THE DESIGN OF A DOUBLE-POINT CALIBRATION ROUTINE FOR A MULTICHANNEL HYPERTHERMIA THERMOMETRY SYSTEM

BY

MARY AGNES OZARKA

B.S., University of Illinois, 1983

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 1984

Urbana, Illinois

ACKNOWLEDGEMENTS

The author would like to express her deep appreciation to Professor Charles A. Cain and Professor Richard L. Magin for their guidance. A word of thanks is extended to Steve Foster for his assistance with the thermometry hardware. Thank you to all of the graduate students in the lab for their help and suggestions. The efforts of all those who aided in the preparation of this thesis are greatly appreciated. Thank you to my parents and family for their love and assistance. Finally, a special thank you to Stanley Scontras for his support and encouragement throughout this endeavor.

TABLE OF CONTENTS

CHAPTER			PAGE
I	INTRODUCTION	•	1
II	THERMOMETRY HARDWARE OVERVIEW	•	3
III	THERMOCOUPLE CHARACTERISTICS	•	7
IV	THE CALIBRATION SCHEME	•	19
V	EXPERIMENTAL DATA AND ANALYSIS	•	26
VI	SUMMARY	•	69
APPENDIX	A. FLOW CHART FOR THE CALIBRATION ROUTINE	•	70
APPENDIX	B. PROGRAM LISTING WITH CALIBRATION	•	74
REFERENCE	3S	•	106

CHAPTER I

INTRODUCTION

Hyperthermia is the use of elevated temperatures to treat cancerous tumors. The selective heating of the unhealthy tissue alters the state of the abnormal cells allowing the radiation treatment which follows to be more effective.

A block diagram of a hyperthermia system is shown in Figure 1.1. The thermometry unit is a critical part of this system. The temperature of the tumor and the normal tissue surrounding it must be monitored at several locations. For the best results, the temperature of the abnormal tissue is kept above the minimum treatment level of about 43°C, but below an upper tolerance level of approximately 50°C. In addition, the encircling healthy tissue is maintained below 40°C, as near to normal tissue temperature as possible. The temperature information obtained is used to determine the level of ultrasound or microwave energy the controller sends to the tissue via the applicator.

The thermometry system may also function as a stand-alone unit. As indicated by the dashed line in Figure 1.1, the thermometry unit may connect directly to a terminal, via an RS-232 connection, for the input and output interactions with an operator.

Since the thermometry hardware has varying gain and offset characteristics for each channel, a calibration of the system is required before treatment may begin. The double-point calibration scheme will be discussed and analyzed in this thesis.

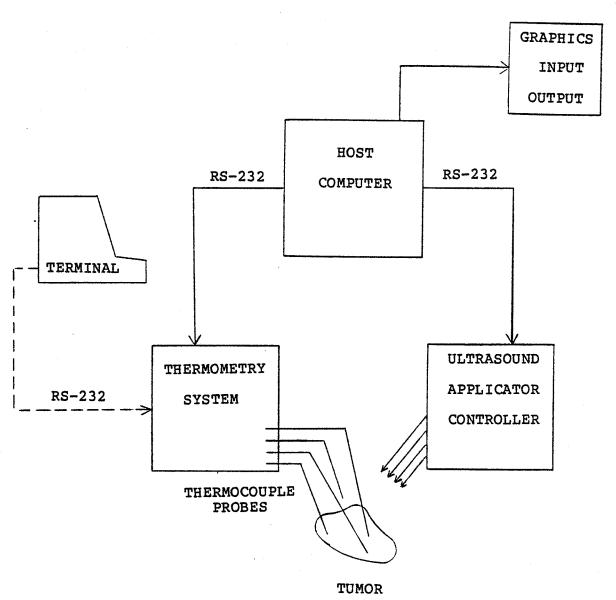


Figure 1.1. Block diagram of a hyperthermia system.

CHAPTER II

THERMOMETRY HARDWARE OVERVIEW

The thermometry system is based on the Intel 8031 microcontroller as designed by Alfred Gharakhani [1]. A block diagram of the system is displayed in Figure 2.1. The temperatures are obtained through the of T use type (copper-constantan) thermocouple probes. The probes generate voltages based on the temperature at the copper-constantan junctions. Then, the voltages are amplified and one channel is selected by the analog multiplexer. At this time, the error detection circuitry signals the 8031 if the probe for the channel chosen is broken or missing. Otherwise, the voltage from the analog multiplexer is scaled so that the analog-to-digital (A/D) converter functions correctly. The twelve bits of digitized voltage are sent to the 8031 for further software processing. The temperature corresponding to the particular voltage is transmitted to the terminal via the RS-232 connection in appropriate ASCII code.

The conversion between thermocouple voltage and temperature requires either a look-up table or an equation which models the table. Complications encountered in the look-up table method necessitated the use of a polynomial equation to model the conversion. In addition, each channel of hardware may have a different gain and offset which requires a linear fit. These two situations are dealt with by calibrating the thermometry system to a precision thermometer before any readings are made.

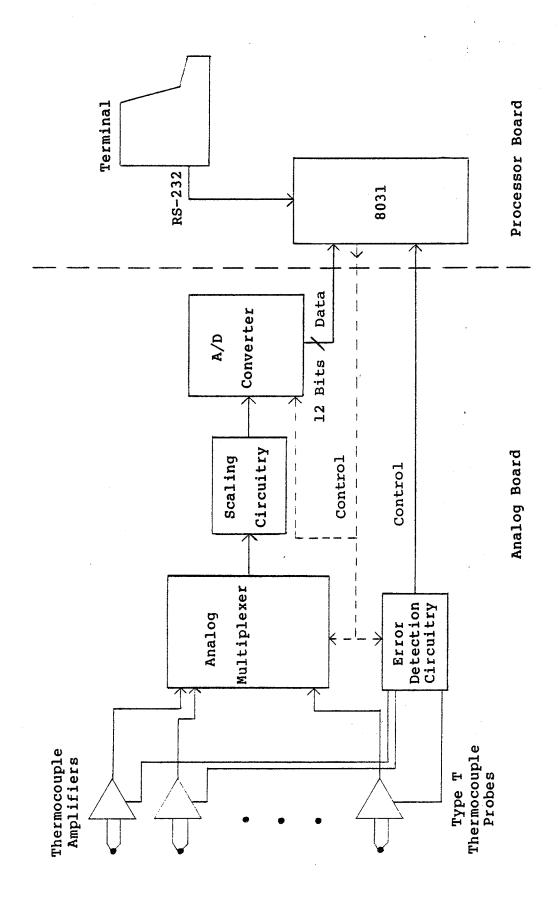


Figure 2.1. Block diagram of the thermometry unit (from [1]).

To improve the thermometry system and its calibration, several changes have been made to Gharakhani's design. A summary of the major modifications is described below.

The type J (iron-constantan) thermocouple probes and the corresponding thermocouple amplifier chips, which Gharakhani used, were replaced by type T (copper-constantan) thermocouple probes and amplifiers. The type T probes are more resistant to corrosion in moist surroundings [2], whereas the type J probes will rust if placed in a water bath for an extended length of time.

The valid temperature range of 0°C to 51.1°C was changed to 20°C to 60°C, and the least significant digit changed from 0.1°C to 0.01°C. It will turn out that the calibration calculations work for temperatures in the range 0°C to 99.99°C, but the thermocouple voltage to temperature conversion is accurate only for the range 20°C to 60°C.

Since the temperature output is to the hundredth place, the look-up table scheme for the conversion between thermocouple voltage and temperature could no longer be used. For the range 0° C to 51.1° C, the look-up table consisted of 512 memory locations for each of the three numeric places (stored as ASCII characters). That is equivalent to 1,536 locations. For output temperatures to the hundredth place, in the range 20° C to 60° C, the look-up table scheme would require 4001 * 4 = 16.004 bytes, a considerable amount of memory. Moreover, if the temperature was out of the range of values in the look-up table, an underfow or overflow error would occur. The extended range of 0° C to 99.99° C would require 10.000 * 4 = 40.000 memory locations. Obviously, it would be wasteful to attempt this method. Fortunately, the look-up

table may be replaced by a polynomial equation approximating the conversion. This scheme will be discussed further in Chapter III.

Another significant change is that all twelve bits of data from the analog-to-digital converter are used rather than only nine bits. This will increase the accuracy of the displayed temperatures.

Furthermore, the two calibration points are user selectable rather than set at 25°C and 35°C .

These changes will result in a more accurate and "user-friendly" system.

CHAPTER III

THERMOCOUPLE CHARACTERISTICS

3.1. Nonlinearity

Thermocouples have many characteristics advantageous for ultrasound hyperthermia temperature measurement. They are sturdy, small in size, and respond quickly; however, the thermocouple output voltage is nonlinear with respect to temperature [3]. A plot of the type T thermocouple voltage versus temperature, for the range 20°C to 60°C, is shown in Figure 3.1. This is a graphical representation of the thermocouple reference table from [4], which is reproduced in Table 3.1.

As can be seen, the nonlinearity does not appear to be severe. Nevertheless, further calculations will indicate the advantage of taking the nonlinearity into account. Note also that the design will actually have one hundred points between the ones shown in Figure 3.1, since the resolution is to 0.01°C.

For the double-point calibration and correction of the thermometry system, four main equations are required. Two of these are the nonlinear conversions between thermocouple voltage and temperature. The other two involve a simple linear model of the system hardware. The thermocouple conversion equations are based on the type T standard reference table displayed in Table 3.1. These equations will be discussed in the following two subsections. The other equations and the calibration scheme itself will be presented in Chapter IV.

3.1.1. Conversion of Thermocouple Voltage to Temperature

The conversion from thermocouple voltage to temperature, for

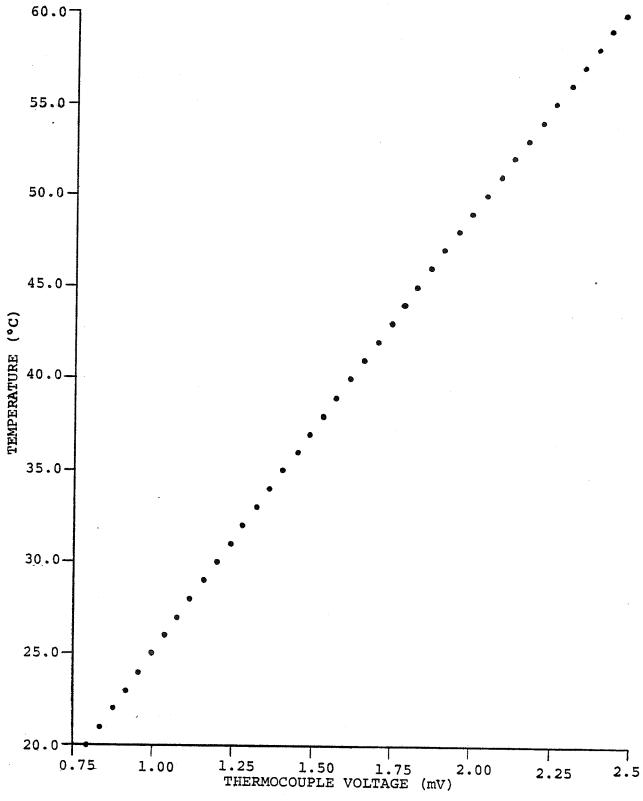


Figure 3.1. Temperature - voltage correspondence for type T thermocouples.

<u>Temperature(OC)</u>	Voltage(mV)	Temperature(OC)	Voltage (mV)
20	0.789	40	1.611
21	0.830	41	1.653
22	0.870	42	1.695
23	0.911	43	1.738
24	0.951	44	1.780
25	0.992	45	1.822
26	1.032	46	1.865
27	1.073	47	1.907
28	1.114	48	1.950
29	1.155	49	1.992
30	1.196	50	2.035
31	1.237	51	2.078
32	1.279	52	2.121
33	1.320	53	2.164
34	1.361	54	2.207
35	1.403	55	2.250
36	1.444	56	2.294
37	1.486	57	2.337
38	1.528	58	2.380
39	1.569	59	2.424
40	1.611	60	2.467

20°C to 60°C, was calculated using a best polynomial fit. The resulting equations are of the form

$$T = A3 * V^3 + A2 * V^2 + A1 * V + A0$$
 (3.1)

where A3, A2, A1, and A0 are real constants, which may be zero, T is temperature in degrees Celsius, and V is voltage in millivolts. The constants are shown in Table 3.2 for zero order, linear, quadratic, and cubic fits. The zero order equation is obviously not a good fit, but it is included for the purpose of comparison.

Also shown in Table 3.2 are the mean square error (or variance) and the root mean square (RMS) error (or standard deviation) as defined by

Mean Square =
$$\left[\sum (T - Ti)^2\right] / N$$
 (3.2)

RMS =
$$[[\Sigma (T - Ti)^2] / N]^{1/2}$$
 (3.3)

The value of T_i is the ideal temperature from Table 3.1, and its corresponding voltage is V. T is the temperature calculated from Equation (3.1), using the value of voltage, V, and the appropriate values of the constants, for each particular fit in Table 3.2. N is the number of data points, a total of forty-one, in Table 3.1.

To determine which equation to use, the RMS error values were compared. As the order of the equation increases, the RMS error decreases. Notice that there is an improvement of 0.1197°C in the RMS error between the linear and quadratic equations. However, there is only a difference of 0.0007°C in the RMS error between the quadratic and cubic approximations. In other words, the RMS error accompanying the second and third order fits is smaller than

Table 3.2. Polynomial Fits for the Conversion from Thermocouple Voltage to Temperature.

CUBIC	0.0329830244	-0.7384273168	25,95831205	1 -0.048435657	0.000048047	6900°0	+0.0133
EIT QUADRATIC	0	-0.577516124	25.7112919	0.0696651191	0.000057891	920000	-0.0154
ORDER OF FIT LINEAR	0	0	23.8349418	1.45134171	0.0162	0.1274	+0.2571
ZERO	0	0	0	40	140	11.8322	+20
	A3	A2	Al	A0	MEAN SQUARE (OC)2	$RMS(^{O}C)$	MAXIMUM DEVIATION(^O C)

the desired resolution of 0.01°C.

The values in Table 3.1 have finite precision and, thus, an inherent round-off error. The precision in the voltage values is $1~\mu V$ and the theoretical round-off error [5] is

$$1 \mu V / [(12^{1/2}] = 0.289 \mu V.$$
 (3.4)

This corresponds to

$$0.289 \ \mu V / (40.44 \ \mu V/^{\circ}C) = 0.0071^{\circ}C$$
 (3.5)

where $40.44~\mu\text{V/}^{\circ}\text{C}$ is the input offset voltage per degree of temperature change (from [3]). This value of 0.0071°C is the theoretical value of the RMS error, and it indicates the smallest error that can be statistically realized. As seen in Table 3.2, the higher order fits approach this value and, in fact, the cubic fit has an RMS error that is smaller than 0.0071°C . This is misleading, though, since as N approaches infinity, the RMS error has to approach 0.0071°C .

Another factor to consider is the maximum deviation, also shown in Table 3.2. The calculated and ideal temperatures were compared for every degree between 20° C and 60° C. Again, the magnitudes of the deviation for the quadratic and cubic fits are close in value.

There are trade-offs in choosing which equation is the best to use for this application. The cubic equation has slightly smaller errors, but the extra calculations and several special routines required were not considered to be worth the small gain in accuracy. The equation is then

$$T = -0.577516124 * V^2 + 25.7112919 * V + 0.0696651191$$
 (3.6)

where T is the temperature in degrees Celsius and V is the voltage in millivolts.

3.1.2. Conversion of Temperature to Thermocouple Voltage

The best polynomial fit for the conversion from temperature to thermocouple voltage is of the form

$$V = B3 * T^3 + B2 * T^2 + B1 * B0$$
 (3.7)

where B3, B2, B1, and B0 are real constants, V is voltage in millivolts, and T is temperature in degrees Celsius. The constants are shown in Table 3.3 for zero order, linear, quadratic, and cubic fits. Also displayed are the mean square error, RMS error, and maximum deviation.

The round-off error due to the finite precision of Table 3.1 is 0.289 μV , as stated in Equation (3.4). For this conversion, the RMS errors for the quadratic and cubic fits are exactly equal. In addition, the quadratic fit has a smaller maximum deviation for the points examined. For these reasons, the quadratic fit has been chosen again. This equation is

$$V = 0.0000426489542 * T^2 + 0.0385384869 * T$$

+ 0.00157115981 (3.8)

where V is voltage in millivolts and T is temperature in degrees Celsius.

Equations (3.6) and (3.8) are shown with constants that have several significant digits. Naturally, when these equations are implemented on the eight bit Intel 8031 microcontroller, some of the accuracy will be lost. A further discussion on this matter appears in Chapter IV.

Table 3.3. Polynomial Fits for the Conversion from Temperature to Thermocouple Voltage.

CUBIC	6.190*10-13	4.2606*10-5	0.038541969	0.001502803	0.0848	0.2912	-0.5334
OUADRATIC	0	0.0000426489542	0.0385384869	0.00157115981	0.0848	0.2912	-0.5265
ORDER OF FIT LINEAR	0	0	0.0419503489	-0.0606968815	28.5543	5.3436	-10,6899
ZERO	0	0	0	1.611	243.8693	493.8312	+856
	В3	B2	Bl	В0	MEAN SQUARE (µV)2	RMS (µV)	$\begin{array}{c} \text{MAXIMUM} \\ \text{DEVIATION} \left(\mu V \right) \end{array}$

3.2. Self-Heating Effects

The tip of the type T thermocouple is a junction of two metals, copper and constantan. At the point of contact, a potential difference exists which is a repeatable function of temperature [3]. In order to relate this voltage to temperature, a known reference temperature is necessary.

