the same properties, the problem becomes

that of a single sphere of radius a which has the following solution for the

plane wave case [8].
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The pressure for r > a is

p(r, θ) =

∞∑
m=0

ÂmPm (µ)h(1)
m (kmedr) e−iωt

+ P0

∞∑
m=0

(2m + 1) (−i)m Pm (µ) jm (kmedr) e−iωt (2.25)

and for r < a is

p(r, θ) =
∞∑

m=0

B̂mPm (µ) jm (kinr) e−iωt (2.26)

This system of equations can be arranged to be of the form

(
h

(1)
m (kmeda) −jm (kspha)

1
ρmedcmed

h
(1)′
m (kmeda) −1

ρsphcsph
j′m (kspha)

)(
Âm

B̂m

)

=

(
−P0 (2m + 1) (−i)m jm (kmeda)
−1

ρmedcmed
P0 (2m + 1) (−i)m j′m (kmeda)

)
(2.27)

where kmed, cmed, ρmed are properties of the surrounding medium and ksph,

csph, and ρsph are properties of the fluid sphere with radius a. The solution

is then

Âm = P0(2m + 1)(−i)m

× (j′m (kmeda) jm (kspha) ρsphcsph − j′m (kspha)nm (kmeda) ρmedcmed)

−h
(1)′
m (kmeda) jm (kspha) ρsphcsph + j′m (kspha) h

(1)
m (kmeda) ρmedcmed

(2.28)

B̂m = P0(2m + 1)(−i)m

× (n′
m (kmeda) jm (kmeda) − j′m (kmeda) nm (kmeda)) ρsphcsph

−ih
(1)′
m (kmeda) jm (kspha) ρsphcsph + ij′m (kspha) h

(1)
m (kmeda) ρmedcmed

(2.29)

Outer sphere matched to medium

Let the outer sphere be matched to the medium. Then k0 = k1 = kmed,

c0 = c1 = cmed, ρ0 = ρ1 = ρmed. Also, let r2 = a, k2 = ksph, c2 = csph,

9



ρ2 = ρsph, and Lm = (−i)m so the the problem now becomes equivalent to a

plane wave incident on a single fluid sphere of radius a. For the solution to

agree with that in [8], the following equations must be satisfied:

For r > r1,

P0 (2m + 1) (−i)m jm (kmedr) + Amh(1)
m (kmedr)

= Âmh(1)
m (kmedr) + P0(2m + 1)(−i)mjm(kmedr) (2.30)

so

Am = Âm (2.31)

For a < r < r1,

Bmh(2)
m (kmedr) + Cmh(1)

m (kmedr) =

Âmh(1)
m (kmedr) + P0(2m + 1)(−i)mjm(kmedr) (2.32)

The following identity is then used:

h(1)
m (x) + h(2)

m (x) = 2jm(x) (2.33)

Then

Bm =
P0(2m + 1)(−i)m

2
(2.34)

and

Cm = Bm + Âm (2.35)

For r < a,

DmPm (µ) jm (ksphr) = B̂mPm (µ) jm (ksphr) (2.36)

so

Dm = B̂m (2.37)

The solution to Eq. (2.24) for the case when the outer sphere is matched
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to the medium is

Am = −P0(2m + 1)(−i)m

× (j′m (kspha) jm (kmeda) ρmedcmed − j′m (kmeda) jm (kspha) ρsphcsph)

j′m (kspha) h
(1)
m (kmeda) ρmedcmed − h

(1)′
m (kmeda) jm (kspha) ρsphcsph

Bm =
P0(2m + 1)(−i)m

2

Cm = −P0(2m + 1)(−i)m

×
(
j′m (kspha)h

(2)
m (kmeda) ρmedcmed − h

(2)′
m (kmeda) jm (kspha) ρsphcsph

)
2j′m (kspha)h

(1)
m (kmeda) ρmedcmed − 2h

(2)′
m (kmeda) jm (kspha) ρsphcsph

Dm = P0(2m + 1)(−i)m

× (n′
m (kmeda) jm (kmeda) − j′m (kmeda) nm (kmeda)) ρsphcsph

ij′m (kspha) h
(1)
m (kmeda) ρmedcmed − ih

(1)′
m (kmeda) jm (kspha) ρsphcsph

which satisfy Eqs. (2.30)-(2.37).

Inner and outer spheres matched

Now let the two spheres be matched to each other such that k1 = k2 = ksph,

c1 = c2 = csph, and ρ1 = ρ2 = ρsph. Also let k0 = kmed, c0 = cmed, ρ0 = ρsph,

and Lm = (−i)m. By setting r1 to a, the problem again becomes the problem

of a plane wave incident on a single sphere. The following equations must

then be satisfied:

For r > a,

P0 (2m + 1) (−i)m jm (kmedr) + Amh(1)
m (kmedr)

= Âmh(1)
m (kmedr) + P0(2m + 1)(−i)mjm(kmedr) (2.38)

so

Am = Âm (2.39)
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For a < r < r2,

Bmh(2)
m (ksphr) + Cmh(1)

m (ksphr) = B̂mjm(ksphr) (2.40)

so

Bm = Cm =
B̂m

2
(2.41)

For r < r2,

Dmjm(ksphr) = B̂mjm(ksphr) (2.42)

so

Dm = B̂m (2.43)

Solving Eq. (2.24) for the matched spheres case results in the following

coefficients:

