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CHAPTER 1

INTRODUCTION

One of the most challenging tasks in biology today is to
improve our present knowledge of how the nervous systen
communicates information. Reliable observation of a small
population of cells is an important first step toward such an
understanding. To accomplish this, the neurophysiologist uses a
microelectrode made of metal, insulated to the tip, or a
fluid-filled micropipette, to record the electric signals
produced by the neurons. Often, when the microelectrode is
inserted among the nerve cells or fibers, it is possible to
observe a number of spike waveforms clearly attributable to
single nerve cells. The signal from the electrode is usually
digitized to facilitate processing and storage. The waveforms
are then separated by shape and amplitude into classes which,
hopefully, correspond to each of the nerve cells. Hence the
experimenter has multiple neuron data with which to test
biologically relevant hypotheses.

With the growth in interest in multiple element electrode
arrays for neural recording [7,17,30,31], researchers are more
interested in wutilizing multiple unit separation techniques to
aid in their analyses. Multiple channel data also make it
increasingly important to develop, understand, and utilize auto-

mated spike separation techniques. The combination of multiple



channels and high sample and event rates makes it impossible for
a single researcher to follow all of the neural activity and to
make adjustments to instruments in order to optimize
data acquisition. Further, data compression utilizing automatic
spike recognition is necessary for logging data, especially in
continuous time recording.

The overall spike separation task can be divided into two
phases: an operational phase in which data are analyzed, either
on- or off- line, and a learning phase, in which the parameters
for the operational phase are determined.

This thesis addresses the automation of the learning phase of
the multiunit data separation problem. The specific goals of the
project were: 1) the creation of a software tool which would
automatically 1learn to classify action potentials based on
several algorithms reported to be most efficient; and, 2) the
comparison of the performance of these algorithms for spike
detection and separation for test data with varying
signal-to-noise ratios as well as on sample data from several

representative neurobiological preparations.

1.1 Problem Definition

Inherent in some computer separation systems is the
interactive 1learning phase. In some systems this is defined as
the visual selection of spike shapes or the mean of similar
spikes selected by the experimenter to be used as "standards" or
templates [10]. Other systems sort spikes during the learning

phase by utilizing measures such as amplitude, latency, slope and



area. In either case, hand quantification of such parameters is
not only time-consuming but often introduces both bias and random
errors [21]. The purpose of this thesis is to present a solution
to the supervised learning phase problem by offering an automated
learning phase algorithm.

The balance of this chapter introduces the characteristics of
neural data, summarizes the state-of-the-art in the separation of
multiunit recordings, including learning phase algorithms, and

outlines the specific tasks undertaken.

1.2 Nature of Neural Data

A typical action potential used in this thesis is shown in
Figure 1.1. Most spike waveforms have durations which range from
0.5 to 5.0 ms and amplitudes of from 50 to 500 uV, both of which
vary somewhat from species to species. An intracellular
recordings of electrical activity is obtained using an electrode
that penetrates the membrane of the neuron. Extracellular
recordings are obtained wusing an extracellular electrode that
does not penetrate the neuron membrane.

An intracellular recording often permits the observation of
the excitatory and inhibitory post-synaptic potentials that are
generated by stimulation of the cell by presynaptic neurons.
Because the propagation of the post-synaptic potentials is in a
decremental fashion, those originating from more distant synapses
will be attenuated and more difficult to observe through the

electrode noise than those from nearby synapses [11]. Many



Figure 1.1. Spike waveform obtained from a giant interneuron of
the cockroach.



systems use this property to distinguish different synapses by
their observed amplitudes.

The extracellular potentials are small compared to the
full-action potential observed with an intracellular electrode.
The waveforms vary with the axon-electrode distance and with the
diameter of the axon. Fortunately, the variations in the struc-
ture of the neurons and their 1locations with respect to the
recording electrode give rise to consistent differences in the
shapes of the action potentials. These differences allow one to
extract multidimensional features for use in classification.

It is generally accepted that the bandwidths of neural data
are in the range 1-10 kHz, with 6 kHz being representative [23].
This figure suggests a value for the high frequency cutoff of the
analog amplifier system used. Further, digital sampling must be
greater than 12 kHz (the Nyquist rate). On the other side of the
spectrum, slow wave activity tends to impede computer separation
of extracellular neuronal activity into single-unit activity. The
effects of slow wave activity on such separation can be reduced
by a highpass filter with low frequency cutoff between 100 and
600 Hz. Once the parameters of the data are known, linear filter-
ing can then be introduced to enhance computer detection and sep-

aration.

1.3 Background

1.3.1 Computer Separation

Gerstein and Clark [10] were among the first to implement the



use of computers for separating multineuronal data. Since then,
a number of computer classification techniques have been devel-
oped ranging in complexity and versatility. Wheeler and Heet-
derks compared such techniques as the use of amplitude and con-
duction time measures, template matching, the principal compo-
nents (PC) method, optimal filtering, and maximin discrimination
[28].

Amplitude classification is the simplest and fastest
technique, yet is only effective for neural signals with high
signal-to-noise ratios. Pulse height or window discriminators
have been developed to select only those spikes with amplitude
falling between preset limits [13]. While such window discrimi-
nators may be used for the detection of neural signals [30], it
is not recommended for classification since spikes of equal
amplitude but originating from different nerve fibers cannot be
separated.

In template matching classification is done according to the
best rms fit between an observed waveform and preselected stan-
dard [20]. This "standard" is the average of visually selected
waveforms for each neural unit. Gerstein and Clark’s implementa-
tion [10] wuses this method to develop histograms which display
the population as a function of dissimilarity number calculated
as the rms difference between each waveform and a standard tem-
plate. Usually, the histogram shows sufficent clustering of pop-
ulations to permit the experimenter to classify the action poten-
tial waveforms generated from the same unit as the standard.

Each of the sample points comprising a waveform can be individu-



ally weighted during computation of the dissimilarity number,
thus emphasizing various portions of the waveform. O0’Connell et
al. [18] found that this rms measure has an effectiveness of
97-98% correct selection as compared to an experienced observer.