Usually, standard thermocouple voltage to temperature conversion tables assume a reference junction at 0°C. thermocouple amplifier used in the thermometry system, the AD595, has an effective reference junction which is not at 0°C. junction is shown in Figure 3.2 at point A. Here, a second thermocouple junction exists which must be kept at the same temperature as the AD595. If the temperature is maintained, the cold junction compensation feature of the AD595 will work properly. Internally, the compensation voltage (V in Figure 3.2) adds to the thermocouple voltage an amount proportional to the difference between 0°C and the AD595 temperature. Thus, the output voltage will be equivalent to a reading from a thermocouple referenced to an ice bath [3].

This design seems to account for the self-heating effects of the thermocouple amplifier chip; however, there is a problem. The specification for the AD595 [3] indicates that the input offset change with respect to temperature is typically

$$dV_{O}/dT = 40.44 \ \mu V/^{O}C \tag{3.9}$$

at 25°C. This implies that, ideally, the change in thermocouple voltage with respect to temperature should also be 40.44 μ V/°C for the compensation to function correctly. The change in

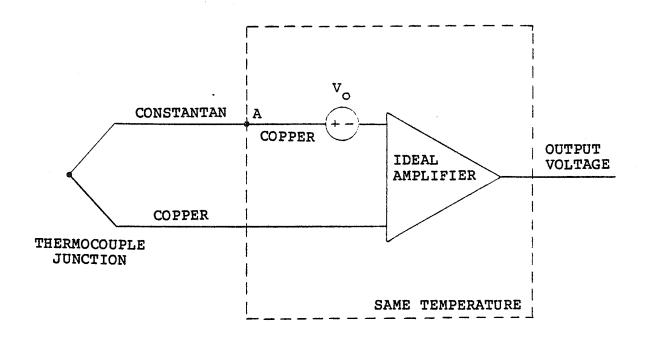


Figure 3.2. Thermocouple amplifier showing the effective reference junction at A.

thermocouple voltage with respect to temperature may be calculated by finding the derivative of Equation (3.8). That is

$$dV_{th}/dT = 0.0852979084 * T + 38.5384869 \mu V/^{\circ}C.$$
 (3.10)

Table 3.4 shows the voltage change as the ambient temperature increases. Here, compensation and deviation are defined as

$$\label{eq:compensation} \text{Compensation} = \text{dV}_{\text{th}}/\text{dT} - 40.44~\mu\text{V}/\text{^{O}C} \tag{3.11}$$
 and

Deviation =
$$(dV_{th}/dT - 40.44) / (dV_{th}/dT)$$
. (3.12)

Table 3.4. Ambient Temperature Effects.

Ambient <u>Temperature</u> (^O C)	$\frac{dV_{\pm}}{(u\nabla)}\frac{dT}{dC}$	Compensation $(\mu V/\frac{OC}{C})$	Deviation (<u>°C/°C</u>)
20	40.24	-0.20	-0.005
22.3	40.44	0.00	0.000
25	40.67	+0.23	+0.006
30	41.1	+0.66	+0.016
35	41.52	+1.08	+0.026
40	41.95	+1.51	+0.036

The cold junction compensation of the AD595 compensates incorrectly for ambient temperatures other that 22.3°C . Obviously, if the chip temperature is allowed to increase much above 25°C , some error will result. Notice that the dV_{o}/dT and dV_{th}/dT do not match at 25°C . This is because the AD595 is intended to operate with type K thermocouples (the copper is replaced by a nickel-chromium alloy in the ratio 90:10) and produce zero compensation at 25°C .

Another specification of the AD595, related to self-heating effects, is the stability versus temperature. This value is rated at $\pm 0.025^{\circ}\text{C/°C}$ [3]. Since type T rather than type K thermocouples are being used, the $\pm 0.006^{\circ}\text{C/°C}$ deviation, taken from Table 3.4, should be added to the $\pm 0.025^{\circ}\text{C/°C}$ rating at 25°C. For example, suppose a reading of 37°C were obtained when the ambient temperature was 25°C. Then, if the ambient temperature increases by one degree to 26°C, the uncertainty in the reading will be -0.02°C to $\pm 0.03^{\circ}\text{C}$. This implies that the reading may be between $\pm 0.98^{\circ}\text{C}$ and $\pm 0.03^{\circ}\text{C}$ just due to the increase in ambient temperature by one degree.

At other ambient temperatures, the results get worse. For instance, at 30° C, the error is $\pm 0.025^{\circ}$ C/°C, plus the value $\pm 0.016^{\circ}$ C/°C from Table 3.4. Thus, the uncertainty is $\pm 0.01^{\circ}$ C to $\pm 0.04^{\circ}$ C, and the reading may be between 36.99° C and 37.04° C, just because of the ambient temperature change.

From this discussion, it is apparent that some means of controlling the ambient AD595 temperature is advisable.

CHAPTER IV

THE CALIBRATION SCHEME

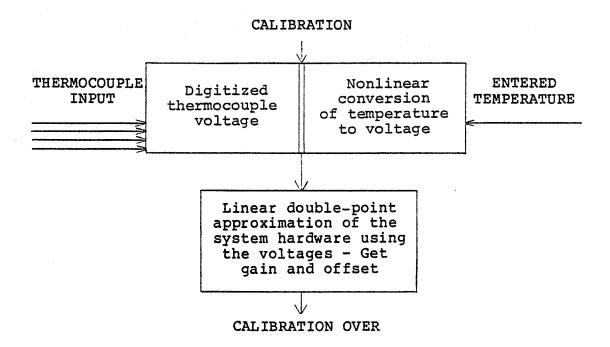
4.1. Description and Procedure

Since each channel of the thermometry system has different thermocouple amplifier chips with slightly different characteristics, each probe, if uncalibrated, may output a different temperature. The purpose of the calibration program is to correct hardware deviations.

From the user's point of view, the double - point calibration of the thermometry system is a quick and easy process. The steps are:

- Place the probes to be used in a water bath (or oven) of constant temperature, Tl.
- 2. Enter temperature Tl on the terminal.
- 3. Place the probes in a bath of constant temperature, T2, of greater value than T1.
- 4. Enter temperature T2 on the terminal.

Temperatures Tl and T2 may take on any value in the range from 20°C to 60°C. Note that the calculations in the program work for temperatures between 0°C and 99.99°C, but the nonlinear conversion equations were based on temperatures in the range 20°C to 60°C. The speed of the calibration process is limited only by the input and output interactions and the time it takes for the water bath (or oven) to stabilize at Tl and T2. After the four steps, the system is calibrated. From then on, every time a reading is made, the output temperature is modified to the correct value before being displayed.


An overview of the calibration and correction process is shown in Figure 4.1. In addition, a detailed flow chart is presented in Appendix A. After the operator places the probes in temperature Tl and enters its value on the terminal, all of the probes are read. The digitized thermocouple output voltages are stored in memory. The same process of reading and storing is repeated when the probes are in temperature T2.

Next, entered temperatures T1 and T2 are converted to voltages using a form of equation (3.8). The equation actually used in the program is

$$V = 426.5 * T^2 + 38,538,486 * T + 157,115,981.$$
 (4.1)

Here, V is in 10^{-14} volts and T is in 10^{20} C. Notice that the constants have been multiplied by 1011 and that some of the significant digits have been dropped. This makes calculation easier by eliminating most of the fractional parts. Actually, in the program, the value 4265 is multiplied by T2 and then the product is divided by ten. Since all of the arithmetic operations on the Intel 8031 involve one byte long numbers, several special subroutines were written to perform multiple byte multiplication and division. In addition, some values are multiplied by factors of 256 to avoid division resulting in a fractional number. It is necessary to keep track of these adjustments so that the reverse process can be performed later to get the true values. The comments in the program listing in Appendix B explain the procedure.

The next step in the calibration, as shown in Figure 4.1, is the approximation of the system hardware by a linear fit. That

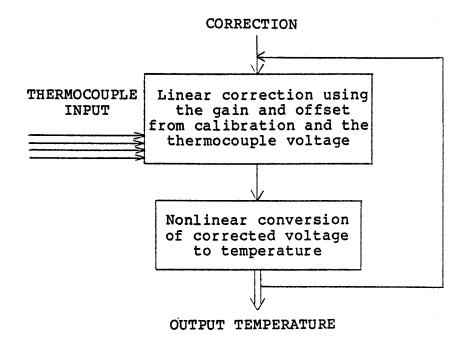


Figure 4.1. Overall calibration and correction scheme.

is, the gain and offset for each channel are found using

$$Y = M * X + B \tag{4.2}$$

where X is the known voltage obtained from the entered temperature, Y is the digitized thermocouple voltage, M is the gain, and B is the offset. Once calculated, the gain and offset for each channel are stored in memory and, at this point, the calibration is complete.

From now on, when the probes are sampled, Y, the digitized voltage obtained is corrected using the stored gain, the stored offset, and the linear equation

$$X = (Y - B) / M. \tag{4.3}$$

The corrected voltage, X, is then converted to a temperature using a form of equation (3.6). Again, due to the limitations of the microprocessor, the actual equation used is

$$T = -27.27 * V^{2} + 7,237,085 * V + 116,878,675.$$
 (4.4)

Here, T is temperature in $(100 * 256^3)$ degrees Celsius and V is voltage in $(10^{-14} * 256^3)$ volts. These units may seem odd, but the equation was put in this form to make the calculations easier.

Any of the calibrated probes may be chosen for a reading as many times as desired. However, if the probe corresponding to a particular channel was missing or broken during the calibration, then it will remain uncalibrated unless the calibration procedure is performed again. The flow chart in Appendix A shows some of the error checking present in the routine. Also, see the listing of the calibration program in Appendix B for more details [6].

4.2. An Example of Calibration

The example which follows is intended to highlight and clarify the flow chart in Appendix A. The calibration of only one probe will be considered, but the extension to any number of probes is straightforward. Notice that truncation is used in the calculations.

- Let the temperature, Tl, of the first water bath and the twelve bit digitized voltage, Yl, of the probe in this water bath be:

 $T1 = 37.06^{\circ}C$

Y1 = 05DB in hexadecimal = 1499 in decimal.

- Let the temperature, T2, of the second water bath and the twelve bit digitized voltage, Y2, of the probe in this water bath be:

 $T2 = 50.04^{\circ}C$

Y2 = 07F9 in hexadecimal = 2041 in decimal.

- Temperatures (T1 * 100) and (T2 * 100) are converted to voltages V1 and V2 using equation (4.1). Then, they are each divided by 256³, obtaining X1 and X2 respectively, so that the numbers are easier to process in the 8031. However, the results are still accurate.

 $V1 = 1.488384*10^{11}$ X1 = 8871

 $V2 = 2.036832*10^{11}$ X2 = 12,140

- Next, the points (X1,Y1) and (X2,Y2) are fitted to a line using equation(4.2).

1499 = M * 8871 + B

2041 = M * 12,140 + B

- The gain, $M = m * 256^2$ is found.

$$m = (Y2 - Y1) / (X2 - X1) = 542 / 3269$$

Since (542/3269) will be a fraction, the numerator is multiplied by 256^2 , then the division is performed.

$$M = m * 256^2 = (542*256^2) / 3269 = 10,865$$

- The offset, $B = b * 256^2$ is found.

$$b = Y1 - M * X1$$

Since M is actually $(m*256^2)$, we need $(Y1*256^2)$ to get B = $(b*256^2)$.

$$B = Y1 * 256^2 - M * X1 = 1,855,049.$$

- The gain and offset are stored in memory. Three bytes of memory for gain and five bytes of memory for offset are reserved for each channel.
- The calibration is over.
- The probe is placed in a water bath of temperature T. The digitized voltage, Y, of the probe is read.

Y = 06DB in hexadecimal = 1755 in decimal

T = 43.24 C = the desired output temperature

- The correction to Y, the voltage, is made using equation (4.3) with the extra factor of 256² included.

$$X = (Y * 256^2 - B) / M = 10,415$$

- In this example, X is playing the role of the corrected thermocouple voltage, V. This value of voltage is used in equation (4.4) to convert to temperature, T. The result is divided by (100 * 256³) to get the actual temperature.

$$T = 7.253308*10^{10}$$

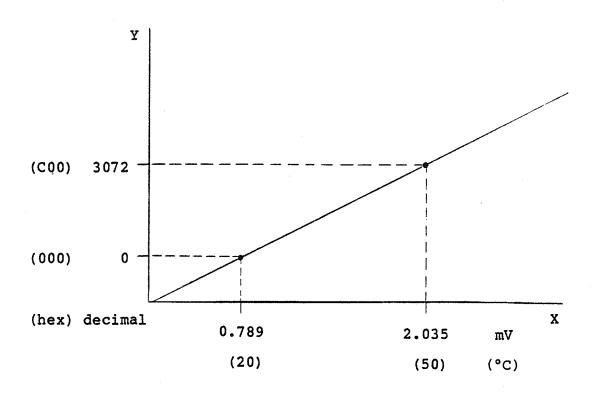
Temperature = 43.23°C

- The temperature is transmitted to the terminal as ASCII characters for display.

The truncation of intermediate results during the calculations and the other manipulation of the values cause the final temperature to have an error of 0.01° C.

CHAPTER V

EXPERIMENTAL DATA AND ANALYSIS


5.1. Overview

Several experimental tests of the calibration routine have been performed. These tests were designed to study the properties of accuracy, precision, stability, and repeatability. Due to hardware failure of Gharakhani's thermometry system, the input and output parts of the program were modified and the tests were performed on URI THERM-X's version of the system. It will be shown that most of the error that occurs is due to analog hardware variations. Once the calibration is complete, the correction routine will always output the same temperature when given a particular voltage.

5.2. Software Test

A test of the software was devised which eliminated the analog hardware. The calibration points were chosen to be 20°C and 50°C. Then, the twelve bit digitized voltages corresponding to these temperatures, 000 and C00 (in hexadecimal), respectively, were used instead of the usual thermocouple output voltage obtained from the analog circuitry. This means that all parts of the program were run with known numerical values.

Figure 5.1 shows the linear fit involved. On the x-axis are the temperatures, in degrees Celsius, and their equivalent voltages, in millivolts, obtained from Table 3.1. The y-axis shows the expected digitized voltage from the analog-to-digital converter corresponding to a particular temperature. The digitized voltages for various temperatures in the range 20°C to

$$M = (3072 - 0) / (2.035 - 0.789) = 2465.489$$

B=-1945.271

Figure 5.1. The linear fit of the calibration software test.

60°C were calculated by hand using the method in the calibration routine. Then, the program was executed. The results are shown in Table 5.1. The deviation displayed is the difference between the temperature obtained from the program and the ideal temperature.

There is one deviation of 0.02°C, but the rest of the time it is less. This error is directly related to the calculations in the program. As discussed in Chapter IV, the microprocessor's limitation of eight bit arithmetic operation causes unusual manipulations of intermediate values. With this in mind, the error involved is small.

In review, Table 5.1 and the discussion above indicate that an error of up to 0.02° C may be attributed to the calibration calculations in the program. Errors greater than this are hardware related.

5.3. Test Setup

All of the other tests made use of a test setup as shown in Figure 5.2. The probes were placed in a water bath of constant temperature. The accurate temperature of the water was measured using the platinum resistance thermometer (PRT). The printer gave a permanent record of the temperatures of the probes for any chosen interval of time.

An important consideration for obtaining reliable data was to make sure that the temperature of the water bath was stable, as indicated by a stable readout on the PRT. The thermocouple probes will react much quicker to a temperature change than will the PRT. Therefore, if the temperature indicated by the PRT is still changing when a reading is made, erroneous results will occur.

Table 5.1. Results of Calibration Program Check.

		•	
Ideal <u>Temperature</u> (^O C)	Temperature from Hand Calculation(OC)	Temperature from Program(OC)	Deviation (<u>°C</u>)
20	20.00	20.00	0.00
23	23.00	23.01	0.01
25	25.00	25.01	0.01
28	27.99	28.00	0.00
30	29.99	29.99	0.01
33	33.00	33.00	0.00
35	34.99	35.00	0.00
38	38.00	38.01	0.01
40	39.99	39.99	0.01
43	43.00	43.01	0.01
45	44.99	44.99	0.01
48	48.00	48.01	0.01
50	50.00	50.00	0.00
52	52.00	52.00	0.00
54	53.99	54.00	0.00
58	57.98	57.98	0.02

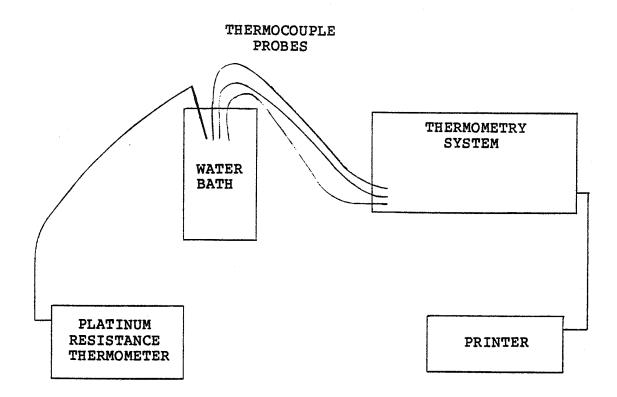


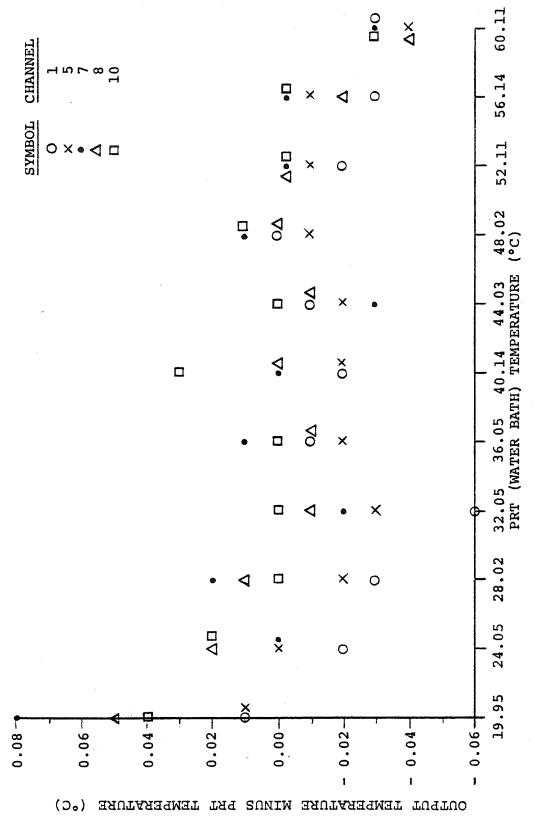
Figure 5.2. Experimental setup for taking data.