Am = −P0(2m + 1)(−i)m

× (j′m (kspha) jm (kmeda) ρmedcmed − j′m (kmeda) jm (kspha) ρsphcsph)

j′m (kspha) h
(1)
m (kmeda) ρmedcmed − h

(1)′
m (kmeda) jm (kspha) ρsphcsph

Bm =
P0(2m + 1)(−i)m

2i

× (n′
m (kmeda) jm (kmeda) − j′m (kmeda)nm (kmeda)) ρsphcsph

j′m (kspha) h
(1)
m (kmeda) ρmedcmed − h

(1)′
m (kmeda) jm (kspha) ρsphcsph

Cm =
P0(2m + 1)(−i)m

2i

× (n′
m (kmeda) jm (kmeda) − j′m (kmeda)nm (kmeda)) ρsphcsph

j′m (kspha) h
(1)
m (kmeda) ρmedcmed − h

(1)′
m (kmeda) jm (kspha) ρsphcsph

Dm = P0(2m + 1)(−i)m

× (n′
m (kmeda) jm (kmeda) − j′m (kmeda) nm (kmeda)) ρsphcsph

ij′m (kspha) h
(1)
m (kmeda) ρmedcmed − ih

(1)′
m (kmeda) jm (kspha) ρsphcsph

which satisfy Eqs. (2.38)-(2.43).
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2.2 Synthesizing Finite Duration Solutions

from Time-Harmonic Solutions

The solution to sound scattering from two concentric fluid spheres shown

above is for a time-harmonic excitation at frequency f . This time-harmonic

solution has an infinite duration while the wavefront reconstruction tech-

niques presented later on require a finite duration pulse. One can approxi-

mate the solution to finite duration pulse excitation from the time-harmonic

solution using Fourier analysis. Let v(t) denote the desired pulse and its

Fourier transform V (f), where V (f) is zero for |f | greater than fbw. Analyt-

ically, v(t) can be synthesized from its Fourier transform as

v(t) =

∫ ∞

−∞
V (f)ej2πftdt (2.44)

=

∫ fbw

−fbw

V (f)ej2πftdt (2.45)

Computationally this would require an infinite number of frequencies to be

added and is therefore not realizable. One solution to this problem is to

create a T -periodic version of v(t), v((t))T , where

v((t))T =
∞∑

k=−∞
v(t − kT ) (2.46)

This periodic version of v(t) therefore has a Fourier series representation,

v((t))T =
∞∑

k=−∞
V [k]ej2πkt/T (2.47)

where

V [k] =
1

T

∫
<T>

v((t))T e−j2πkt/T (2.48)

Since v(t) is band-limited, v((t))T is also, so V [k] is zero for |k| > Tfbw. As

a result, the sum in Eq. (2.47) is now over a finite number of frequencies

v((t))T =

�Tfbw�∑
k=−�Tfbw�

V [k]ej2πkt/T (2.49)
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Now let P (r, θ, φ, f) denote the complex time-harmonic solution for a fre-

quency f to scattering from two concentric spheres derived earlier. One can

then find the approximate solution for pulse excitation using the equation

p((r, θ, φ, t))T =

�Tfbw�∑
k=−�Tfbw�

P (r, θ, φ,−k/T )V [k]ej2πkt/T (2.50)

Assuming the pressure at (r, θ, φ) and the desired pulse are both real-valued,

Eq. (2.50) simplifies to

p((r, θ, φ, t))T = V [0]P ∗(r, θ, φ, 0)

+ 2

�Tfbw�∑
k=1

Re
{
V [k]P ∗(r, θ, φ, k/T )ej2πkt/T

}
(2.51)

When using this method for simulation, one must be careful when choosing

the period T . Choosing T to be small reduces computation time by limiting

the number of frequencies that are added in Eq. (2.51). By reducing this pe-

riod, though, pulses are effectively impinging on the spheres closer together;

so if the solution has a long impulse response, a new pulse will arrive before

the last pulse’s response died out and time-domain aliasing will occur.
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CHAPTER 3

WAVEFRONT
RECONSTRUCTION
METHODS
Pierce [9] defines a wavefront as “any moving surface along which a wave-

form feature is being simultaneously received.” The first step in performing

ray tracing is determining these wavefronts from the time-domain pressure

waveforms over the computational domain. Once these waveforms have been

computed, one can then proceed to compute the normals and intersections

to propagate the rays. Wavefront computation is also the step most prone

to errors. These errors are usually the result of multiple reflections or at-

tenuation at interfaces. Multiple approaches to wavefront reconstruction are

presented here along with a discussion of how well they are able to handle

the various pitfalls of wavefront reconstruction methods.

All of the methods presented here make the same assumptions about

the data being used. The data are assumed to have originated from some

sort of computational simulation over a uniform square spatial grid in three

dimensions with N points per dimension separated by a distance dx = dy =

dz. Each point (x, y, z) on the grid is assumed to have a time-domain pressure

waveform associated with it, denoted as p(x, y, z, t). The source of excitation

is assumed to be a finite duration tone pulse pref(t), although most methods

can be used for any finite duration pulse with minor modifications. The

incident field is assumed to be a plane wave propagating in the +z direction.