Roberts and Hartline [22] applied a technique involving
multichannel 1linear filtering in which filters are constructed,
each of which is optimal for distinguishing one neural signal
from other signals and noise. Roberts and Hartline claimed that
the number of recording electrodes must approximate the number
of wunits present. This optimal filter method is a variation on
the traditional matched filter in colored noise where the noise
not only includes the instrumentation noise, but also the wave-
forms of units which are to be rejected. The 1linearity of the
filters makes it possible to resolve superimposed waveforms under
some circumstances.

The principal component method generates templates for each
unit by projecting the waveforms onto an orthogonal set of basis
functions that provide the least-mean-square error for
representing the original spikes in the data set. Each detected
waveform is transformed and defined as a point in a two-
dimensional PC plane. As more events are transformed into
points, dense clusters form which likely correspond to a single
neural unit. Abeles and Goldstein [1] suggest that more than two
PC vectors are generally not needed since they typically
represent 93% or more of the waveform’s energy. Separation is
usually done by defining classification boundaries around the

projected clusters (see Figure 1.2). This technique has been



.-"-‘- :-."‘. :f-—'—hh"'-
T ey ._ . . . . -'.""—v.-""."
el NP LY . 3
s e W o Yt . >
R AN
DML TREA e
's_. :_':f-' ‘._.: ) "
™ .

Figure 1.2. Two-dimensional principal component cluster plot
showing four possible clusters (defined by the circles). The
horizontal axis corresponds to the first principal component
direction and the vertical axis to the second principal component
direction. Each dot represents one action potential as described
- by the derived principal component coefficients.



used on line in real time in our laboratory [26].

1.3.2 Automatic lLearning Phase Algorithms

Dinning and Sanderson [6] approached the problem of an
unsupervised learning phase using a reduced feature set
algorithm. Using limited knowledge of the signals, a compressed
learning set containing all the still unclassified
threshold-detected shapes is analyzed by a computer to select
several samples of each spike event. An automatic clustering
algorithm is applied to the aperiodic samples of the learning
set, producing a set of clusters whose means are used as reduced
templates for real-time classification in the operational phase
[6].

An on-line spike separation system was developed by
D’Hollander and Orban [5] in which the learning phase is also
unsupervised. Data samples of each waveform in the learning set
are used as coordinates in a multidimensional feature space.
Cluster configurations which hopefully correspond to a single
unit are then determined using a nearest neighbor technique. The
output of the 1learning program, i.e., the mean wavefornms,
constitute the templates for the operational phase.

Another system uses two-dimensional projection of the action
potential shape on the first (abscissa) and second (ordinate)
principal components of eigenvectors [9]. Once again, clusters
of points form which correspond to the repeated occurrence of
action potentials of a particular shape, presumably coming from a

particular single neuron. A third dimension is used to indicate
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the number of points falling into each cluster. Interaction of
the learning phase program allows one to define numbered
elliptical boundaries that are used to separate all waveforms
falling into a cluster for subsequent operation phase analysis.

A "smart trigger" for automatically sorting action potential
trains was developed by McGill and McMillan [16]. Here, the
learning phase and operation phase are synonymous. The system
uses two fast digital signal-processing microprocessors to detect
and sort up to eight different waveforms on a single input
channel in real time. When a spike is detected, it is compared
with all the existing templates using the squared error
criterion. The smart trigger uses a threshold-crossing detector
set at a multiple of the standard derivation of noise. If an
existing template fails to get four matches within 2000 spike
detections, it is erased to make room for new templates. The
system uses a discrete Fourier transform algorithm [15] to
interpolate waveforms in the background and is spread out over

several sampling intervals.

1.4 Summary of System Development Efforts

A user-friendly system was developed that automatically per-
forms the learning phase in real time. The main program was
written in Fortran with assembly language subroutines for fast
data transfer and quick graphic capabilities. Five separation
algorithms are made available to the neurophysiologist for use
under different experimental conditions. A real-time cubic

spline algorithm [29] 1is also available for interpolation of
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detected waveforms. Simulated test data were created and used to
test the efficiency of five separation algorithms with varying
signal-to-noise ratios. The effects of digital filtering on
detection and classification are also studied. A test program
written 1in Fortran summarizes the performance of the five algo-
rithms tested as a function of noise and filtering. Tests on
actual data from giant interneurons of the cockroach are also
evaluated and studied. The results indicate which algorithm is
most efficient and suggest optimal installation parameter set-
tings for certain experimental conditions. With the knowledge
gained from the performance of each algorithm, one can decide
which algorithm is likely to be most efficient for one’s own pur-

pose.
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CHAPTER 2

THEORY

2.1 Problem Model and Definitions

When recording the activity of groups of neurons, one can
expect the recorded signal to be corrupted by noise. Electrodes,
due to their ohmic component, generate Johnson noise. The
microelectrode amplifier also generates noise that is added to
that generated by the electrodes. Another source of electrical
interference that contaminates neuronal recordings is
electrostatic and/or electromagnetic pick-up from the power lines
in the laboratory. Slow wave activity and the activity of
neurons some distance from the electrode contribute only +to the
baseline hash [23]. With this is mind, we now formulate a
simple additive model implemented by Wheeler and Heetderks in
their extensive comparison of multiunit separation techinques
[287.

If v(t) represents the recorded voltage from a particular
electrode and n(t) is the noise, we observe:

v(t) = 2 wi(t-rig) + n(t) (1)

1,3

where wj denotes the signal contribution of the ith waveform
unique to each unit_and limited in duration, and 7ij denotes the
time of firing of the ith unit for the jth time measured from

some starting instant. The determination of the times 7i§ When
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each of the units fired is assumed known. Therefore, in the
classification problem described below, it is assumed that the
detection problem has been solved.