Since the water bath takes a moderate amount of time to stabilize, some of the experiments were aided by the use of two water baths.

5.3.2. Accuracy of the Two-Point Calibration

The purpose of this test, which included all the hardware, was to establish that a calibration routine based on two points could work with acceptable accuracy.

In order to set up the most rigid conditions possible, the probes were calibrated at 19.94°C and 59.95°C, which are near the extremes of the valid temperature range. The water bath temperature was then increased from 20°C to 60°C, in steps of about 4°C. At each point, the PRT temperature was read and the probe temperatures were printed out. In Table 5.2 are the PRT temperatures and their corresponding probe output temperatures from the five best channels.


It should be noted that a total of eight channels was observed during this test. However, the intent of the test was to evaluate the performance of the calibration routine only, and probes thought to be in error for some other reason, e.g., hardware failure, were not considered. These other kinds of probe error will be discussed later.

In Figure 5.3, PRT temperature minus thermometry output temperature is plotted versus PRT temperature, for the five best channels. As can be seen, the deviations of thermometry output temperature from PRT temperature are independent of PRT temperature and are concentrated within a range of $\pm 0.03^{\circ}$ C.

At each PRT temperature in Table 5.2, the mean (average temperature), the standard deviation from the mean and the PRT temperature minus the mean were calculated for the same five

Table 5.2. Thermometry Output at Various Water Bath Temperatures.

			Channel		
PRT (OC)	$(\frac{\overset{1}{\circ}_{\mathbb{C}}}{)}$	(<mark>°C</mark>)	(<mark>°C</mark>)	(<mark>⁸C</mark>)	10 (<mark>°C</mark>)
(/	(<u> </u>	()	(<u> </u>)	(<u>-c</u>)	(<u>°C</u>)
19.95	19.96	19.96	20.03	20.00	19.99
24.05	24.03	24.05	24.05	24.07	24.07
28.02	27.99	28.00	28.04	28.03	28.02
32.05	31.99	32.02	32.03	32.04	32.05
36.05	36.04	36.03	36.06	36.04	36.05
40.14	40.12	40.12	40.14	40.14	40.17
44.03	44.02	44.01	44.00	44.02	44.03
48.02	48.02	48.01	48.03	48.02	48.03
52.11	52.09	52.10	52.11	52.11	52.11
56.14	56.11	56.13	56.14	56.12	56.14
60.11	60.08	60.07	60.08	60.07	60.08

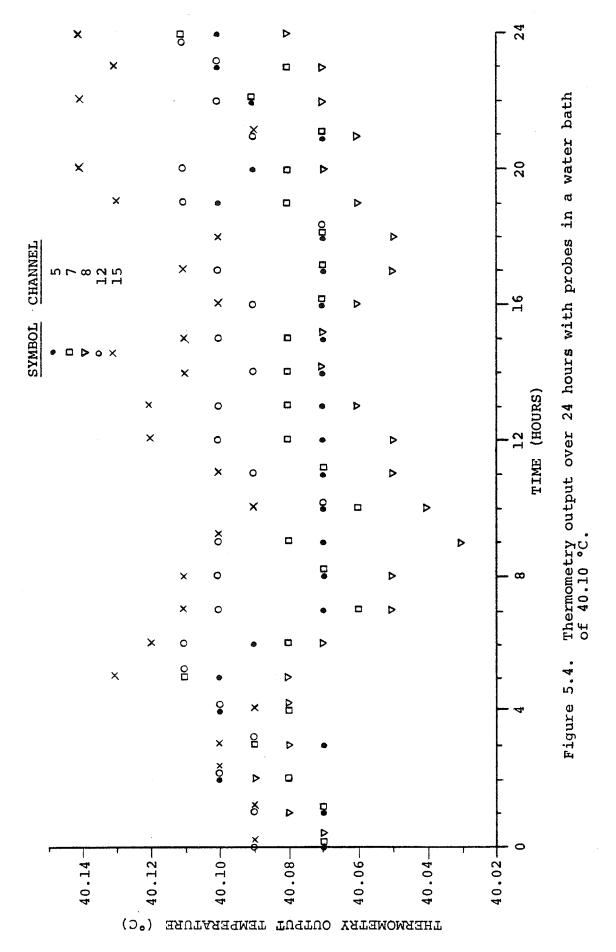
Thermometry output temperature minus PRT temperature plotted versus PRT temperature. Figure 5.3.

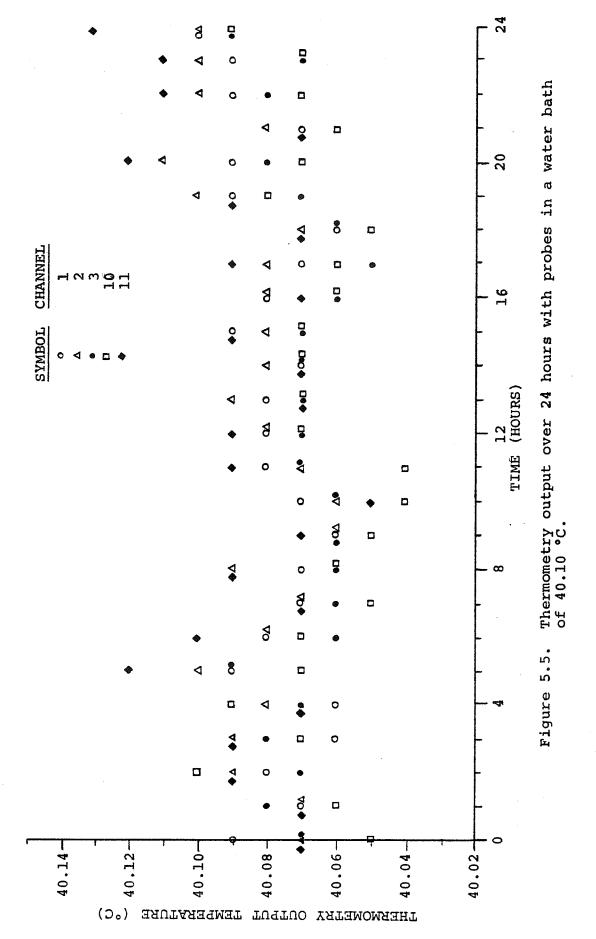
channels. These are tabulated in Table 5.3. This estimate of standard deviation is the same as that in Equation (3.3), except now the "ideal temperature" is replaced by the mean. According to the American Society for Testing and Materials (ASTM) [7], accuracy is defined as the degree of agreement between the true value of a property being tested and the average of many observations. The accuracy of the thermometry system is thus represented by the quantity "PRT-MEAN" and, as can be seen, the thermometry system is accurate to within $\pm 0.01^{\circ}$ C most of the time.

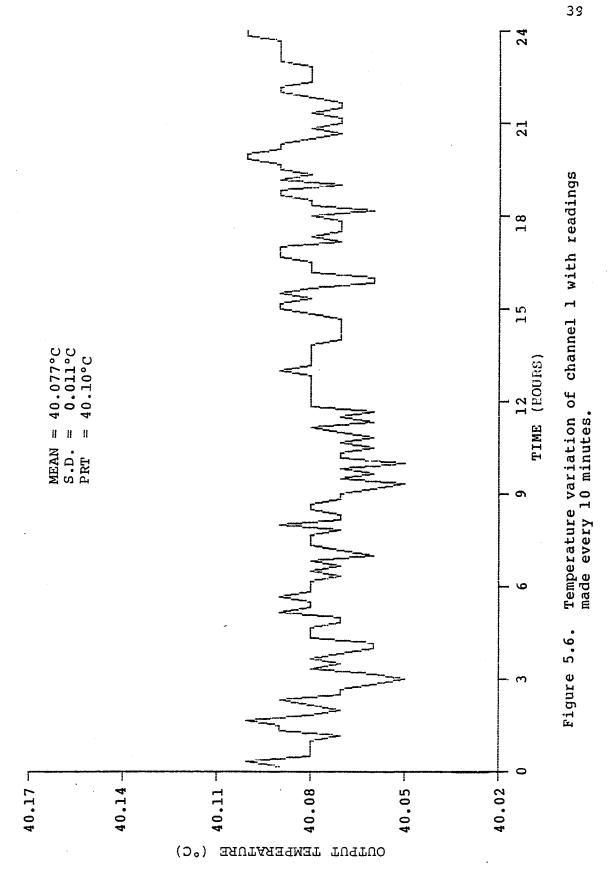
The standard deviation can provide quantitative information on the amount of scatter in the data. The above calculations of standard deviation from the mean will reveal how well localized all the measured temperatures were around their average value. A small value of standard deviation implies a high degree of precision in the measurements, since all the temperatures would be grouped closely together. With this in mind, one can determine an estimate of the precision of the system from the calculated standard deviation. In Table 5.3, the largest value of standard deviation is 0.03°C (rounded to the nearest 0.01°C). The average of all the values of the standard deviation is 0.014°C. Therefore, an estimate of the precision of the system is 0.014°C, with an upper limit of approximately 0.03°C.

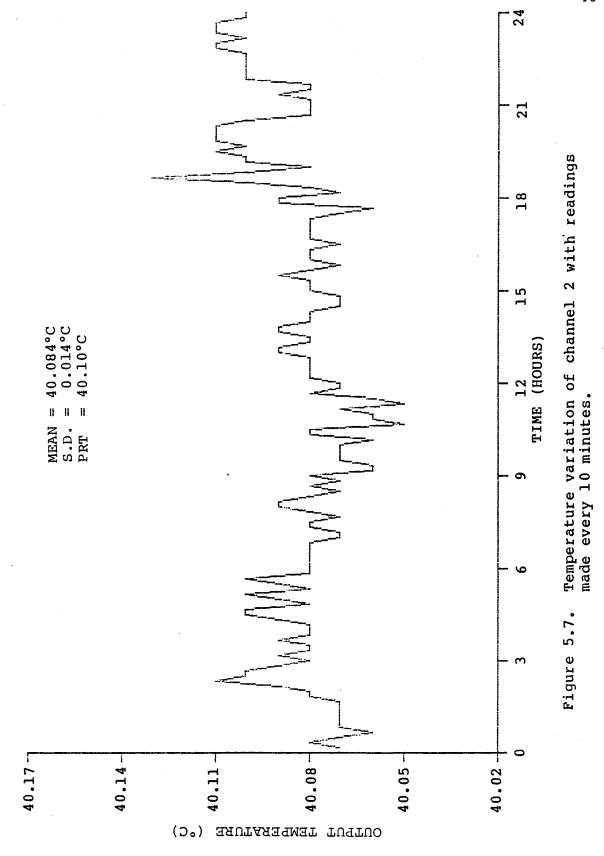
This test has demonstrated that the calibration routine will give favorable results over the desired range of calibrated temperatures.

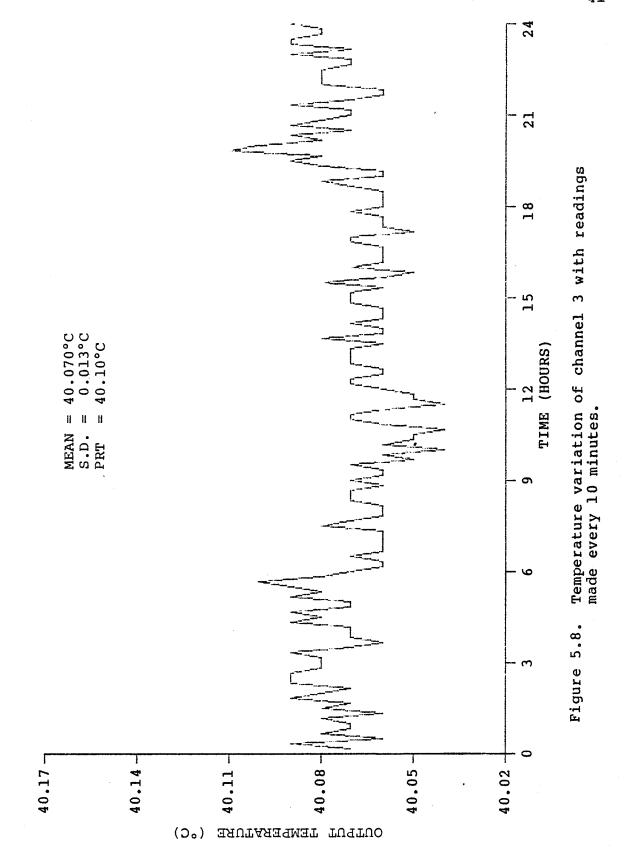
Table 5.3. Channels at Each PRT Temperature.

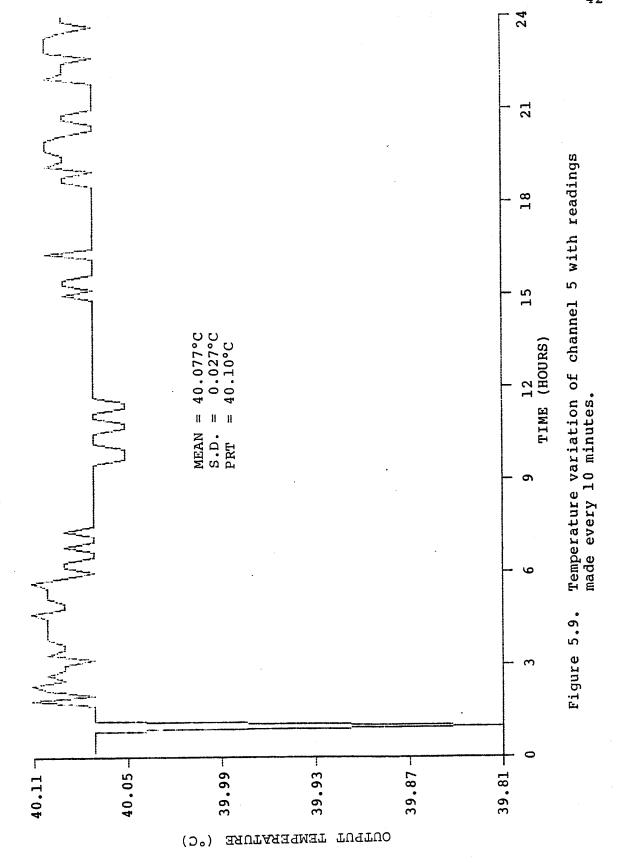

PRT (°C)	Mean (C)	Standard Deviation(OC)	(<u>PRT-Mean</u>) (^O C)
19.95	19.99	0.026	-0.04
24.05	24.05	0.015	0.00
28.02	28.02	0.019	0.00
32.05	32.03	0.021	+0.02
36.05	36.04	0.011	+0.01
40.14	40.14	0.018	0.00
44.03	44.02	0.010	+0.01
48.02	48.02	0.007	0.00
52.11	52.10	0.008	+0.01
56.14	56.13	0.012	+0.01
60.11	60.08	0.005	+0.03

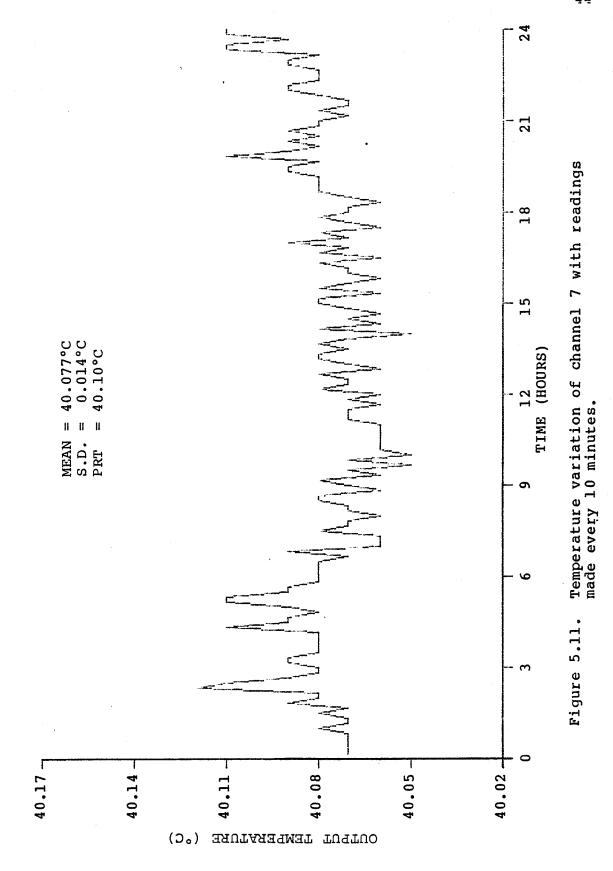

5.3.3. Stability - The Twenty-Four Hour Run

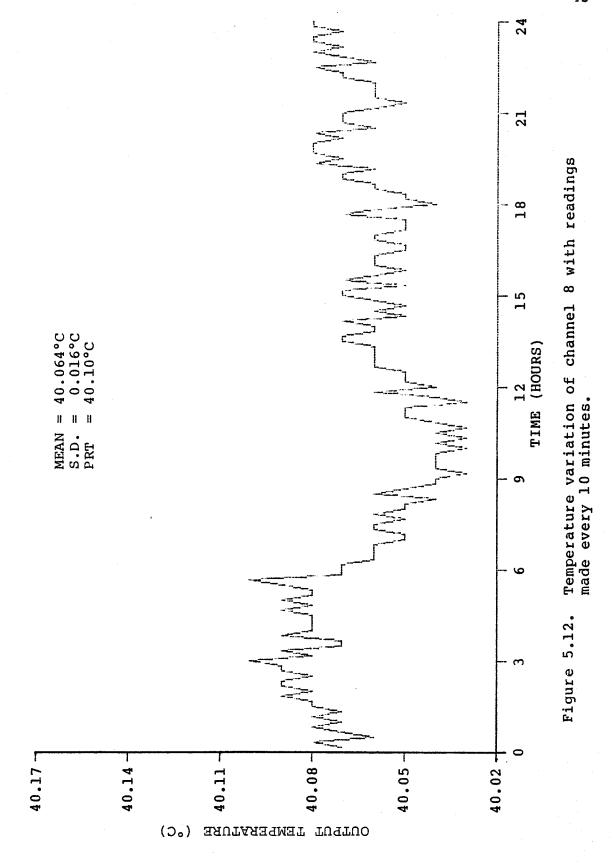

The stability of the thermometry system over long periods of time involves consideration of many factors. For example, it was discovered that the temperature of the water bath could fluctuate by $\pm 0.01^{\circ}$ C from the desired temperature during long runs. Also, changes in room temperature could have an effect on the internal compensation of the thermocouple amplifier chips. An increase in the ambient chip temperature of only 5° C could cause an error of 0.01° C, as mentioned in Section 3.2.