3.1 Spatial Correlation

3.1.1 Method

The idea behind the spatial correlation method is to determine the wavefront

at a time τ by finding the z coordinate for each (x, y) pair that maximizes

the correlation of p(x, y, z, t) and pref(t − τ).
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3.1.2 Issues

Strong scatterers cause this method to fail due to reduction in the pulse’s

magnitude. Assume that p(x, y, z, t) is equal to a time-delayed and scaled

version of pref and the excitation is a tone burst. Consider a point (x0, y0, z0)

that is the actual wavefront at time t and some other point (x1, y1, z1). Let

p(x1, y1, z1, t) = A0p(x0, y0, z0, t − nT ), where T is the reciprocal of the cen-

ter frequency of the tone burst, n is an integer, and A0 is a result of the

attenuation due to transmission loss. If A0 is sufficiently small, it is pos-

sible that although the shifted reference pulse is not perfectly aligned with

p(x1, y1, z1, t), it will still have a larger correlation with pref(t) than will

p(x0, y0, z0, t). As a result, the wavefront will be incorrectly identified as

being located at (x1, y1, z1) instead of (x0, y0, z0).

This method solves for the wavefront directly, but the methods to follow

will determine the wavefront indirectly. Instead of finding the wavefront

at time τ , the time it takes for the pulse to reach (x, y, z) is determined.

The wavefront at a time τ is then the set of (x, y, z) with the same pulse

arrival time. This indirect method of determining wavefronts generally is

less vulnerable to attenuation as will be explained in the next section.

3.2 Temporal Correlation

3.2.1 Method

The temporal correlation method, like the spatial correlation method, as-

sumes that p(x, y, z, t) is a delayed version of pref(t). The arrival time τ

of the pulse at a position (x, y, z) is then computed by finding the value of

τ that maximizes the correlation of p(x, y, z, t) with pref(t − τ). Since the

magnitudes of both signals being compared do not change from one delay

to another, the attenuation issue encountered with the spatial correlation

method is no longer a problem. This particular method works quite well

when applied to weak scatterers since the assumption that the p(x, y, z, t) is

approximately a time delayed version pref(t) holds.
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3.2.2 Example

The reference signal pref is plotted in Fig. 3.1 and the pressure at a location

(x, y, z) is shown in Fig. 3.2. The correlation of p(x, y, z, t) with time-shifted

versions of pref(t) and is plotted in Fig. 3.3. The time-shift corresponding to

the largest correlation value is -0.6472 ms. Figure 3.4 shows pref shifted by

-0.6472 ms with p(x, y, z, t). The incident waveform and the shifted reference

signal line up correctly and therefore the arrival time was computed correctly.
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Figure 3.1: Reference signal pref .

3.2.3 Issues

Reflections and interference can cause significant errors in the results ob-

tained with this method.
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Figure 3.2: Pressure signal for temporal correlation example.
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Figure 3.3: Correlation of pressure signal from Fig. 3.2 and time-shifted
versions of pref . The maximum correlation point is marked with a diamond
and corresponds to a time shift of -0.6472 ms.
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Figure 3.4: Pressure signal from Fig. 3.2 and time-shifted version of reference
signal computed using temporal correlation method.

3.3 Minimum Weighted Phase Error

3.3.1 Method

The idea behind the minimum weighted phase error method is observation

that the delay of a single frequency component of a signal can be determined

by the phase of the Fourier transform of a signal at that frequency. Another

observation is that the influence of each frequency component is proportional

to the magnitude of the Fourier transform at that frequency. Assume that

the p(x, y, z, t) is approximately a time delayed version of pref(t) after being

run through some filter with a phase response of zero. Let P (x, y, z, f) be

the Fourier transform of p(x, y, z, t) and Pref(τ, f) be the Fourier transform

of pref(t − τ). Define the weighted phase error function eθ(τ, f) as

eθ(τ, f) = |∠P (x, y, z, f)− ∠Pref(τ, f)| |P (x, y, z, f)| (3.1)

The pulse arrival time at the point (x, y, z) is then the value of τ that min-

imizes the integral of the weighted phase error function over all frequencies.
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In equation form,

τ = argmin
t

{∫ ∞

−∞
eθ(t, f)df

}
(3.2)

3.3.2 Issues

Computation of the unwrapped phase is still an unsolved problem, so the

phase computation in Eq. (3.1) is done with the wrapped phase. This can

result in a computed phase error that can be either greater or less than the

actual value. For example, if ∠P (x, y, z, f) = 0.99π the wrapped phase of

pref(τ, f) is −0.99π, the phase error computed will be 1.98π while the actual

phase error is 0.02π since a wrapped phase of −0.99π is equivalent to a phase

of 1.01π. On the other hand, if the unwrapped phase of p(x, y, z, f) is 4.1π

and the unwrapped phase of pref(τ, f) is 2.1π, the unwrapped phase error is

2π while the wrapped phase error is 0. This last point results in significant

error in the phase error computation and often results in maxima of eθ(τ, f)

occurring at the actual arrival time and also at the arrival time offset by

integer multiples of the pitch period for tone burst stimulation.

3.4 Peak Detection

3.4.1 Method

The peak detection uses the first peak of the pulse to be the waveform fea-

ture that is tracked over time. The advantage of using the first peak is that

this peak is least likely to be distorted by interference patterns. The method

works as follows. Set some threshold pressure pthr to be the minimum pres-

sure amplitude that will be considered a peak. This parameter should be

chosen so that any noise occurring before the arrival of the pulse is not de-

tected as a peak. Then for a point (x, y, z) find the first t that satisfies

p(x, y, z, t) ≥ pthr. This time will be denoted as tthr. The arrival time τ is

then the next local maxima in p(x, y, z, t) such that τ ≥ tthr.
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3.4.2 Example

Consider the pressure signal at a point (x, y, z) shown in Fig. 3.5. A value of

pthr = 0.15 is plotted as the dotted line in the figure. The first peak greater

than pthr occurs at the point marked by the diamond in the figure. This

corresponds to an arrival time of -0.538 ms.
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Figure 3.5: Example signal used for the peak detection method. The signal
observed at the point (x, y, z) is shown as the solid line, the threshold pressure
pthr is the dotted line, and the arrival time is marked by the diamond at -0.538
ms.