Once a spike has been detected, assuming no superposition of

waveforms from two or more spikes, the recorded voltage is

v(t) = wi(t-rij) + n(t) (2)
Since all of the classification techniques in this thesis are
digital, the recorded signal over the spike duration can be

represented by writing the discrete vector equation.

v=Wj +tn (3)
where the elements of v are the voltage samples that straddle the
peak amplitude of the spike immediately following epoch Tig, W3
includes the sample values of unit i’s waveform, and n represents
the sampled noise. Note that the noise generated in this model
is assumed to be bandlimited zero mean Gaussian. In solving the
classification problem, one uses the information gathered from
the waveform vector wi and the statistics of noise n to identify
which unit i was most likely responsible for the recorded voltage
samples v.

In the development of the classification techniques that
follow, different features extracted from the vector vn will be
used. A multivalued transformation vector F, a bivariate
function of classification technique and v, is applied to the

variables in (3), which, if F is linear, yields

F(v) = £=f§ + 1 (4)
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where £ and f; are feature vectors extracted from v and Wi and yp
is the transformed noise vector in the feature space. Since each
unit in this thesis is assumed a priori equally 1likely to be
active, then a Bayesian analysis recommends classification
according to whichever set of features f; best fits the observed

features f; i.e.,

min | £5-f | ()
i
where ||| is the Euclidean norm.

The Euclidean norm is a simple conservative criterion
appropriate for use provided that the features have been
"whitened" to remove the correlation of the noise process [8].
This least distance measure will use classification features
extracted from the Peak Amplitude, Template Matching and Weighted
Template Matching Algorithms. Although the Principal Components
algorithm could also be done this way, in this thesis
classification is done by a lookup table established by eye from
a scatter plot of features.

To measure the effectiveness of any set of features in
classification, a separation matrix is constructed whose entries
are the statistical distances between pairs of units as measured

in the feature space. Each entry is given by

dijy = | £5-£ | (6)
provided the feature’s variations are independent of noise and

have been normalized. When this distance is greater than five
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standard deviations, two units can be considered well separated
implying at least a 95 percent correct classification [12].

If a pair of feature sets is derived from the mean of a class
of action potentials and another action potential by any one of
the linear transformations, the maximum separation allowed for
the new action potential to be considered from the same unit is a
multiple (usually 2.5) of the standard deviation of the baseline
noise. Classification is done by measuring the distance between
the existing template features fi and the observed feature f£. If
the distance between the existing template features f; and the
observed feature f are all greater than the allowed maximum
separation standard, a new template is generated from the
observed vector v. Otherwise, classification is done according
to whichever template feature f; best fits the observed feature £
(see equation (5)). The template for each neural unit is con-
structed only from the mean waveform vectors v in which their
feature distance, calculated above, is less than a multiple (usu-
ally 1.0) of the standard deviation of the baseline noise. There-
fore, it is possible for an observed vector v to be classified

yet not be averaged into the unit template wj.

2.2 Development of Classification Features

2.2.1 Peak Amplitude Classification

The simplest, most obvious feature for use in classification
relies on the peak amplitude of neural waveforms [2,3,24]. This

difference in spike amplitude exists in some records due to the
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neuron’s size and distance from the recording electrode. As the
name implies, the feature f extracted from the vector v 1is its
peak amplitude. Other simple features such as spike width and
peak-to-peak-crossing time were not extracted for classification

since they appear not to improve reliability [3,27].

2.2.2 Template Matching Classification

This technique compares the mean template w;j of each unit to
the observed spike vector v by computing the rms distance; i.e.,
N

RMS = [(1/N){.21(Wij‘Vj)2}]l/2 = N"1/2 | wi-v | (7)
J:

where N is the total samples in the v vector. In the past, this
classification technique was only considered for off-line separa-
tion because of the large number of squaring operations needed to
compute the rms errors for all neural units. With the vast
improvements in fast digital signal processors, this statisti-
cally optimal technique can be implemented in real time. For
later reference, the notation RMS will refer to template match-

ing.

2.2.3 Weighted Template Matching Classification

This technique, basically the same as Template Matching,

individually weighs each difference (Wig-v4) in (7):i.e.,
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W-RMSy = {(1/Kj) g Hij(wij-—Vj)z}l/2 (8)
where Hj is the weight for the jth sample of unit i and Kj is
the sum of the weights Hjj for unit i. The elements Hij are the
mean square sample values for the waveforms previously classified
as unit i. Therefore, the weight vector emphasizes various por-
tions of the waveform. Hand selection of the elements of a gen-
eralized weight vector for all units has been implemented but was
not tested here. The notation W-RMS will refer to weighted tem-
plate matching for later reference. Note that if the elements
Hij are chosen edqual to the Wid the procedure is equivalent to

matched filtering.

2.2.4 Principal Components

The Principal Component (PC) technique is based upon
calculating a set of orthogonal basis functions (refered to as PC
vectors) gj, that provide the least-mean-square error for
representing the original spikes in the data set. The original
waveforms can then be approximated by using the scaled sum of two
or three optimally chosen PC vectors. These scaling factors fij

(PC coefficients) are very effective features for classification.

£i5 = BiT wj

£5 = Pp;T

j £i

I<

(9)
Two PC vectors will be tested in this model since 93% or more
of the waveform’s energy are generally represented by two PC

vectors [1]. The two optimal PC vectors are the eigenvectors of
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the correlation matrix C ordered by the sizes of their associated

eigenvalues [1].
C =3 wijwyT (10)
i

If one normalizes the waveforms w; before calculating the PC
vectors, the PC coefficients are said to be more sensitive to the
smaller amplitude waveforms [28]. In the testing that follows,
two cases will be referred to: 1) PCA, no normalization, and 2)
PCB, with normalization of the waveforms before the PC vectors
are calculated. Classification of both cases can be done by eye
(see Figure 1.2) though automatic learning of the PC technique

can be accomplished [9].