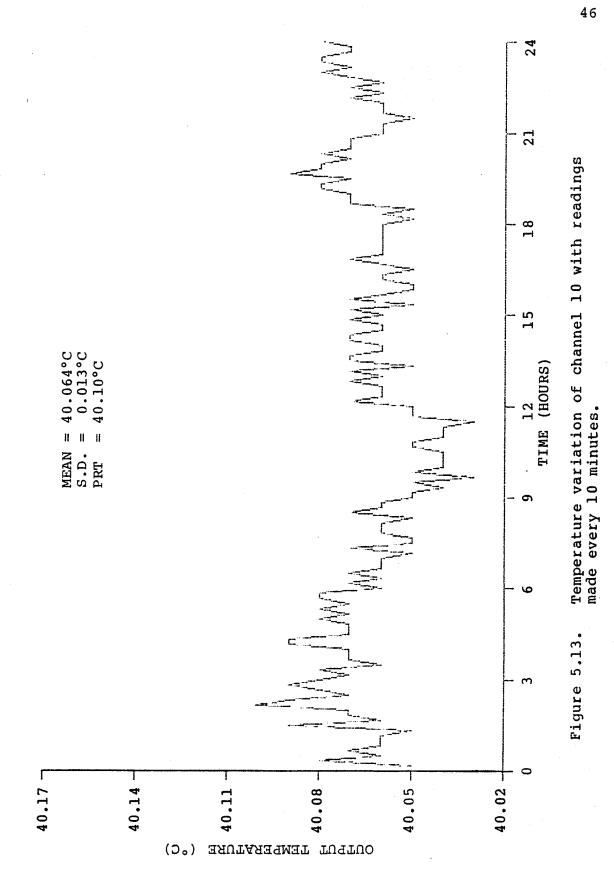

For this test, the thermometry system was calibrated at 19.97°C and 60.14°C. Then, with the probes in a water bath of about 40.10°C, the output temperatures were sent to the printer every ten minutes for twenty-four hours. Twelve channels were used in this test. Figures 5.4 and 5.5 show the thermometry output temperatures taken every hour for ten of the channels. It is seen that the probe temperatures deviated by -0.07°C to +0.04°C from the PRT temperature of 40.10°C. Channel sixteen's probe was placed inside the thermometry system after a few readings to monitor the temperature of the thermocouple amplifier chips. The output temperatures of probe six all deviated by about 0.16°C from the PRT temperature. This channel's output was not shown on these graphs, but will be considered later.

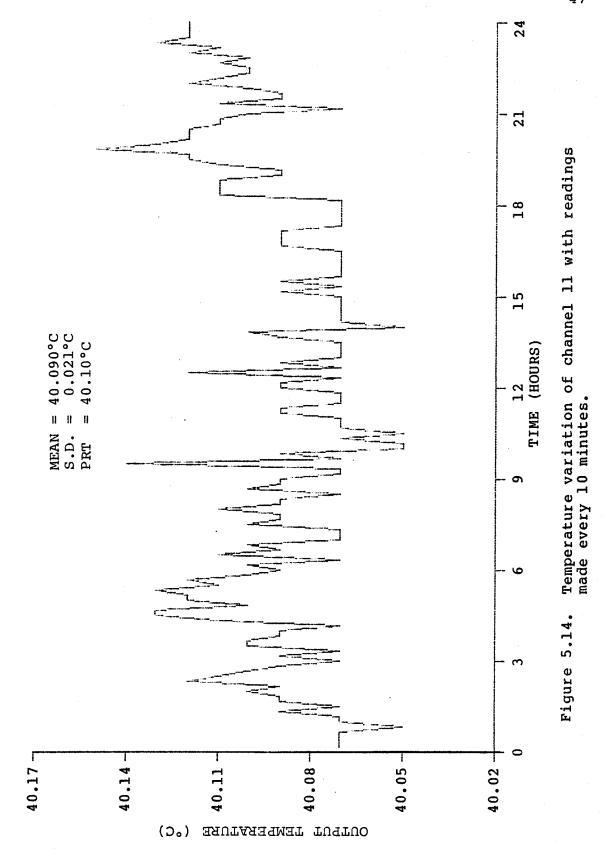

Figures 5.6 through 5.16 show the variation of temperature every ten minutes for each of the ten channels, including channel six. Notice that most of the channels are fairly well behaved, with the exception of channels five and six. Channel five has one spurious reading, which may have been caused by analog hardware noise, and the readings for channel six are all centered around

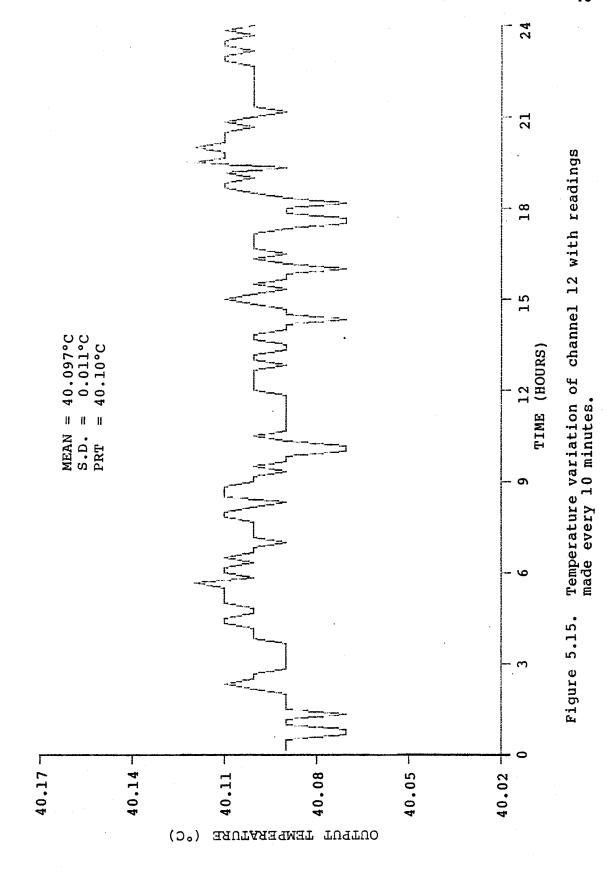


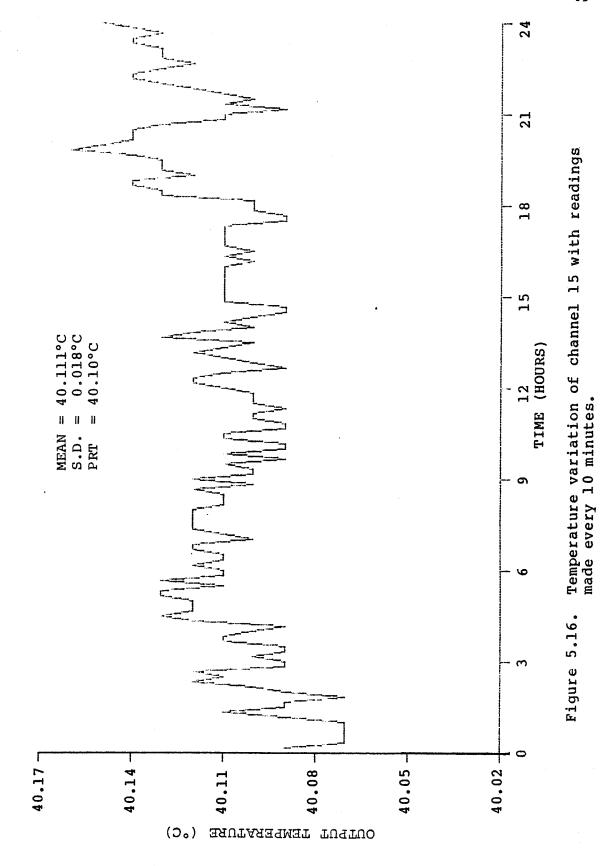










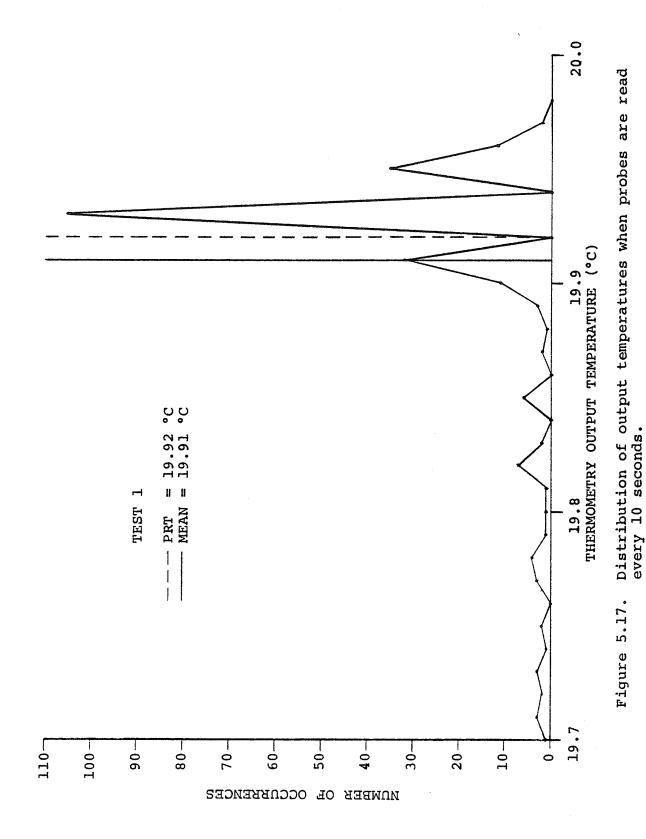


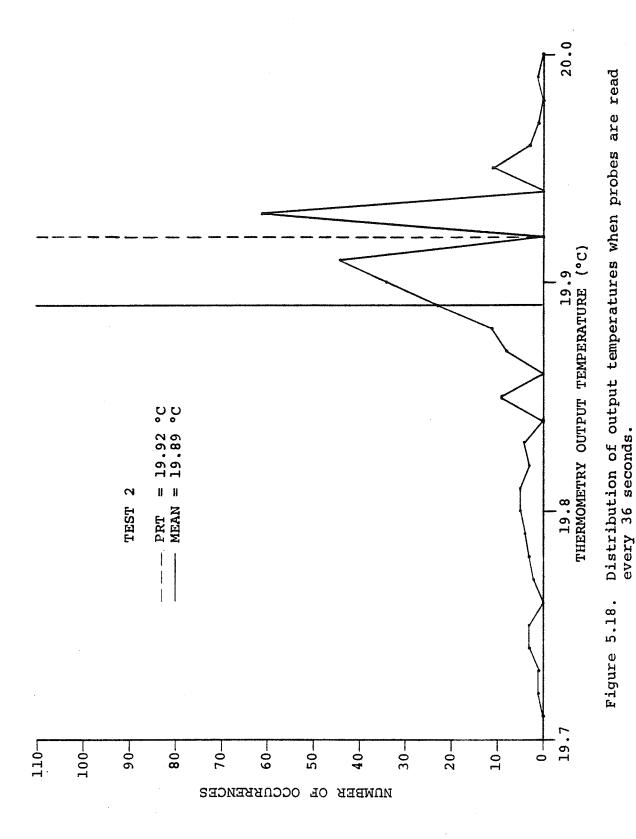
40.26°C. Also, the mean and standard deviation for each channel are printed on the graphs and tabulated in Table 5.4.

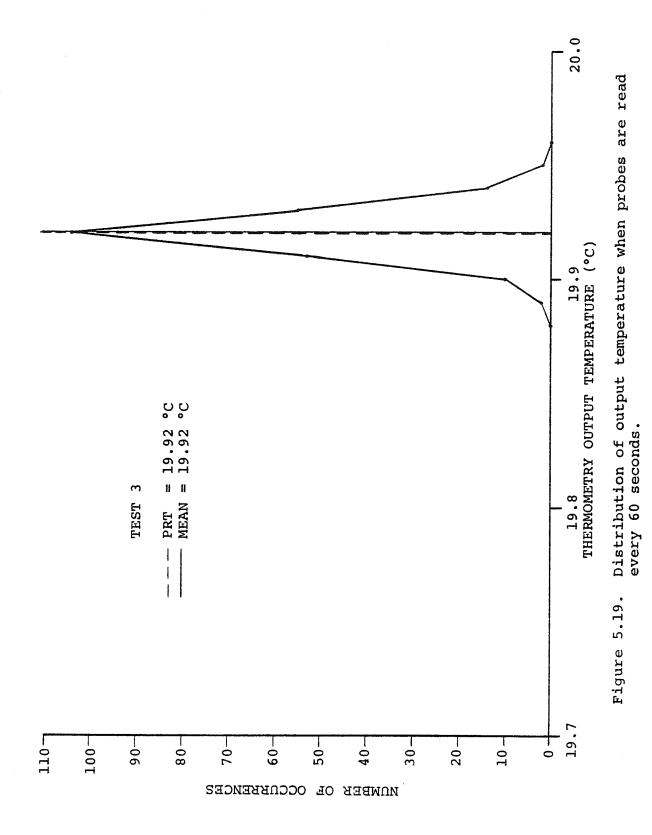
Comparing the mean values to the PRT value of 40.10° C will give a measure of the accuracy of the thermometry system, as discussed in the previous subsection. As seen in Table 5.4, all channels, except channel six, are accurate to within $\pm 0.04^{\circ}$ C. However, all the channels are precise. The standard deviation, which is a measure of the precision, is less than 0.03° C for all channels.

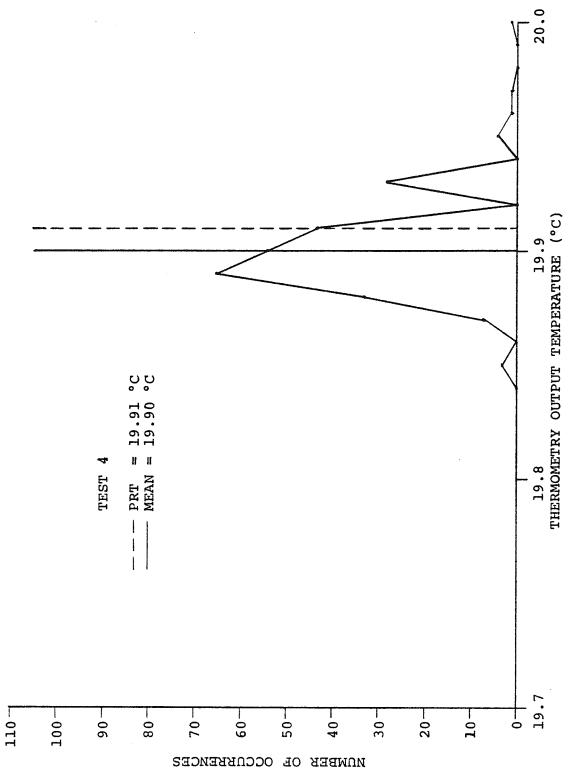
5.3.5. Repeatability

The repeatability of accurate, calibrated temperatures was examined in a series of structured tests. Before each of the twelve experiments, described in Table 5.5, a calibration was performed at approximately 20° C and 60° C. Then, the probes were read at particular intervals of time while in a constant temperature water bath, stable to within $\pm 0.01^{\circ}$ C.