3.4.3 Issues

Peaks introduced by noise can result in a false detection of the first peak. If

this becomes an issue, a simple solution is to multiply the pressure waveform

by its envelope. This will also reduce the magnitude of the first peak, but

this reduction will be less than the the reduction of the noise outside of the

pulse. It should also be noted that due to attenuation, the p(x, y, z, t) should

be normalized to have a maximum of 1 and pthr then becomes the ratio of

the noise maximum to the pulse maximum.
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3.5 Previous Sample Temporal Correlation

3.5.1 Method

This method is based on the assumption that p(x, y, z, t) is more like a delayed

version of p(x, y, z − dz, t) than pref(t). This is usually the case, especially

when multiple reflections occur. The method is similar to the temporal cor-

relation method except that the correlation is now taken between p(x, y, z, t)

and p(x, y, z−dz, t). The difference in arrival times between z−dz and dz is

then computed by finding the delay τ of p(x, y, z− dz, t) that maximizes the

correlation with p(x, y, z, t). Denote this delay as τmax(x, y, z). This method

is recursive since in order to find the arrival time at a position (x, y, z), the

delays from all of the previous z values must be summed.

τ(x, y, z) =

z/dz∑
n=min{z}/dz

τmax(x, y, ndz) (3.3)

3.5.2 Example

The signals at (x, y, z) and (x, y, z−dz) are shown in Fig. 3.6. The correlation

of p(x, y, z, t) with time shifted versions of p(x, y, z − dz, t) is shown in Fig.

3.7 with a maximum at a time shift of 9.443 µs. The pressure at (x, y, z) is

plotted with the pressure at (x, y, z − dz) shifted by 9.443 µs in Fig. 3.8. As

can be seen from the figure, the shifted version p(x, y, z − dz, t) is aligned

with p(x, y, z, t).

3.5.3 Issues

The recursive nature of the method has the drawback that an error in one

delay computation for a given (x0, y0, z0) coordinate results in an error in

the arrival time for all (x0, y0, z) for z ≥ z0. Reflections also introduce error,

although of a smaller magnitude than the error encountered for the previous

correlation based methods. This error results from the fact that when the

incident pulses are maximally correlated, the reflected pulses will be slightly

out of phase due to their differing path lengths. This correlation of the

reflected pulses causes the delay estimate to be less than the actual delay.
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Figure 3.6: Pressure signals at (x, y, z) (solid line) and at (x, y, z−dz) (dashed
line).
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Figure 3.7: Cross-correlation of pressure signal at (x, y, z) with pressure sig-
nal at (x, y, z − dz). The diamond indicates the maximum correlation which
occurs at a time of 9.443 µs.
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Figure 3.8: p(x, y, z−dz, t) Shifted by the amount found using the last sample
temporal correlation method (dashed line) and p(x, y, z, t) (solid line).

The severity of this effect is proportional to the ratio of the magnitude of

the reflected pulse to the magnitude of the incident pulse. An example of

this is shown in Figs. 3.9-3.11. Figure 3.9 shows p(x, y, z, t) and p(x, y, z −
dz, t) when a strong reflected pulse is present. Figure 3.10 shows the cross-

correlation of the two signals with a maximum correlation occurring for a

shift of 2.518 µs. Figure 3.11 shows p(x, y, z − dz, t) shifted by the value

computed with the method and p(x, y, z, t). Looking closely at the figure,

it can be seen that the reflected pulse is aligned while the incident pulse is

slightly out of phase.

3.6 Previous Sample Temporal Correlation

with First Peak Alignment Correction

3.6.1 Method

This method combines the peak detection method with the previous sample

temporal correlation method to improve the method’s ability to compensate

24



−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [ms]

P
re

ss
ur

e 
[P

a]

 

 
Pressure at (x,y,z)
Pressure at (x,y,z−dz)

Figure 3.9: Pressure signals at (x, y, z) (solid line) and at (x, y, z−dz) (dashed
line) with reflections.
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Figure 3.10: Cross-correlation of pressure signal at (x, y, z) with pressure
signal at (x, y, z−dz) with reflections. The diamond indicates the maximum
correlation which occurs at a time of 2.518 µs.
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Figure 3.11: p(x, y, z − dz, t) Shifted by the amount found using the last
sample temporal correlation method (dashed line) and p(x, y, z, t) (solid line)
with reflections.

for noise and interference. The first step is to perform the previous sample

temporal correlation method to get a rough estimate of the arrival time.