2.3 Interpolation Formulae

When a waveform is detected, the time of occurrence plus 31
sample points which straddle the peak are saved. Because action
potentials are generated asynchronously with respect to the
finite rate sampling process, the waveforms show jitter due to
alignment error. Figure 2.2 clearly shows an example of the
sampling problemn. This 1is equivalent to the addition to the
waveform of noise whose variance is proportional to the square of
the slope [29]. The desired temporal resolution [7] may be
obtained by sampling faster than the Nyquist rate even though,
theoretically, oversampling adds no information [15]. A cubic
spline interpolation technique is applied to the problem of alig-

ning the detected waveform. Wheeler and Smith [29] developed
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Two 16-point signatures from the same unit
show the alignment problem. (From Wheeler and Smith
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this technique as a more efficient, time domain alternative to
the discrete Fourier transform approach [15]. Alignment is done
by finding the peak of the interpolated waveform using Newton’s
method. The waveform is then reconstructed with the 31 sample
points now straddling the interpolated peak.

2.3.1 Cubic Spline Calculations

Let gj(t) be the cubic spline function which interpolates the
value of the continuous waveform x(t) between sample points X3
and xj-q at times t; and tj_;, respectively. The equations

without proof are [4]:

q(t) = A + At B+ (at)2 Cc + (at)3 D (11)
where At =t - t,
A= Xj-1,

and B,C, and D can be adequately approximated [29] by
B=1[.216,-.804,0,.804,-.216] X

C

[-.413,1.392,-2.196,1.392,-.372,.216] X
D= 1[.216,-.588,1.196,-1.196,.588,.216] X
where X = [®i-3/%j-2/%Xj-1/%Xj,Xit1/Xi42]
In this form, one can quickly solve for di(t) with a minimum of

multiplications.

2.3.2 Alignment Criterion

Alignment of the sampled action potential is done by first
locating the interpolated peak of the waveform. Figure 2.3 shows

that the 1location of this peak must lie in one of the sample
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intervals straddling the discrete sample time peak. The

interpolated peak is found using Newton’s method, i.e.,

tnel = tn - £(tn)/£7(tn), n=1,2,3,... (12)

where £(t)=dq(t)/dt £’ (tp)=df (tp)/dt

After four iterations of equation (12), the root t is
sufficiently accurate as the time of the interpolated peak. Two
iterations can be used assuming a good initial value t, is used
(t1 = 1/4 for case I and tq = 3/4 for case II as shown in Figures
2.3a and Fig. 2.3b, respectively). Reconstruction of the sampled
action potential waveform is done using equation (11) such that
the new interpolated sample points straddle the interpolated

peak.
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(a) (b)

- Figure 2.3. Two possible locations of the waveform’s continuous
peak. (a) Peak lies approximately 1/4 unit to right of sample
point, and (b) Peak approximately 3/4 unit to right of sample
point. o
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CHAPTER 3

SYSTEM IMPLEMENTATION

3.1 Computer System and Hardware

The learning phase described in this thesis was designed to
simplify the neurophysiologist’s tasks of downloading operation
phase parameters to a peripheral processor which performs real-
time spike recognition. The system diagram (Figure 3.1) shows
that the raw data from each electrode is amplified, filtered, and
digitized before being sent to the peripheral processor [26].
Assuming the parameters from the learning phase have been down-
loaded, the peripheral processor performs action potential detec?
tion and perhaps classification. The compressed data are then
sent to the host computer which is an IBM PC compatible AT&T
PC6300. It is this system that is used to digitize a small sample
of the raw data to be used for the learning phase. In this case,
the raw data sent to the host computer are not compressed, since
the parameters of the noise must be found. The AT&T PC6300 is

then used to perform all of the learning phase operations.

3.2 System Software and Functions

A useful multispike separation system must be user friendly
and efficient. The operational phase of separating spike
waveforms and processing data is secondary to its procurement.

When conducting real-time experiments, the monitoring of
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biological preparation, the presentation of stimuli, the keeping
of records, and the recording of raw data generally take
precedence over the spike classification process. Examination of
an initial learning set through a fast automated 1learning phase
program is necessary to establish classification boundaries. Once
this is done, the classification of data via an operational phase
can be executed in real time for experiments using interactive
stimulus presentation. With this on-line capability, the
experimenter obtains immediate feedback about multiple neuron
responses permitting expedient analysis of physiological
parameters.

A learning phase algorithm was developed that automatically
detects and separates up to 16 different spike waveforms. The
program displays statistical data, sets the detection threshold
automatically (if desired), allows operator intervention (also,
if desired), gives temporary classification boundaries, and the
ability to change separation algorithms and parameters used in
detection and classification via an installation menu. The fol-

lowing outlines such features and why they are needed.

3.2.1 Algorithms Implemented in Learning Phase

Different types of neural data can be classified using
different separation algorithms. For instance, if the neural
data have high signal-to-noise ratios (i.e., giant interneuron
signals from the cockroach ventral nerve cord), then they can be
classified using a fast and simple algorithm such as Peak Ampli-

tude. On the other hand, if the neural data have low signal-to-
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noise ratios, then they should be classified using a more complex
yet more time consuming technique such as Template Matching or
Principal Components. The program provides six different algo-
rithms: 1) Peak Amplitude, 2) RMS Template Matching, 3) Hand
Weighted RMS Template Matching, 4) Auto Weighted Template Match-
ing, 5) Principal Components and, 6) Principal Components Using
Normalized Templates.

There are 16 template buffers on hard disk which are
initially empty. When a spike is detected, it is compared with
all the existing templates using whichever separation algorithm
selected. Whenever more than 16 templates are encountered, the
program erases an existing template with the least amount of
matches to make room for the new template. A flowchart outlining
the Learning Phase algorithm is shown in Figure 3.2. The
features extracted are a function of the separation process

chosen.