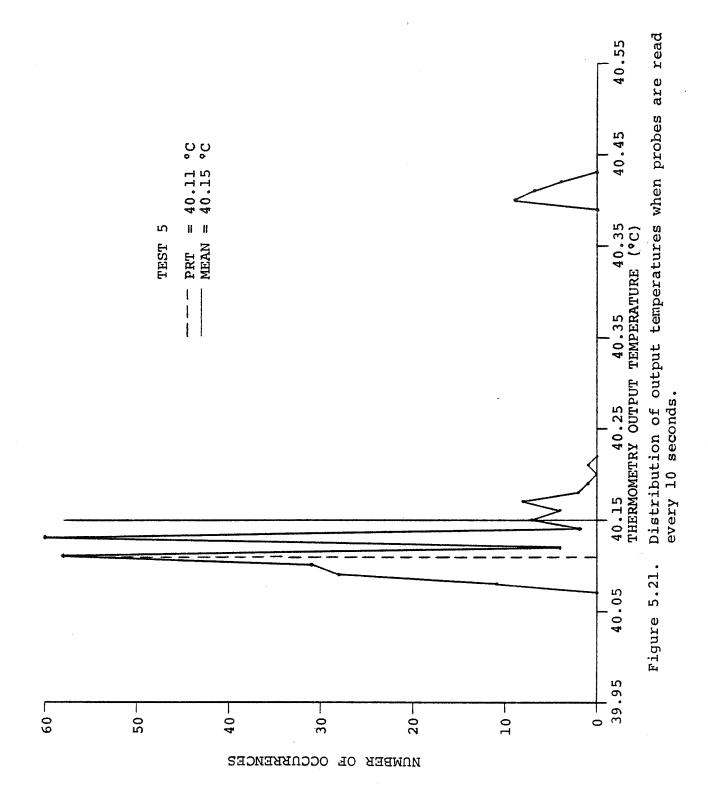

Twelve channels were used in each test. For a particular test, all twelve channels were read at each reading. The output temperatures of all twelve channels were then plotted together in the form of a histogram. For the tests where 100 readings were made, twenty representative readings were chosen from each channel. Therefore, each histogram contains 20 * 12 = 240 data points, which represents twenty temperature readings from each of the twelve channels. Figures 5.17 through 5.28 are the point histograms plotting the number of times each temperature occurs versus temperature, for each test. Also, the PRT temperature and the mean temperature have been marked on the plots. This method of presenting the data gives additional insight into the

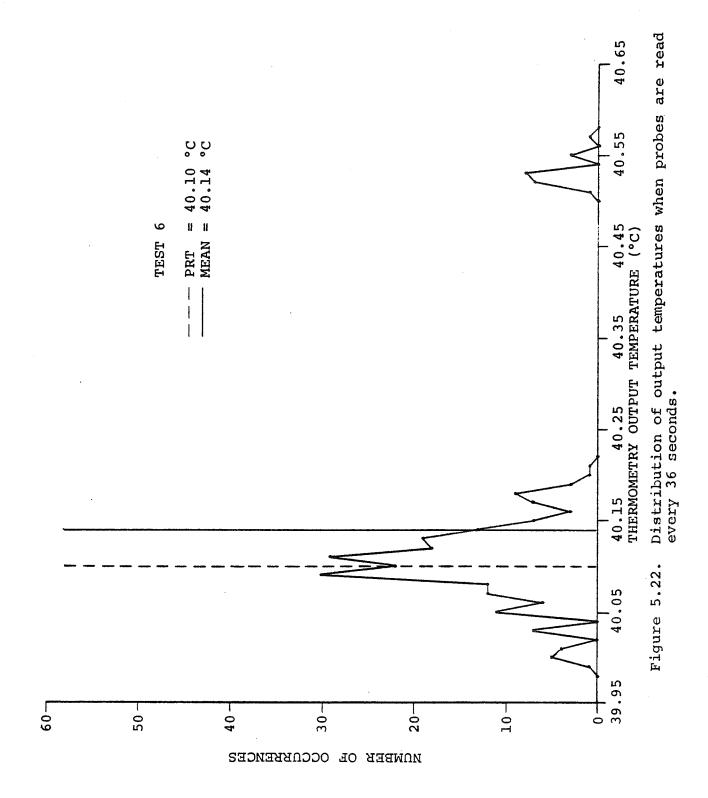

Table 5.4. Properties of Each Channel in the Twenty-four Hour Run.

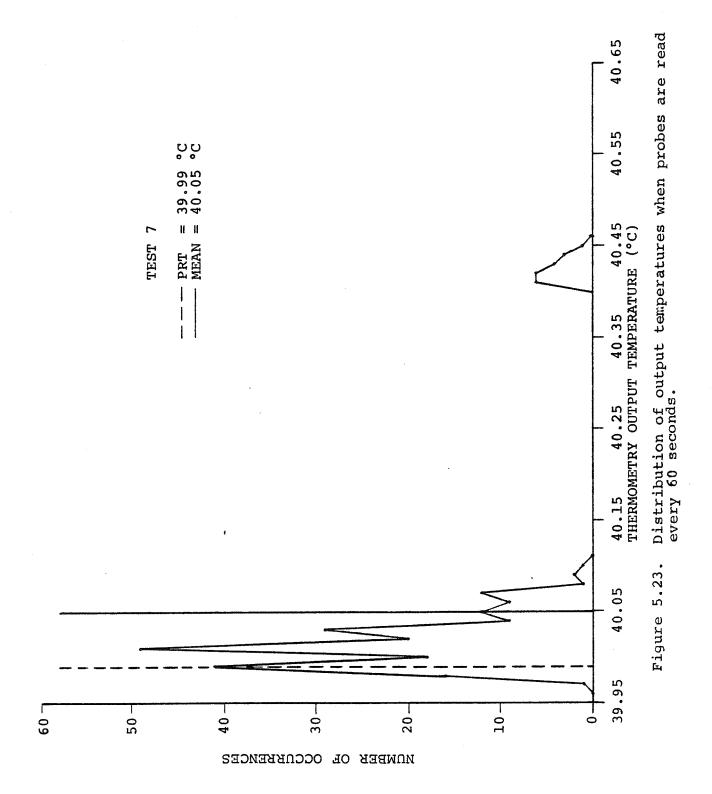

Channel	Mean (OC)	Standard Deviation(OC)	(<u>40.1°C-Mean</u>)(<u>°C</u>)
1	40.08	0.011	+0.02
2	40.08	0.014	+0.02
3	40.07	0.013	+0.03
5	40.08	0.027	+0.02
6	40.26	0.013	-0.16
7	40.08	0.014	+0.02
8	40.06	0.016	+0.04
10	40.06	0.013	+0.04
11	40.09	0.021	+0.01
12	40.10	0.011	0.00
15	40.11	0.018	-0.01

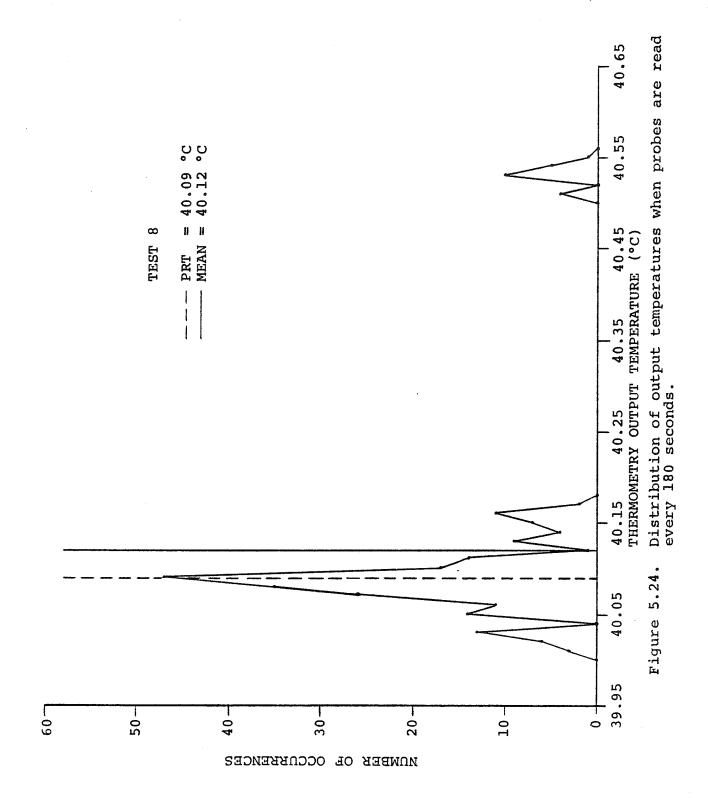

Table 5.5. Format of the Twelve Tests.

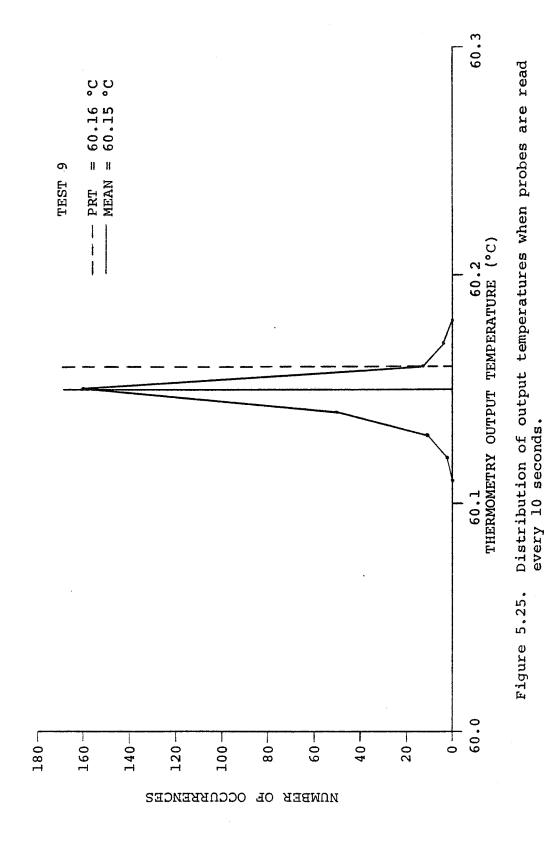
Test Number	Temperature of Water Bath(OC)	Time Between Reading(sec)	Number of Readings
1	20	10	20
2	20	36	100
3	20	60	20
4	20	180	100
5	40	10	20
6	40	36	100
7	40	60	20
8	40	180	100
9	60	10	20
10	60	36	100
11	60	60	20
12	60	180	100

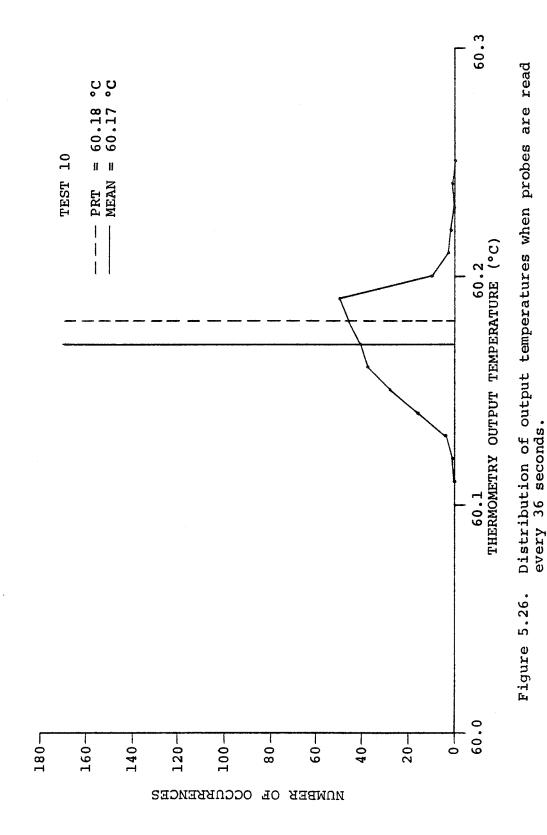


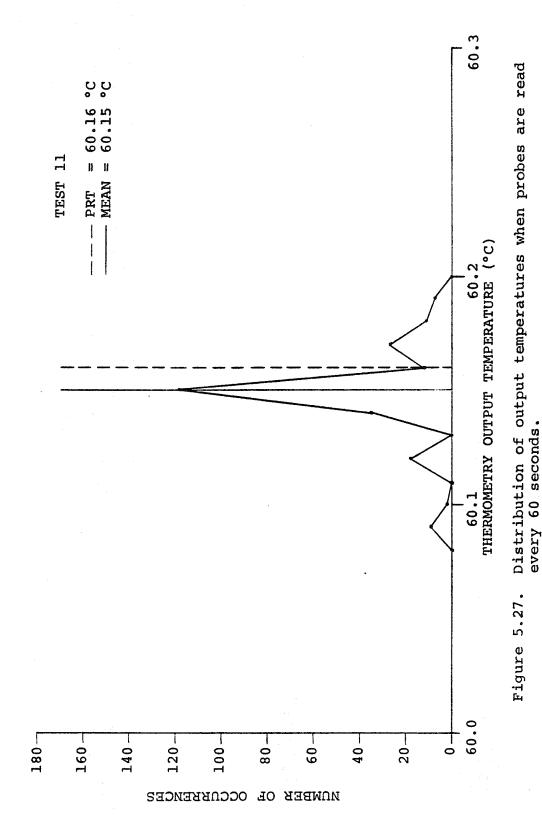


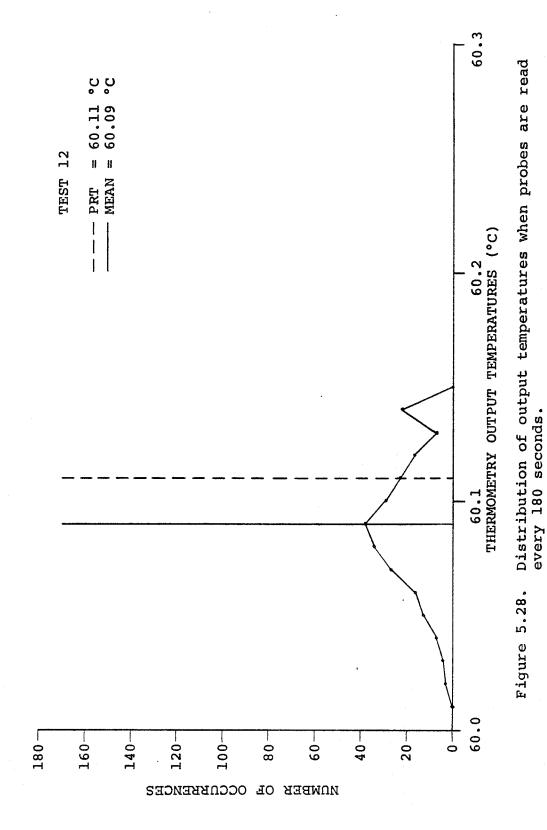





Distribution of output temperatures when probes are read every 180 seconds. Figure 5.20.







performance of the thermometry system. Figure 5.17 illustrates In this plot, channels three and fifteen are this point. responsible for all the readings below 19.85°C, causing the mean to be less than the PRT temperature. However, it is seen that the "center" of the distribution is actually above the temperature. In fact, most of the points are above the PRT temperature. This means that a typical reading of output temperature will exceed the PRT temperature with a probability of greater than 50%.

Similarly, in Figures 5.21 through 5.24, channel six produced readings far above the rest of the distribution, and had the effect of pulling the mean above the PRT temperature. Channel six continued to act suspiciously in the tests illustrated in Figures 5.25 through 5.28. For each of the four tests, its output remained fixed at the second calibration temperature for the duration of the test. This peculiar behavior was masked somewhat by the fact that the second calibration point was always near the PRT temperature of about 60.14°C.

Qualitatively, one could determine the accuracy of the thermometry system, for a particular test, by how much the PRT temperature deviates from the center of the distribution. Similarly, the precision could be defined as the symmetric variation about the center of the distribution that encompasses two-thirds of the points. These definitions will de-emphasize the erratic channels and enhance the presentation of the good channels. These values of accuracy and precision are presented in Table 5.6.

Table 5.6.Rough Estimates of Accuracy and Precision from the Point Histograms.

Figure	Accuracy (OC)	Precision(OC)
5.17	0.01	0.02
5.18	0.01	0.03
5.19	0.00	0.01
5.20	0.01	0.01
5.21	0.00	0.02
5.22	0.00	0.04
5.23	0.02	0.03
5.24	0.00	0.03
5.25	0.01	0.00
5.26	0.01	0.02
5.27	0.01	0.01
5.28	0.02	0.03

On the whole, these values are smaller than those in Subsection 5.3.3, where no attempt was made to distinguish poor channels from good ones. However, they are very similar to the values obtained in Subsection 5.3.2, where only the five best channels were analyzed. This is as expected. Another interesting point is seen by dividing the histograms into three groups, corresponding to the PRT temperature during the tests. These groups are Figures 5.17 through 5.20, Figures 5.21 through 5.24, and Figures 5.25 through 5.28. The three groups correspond to water bath temperatures of approximately 20°C, 40°C, and 60°C, respectively. One can see that there is a definite trade-off between precision and accuracy between these groups.

5.4. Explanation of the Errors

When the calibration routine did not calibrate a particular channel properly, several possible errors might have occurred.