The peak detection method is then applied subject to the constraint that

the absolute difference in arrival times from (x, y, z − dz) and (x, y, z) must

be less than some maximum delay. In this case, the maximum delay is the

maximum time it should take to travel a distance of dz multiplied by some

tolerance factor greater than 1. If cmin is the minimum sound speed over the

domain and Atol is the tolerance factor, the maximum delay τmax is then

τmax =
Atoldz

cmin

(3.4)

If the delay is not within this tolerate range, the previous sample temporal

correlation method is used to approximate the delay between the last sample

and the current sample.
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3.6.2 Issues

This method results in more accurate arrival determination than either of

the methods used on their own. When the first peak method fails and the

previous sample temporal correlation must be used, the solution is not exact

but is more accurate than would be found using the first peak method. One

issue arises as a result of the use of the previous sample temporal correlation

method. Since this method has a tendency to underestimate the actual

delay, if used on enough samples in a row, the peak detection method may

be detected as outside of the allowed delay when the correct arrival time was

found.
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CHAPTER 4

RAY COMPUTATION

Ray computation is the second stage of the ray tracing procedure and is

composed of two steps. First, the normal to the current wavefront is com-

puted. Then the intersection of this normal vector with the next wavefront

is found. This process is repeated until the last wavefront is reached. For

all examples shown here, the previous sample temporal correlation with first

peak alignment correction method is used for wavefront reconstruction.

4.1 Normal Computation

The x and y values of the computational domain are assumed to be on a

uniform spatial grid of N × N points separated by a distance dx = dy. The

wavefront at a time t and position (x, y) will be denoted as z(x, y, t). To

compute the normal to the wavefront at a time t and x and y coordinates

(x0, y0), first find the x and y coordinates on the computational grid that

are closest to x0 and y0, respectively. This coordinate will be referred to

as (xq, yq) and has corresponding wavefront value z(xq, yq, t). The points

surrounding (xq, yq) are then used to form four triangles, as shown in Fig.

4.1, where

Pm,n = (xq, yq, z(xq, yq, t)) (4.1)

Pm−1,n = (xq − dx, yq, z(xq − dx, yq, t)) (4.2)

Pm,n−1 = (xq, yq − dy, z(xq, yq − dy, t)) (4.3)

Pm+1,n = (xq + dx, yq, z(xq + dx, yq, t)) (4.4)

Pm,n+1 = (xq, yq + dy, z(xq, yq + dy, t)) (4.5)

The normal is then computed by taking the cross product of two vectors

28



Pm,n Pm+1,n

Pm,n+1

Pm-1,n

Pm,n-1

III

III IV

Figure 4.1: Triangles used to determine normal vector.

formed from the sides of the triangle containing (x, y, z(x, y, t)). For example

if (x, y, z(x, y, t)) is located in triangle I, define v1 = Pm+1,n − Pm,n and

v2 = Pm,n−1 − Pm,n. The normal vector n is then v1 × v2.

4.2 Intersection Computation

The intersection of the normal with the next wavefront is approximated

by finding the intersection of the normal with a triangle formed by the

discretized wavefront. Similar to what was done for the normal computa-

tion, the triangle closest to the intersection point must first be found. Let

(xl, yl, z(xl, yl, t)) correspond to the wavefront at time t over the discretized

domain. For all points over the domain find the vector vl from the last in-

tersection (x0, y0, z(x0, y0, t)) to each point on the next wavefront. The point

which minimizes the magnitude of the error vector e,

e =
n

|n| −
vl

|vl| (4.6)

is the point on the grid closest to the intersection and will be called Pm,n. The

triangle containing the intersection is then found based on the direction of

e, similar to what was done for the normal computation. For example, if the
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x component of e is positive and the y component of e is negative, triangle

IV of Fig. 4.1 is used. The intersection of normal with the wavefront is

then approximated as the intersection of the normal with this triangle. Let

a = (xa, ya, za), b = (xb, yb, zb), and c = (xc, yc, zc) be the three vertices of

the triangle. The intersection of the normal with the wavefront is then [10]

(x0 + nxs, y0 + nys, z0 + nzs) (4.7)

where s can be found by solving the equation




x0 − xa

y0 − ya

z0 − za


 =




−nx xb − xa xc − xa

−ny yb − ya yc − ya

−nz zb − za zc − za






s

u

v


 (4.8)

4.3 Increasing Normal Accuracy

The discretization of the domain and resulting wavefronts result in normals

computed from the wavefronts only being able to take on discrete directions.

For example, consider the two dimensional case. The normal shown in Fig.

4.2(a) occurs when the wavefronts at x and x+dx have the same value. The

normal shown in Fig. 4.2(b) occurs when the wavefront at x is dz greater

than the wavefront at x + dx. The normal shown in Fig. 4.2(c) occurs

when the wavefront at x is 2dz greater than the wavefront at x + dx. This

pattern can be repeated when the wavefront at x is mdz greater than the

wavefront at x + dx, where m is an integer. Since propagation is assumed in

the +z direction, the normals shown in Figs. 4.2(a) and 4.2(b) occur most

frequently. The normal should be able to take on any angle from 0 to 90◦

with respect to the x-axis but due to quantization it is only able to take

on values of tan−1 (1/m). This can lead to significant error in ray tracing

computations. A method of reducing this error is presented next.

One method of decreasing the error in the normal computation is to

compute the arrival times rounded to an integer multiple of some sampling

period T . Let the arrival time at position (x, y, z) be NT and the arrival

time at position (x, y, z + dz) be MT , where M and N are integers and

M > N . One can then use linear interpolation of the wavefronts for the time

intervals between. For example, let the arrival time at (x, y, z) be 8T and the
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dx

n

(a) n = ẑ.

dx

dz

n

(b) n = x̂ + ẑ.

dx

2dz

n

(c) n = 2x̂ + ẑ.

Figure 4.2: Quantized wavefront normals.

arrival time at (x, y, z + dz) be 12T . The wavefront at time 9T can then be

approximated as (x, y, z)+(0, 0, (9−8)dz/(12−8)) = (x, y, z+0.25dz). Figure

4.3 shows the new wavefronts found using interpolation for this example.