3.2.2 System Control Menus

Of the Learning Phase Algorithms mentioned above, only Peak
Amplitude and RMS Template Matching are present on the Main Menu
(see Figure 3.3). Since Weighted and Auto RMS Template Matching
is a variation of RMS Template Matching, execution is implemented
through the 1Install Menu under selection number 6 (see Figure
3.4). Both Principal Component methods are also not on the Main
Menu since templates must be selected (via Peak Amplitude, etc.)

prior to their executions.
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: < < MAIN MENU >>
. SET Threshold, PEAK Classify, MANUAL rms display.
. SET Threshold, AUTO PEAK Classify with no intervention.
AUTO Threshold, PEAK Classify, MANUAL rms display.
. AUTO Threshold, AUTO PEAK Classify with no intervention.
. SET Threshold, RMS Classify, MANUAL rms display.
. SET Threshold, AUTO RMS Classify with no interven tion.
. AUTO Threshold, RMS Classify, MANUAL rms display.
. AUTO Threshold, AUTO RMS Classify with no intervention.
. Recover RMS file.
. Recover PC file.
. . INSTALL MENU

Input an integer (0-8):

b
OCOWOINUI PN

Figure 3.3. Main Menu of the learning phase algorithm.

<< INSTALL MENU>>

. SET AUTO THRESHOLD (NUMBER OF STANDARD DERIVATIONS).
. SET AUTO PEAK (NUMBER OF STANDARD DERIVATIONS).
SET RMS DIFFERENCE (NUMBER OF STANDARD DERIVATIONS).
SET AUTO AVERAGE (NUMBER OF STANDARD DERIVATIONS).
SET NUMBER OF BLOCKS OF 3000 FOR AUTO THRESHOLD.
SET WEIGHT FACTORS FOR RMS CALCULATIONS.
. FILTER TYPE (FOR DETECTION AND/OR CLASSIFICATION)
. NEGATE DATA.
. DATA SIZE.
. BACK TO MAIN MENOU.

Input an integer (0-5):

° °

© (WO ~=1M U L3N -4

Figure 3.4. Installation Menu for adjusting learning phase
parameters.
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Selections 1 and 5 require the most user intervention. Here,
the user must manually set +the threshold via a threshold-
probability display and must decide whether or not waveforms
which do not match any established class should be manually clas-
sified or picked as new templates using an rms waveform-template
display. The time consuming manual intervention of selections 1
and 5 generally restrict their use for off-line experiments only.
On the other hand, selections 4 and 8 require no user interven-
tion. Here, all detection and classification are done automati-
cally. Other selections 2,3 and 6,7 vary in the amount of user
intervention. Selections 9 and 10 allow one to recover from the
previous RMS/PEAK or PC experiment without having to rerun the
program. The main menu allows the user to decide the amount of
manual intervention, if any, needed to execute the learning phase
efficiently.

The Install Menu shown in Figure 3.4 allows one to vary
parameters used in the execution of detection and classification
and is called from the Main Menu using selection 0. Selections
1-4 are used to input a multiple used in the sensitivity of
detection and classification. Selection 5 sets the number of
3000 sample point blocks used in the calculation of the standard
derivation (used 1in selections 1-4). As mentioned above,
selection 6 is used to alter the rms template matching routine
where one can choose auto or manual weighing of the waveform
signature and how many sample points to use in the rms
calculation (i.e., vector window size). Selection 7 allows one

to pick between two simple difference filters [14] for detection
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and one 3rd order butterworth filter [19] used for
classification. Also, both detection and classification filters
can be used together or alone. Selection 8 is used for negating
(or flipping) the data since different recording methods and/or
filtering can affect the positive detection threshold. The
length of data to be studied, also a function of recording
methods, can be set using selection 9. When entering any of the
selections above, the current (or default) value is displayed.
Control is returned back to the main menu via selection 0 in
which one can now execute one of the algorithms as a function of

the new or unchanged parameters.

3.2.3 User/System Interaction Displavs

Interactive user-friendly video displays were developed to
assist in setting the threshold level, picking a filter type,
analyzing the classified waveforms, choosing templates for the
principal component techniques, and drawing classification
boundaries (used only for principal component analysis).

When manually setting the threshold level, the first video
display presented is the Threshold-Probability display (see
Figure 3.5). This display shows the sample population (abscissa)
as a function of voltage level (ordinate) and is in essence a
probability curve. Note that the population as a function of
voltage levels less than one standard deviation and greater than
one negative standard deviation is not plotted. Because the plot
is similar to a Gaussian probability curve, the data plus and

minus one standard derivation would be lost when the plot is com-
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Figure 3.5. Threshold-Probability Display gives standard
deviation of data (STD), number of sample points used for
display (POPL), and mean of data (XBAR).
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pressed for the video display. Since most cases require an
absolute threshold level greater than one standard deviation, it
was decided not to plot the population in that interval. Hence,
important information is preserved after the compression of the
plot to the video display. The left and right arrow keys of the
AT&T PC6300 keyboard are used to move the display arrow which
indicates the threshold level. Possible threshold level settings
are shown in Figure 3.6 for four different cases. Note that in
each case the threshold is set where the plot deviates from that
expected of Gaussian noise. The population points greater than
the displayed arrow setting suggest the presence of action poten-
tials in the data. The standard deviation and the displayed arrow
position as a multiple of the standard derivation are displayed
to assist the user. In most cases, the level of threshold is set
at approximately three standard derivations.

Once the threshold 1is set, a filter display is presented
showing the raw data and filtered data in reference to the
threshold 1level (see Figure 3.7). If desired, one can implement
or change the detection filter by entering "c¢" on the keyboard.
By entering "x" on the keyboard, one can either reset the
threshold, return to the main menu or continue to the
classification stage.

If a manual classification algorithm is being used
(selections 1,3,5 and 7 of the Main Menu), then the next video
display is the RMS Classification Display (see Figure 3.8). When-
ever a waveform is detected that is not automatically classified,

it is compared to the existing templates using the RMS Classifi-
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8. Raw Data
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¥ 3-3 for Template filtering

Figure 3.7. Filter Display showing the raw data (top), first

order filtered data (middle), and second order filtered data
(bottom). In each case the set threshold is shown with respect
to the data.
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Figure 3.8. RMS Classification Display shows the observed wave-
form superimposed on template number 8. To the left of the
waves, the rms difference of each existing template is given.
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cation Display. Using the left and right arrow keys,
one can slide the observed waveform over the existing templates.
Different existing templates are displayed by using the up and
down arrow keys allowing fast visual comparison with all
templates. The rms difference between the existing waves and the
observed waveform is displayed to the left of the waveforms to
aid the wuser in deciding whether the observed waveform has a
match or not. The size of the rms calculation window can be
increased or decreased be entering "i" or "d", respectively. If
the user decides there is no match, the observed waveform is used
as a new template for future comparisons.