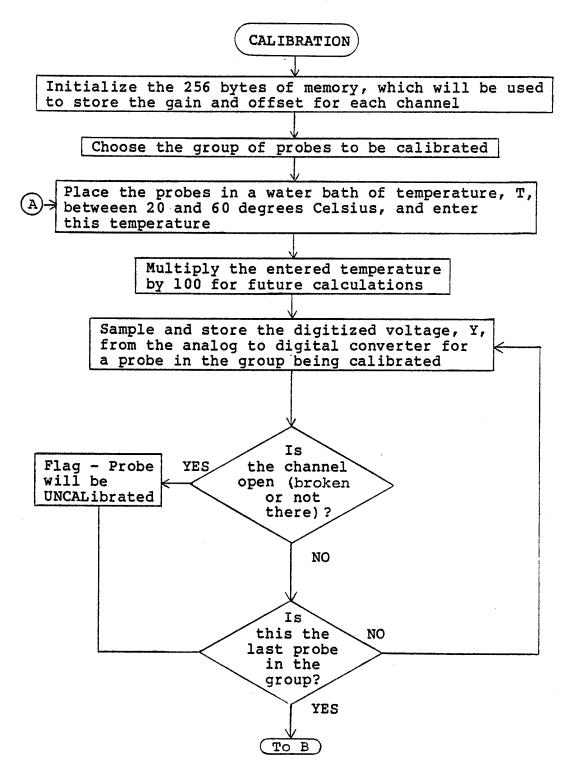
Small deviations in precision may be attributed to the slight temperature instability of the water bath. Small errors in accuracy may be due to errors caused by the manipulation of intermediate results in the calibration routine.

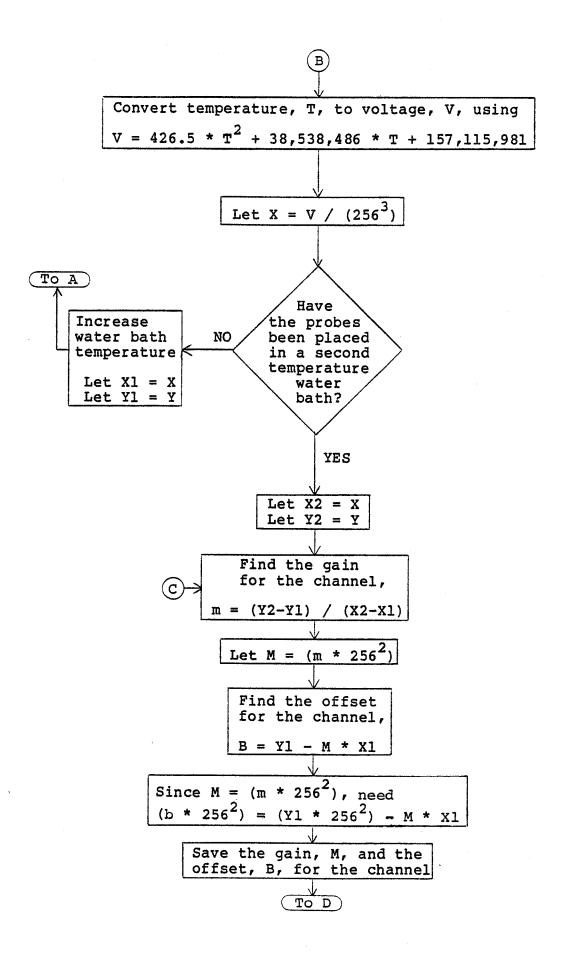
A spurious data point which was not consistent with the rest of the readings, as seen in Figure 5.9, was probably due to noise on the analog board. To eliminate such a problem, several readings of the digitized voltage from the analog-to-digital converter could be averaged. Then, this result could be used in the calculations.

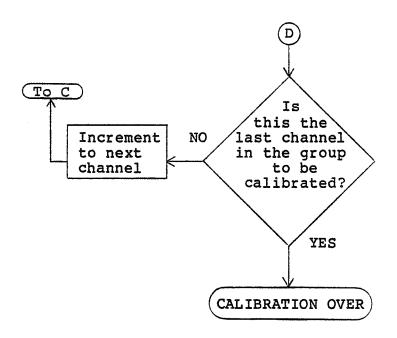
When the readings were not accurate or precise, a serious problem with the probe or thermocouple amplifier chip may have existed. Another possibility is that the probe may have been

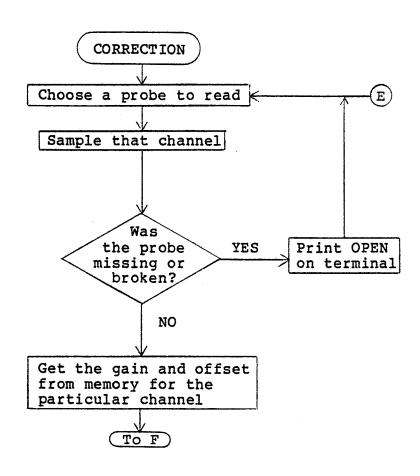
placed in the water bath improperly. The position of the thermocouple tip in relation to the PRT probe may have been such that they were actually at different temperatures when it was assumed that they were at the same temperature.

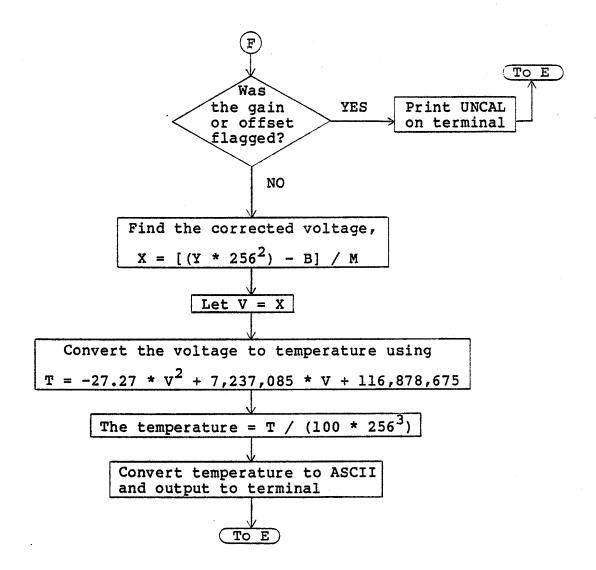
It is possible for the readings of a particular channel to be inaccurate but remain precise. The twenty-four hour run contained such an example. As can be seen in Figure 5.10, all of the readings for channel six exceed the PRT temperature of 40.10°C by greater than 0.10°C. The reason for the larger than normal deviation is probably a bad calibration. In other words, one or both of the calibration voltages obtained from the analog board were most likely in error. If the probes were placed in the exact same calibration temperature again, the voltage might have been different. If this were the case, the gain and the offset calculated would have been based on a bad input point and every output temperature would deviate greatly from the true value. As a result, all of the readings deviate by about the same amount.


One way to check for such problems would be to verify that the calibration is successful immediately after the calibration is completed. The probes could be placed in a third temperature water bath, which could be at the same temperature as the first. This temperature would be entered and the probes read. If there is a discrepancy of more than, say, 0.1°C, the particular channel would be considered to be uncalibrated. The option to recalibrate the faulty channels, without altering the correct channels, would be available. If a channel fails again, the probe or thermocouple chip is probably defective, and so the channel should not be used.


CHAPTER VI


SUMMARY


The double-point calibration routine for the thermometry system has been shown to function properly. The tests that have been performed indicate an accuracy of $\pm 0.01^{\circ}$ C and a precision of $\pm 0.03^{\circ}$ C. In addition, the results are stable over long periods of time and repeatable under various conditions. Some of the reasons for unusual deviations have been discussed and a method of checking for incorrect calibrations has been suggested.


APPENDIX A FLOW CHART FOR THE CALIBRATION ROUTINE

APPENDIX B

PROGRAM LISTING WITH CALIBRATION

```
16-CHANNEL THERMOMETRY SYSYTEM
             ; ž
                                  WITH CALIBRATION
                                        BY
              ; *
                                    MARY OZARKA
              1
                     UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
              : *THIS PROGRAM CONTAINS ALFRED GHARAKHANI'S CONTROL CODE
              :*FOR THE THERMOMETRY SYSTEM RELATED TO INITIALIZATION,
              : *CHARACTER INPUT AND OUTPUT, AND SAMPLING OF THE A/D
              :*CONVERTER. THE CALIBRATION CODE HAS BEEN DEVELOPED FOR *
              **TYPE T THERMOCOUPLES. THE MESSAGES ARE STORED BEGINNING *
              :*AT 900 HEXADECIMAL IN MEMORY. IN THE PRESENT FORM, SOME *
              ; +OF THE RESPONSES TO THE MESSAGES ARE NOT IN A
              ; * "USER-FRIENDLY" FORM. THESE MAY BE EASILY MODIFIED.
              :LABELS.
             ALTCH
                      EQU P1.4
0094
             START
                      EQU P1.5
0095
             RDY
                      EQU P1.6
0096
             BELL
                      EQU $07
0007
000A
             LF
                      EQU $0A
0020
             BLANK
                      EQU $20
             PRMT
                      EQU $3E
003E
             CR
                      EQU $0D
0000
             POINT
                      EQU $2E
002E
                      EQU $87
0087
             PCON
F000
             DATAL
                      EQU $F000
E000
             DATAH
                      EQU $E000
                      EQU $D000
D000
             PDATAL
C000
             PDATAH
                    EQU $C000
             DSPLY
                      EQU $8000
B000
0000
             ZERO
                      EQU $00
000A
             TEN
                      EQU $0A
             THEN
                      EQU $20
0020
                      EQU $21
0021
             THEN1
0040
             FORT
                      EQU $40
             FORT1
                      EQU $41
0041
             :THIS PORTION OF THE PROGRAM CONFIGURES THE 8031 TO
             :PERFORM THE DESIRED FUNCTIONS. TO UNDERSTAND THE DETAILS
             REFER TO MCS-51 USERS MANUAL (CHAP. 2). TO SIMPLIFY THIS
```