Due to this interpolation step, allowable angles are now tan−1 ((M − N)/m)

which should increase the accuracy of the ray tracing.

12T

8T

9T

10T

11T

dx

dz

Figure 4.3: Wavefronts found using wavefront interpolation. Wavefronts
found without interpolation are shown in bold and additional wavefronts
found using interpolation are shown as dashed lines.

4.4 Verification with Snell’s Law

In order to validate the ray tracing methods presented above, simulations

were performed and then compared to Snell’s law. Snell’s law states that for
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oblique incidence of a plane wave on a planar boundary as shown in Fig. 4.4,

c2 sin(θi) = c1 sin(θt).

θi

θt

c2

c1

Figure 4.4: Angle and sound speed conventions for Snell’s law. θi is the angle
of incidence, θt is the transmission angle, c1 is the sound speed in the first
medium and, c2 is the sound speed in the second medium.

For the case of the spherical scatterer, the boundary is no longer a plane

but can be thought of as a plane tangent to the sphere at the point of

intersection of the ray with the sphere as shown in Fig. 4.5. It can be shown

that a ray starting at (x, y) and pointing in the +z direction will have an

angle of incidence of

θi = sin−1

(√
x2 + y2

r

)
(4.9)

where r is the radius of the sphere. After applying Snell’s law, the angle of

transmission will then be

θt = sin−1

(
c2

c1

√
x2 + y2

r

)
(4.10)

Define the difference angle θd as the difference between θt and θi,

θd = θt − θi (4.11)

Since the propagation direction is in the positive z direction, θd is the angle

between the transmitted ray and the positive z-axis. One can then compute

the transmitted ray according to Snell’s law as follows. First, compute θi, θt,
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z

x

θi

θt

c1c2

Figure 4.5: Snell’s law applied to a plane wave incident on a sphere.

and θd as described above. Next, compute the transmitted ray in the z − x

plane, which is

rzx = x̂ sin(θd) + ẑ cos(θd) (4.12)

The ray must then be rotated about the z-axis by the angle θr where

θr = tan−1
(y

x

)
(4.13)

This rotation can be applied using a transformation matrix




rx

ry

rz


 =




cos(θr) − sin(θr) 0

sin(θr) cos(θr) 0

0 0 1






sin(θd)

0

cos(θd)


 (4.14)

where the transformed ray is x̂rx + ŷry + ẑrz. The resulting direction of the

transmitted ray according to Snell’s law is

rSnell = x̂ sin(θd) cos(θr) + ŷ cos(θd) sin(θr) + ẑ cos(θd) (4.15)

The error of the ray found with the ray tracing code can now be computed.
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First, define a vector v, which is the vector starting at the intersection of

the computed ray path with the sphere and ending at some point on the

computed ray path after the ray has entered the sphere. The error angle

θe is then computed by finding the angle between rSnell and v using the

following equation:

θe = cos−1

(
rSnell · v
|rSnell||v|

)
(4.16)

4.4.1 Verification simulation 1

The first simulation used for verification was a 75 mm diameter sphere with a

sound speed of 310 m/s and density of 1.21 kg/m3 surrounded by a medium

with a sound speed of 300 m/s and a density of 1.21 kg/m3. A 12.5 kHz

four-cycle sinusoidal pulse was used. Two renderings of the ray paths are

shown in Fig. 4.6. The ray tracing error as a function of angle of incidence

is plotted in Fig. 4.7.

4.4.2 Verification simulation 2

The second simulation used for verification was a 75 mm diameter sphere

with a sound speed of 330 m/s and density of 1.21 kg/m3 surrounded by a

medium with a sound speed of 300 m/s and a density of 1.21 kg/m3. A 12.5

kHz four-cycle sinusoidal pulse was used. Two renderings of the ray paths are

shown in Fig. 4.8. The ray tracing error as a function of angle of incidence

is plotted in Fig. 4.9.

4.4.3 Verification simulation 3

The third simulation used for verification was a 75 mm diameter sphere with

a sound speed of 400 m/s and density of 1.21 kg/m3 surrounded by a medium

with a sound speed of 300 m/s and a density of 1.21 kg/m3. A 12.5 kHz four-

cycle sinusoidal pulse was used. Two renderings of the ray paths are shown

in Fig. 4.10. The ray tracing error as a function of angle of incidence is

plotted in Fig. 4.11. As can be seen from the plot, the error is significantly

larger than was observed for the 310 m/s sphere. One factor contributing to

this error may be the fact that Snell’s law only applies when the wavelength
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(a) Side View

(b) Perspective View

Figure 4.6: Ray tracing for 310 m/s sphere in 300 m/s medium and 12.5 kHz
pulse.
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Ray Error (300 m/s Medium, 310 m/s Sphere, 12.5 kHz)
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Figure 4.7: Ray tracing error for 310 m/s sphere in 300 m/s medium with
matched densities.

approaches zero. In order to verify that this is the source of some of the

error, another simulation was performed.

4.4.4 Verification simulation 4

The fourth simulation used for verification was the same as the second except

the frequency of the pulse was doubled to halve the wavelength. With this

smaller wavelength, the small wavelength assumption of Snell’s law should

be better satisfied and hence a smaller error observed. Two renderings of

the ray paths are shown in Fig. 4.12. The error as a function of the angle

of incidence is plotted in Fig. 4.13. Comparison to Fig. 4.11 shows that the

error is reduced as the wavelength is made smaller.