After execution of a separation algorithm or if selections 9
or 10 of the main menu are entered, the user is presented with
the Temporary Classification Display (see Figure 3.9). Here, the
user can easily anaiyze the performance of the algorithm by scan-
ning through the classified waveforms of each template. This
allows one to evaluate how effective the algorithm performed its
separation as a function of the pre set parameters and whether
one could change these parameters or try a different algorithm.
Once satisfied with the separation process, the user then picks
the templates best suited for the operational phase. The number
of matched waveforms is displayed under each template for quick
selection of permanent operation phase templates. These tem-
plates can also be used to run the principal component techniques
of the learning phase.

If one decides to run one of the principal component

algorithms (PCA or PCB), the templates selected above are then
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used in calculating the two optimal PC vectors (see Section 2.2).
The next video display is the PC-Boundary Display shown in Figure
3.10. The user can draw lines as shown in Figure 3.10 or plot
circles (Figure 1.2) around clusters which hopefuly correspond to
a particular unit. A circle is plotted by first selecting its
center position by moving a displayed cross using the arrow keys.
Once the cross is moved to where the center is desired, it is set
by entering the "s" key. The cross disappears and a circle is
displayed with its center exactly where the cross was. The
radius of the circle can then be increased or decreased by enter-
ing "i" and "d", respectively. Finally, when the desired radius
is set, the circle classification boundary is saved by once again
entering the "s" key. A contour line is drawn by by moving the
displayed cross using the arrows keys to where one wants the line
to begin and is marked by entering the "s" key. Once again the
cross disappears and a contour, beginning at where the cross was,
is drawn using the four arrow keys. Once the contour boundary
line is finished, it is saved by entering the "s" key. After all
classification boundaries are plotted using circles or lines, the
"x" key is entered and classification is then executed and con-
trol is returned back to the Temporary Classification Display

(see above).



Figure
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are plotted

around clusters presumed to correspond to four particular units.
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CHAPTER 4

EXPERIMENTAL METHODS

4.1 Introduction

The experiments described in this chapter are designed to
test the performance of the separation algorithms discussed in
Chapter 3. The experiments are such that questions regarding
system performance under different signal-to-noise ratios can be
answered. The effects of filtering and interpolation were
examined along with the effects of window vector size on
separation performance. Since filtering, interpolation and
vector size determine the execution time of each algorithm,
testing how they affect performance can be useful in selecting
such parameters and whether or not they should be used.

Two sets of action potentials were used as data for these
experiments. The first set, shown in Figure 4.l1a, uses four
distinguishable giant interneurons of the cockroach with the
maximum zero to peak amplitude being approximately 500 pV. Each
of the four waveforms was inserted 100 times in a noiseless
medium to be used as a standard data set. Other data sets (test
sets) were created as above except with the addition of varying
amounts of bandlimited Gaussian noise. The sets of test data were
then detected and classified using the five separation techniques
described above and compared to the standard data set using a

test program written in Fortran. The noise used for these test
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(a)

B Y

(b)

Figure 4.1. Two sets of four action potentials from the giant
interneurons of the cockroach. The top trace (a) shows four
selected waveforms used 100 times each. The bottom trace (b)
shows the four most detected waveforms of an unaltered sample of
actual data.
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files was created using a Wavetek Model 132 VCG/Noise Generator
and is bandlimited to 300 Hz [25]. The noise was scaled such that
the standard deviation of noise added to each test file was dif-
ferent. The SNR defined in this thesis is the ratio of the mini-
mum waveform’s maximum positive sample (peak) to the standard
derivation of the noise.

The second data set was unaltered and obtained from the giant
interneurons of another cockroach for the purpose of testing
actual data. Figure 4.1b shows the four most prominent neural
units present. In this case, the standard data set was
classified by eye and compared to other data sets (test sets)
obtained from each separation algorithm.

The cockroach recordings were obtained from S. Smith of our
laboratory. Wire hook electrodes were placed around one
connective of the neutral nerve cord of the cockroach. The animal
was simulated with puffs of wind. The electrode was interfaced
to a differential amplifier with 300 Hz-10 kHz bandwidth and a
gain of 1000 to record the giant interneurons. A 15 kHz sampling

rate was used to digitize the data for storage on disk [25].

4.2 Test Program

A test program was written in Fortran that automatically
compares a test set to a standard set and outputs the percent of
correct detections and classifications. The program outputs a
Classification Matrix that displays how the separation algorithm
sorted its test waveforms among its templates as compared to the

list of templates of the standard data. The test program also
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gives such information as the number of times each template in
the standard was falsely classified and detected and the number
of times each template was missed (not detected) and hence never
classified. Figure 4.2 shows the flowchart logic implemented by

the test program.

4.3 Performance of Separation Algorithms as Functions of Noise

The first experiment performed was designed to test the
performance of detection and the basic classification algorithms
on the first data set (Figure 4.l1a) as a function of noise
without the use of filtering or interpolation. The window vector
size was held constant at 17 sample points (except for peak clas-
sification). Test runs were done on data of 60,000 sample points
in which 400 thirty-one point action potentials were present (100
of each waveform). More sample points were not considered since
Learning Phase data are generally a small sample of the complete
data set. The percent noise (i.e., 1/SNR ) present on the files
tested ranged from 0%-100% at 10% intervals. The Learning phase
parameters which produced the best results for each separation
algorithm were found via trial and error and recorded along with
the level of the detection threshold. The classification algo-
rithm which performed the best at each noise level was used to
select templates for the PC algorithms. The test results allow
one to make a confident decision on which separation algorithm is
most efficient as a function of noise and frees the user from the

time-consuming "fine tuning" of the learning phase parameters.
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Figure 4.2. Flowchart of test program.
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4.4 Investigation of the Cubic Spline Interpolation

Experiments investigating the effects of cubic spline
interpolation (see Section 2.3) were done on the second data set
for each of the five separation algorithms discussed above.
Interpolation was not tested on the first data set since all of
the waveforms inserted in the data set were all sampled the same.
The results of such experiments can show which of the algorithms

are most affected by interpolation.