: PAGE NUMBERS ARE INCLUDED.

```
ORG $100
                                       :START LOADING THE PROGRAM FROM
               INIT:
0100
               ;100H.
                                       TURN OFF THE 7 SEGMENTS
                        MOV A,#$FF
0100 74FF
                        MOV DPTR, #DSPLY
0102 908000
                        MOVX @DPTR,A
0105 F0
               ; IN THE NEXT THREE LINES PORT1 WILL BE CONFIGURED. RDY (P1.6)
               ; IS SET TO BE AN INPUT. ALTCH(P1.4) IS SET AND START(P1.5)
               IS CLEARED
               ; CHANNEL SELECT BITS ARE ALL CLEARED. PORT3 IS CONFIGURED
               ; FOR ALTERNATE FUNCTIONS (REFER TO PP.13-15).
                                                ; MAKE RDY AN INPUT.
                        MOV P1,#%01010000
0106 759050
                        ORL P3, #%11111111
0109 43B0FF
               IN THE END INTERRUPT SYSTEM IS SET UP
                                                ENABLE INTO ONLY.
                        MOV IE, #710000001
                                               ; INTO HAS HIGHEST PRIORITY.
                        MOV IP, #700000001
               FOR MORE INFO. ABOUT INTERRUPTS REFFER TO PP. 6-10
               ţ
               ţ
                                        :SET UP THE SERIAL PORT.
010C 1202A8
                        CALL BAUD
010F 7407
                        MOV A, #BELL
                                        ; BEEP THE TERMINAL
                        CALL OUTCH
0111 1202F8
                        MOV DPTR,#$09E5
0114 9009E5
                                        :PRINT "URI TERM-X"
                        CALL MESS
0117 120323
                        CALL PROMT
                                        : PRONT THE USER.
011A 12031C
               THE MAIN ROUTINE CALIBRATES THE SET OF PROBES REQUESTED.
               ; THEN THE CALIBRATED TEMPERATURE OF A REQUESTED PROBE IS
               ; DISPLAYED.
                        EQU $
011D
               MAIN
               ; INITIALLY LOAD THE 256 EXTERNAL MEMORY LOCATION USED TO
               STORE GAIN AND OFFSET WITH #$99
011D 120177
                        CALL NN
                        CALL PROBE
                                        GET THE CHANNELS TO BE CALIBRATED
0120 120185
                                        ; CALIBRATE THESE PROBES
                        CALL CALIB
0123 120336
0126 757000
                        MOV $70, #ZERO
                                        SELECT A CHANNEL TO OBSERVE
0129 120230
               MORE:
                        CALL CHNL
                                        FOR USE LATER
                        MOV $71,R7
012C 8F71
012E EF
               SAM:
                        MOV A,R7
                        CALL SAMPLE
012F 120275
                                        :SAMPLE IT
               CHECK IF PROBE MISSING WHEN SAMPLED
                        MOV A,RI
0132 E9
0133 B4990C
                        CINE A,#$99,CHX
                        MOV A,R2
0136 EA
                        CJNE A,#$99,CHX
0137 B49908
               :PRINT 0
                        MOV A,#$4F
013A 744F
                        CALL DUTCH
013C 1202F8
                                        ;TRY AGAIN WITH WHICH PROBE?
                        JMP MORO
013F 020160
```

```
CORRECTION BASED ON OFFSET AND GAIN
0142 120711
               CHX:
                         CALL CORR
               ; CHECK IF THE CHANNEL IS UNCALIBRATED
0145 E57C
                         MOV A,$7C
                        CJNE A, #$99, FN1
0147 B4990D
014A E57D
                         MOV A,$7D
014C B49908
                        CJNE A,#$99,FN1
               ;PRINT U
014F 7455
                         MOV A,#$55
                         CALL OUTCH
0151 1202F8
                        JMP MORO
0154 020160
                                        ; CONVERT THE VOLTAGE TO TEMPERATURE
0157 12077A
               FN1:
                        CALL TEMP
                        CALL CONV
                                        :CONVERT TO ASCII
015A 1207D7
                                        DISPLAY TEMPERATURE TO TERMINAL
                        CALL OUT
015D 120826
                        MOV A,$70
0160 E570
               MORO:
                        CJNE A, #ZERO, MOR1
0162 840005
                        CALL CRLF
0165 12030A
                        JMP MORE
0168 80BF
                        MOV A,#$20
016A 7420
               MOR1:
                        CALL OUTCH
016C 1202F8
016F 0571
                        INC $71
0171 AF71
                        MOV R7,$71
                        DEC $70
0173 1570
                        JMP SAM
0175 8087
               ; WHEN COMMUNICATION WITH A HOST COMPUTER IS IMPLENTED,
               ; THE IDEA WILL BE TO KEEP SAMPLING ALL 32 (16) PROBES AND
               STORE THE TEMPERATURES IN A BUFFER.
               ; THE NN ROUTINE LOADS THE EXTERNAL MEMORY LOCATION O THROUGH
               ;255 WITH #$99
                        EQU $
               NN
0177
                        MOV DPTR,#$0000
0177 900000
                        MOV A. #$99
017A 7499
               NN1:
                        MOVX @DPTR.A
017C F0
                        INC DPL
0170 0582
017F E582
                        MOV A, DPL
0181 B400F6
                        CJNE A, #ZERO, NNI
0184 22
               THE PROBE ROUTINE ASKS THE USER FOR THE CHANNELS DESIRED
               ; (SPECIAL CODE).
               ; IT EXPECTS ONLY ONE CHARACTER TO BE ENTERED.
               ; THIS CHARACTER IS DECODED AND THE CHANNEL NUMBER OF THE
               ;FIRST PROBE TO BE CALIBRATED IS STORED IN LOCATION $70.
               THE CHANNEL NUMBER OF THE LAST PROBE TO BE CALIBRATED
               :PLUS ONE IS STORED IN LOCATION $71.
```

```
PROBE IS SETUP TO WORK ON A THERMOMETRY SYSTEM WITH UP
               ; TO 32 CHANNELS.
               PROBE
                         EQU $
0185
                         MOV DPTR, #$09BF
0185 9009BF
0188 120323
                         CALL MESS
                         CALL ECHO
0188 120317
                         CALL CRLF
018E 12030A
                         CJNE A,#$61,PR1
0191 B46109
                         MOV $70,#ZERO
0194 757000
0197 757104
                         MOV $71,8$04
019A 02023B
                         JMP PRE
0190 846209
               PR1:
                        . CJNE A,#$62,PR2
01A0 757004
                         MOV $70,#$04
01A3 757108
                         MOV $71,#$08
01A6 02023B
                         JMP PRE
               PR2:
                         CJNE A, #$63, PR3
01A9 B46309
                         MOV $70,#$08
01AC 757008
                         MOV $71,#$0C
01AF 75710C
                         JMP PRE
01B2 02023B
               PR3:
                         CJNE A,#$64,PR4
0185 846409
                         MOV $70,#$0C
01BB 75700C
                        MOV $71,#$10
01BB 757110
                         JMP PRE
01BE 02023B
01C1 B46509
               PR4:
                         CJNE A, #$65,PR5
0104 757000
                         MOV $70, #ZERD
0107 757108
                         MOV $71,#$08
01CA 02023B
                         JMP PRE
               PR5:
                         CJNE A,#$66,PR6
01CD B46609
                         MOV $70,#$08
0100 757008
                         MOV $71,#$10
0103 757110
                         JMP PRE
01D6 02023B
                         CJNE A, #$67, PR7
01D9 B46709
               PR6:
                         MOV $70,#ZERO
01DC 757000
01DF 757110
                         MOV $71,#$10
01E2 02023B
                         JMP PRE
01E5 B46809
               PR7:
                        CJNE A,#$68,PRB
                         MOV $70,8$10
01EB 757010
                         MOV $71,#$14
01EB 757114
01EE 02023B
                         JMP PRE
                        CJNE A. #$69, PR9
01F1 B46909
               PRB:
                        MOV $70,#$14
01F4 757014
```

```
01F7 757118
                          MOV $71,#$18
 01FA 02023B
                          JMP PRE
 01FD B46A09
                PR9:
                          CJNE A,#$6A,PR10
 0200 757018
                          MOV $70,#$18
 0203 757110
                          MOV $71,#$1C
 0206 02023B
                          JMP PRE
 0209 B46B09
                PR10:
                         CUNE A,#$6B,PR11
 020C 75701C
                          MOV $70,#$1C
 020F 757120
                         MOV $71,#$20
 0212 02023B
                         JMP PRE
 0215 B46C09
                PR11:
                         CJNE A,#$6C,PR12
0218 757010
                         MOV $70,#$10
0218 757118
                         MOV $71,#$18
021E 02023B
                         JMP PRE
                PR12:
0221 B46D09
                         CJNE A,#$60,PR13
0224 757018
                         MOV $70,#$18
0227 757120
                         MOV $71,#$20
022A 02023B
                         JMP PRE
022D B46E09
                PR13:
                         CJNE A,#$6E,PR14
0230 757010
                         MOV $70,#$10
0233 757120
                         MOV $71,#$20
0236 02023B
                         JMP PRE
0239 2185
                PR14:
                         JMP PROBE
                                        ; INVALID INPUT SO TRY AGAIN
023B 22
                PRE:
                         RET
                ij
                ; THE CHNL ROUTINE ASKS THE USER TO ENTER THE PROBE NUMBER
                ; FOR A TEMPERATURE READING.
                ; CHNL IS SETUP TO WORK ON A THERMOMETRY SYSTEM WITH UP TO 32
               ; MAY ENTER VALUES O THROUGH 31 USING THE SPECIAL CODE (PAGE 52)
               ; THE VALUE WILL BE PUT IN R7.
               ; THERE IS A CHECK FOR INVALID INPUTS.
0230
               CHNL
                        EQU $
0230 900950
                        MOV DPTR,#$0950
023F 120323
                        CALL MESS
                                                PRINT THE MESSAGE.
0242 120317
                        CALL ECHO
0245 F5F0
                        MOV B,A
0247 54F0
                        ANL A.#$FO
0249 843008
                        CJNE A,#$30,FR
024C E5F0
                        MOV A,B
024E 540F
                        ANL A,#$OF
```

```
MOV R7,A
                                         ; HAVE PROBE NUMBER IN R7
 0250 FF
                         JMP FRE
 0251 02025D
                         CJNE A,#$20, ERFR
 0254 B42010
                FR:
 0257 E5F0
                         MOV A,B
 0259 C3
                         CLR C
 025A 9410
                         SUBB A.#$10
                         MOV R7,A
 025C FF
                                         ; HAVE PROBE NUMBER IN R7
 025D 120300
                FRE:
                         CALL INCH
 0260 B40DD9
                         CJNE A. #CR, CHNL
 0263 12030A
                         CALL CRLF
 0266 22
                         RET
 0267 E5F0
                ERFR:
                         MOV A,B
                         CJNE A,#$41,CHNL
 0269 B441D0
 026C 757007
                         MOV $70,#$07
                         MOV R7,#ZERO
 026F 7F00
                         CALL CRLF
 0271 12030A
 0274 22
                         RET
                ; THE SAMPLE ROUTINE RECEIVES A CHANNEL NUMBER IN THE ACC.
                THE REQUESTED CHANNEL IS SAMPLED AND THE 12-BIT NUMBER FROM
                ; THE A/D IS RETURNED IN (R1,R2)
                ; ALSO, BROKEN T-COUPLES IN THE CHANNELS BEING SAMPLED
                ; WILL BE DETECTED AND FLAGGED, (R1,R2) = $$9999
0275
                SAMPLE EQU $
0275 D294
                         SETB ALTCH
0277 5390F0
                         ANL P1,#$F0
                                        :CLEAR PREVIOUS CHANNEL NUMBER
027A 4290
                         ORL P1.A
                                        SEND OUT CHANNEL NUMBER TO AIS
027C C294
                         CLR ALTCH
                                        :LATCH THE CHANNEL NUMBER
027E D295
                         SETB START
0280 C295
                         CLR START
                                        ;START THE A/D
               AT THIS POINT THE A/D WILL START ITS 25 MICROSECOND
               ; CONVERSION.
0282 90E000
                         MOV DPTR. #DATAH
0285 3096FD
                         JNB RDY,$
                                        ; WAIT UNTIL THE END OF CONVERSION
0288 E0
                         MOVX A, @DPTR ; LOAD ACC WITH HIGHEST 8 BITS
0289 F9
                         MOV R1,A
028A 90F000
                         MOV DPTR, #DATAL
028D E0
                        MOVX A, EDPTR ; LOAD ACC WITH THE LOWER 4 BITS
028E FA
                        MOV R2,A
028F 30E305
                         JNB ACC.3, NOERR
                                                ; CHECK FOR OPEN CHANNEL
0292 7999
               ERR:
                        MOV R1,#$99
                                        ; THE SAMPLED CHANNEL IS OPEN
0294 7A99
                        MOV R2,#$99
0296 22
               ; SHIFT BITS IN (R1,R2) RIGHT 4 TIMES APPENDING ZEROS ON LEFT
```

```
0297 EA
                NOERR:
                         MOV A,R2
 0298 54F0
                         ANL A,#$FO
 029A C4
                         SWAP A
 029B FA
                         MOV R2,A
 029C E9
                         MOV A,R1
 029D 540F
                         ANL A,#$OF
                         SWAP A
 029F C4
 02A0 4A
                         ORL A.RZ
02A1 FA
                         MOV R2,A
02A2 E9
                        MOV A,R1
02A3 54F0
                        ANL A,#$FO
02A5 C4
                        SWAP A
02A6 F9
                        MOV RI,A
                ;TST1:
                        MOV A,RI
                                       ; FOR TEST
                        MOV B,R2
                                       ;FOR TEST
               ;
                        CALL TEST3
                                       FOR TEST
02A7 22
                        RET
               ;THE FOLLOWING SUBROUTINE WILL FIGURE OUT THE BAUD RATE
               ; SETTING. A PROPER RELOAD VALUE WILL BE LOADED ACCORDINGLY.
               ; IN THE END COUNTERS WILL BE STARTED. FOR MORE INFO.
               ; ABOUT SERIAL PORT SET UP REFER TO PP.18-28 .
02A8 758801
               BAUD:
                        MOV TCON, #200000001
02AB 759850
                        MOV SCON, #201010000
02AE 758920
                        MOV TMOD, #700100000
0281 758780
                        MOV PCON, #$80 ; DOUBLE THE BAUD RATE
0284 90F000
                        MOV DPTR, #DATAL
02B7 E0
                        MOVX A, EDPTR ; READ THE SETTING.
0288 5407
                        ANL A,#%00000111
02BA B40006
                        CJNE A,#$0,8600
02BD 758D30
                        MOV TH1, #$30 ;300 BAUD.
02C0 0202F3
                        JMP GOTIT
02C3 B40106
               B600:
                        CJNE A,#$1,B1200
0206 758098
                        MOV TH1,#$98 ;600 BAUD
0209 0202F3
                        JMP GOTIT
               B1200: CJNE A,#$2,B2400
02CC B40206
02CF 758DCC
                        MDV TH1,#$CC ;1200 BAUD.
02D2 0202F3
                        JMP GOTIT
02D5 B40306
               B2400:
                       CJNE A,#$3,84800
02D8 758DE6
                        MOV TH1,#$E6 ;2400 BAUD.
02DB 0202F3
                        JMP GOTIT
02DE B40406
               B4800:
                       CJNE A, #$4, B9600
02E1 758DF3
                        MOV TH1,#$F3 ;4800 BAUD.
02E4 0202F3
                        JMP GOTIT
02E7 B40506
               B9600:
                       CJNE A,#$5,8192
02EA 758DF9
                       MOV TH1,#$F9 ;9600 BAUD.
```

```
JMP GOTIT
02ED 0202F3
02F0 758DFD
              B192:
                        MOV TH1,#$FD ;19.2K BAUD.
               GOTIT: SETB TRI
                                       ;START THE TIMER.
02F3 D28E
                        SETB TI
                                       ;SET TI FOR 1ST CHARACTER.
02F5 D299
02F7 22
                        RET
               COUTCH: IS A SUBROUTINE WHICH SENDS OUT THE CONTENT OF
               ; THE ACC. TO THE SERIAL BUFFER OF THE 8031, ACC. MUST
               ; CONTAIN THE 7BIT ASCII REPRESENTATION OF DESIRED
               : CHARACTER.
               ; NOTICE THAT NO PARITY IS USED.
               ; VALUE OF ACC. REMAINS UNTOUCHED.
                                       ; WAIT UNTIL THE END OF THE PREVIOUS
               OUTCH: JNB TI,$
02F8 3099FD
               ; TRANSMISSION.
                                       GET READY FOR THE CURRENT CHAR.
                        CLR TI
02FB C299
                                       ; SEND THE CURRENT CHAR.
                        MOV SBUF, A
02FD F599
02FF 22
                        RET
               ; INCH: IS A SUBROUTINE WHICH RECEIVES AN ASCII CHAR. FROM
               ; THE SERIAL BUFFER OF THE 8031. THIS CHAR. WILL BE PLACED
               ; IN THE ACC. IN THE END ACC. 7 WILL BE CLEARED. PARITY IS
               ; IGNORED.
               INCH:
                        JNB RI,$
                                       ; WAIT FOR RECEIVE INTERRUPT
0300 3098FD
                        CLR RI
                                       ; CLEAR THE RECEIVE INTERRUPT.
0303 C298
                        MOV A, SBUF
0305 E599
0307 547F
                        ANL A,#$7F
0309 22
                        RET
               ; CRLF: THIS IS A SUBROUTINE WHICH SENDS OUT A CR FOLLOWED
               :BY A LF.
               ; THE VALUE IN THE ACCUM. DOES NOT CHANGE
                        MOV $1A,A
030A F51A
               CRLF:
030C 740D
                        MOV A, #CR
030E 51F8
                        CALL OUTCH
                        MOV A, #LF
0310 740A
0312 51F8
                        CALL OUTCH
                        MOV A,$1A
0314 E51A
                        RET
0316 22
               ; ECHO: IS A SUBROUTINE WHICH RECEIVES CHAR FROM THE
               KEYBOARD AND SENDS IT TO THE SCREEN.ACC. WILL PRESERVE
```

```
; THE RECEIVED CHAR.
                                        GET THE CHAR. FROM THE KEYBOARD.
0317 7100
               ECHO:
                        CALL INCH
0319 51FB
                        CALL OUTCH
                                       :ECHO THE CHARTO THE SCREEN
031B 22
                        RET
               ; PROMT: IS A SUBROUTINE WHICH PRINTS A PROMT IN THE
               ; BEGINNING OF THE NEXT LINE.
               PROMT:
                        CALL CRLF
031C 710A
031E 743E
                        MOV A. #PRMT
0320 51F8
                        CALL OUTCH
0322 22
                        RET
               : MESS: SUBROUTINE WILL PRINT DIFFERENT MESSAGES ON THE
               ; SCREEN. THESE MESSAGES ARE STORED IN THE PROGRAM MEMORY
               : (900H-A00H). EACH MESSAGE IS IDENTIFIED BY THE ADDRESS OF
               ; ITS FIRST CHARACTER. THE LAST CHAR. OF EACH MESSAGE MUST
               BE A CR. THIS ROUTINE EXPECTS THE ADDRESS OF MESSAGE IN
               ; THE DPTR.IN THE END ACC. AND DPTR WILL BE CLEARED.
               ij
                        CALL CRLF
0323 710A
               MESS:
                        MOV R4,#$00
0325 7000
                                         ; SAVE THE INDEX
                        MOV A,R4
0327 EC
               NEXT:
                        MOVC A, &A+DPTR
0328 93
                        CJNE A, #CR, AGAIN ; STOP IF CR
0329 B40D03
                        JMP FINISH
0320 020334
                        CALL OUTCH
                                       ; DISPLAY THE CHAR.
032F 51F8
               AGAIN:
                                       ; INCREMENT THE INDEX.
0331 OC
                        INC R4
                        JMP NEXT
0332 80F3
0334 E4
               FINISH: CLR A
0335 22
                        RET
               ; THE CALIB ROUTINE GENERATES A CORRECTION GAIN AND OFFSET
               FOR EACH CHANNEL. THESE VALUES ARE STORED IN EXTERNAL
               NONVOLATILE RAM.
               THE NUMBER OF THE FIRST PROBE TO BE CALIBRATED IS PASSED
               ; IN LOCATION $70 AND THE LAST PROBE TO BE CALIBRATED PLUS
               ; ONE IS PASSED IN LOCATION $71.
```

```
; MEMORY LOCATION $72 WILL HOLD A NUMBER COUNTER.
0336
                CALIB
                         EQU $
0336 900900
                         MOV DPTR.#$0900
                                                SETUP FOR FIRST MESSAGE
0339 1203A8
                         CALL MT
                HT SENDS OUT THE FIRST MESSAGE AND RETURNS THE INPUT
               ; TEMPERATURE, X1 IN (R4,R5)
033C 7820
                         MOV RO, #THEN ; BEGIN STORING AT $20
                                        ; INITIALIZE $72 = FIRST CHANNEL
033E 857072
                         MOV $72,$70
0341 12044E
                         CALL LOAD
                ; LOAD TEMP1, Y1, 12 BIT NUMBER FROM A/D FOR ALL CHANNELS
               ;TO CALIBRATE.
                ;FIND THE VOLTAGE CORRESPONDING TO TEMPERATURE X1 IN (R4,R5)