4.4.5 Verification simulation 5

The fifth simulation used for verification was a 75 mm diameter sphere with

a sound speed of 500 m/s and density of 1.21 kg/m3 surrounded by a medium

with a sound speed of 300 m/s and a density of 1.21 kg/m3. A 15 kHz four-

cycle sinusoidal pulse was used. Two renderings of the ray paths are shown
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(a) Side View

(b) Perspective View

Figure 4.8: Ray tracing for 330 m/s sphere in 300 m/s medium and 12.5 kHz
pulse.
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Ray Error (300 m/s Medium, 330 m/s Sphere, 12.5 kHz)
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Figure 4.9: Ray tracing error for 330 m/s sphere in 300 m/s medium with
matched densities.

in Fig. 4.14. The ray tracing error as a function of angle of incidence is

plotted in Fig. 4.15.

4.5 Additional Simulations

4.5.1 Concentric fluid spheres

A simulation was performed using the concentric sphere solution with the

properties close to that of the human head. A summary of the values used

is shown in Table 4.1. The center frequency of the pulse was 1 kHz. Ren-

derings of the ray tracing at six time steps are shown in Fig. 4.16. Higher

resolution versions of these images can be found in the Appendix, Figs. A.1

to A.6. Figure 4.17 shows the rays looking into the −z axis to display the

ray concentrations better.

The initial concentration of rays is 16 rays per 400 mm2 which is shown

in Fig. 4.17(a). The second time step is shown in Fig. 4.17(b). Near the

bone-air interface the concentration of rays doubles to 32 rays per 400 mm2,

corresponding to having twice the initial intensity in that region. Inside the
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(a) Side View

(b) Perspective View

Figure 4.10: Ray tracing for 400 m/s sphere in 300 m/s medium and 12.5
kHz pulse.
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Ray Error (300 m/s Medium, 400 m/s Sphere, 12.5 kHz)
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Figure 4.11: Ray tracing error for 400 m/s sphere in 300 m/s medium with
matched densities for a 12.5 kHz pulse.

brain region the concentration of rays is reduced by roughly a factor of four

to 3 rays per 400 mm2, corresponding to an intensity that is a quarter of the

initial intensity. The third time step is shown in Fig. 4.17(c). Near the bone-

air interface the concentration of rays is 31 rays per 400 mm2 which is still

roughly twice the initial concentration. Inside the brain region the concen-

tration of rays is as low as 0.5 rays per 400 mm2, which has a corresponding

intensity of approximately 3% of the initial intensity. The fourth time step is

shown in Fig. 4.17(d). Near the bone-air interface the concentration of rays

is 28 ray per 400 mm2, which corresponds to an intensity of 1.75 times the

initial intensity. Inside the brain region the concentration of rays is still as

low as 0.5 rays per 400 mm2, which has the corresponding intensity of 3% of

the initial intensity. The fifth time step is shown in Fig. 4.17(e). Near the

bone-air interface the concentration of rays is 26 rays per 400 mm2, which

corresponds to an intensity of 1.625 times the initial intensity. Inside the

brain region the concentration of rays is as low as 1 ray per 400 mm2, which

corresponds to an intensity of approximately 6% of the initial intensity. The

sixth time step is shown in Fig. 4.17(f). Near the bone-air interface the con-

centration of rays is 28 rays per 400 mm2, which corresponds to an intensity

of 1.75 times the initial intensity.
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(a) Side View

(b) Perspective View

Figure 4.12: Ray tracing for 400 m/s sphere in 300 m/s medium and 24 kHz
pulse.
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Ray Error (300 m/s Medium, 400 m/s Sphere, 24 kHz)

0

2

4

6

8

10

12

0 10 20 30 40 50 60

Angle of Incidence (degrees)

R
a
y
 T

r
a
c
e
 E

r
r
o

r
 (

d
e
g

r
e
e
s
)

Figure 4.13: Ray tracing error for 400 m/s sphere in 300 m/s medium with
matched densities for a 24 kHz pulse.

Table 4.1: Concentric Sphere Simulation Variables.
Region Radius c ρ

Inner Sphere (Brain) 65 mm 1500 m/s 1000 kg/m3

Outer Sphere (Skull) 75 mm 2900 m/s 2000 kg/m3

Medium (Air) N/A 343 m/s 1.21 kg/m3
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(a) Side View

(b) Perspective View

Figure 4.14: Ray tracing for 500 m/s sphere in 300 m/s medium and 15 kHz
pulse.
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Ray Error (300 m/s Medium, 500 m/s Sphere, 15 kHz)
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Figure 4.15: Ray tracing error for 500 m/s sphere in 300 m/s medium with
matched densities for a 15 kHz pulse.
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(a) Time: 0.4836 ms (b) Time: 0.6458 ms

(c) Time: 0.8080 ms (d) Time: 0.9687 ms

(e) Time: 1.1309 ms (f) Time: 1.2930 ms

Figure 4.16: Ray tracing for concentric fluid sphere simulation.
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(a) Time: 0.4836 ms (b) Time: 0.6458 ms

(c) Time: 0.8080 ms (d) Time: 0.9687 ms

(e) Time: 1.1309 ms (f) Time: 1.2930 ms

Figure 4.17: Ray concentrations for concentric fluid sphere simulation.
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CHAPTER 5

DISCUSSION AND FUTURE
WORK

5.1 Discussion

The solution to sound scattering from concentric fluid spheres was first pre-

sented. The results were then verified by comparing to the single sphere

solution of Anderson [8]. This solution is then later used to obtain data

for use in verifying the wavefront reconstruction and ray tracing techniques.