4.5 Effects of Window Vector Size

The second data set was used to test the effects of changing
the window vector size on the performance of the separation
algorithms above. The Peak Classification algorithm was not
tested here since it only uses one sample, the peak, for
classification. The vector sizes tested were 17,11,and 5 samples
in length. Two separate tests were conducted with and without
the use of interpolation. A smaller window vector size means
less computational time yet the information lost may inhibit
performance. The information gained from such experiments and
how inperpolation affects them can help one determine a reason-
able window vector size best suited for the waveforms present in

the data set.

4.6 Effects of Interpolation and Vector Size on Filtering

The final experiment investigated the effects of
interpolation and window size on the performance of the RMS

separation algorithm when using a first-order difference filter.
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Window vector sizes tested were 17,11, and 5 samples in length.
Some systems now use first-order difference filters to accentuate
the rapidly rising edges of the waveform spikes [14]-[16].
Results of how interpolation and/or window vector size affect
performance when using the filter can help one make probable
decisions on window vector size and whether or not interpolation

should be implemented.
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CHAPTER 5

RESULTS

5.1 Separation Power

Separation matrices for the first data set were calculated
for the RMS,PCA, and PCB feature sets described in Chapter 2. The
three separation matrices are given in Figure 5.1. For each
matrix the elements were scaled such that the two units showing
the greatest separation equaled 100. The PCA method (principal
component without normalization) yields an average separation of
67.46 units, with a minimum separation of 17.23. No other fea-
ture set showed better separation though units 1 and 2 have the
smallest separation of all the features. RMS template matching
yields the next highest separation average at 58.90 units with a
minimum separation of 26.64. The PCB method (principal component
with normalization) yields separation averaging 54.81 units, with
a minimum separation of 17.86. Here, the units of smaller ampli-
tude (units 1,2 and 2,3) yield slightly better separation than
PCA without normalization at the expense of average separation.
Usually, the minimum separation occurs between pairs of small

amplitude units [28].
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RMS Template Matching

Unit
1 2 3
2 26.64
3 46.10 37.73
4 100.00 81.44 61.49

PCA (no normalization)

Unit
1 2 3
2 17.23
3 32.00 21.54
4 100.00 97.54 77.54

PCB (with normalization)

Unit
1 2 3
| 2 17.86
3 40.77 25.00
4 100.00 85.12 60.12
Figure 5.1. Separation Matrices were computed using the

different classification features. The (i,3j)th entry of each
matrix is the scaled statistical difference between the ith and
jth units. The elements of each matrix were scaled such that the
greatest difference between two units equals 100.
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5.2 Performance Results of Separation Algorithms

The first experiment described in Chapter 4 tests the
separation performance of the five classification algorithms as a
function of noise using the first data set (Figure 4.1a). Figures
5.2a and 5.2b show the percent of correct classifications for
separation performance and overall performance, respectively.
Figure 5.2a shows the percent correctly classified for waveforms
which were true detections only and gives a better feel of the
efficiency of the separation algorithms without considering
detection performance. Figure 5.2b takes into consideration the
amount of missed detections in the test file and shows the
overall performance of the Learning Phase algorithms.

The results in Figure 5.2a generally confirm the predictions
of the separation matrices. Note that the RMS and W-RMS methods
performed generally the same as did the principal component
methods PCA and PCB. The peak amplitude method performed well
only for high SNRs (inverse percent noise). All the separation
methods performed perfectly up to 10 percent noise. The RMS and
W-RMS methods performed nearly perfect up to 30 percent noise by
separating over 97 percent of the waveforms correctly. The PC
methods remained perfect up to 20 percent noise and performed
near perfect up to 40 percent noise by classifying over 98 per-
cent of the waveforms correctly.

Figures 5.3 and 5.4 show cluster plots for the two principal
component methods, PCA and PCB respectively, with 0, 40, 70, and
100 percent noise. At 40 percent noise, clusters corresponding

to the four waveforms are still distinguishable for both methods.



50

SEPARATION PERFORMANCE

Test Date
100 - ro———

®. 90 -

o’

[ ]

c .

]

2 80 -

O

%

o

]

O - 704

i

]

(&} 80 ~

t

]

g

o

a 50 -

46 ¥ ¥ 1 1 1 Li 1 ) 1

1
(o) 10 20 30 40 50 60 70 80 80 100

Percent Nolse (%)
¢ W-—RMS -a

0 PEAK + RMS PCA x PCB

Figure b5.2a. Separation performance of the five algorithms as a
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Figure 5.2b. Overall performance of the five algorithms as a
function of percent noise.
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The larger amplitude waveform clusters for the nonnormalized
case tend to spread out more than do the normalized case. The
cluster plots also generally confirm the predictions of the sepa-
ration matrices, showing slightly greater separation of smaller
amplitude waveforms for the normalized case as compared to the

nonnormalized method.

5.3 Results of the Cubic Spline Interpolation

In the second experiment conducted, the effects of the cubic
spline interpolation on the second data set were investigated.
Figure 5.5 shows that four of the five algorithms tested yielded
improved results due to interpolation, with weighted template
matching (W-RMS) showing the most improvement. Template matching
(RMS) showed no improvement with interpolation with performance
hampered by only 1.54 percent. Since the standard test file was
selected by eye using the RMS Classification Display (Figure 3.8)
without the help of interpolation, it suggests that the file was
biased for slightly better performance without interpolation when
using RMS classification. Though interpolation improved the
performance of both principal component methods (PCA and PCB),
the results yielded were less than expected. The reason for the
poor performance of the techniques probably lies in the fact that
not enough waveforms were present in the data set to allow suffi-

cient clustering when classifing by eye.
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5.4 Results of Different Window Vector Sizes

Two experiments studying the effects of window vector sizes
with and without the use of interpolation were conducted. Figure
5.6a shows the results without the use of interpolation using
window vector sizes of 17,11, and 5 samples. RMS template
matching showed no significant loss in performance when reducing
the window vector size from 17 to 11 samples, dropping only 1.33
percent. W-RMS template matching and both PC methods dropped
more than 4 percent with the PCA method showing the largest drop
in performance with a 5.87 percent drop. When reducing the
window vector size from 11 to 5 sample points, the W-RMS method
in fact showed a slight improvement of 1.07 percent with RMS
template matching yielding the largest drop in performance of
8.26 percent. Both PC methods dropped less than 2 percent in
performance. Overall, the average drop in performance (percent
correct classification) was 3.44 percent.