This solution is also currently being used to verify a finite element code de-

veloped by Dr. Margaret Wismer that will then be used to simulate sound

scattering from the human head. Additional applications of this solution

include approximating sound scattering from ultrasound contrast agents or

cells. The Fourier pulse synthesis method was then derived as a means of per-

forming simulations of finite duration pulses from the time-harmonic solution

for scattering from concentric fluid spheres.

Multiple methods were presented to determine wavefronts from pressure

data. The first method presented attempted to find the wavefront directly by

finding the point that maximized the correlation with a time-shifted reference

pulse. This method works well for weak scatterers but fails when the pulse

amplitude varies. The remaining methods used an indirect approach to de-

termine the wavefront. The arrival time of the pulse was first determined and

then the wavefront was extracted as the set of points with the same arrival

time. The first method of this kind used a simple cross correlation between

the pulse at a point and a reference pulse. The arrival time was the shift of

the reference signal that maximized the cross correlation. This method also

works well for weak scatterers but fails when strong reflections occur. The

next method used a frequency domain approach to determine arrival times.

Since the delay information of a signal is contained in the phase information

of a signal, by minimizing the phase, one can determine the arrival time of a
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pulse. In theory this should work, but the problem of unwrapping the phase

leads to unreliable results. The next method presented determined the ar-

rival time by finding the first peak in the pulse. When noise is not present,

this method works well and is fairly accurate. Noise introduces peaks before

the onset of the pulse and therefore performs poorly when noise is present.

The next method was based on the assumption that the waveform at the

position behind the current one is nearly identical to the current one with

some time shift. By determining this time shift, one can determine the ar-

rival time between two points. By adding the arrival time differences over

the domain, the arrival time can be determined. This method had two main

drawbacks. First, the method had a tendency to underestimate the delay

when strong reflections occurred. The method was also recursive in nature

so the error tended to accumulate as the wavefront progressed. The final

method proposed combined the last two methods to achieve the precision of

the peak detection method while minimizing the error caused by noise. This

was done by first using the peak detection method. If the result was within

an acceptable range relative to the last arrival time, the peak detection result

was used. If not, the difference in arrival times was computed using the cross

correlation of the current signal with the last signal. This method was found

to be accurate for most cases and was used for all ray tracing simulations

performed later on.

A ray tracing technique for discretized domains was then presented. The

idea behind the technique was to break the discretized wavefronts into a series

of triangles. From these triangles it is straightforward to compute both the

normal of the wavefront and the intersection of a ray with the wavefront.

The topic of wavefront was revisited to address the issue of ray quantization.

It was shown that the discretization of the wavefronts also discretized the ray

directions achievable. This finite set of ray directions impacts the accuracy of

the ray tracing computation, so a simple method of reducing the effect of this

quantization was presented. The ray tracing technique was then verified by

comparing simulation results with Snell’s law. The verification showed good

agreement with Snell’s law. As the error began to increase it was shown that

this error was not due to the method but due to the wavelength approaching

the size of the sphere.
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5.2 Future Work

The ultimate goal of this work is to apply the ray tracing code to FEM

simulations of sound wave propagation into the human head. Before that

can be done, the ray tracing code still needs to be verified for a wider range

of scatterers. The technique was verified in this work for small changes in

sound speed (300 m/s to 500 m/s) and no change in density. The human

head has a much greater change in sound speed (343 m/s to 3000 m/s) and

large changes in density (1 kg/m3 to 2000 kg/m3). Accordingly, the code

should be verified for this range of values of density and sound speed. The

first verification should compare the results of the code with Snell’s law as

was done here but for a range of sound speeds from 300 m/s to 3000 m/s

for matched densities. The single sphere solution could then be used with

changes in both sound speed and density in the ranges of interest.

After adequate verification of the ray tracing has been performed, it can

then be applied to simulations of the human head. A preliminary model is

currently being simulated. This particular model was made from CT scans

of the dry human skull shown in Fig. 5.1. A layer of skin was then added

by “growing” the skull and then subtracting the original skull. A rendering

is shown in Fig. 5.2. The figure also shows a set of ear plugs which was

added to the model to see if the occlusion effect is observed with the model.

Finally, a brain was added by filling in the volume inside the skull as shown

in Fig. 5.3. As can be seen from the renderings, the model is not an accurate

representation of a human head. The skin is attached directly to the skull

and is missing much of a tissue that would make the model have a more

human-like face. The model is also missing the outer ears and nose. A

second model is currently being developed using data from a human cadaver.

This should be a better representation of a human head since the outer ears,

skin, and nose are still intact.
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Figure 5.1: Rendering of skull used for finite element simulation.

Figure 5.2: Rendering of skull used for finite element simulation with skin
layer added.
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Figure 5.3: Rendering of brain added to model used for finite element simu-
lation.
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APPENDIX A

RAY TRACING IMAGES

To show greater detail, Figs. A.1-A.6 are magnified versions of the images

in Fig. 4.16.

Figure A.1: Concentric sphere ray tracing at 0.4836 ms.
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Figure A.2: Concentric sphere ray tracing at 0.6458 ms.
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Figure A.3: Concentric sphere ray tracing at 0.8080 ms.
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Figure A.4: Concentric sphere ray tracing at 0.9687 ms.
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Figure A.5: Concentric sphere ray tracing at 1.1309 ms.
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Figure A.6: Concentric sphere ray tracing at 1.2930 ms.
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