Figure 5.6b shows the results with the use of interpolation
using window vector sizes of 17,11, and 5 samples. Both the RMS
and W-RMS template matching methods showed less than 2.5 percent
reduction in performance when lowering window vector size from 17
to 11 samples with W-RMS having the smallest drop of 2.34 per-
cent. The 1largest drop of 5.62 percent in performance was
yielded by the PCA method. Reducing the window vector size from
11 to 5 samples, the PCA method showed a slight improvement of
0.77 percent with the PCB method with the largest drop of 4.42
percent. In general, reductions in performance averaged 3.26

percent, with interpolation invoked showing a slight improvement
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of 0.18 as compared to without using interpolation. Averaged
over all algorithms and window vector sizes, a 1.46 percent
improvement was found using interpolation.

Interpolation was found to be most effective when reducing
the window vector size from 17 to 11 samples. For example, the
RMS template matching would require 3#%17=51 multiplications in
order to compare the observed waveform to an existing template,
i.e., the three groups of 17 multiplications are; 1. With
observed waveform aligned at peak, 2. To left of peak, and 3. To
right of peak, as compared to 3*11=33 multiplications with a win-
dow size of 11. If the maximum of 16 templates existed, the
total amount of multiplications using 17 samples would be 816
compared to 528 with 11 samples. Altogether, the use of interpo-
lation allows one to reduce the window vector size (17 to 11
samples) allowing a much faster operation time without a signifi-

cant loss in classification performance.

5.5 Results of Interpolation and Window Vector Size on Filtering

The final experiment in Chapter 4 investigated the effects of
interpolation and window vector size on the performance of the
RMS template matching algorithm when using a first-order filter.
Figure 5.7 shows an increase in performance (correct
classifications) for all three window vector sizes when using
interpolation. The results show an average increase of 4.63
percent in correct classifications when interpolation was
implemented. Generally, the first-order and second-order filters

lower the resolution of the spike waveforms (Figure 3.7). Though
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such filters make the spikes easier to detect, in essence they
increase the frequency content of the samples making
cubic spline interpolation much more effective. The results show
the greatest increase in performance of 6.95 percent when using a
window vector size of 5 sample points. The smallest increase was
a significant 3.93 percent when using a window vector size of 17
sample points.

With the use of interpolation, one could use a window vector
size of 5 samples and still get better performance than using a
window vector size of 17 or 11 samples without interpolation (see
Figure 5.7). As stated above, interpolation here would allow one
to efficiently reduce the window vector size to 5 samples allow-
ing much faster execution time with improved separation perfor-
mance compared to using a larger time-consuming window vector

size (17 or 11 samples) without interpolation.
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CHAPTER 6

DISCUSSTON AND CONCLUSIONS

The results obtained show that the Automated Learning Phase
system functioned as was desired. The investigation of several
classification techniques indicates that it is possible to
separate multiunit neuronal data with a fair amount of certainty
even when corrupted with noise. As the test results show, more
complex separation algorithms are needed for effective classifi-
cation of the noisier action potential data. The mission of the
Learning Phase is to download classification and dectection par-
ameters to the Operational Phase. With the hindsight gained from
the Learning Phase, the Operational Phase should operate more
effectively. The experiments conducted in this thesis should
assist others when deciding which technique is most feasible for
their unique systems.

The investigation of the cubic spline interpolation suggests
its usefulness in increasing the performance of the
classification techniques. Though detection methods were not
tested in this thesis, experiments on how interpolation affects
(and possibly improves) detection methods would be interesting.
Experiments have shown that interpolation can reduce the number
of needed multiplications (Sections 5.4 and 5.5) thereby making

it desirable for real-time Operational Phase systems.
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Upon examination of the performance of the RMS template
matching routine in which the data were filtered, using a simple
first-order difference filter emphasized the need for cubic
spline interpolation for classification. The filtering also
showed that smaller window vector sizes are more reliable for
separation when using interpolation. As stated earlier, smaller
window  vector sizes significantly decrease the amount of
multiplications making all the algorithms computationally
efficient. The cubic spline method of interpolation takes
approximately 5 multiplications per sample point making it
attractive for real-time applications.

Tests using real data show that the PC methods are less
desirable than RMS template matching or W-RMS template matching.
This is due to the fact that the small number of waveforms
detected were not enough to show sufficient clusters, thereby
making classification by eye more difficult. Since the Learning
Phase inherently uses a small sample of the entire data, it will
often be true that the sample of waveforms is too small for
effective PC classification using clustering. Also, since the PC
method calculates its two optimal PC vectors using the templates
extracted from one of the other separation routines, execution
time becomes almost doubled. With the capability of downloading
the templates to the peripheral processor (see Section 3.1), it
would generally seem more efficient that the PC algorithm be
performed in the Operational Phase than in the Learning Phase.
Here, the PC methods could analyze the whole data set as compared

to a fraction of it. With the increase of waveforms to project
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onto the two-dimensional PC space, it would be more 1likely to
observe clusters thereby making classification boundaries much
more apparent to the human eye.

With future advances in technology, computers will become
faster and mass storage less expensive. Use of multiple
electrode probes will allow the extraction of more information
(features) for sophisticated real-time separation techniques.
Such systems will constantly be redefining parameters from newly
acquired data and recomputing past data in hopes of enhancing

performance as a function of gained knowledge.
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