0344 120460
                         CALL VOLT
               ; VOLT RETURNS THE VOLTAGE IN (R3,R4)
               ;STORE IN ($7E,$7F) SINCE VOLT IS USED AGAIN
0347 8B7E
                         MOV $7E.R3
0349 8C7F
                         MOV $7F,R4
0348 900948
                         MOV DPTR,#$0968
034E 1203A8
                         CALL MT
               ; MT SENDS OUT THE SECOND MESSAGE AND RETURNS THE TEMPERATURE
               ; X2 IN (R4,R5)
0351 7840
                         MOV RO, #FORT ; BEGIN STORING AT $40
                                        ; INITIALIZE, $72 = FIRST CHANNEL
0353 857072
                        MOV $72,$70
0356 12044E
                        CALL LOAD
               ;LOAD TEMP2, Y2, 12 BIT NUMBER FROM A/D FOR ALL CHANNELS
               ; TO BE CALIBRATED
               FIND THE VOLTAGE CORRESPONDING TO TEMPERATURE X IN (R4,R5)
0359 120460
                        CALL VOLT
               ; VOLT RETURNS THE VOLTAGE IN (R3,R4).
               ; REMEMBER X2 > X1 SO Y2 > Y1 TOO.
               ;FIRST FIND (X2-X1) = (R3,R4)-($7E,$7F) AND STORE IN
               ; ($74,$7A) BECAUSE WILL BE NEEDED FOR OTHER CHANNELS.
035C C3
                        CLR C
035D EC
                        MOV A,R4
035E 957F
                        SUBB A,$7F
0360 F57A
                        MOV $7A,A
0362 EB
                        MOV A.R3
0363 957E
                        SUBB A,$7E
                                       :WITH BORROW
0365 F574
                        MOV $74,A
               ; FIND THE GAIN = (Y2-Y1)/(X2-X1)
0367 857072
                        MOV $72,$70
036A 7821
                        MOV RO, #TWEN1
036C 7941
                        MOV R1,#FORT1
036E AC74
               LPP:
                     MOV R4.$74
```

```
0370 AD7A
                        MOV R5,$7A
0372 1205DD
                        CALL GAIN
               :THE GAIN IS RETURNED IN ($78,$7C,$7D)
               ;FIND THE OFFSET
0375 12069C
                        CALL INTC
               :OFFSET RETURNED IN ($75,$76,$77,$78,$79)
               STORE THE GAIN AND OFFSET IN EXTERNAL RAM
0378 1206E6
                        CALL SAVE
               SETUP FOR THE NEXT CHANNEL
0378 08
                        INC RO
                        INC RO
0370 08
                        INC RO
0370 08
037E 09
                        INC RI
037F 09
                        INC R1
0380 09
                        INC R1
0381 0572
                        INC $72
0383 E572
                        MOV A,$72
0385 B571E6
                        CJNE A,$71,LPP
0388 22
                        RET
                                        ;END
               ; THE TESTS ROUTINE IS FOR DEBUGGING PURPOSES ONLY.
               ; THE CONTENTS OF (A,B) ARE SENT TO THE ERROR DISPLAY ON THE
               FRONT OF THE THERMOMETRY SYSTEM.
               TEST3
                        EQU $
0389
0389 F51C
                        MOV $1C,A
038B 85831A
                        MOV $1A.DPH
                        MOV $1B, DPL
038E 85821B
                        MOV DPTR, #DSPLY
0391 908000
                        MOVX @DPTR, A
0394 FO
                        CALL INCH
0395 7100
                        MOV A.B
0397 E5F0
0399 908000
                        MOV DPTR, #DSPLY
                        MOVX @DPTR, A
039C F0
039D 7100
                        CALL INCH
039F E51C
                        MOV A,$1C
                        MOV DPH, $1A
03A1 851A83
03A4 851B82
                        MOV DPL,$1B
03A7 22
                        RET
               ; THE MT ROUTINE SENDS OUT A MESSAGE AND RECEIVES THE
               : TEMPERATURE VALUE IN THE FORM 23.64, FOR EXAMPLE, FOLLOWED
               BY A CR. THIS ROUTINE IS FOR THE STAND ALONE UNIT ONLY.
               ; THE TEMPERATURE IS MULTIPLIED BY 100 AND RETURNED IN (R4,R5)
               THE TEMPERATURE MUST BE IN THE RANGE BETWEEN 0 AND 99.99
               THERE IS NO CHECK THAT THE CHARACTERS TYPED IN ARE NUMBERS.
                        EQU $
03A8
               MT
03A8 7C00
                        MOV R4,#ZERO
```

```
MOV R5,#ZERO
03AA 7D00
                                        ;CLEAR R4 AND R5
                                         ; PLACE PROBES IN WATER BATH
                REDO:
                         CALL MESS
03AC 7123
                                         ; RETURNS CHARACTER IN ACC.
03AE 7117
                         CALL ECHO
                         CJNE A, #CR, NT1
03B0 B40D02
                         JMP REDO
03B3 80F7
                                         ;TRY AGAIN
0385 842E03
               NT1:
                         CJNE A, #POINT, NT2
                                        ;FIRST CHARACTER IS A DECIMAL POINT
03B8 0203E9
                         JMP PT
03BB 540F
                NT2:
                         ANL A,#$OF
                                         CONVERT FROM ASCII TO HEX
03BD FD
                         MOV R5,A
03BE 7117
                         CALL ECHO
                                        ; INPUT SECOND CHARACTER
03C0 B40D03
                         CJNE A, #CR, NT3
0303 020443
                         JMP ET100
                                        :MULTIPLY BY 100 TO GET VALUE
03C6 B42E03
                         CJNE A, #POINT, NT4
               NT3:
                         JMP PTS
03C9 0203F5
03CC 540F
               NT4:
                         ANL A, #$OF
03CE FE
                         MOV R6,A
O3CF ED
                         MOV A,R5
03D0 75F00A
                         MOV B, #TEN
                                         ; B HERE SHOULD BE ZERO
03D3 A4
                         MUL AB
03D4 C3
                         CLR C
03D5 2E
                         ADD A,R6
03D6 FD
                         MOV R5,A
03D7 AEF0
                         MOV R6,B
                                        :LIKE CLR R6 SINCE B IS ZERO
                         CALL ECHO
0309 7117
03DB B40D03
                         CJNE A.#CR.NT5
                                        ; MULTIPLY BY 100 TO GET VALUE
03DE 020443
                         JMP ET100
03E1 B42E03
               NT5:
                         CJNE A, #POINT, NT6
03E4 0203F5
                         JMP PTS
03E7 80C3
                         JMP REDO
               NT6:
                                        ;TRY AGAIN
03E9 7117
               PT:
                         CALL ECHO
                         CJNE A, #POINT, PTER
03EB B42E02
03EE 80BC
                         JMP REDO
03F0 B40D0F
               PTER:
                        CJNE A, #CR, ET2
03F3 80B7
                         JMP REDO
               PTS:
03F5 7117
                         CALL ECHO
03F7 842E02
                         CJNE A, #POINT, PTST
03FA 80B0
                         JMP REDO
03FC B40D03
               PTST:
                         CJNE A, #CR, ET2
03FF 020443
                         JMP ET100
                                        ; MULTIPLY BY 100 TO GET VALUE
0402 540F
               ET2:
                         ANL A,#$0F
0404 FE
                         MOV R6,A
```

```
MOV A,R5
0405 ED
0406 75F00A
                         MOV B, #TEN
0409 A4
                         MUL AB
040A ACFO
                         MOV R4,B
040C C3
                        CTS C
040D 2E
                         ADD A.R6
040E FD
                         MOV R5,A
               ; NOW (R4,R5) HOLD THE TEMPERATURE TO THE TENTH PLACE * 10
040F 5001
                         JNC ET3
0411 OC
                         INC R4
0412 7117
               ETJ:
                        CALL ECHO
0414 B40D12
                        CJNE A. #CR,NT7
               ; MULTIPLY BY TEN
0417 ED
                        MOV A,R5
0418 75F00A
                        MOV B, #TEN
041B A4
                        MUL AB
041C FD
                        MOV R5,A
041D EC
                        MOV A,R4
041E ACF0
                        MOV R4,B
0420 75F00A
                        MOV B, #TEN
                                        ; B SHOULD BE ZERO
                        MUL AB
0423 A4
0424 2C
                        ADD A.R4
                                        ; SHOULD NOT CAUSE A CARRY
0425 FC
                        MOV R4,A
                        JMP ETT
0426 02044B
               NT7:
0429 540F
                        ANL A,#$OF
042B FE
                         MOV R6,A
042C ED
                        MOV A,R5
042B 75F00A
                        MOV B, #TEN
                        MUL AB
0430 A4
                        CLR C
0431 C3
                        ADD A,R6
0432 2E
0433 FD
                        MOV R5.A
0434 AFF0
                        MOV R7,B
                        JNC NTB
0436 5001
0438 OF
                        INC R7
               NT8:
                        MOV A,R4
0439 EC
043A 75F00A
                        MOV B, #TEN
043D A4
                        MUL AB
                                        ; B SHOULD EQUAL ZERO
043E 2F
                        ADD A,R7
043F FC
                        MOV R4,A
                        JMP ETT
0440 020448
0443 ED
               ET100:
                        MOV A,R5
                        MOV B,#$64
0444 75F064
                        MUL AB
0447 A4
                        MOV R4,B
0448 ACF0
                        MOV R5,A
                                        ;HAVE VALUE
044A FD
               ;
```

```
CALL CRLF
044B 710A
               ETT:
               REALLY ONLY WANT LF SINCE ALREADY HAVE CR
                                       ; RETURNS TEMP IN (R4,R5)
0440 22
                        RET
               ;THE LOAD ROUTINE LOADS MEMORY LOCATIONS (BEGINNING WITH $20
               FOR TEMP1 AND $40 FOR TEMP2) IN BYTE PAIRS WITH THE VALUE
               THE A/D CONVERTER SENDS TO THE DIGITAL BOARD.
               :RO MUST HOLD THE BEGINNING MEMORY LOCATION.
               ;$71 HOLDS I PLUS THE LAST CHANNEL NUMBER.
               $$72 HOLDS THE FIRST CHANNEL NUMBER
044E
               LOAD
                        EQU $
                        MOV A,$72
                                       ; ACC HOLDS THE CHANNEL NUMBER
044E E572
                        CALL SAMPLE
0450 5175
               SAMPLE RETURNS THE 12 BIT NUMBER FROM THE A/D CORRESPONDING
               ; TO THE CHANNEL WHOSE NUMBER WAS IN THE ACC.
               ;THE 12 BITS ARE RETURNED IN (R1,R2)
               ; IF A PROBE IS BROKEN OR NOT THERE, RETURNS (R1,R2)=$9999.
               ;STORE THIS NUMBER IN BYTE PAIRS BEGINNING AT $20, $21 FOR
               ; TEMP1 AND $40, $41 FOR TEMP2.
                        MOV A,R1
0452 E9
                        MOV @RO,A
0453 F6
0454 08
                        INC RO
0455 EA
                        MOV A,R2
                        MOV @RO,A
0456 F6
                        INC RO
0457 08
0458 0572
                        INC $72
                                       : NEXT CHANNEL
                        MOV A,$72
045A E572
               ; COMPARE CHANNEL NUMBER (IN $72) WITH ONE PLUS THE NUMBER OF
               ; THE LAST PROBE TO BE CALIBRATED (IN $71)
045C B571EF
                        CJNE A,$71,LOAD
045F 22
                        RET
               THE VOLT ROUTINE FINDS THE THERMOCOUPLE VOLTAGE BASED ON
               ; THE THERMOMETER TEMPERATURE TYPED IN AND STORED IN (R4,R5).
               ; THE EQUATION USED IS BASED ON THE TEMPERATURE-VOLTAGE
               STANDARD TABLES FOR T-TYPE THERMOCOUPLE PROBES
               ; THE EQUATION IS V = 426.5 * T**2 + 38,538,487 * T + 157,115,981
               ; WHERE V, VOLTAGE IS IN 10**-14 VOLTS AND T, TEMPERATURE
               ; IS (100 + DEGREE C)
               ; THE VOLTAGE CALCULATED IS DIVIDED BY (256) **3 = 16,777,216
               AND USED IN THIS FORM WITHOUT LOSS OF ACCURACY
```

```
0460
               VOLT
                        EQU $
                        MOV $7A,R4
0460 BC7A
                        MOV $7B.R5
0462 8D7B
                        CALL SQU
0464 1204BF
               ; SQU RETURNS THE SQUARE OF (R4,R5) IN (R4,R5,R6,R7)
               :THIS IS T**2
                ; MULTIPLY 426 * T**2
                        MOV R2,#$10
0467 7A10
0469 7BA9
                        MOV R3,#$A9
                                        ;#$10A9 = 4265
046B 1204E7
                        CALL MUL24
               ; MUL24 MULTIPLIES (R2,R3) * (R4,R5,R6,R7)
               ; RESULT RETURNED IN ($75,$76,$77,$78,$79)
               DIVIDE BY TEN SINCE WANTED TO MULTIPLY BY 426.5
               ; INSTEAD OF 4265
046E 120595
                        CALL DIV51
               SINCE WILL NEED TO USE THE MUL24 ROUTINE AGAIN, STORE
               ;THE RESULT IN ($65,$66,$67,$68,$69)
                        MOV $65,$75
0471 857565
0474 857666
                        MOV $66,$76
0477 857767
                        MOV $67,$77
047A 857868
                        MOV $68,$78
                        MOV $69,$79
047D 857969
               ; NOW MULTIPLY 38,538,487 * T
               ;T WAS STORED IN ($7A,$7B)
                        MOV R2,$7A
0480 AA7A
0482 AB7B
                        MOV R3,$7B
0484 7002
                        MOV R4,#$02
                        MOV R5,#$4C
0486 7D4C
                        MOV R6,#$0C
0488 7E0C
048A 7FF7
                        MOV R7,#$F7
                        CALL MUL24
048C 1204E7
               ;ADD ($75,$76,$77,$78,$79) + ($65,$66,$67,$68,$69)
               ;STORE VALUE IN (R3,R4,R5,R6,R7)
                        CLR C
048F C3
                        MOV A,$79
0490 E579
                        ADD A,$69
0492 2569
0494 FF
                        MOV R7,A
                        MOV A,$78
0495 E578
                                        :WITH CARRY
0497 3568
                        ADDC A,$68
0499 FE
                        MOV R6.A
                        MOV A,$77
049A E577
                                        ;WITH CARRY
                        ADDC A,$67
0490 3567
                        MOV R5,A
049E FD
049F E576
                        MOV A,$76
                        ADDC A,$66
                                        ;WITH CARRY
04A1 3566
04A3 FC
                        MGV R4,A
                        MOV A,$75
04A4 E575
```

```
:THERE SHOULD BE NO
04A6 3565
                        ADDC A,$65
                                        ; CARRY GENERATED HERE
                        MOV R3,A
04A8 FB
               ;ADD 157,115,981 = 095D664DH
                        CLR C
04A9 C3
04AA EF
                        MOV A,R7
                        ADD A. #$4D
04AB 244D
04AD FF
                        MOV R7,A
04AE EE
                        MOV A,R6
                                        ; WITH CARRY
                        ADDC A,#$66
04AF 3466
                        MOV R6,A
04B1 FE
                        MOV A.R5
04B2 ED
                        ADDC A,#$5D
                                        ;WITH CARRY
04B3 345D
                        MOV R5,A
04B5 FD
                        MOV A.R4
0485 EC
                        ADDC A,#$09
                                        ; WITH CARRY
0487 3409
                        MOV R4,A
04B9 FC
04BA EB
                        MOV A,R3
                                       ; TAKES CARE OF PREVIOUS
                        ADDC A,#ZERO
04BB 3400
                                        ; CARRY, IF ANY
04BD FB
                         MOV R3.A
               TRUNCATE THE LOWER THREE BYTES WHICH IS THE SAME AS
               ; DIVIDING BY (254) ** 3.
               ;SO THE RESULT IS IN (R3,R4).
               ; THIS IS DONE TO SIMPLIFY THE CODE WITHOUT LOSS OF ACCURACY
               ; OF THE FINAL RESULT.
04BE 22
                         RET
                THE SQU ROUTINE FINDS THE SQUARE OF THE TWO BYTE NUMBER
                ;STORED IN (R4,R5) AND RETURNS THE VALUE IN (R4,R5,R6,R7)
                         EQU $
048F
               ;FIRST MULTIPLY THE LSB TIMES ITSELF, THAT IS, (R5 * R5)
                         MOV A,R5
04BF ED
04C0 8DF0
                         MOV B,R5
                         MUL AB
04C2 A4
04C3 FF
                         MOV R7,A
                         MOV R6,B
04C4 AEF0
               ; MULTIPLY THE LSB BY THE MSB (R5 * R4) AND DOUBLE THE RESULT
                         MOV A,R4
04C6 EC
                         MOV B,R5
04C7 8DF0
                         MUL AB
04C9 A4
                         MOV R5,B
04CA ADFO
                                        :TEMPORARY STORAGE
                         MOV R3,A
04CC FB
                         CLR C
04CD C3
04CE 2B
                         ADD A,R3
```

```
MOV R3,A
04CF FB
                        MOV A,R5
04D0 ED
                                       :WITH CARRY
04D1 3D
                        ADDC A,R5
                        MOV R5,A
0402 FD
               ; ADD SHIFTED RESULT TO (R6,R7) AND GET (R5,R6,R7)
04D3 C3
                        CLR C
04D4 EE
                        MOV A,R6
04D5 2B
                        ADD A,R3
0406 FE
                        MOV R6,A
04D7 5001
                        JNC SQP1
04D9 OD
                        INC R5
               ; MULTIPLY THE MSB BY THE MSB (R4 * R4)
04DA EC
               SQP1:
                        MOV A,R4
                        MOV B,R4
04DB BCF0
                        MUL AB
04DD A4
04DE ACFO
                        MOV R4,B
04E0 C3
                        CLR C
04E1 2D
                        ADD A,R5
04E2 FD
                        MOV R5,A
04E3 5001
                        JNC SQP2
                        INC R4
                                       ; RESULT IS IN (R4,R5,R6,R7)
04E5 OC
04E6 22
               SQP2:
                        RET
               į
               ; THE MUL24 ROUTINE MULTIPLIES A TWO BYTE NUMBER STORED IN
               (R2.R3) BY A FOUR BYTE NUMBER STORED IN (R4,R5,R6,R7).
               THE RESULT IS RETURNED IN ($75,$75,$77,$78,$79).
               MUL24
04E7
                        EQU $
                        MOV $76, #ZERO
04E7 757600
                        MOV $75,#ZERO
04EA 757500
04ED EF
                        MOV A,R7
                        MOV B,R3
04EE 8BF0
                        MUL AB
04F0 A4
04F1 85F078
                        MOV $78,B
                        MOV $79,A
04F4 F579
04F6 EF
                        MOV A,R7
04F7 8AF0
                        MOV B,R2
04F9 A4
                        MUL AB
04FA C3
                        CLR C
04FB 2578
                        ADD A,$78
                        MOV $78,A
04FD F578
04FF 85F077
                        MOV $77,B
                        JNC MS1
0502 500A
                        MOV A,$77
0504 E577
                                      TAKES CARE OF CARRY IF IT EXISTS
                        ADDC A.#ZERO
0506 3400
                        MOV $77,A
0508 F577
```

```
050A 5002
                         JNC MS1
 050C 0576
                         INC $76
 050E EE
                MS1:
                         MOV A,R6
 050F 8BF0
                         MOV B,R3
 0511 A4 -
                         MUL AB
 0512 C3
                         CLR C
 0513 2578
                         ADD A,$78
 0515 F578
                         MOV $78,A
 0517 500A
                         JNC MS2
 0519 E577
                         MOV A,$77
 051B 3400
                         ADDC A,#ZERO
                                       ; TAKES CARE OF CARRY IF IT EXISTS
 051D F577
                         MOV $77,A
051F 5002
                         JNC MS2
 0521 0576
                         INC $76
                MS2:
0523 E5F0
                         MOV A.B
0525 C3
                         CLR C
0526 2577
                         ADD A,$77
                         "2V $77,A
0528 F577
052A 5002
                         JNC MS3
0520 0576
                         INC $76
OSTT EE
                MS3:
                         MOV A,R6
052F 8AF0
                         MOV B,R2
0531 A4
                         MUL AB
0532 C3
                         CLR C
0533 2577
                         ADD A,$77
0535 F577
                         MOV $77.A
0537 5002
                         JNC MS4
0539 0576
                         INC $76
053B E5F0
               MS4:
                         MOV A,B
053D C3
                         CLR C
053E 2576
                         ADD A,$76
0540 F576
                         MOV $76,A
0542 5002
                         JNC MS5
0544 0575
                         INC $75
               MS5:
0546 EB
                        MOV A,R3
0547 8DF0
                        MOV B,R5
0549 A4
                        MUL AB
054A C3
                        CLR C
                        ADD A,$77
054B 2577
054D F577
                        MOV $77,A
054F 500A
                        JNC MS6
0551 E576
                        MOV A,$76
                                        ; INSTEAD OF INC $76
0553 3400
                        ADDC A, #ZERO
0555 F576
                        MOV $76,A
0557 5002
                        JNC MS6
0559 0575
                        INC $75
```

```
055B E5F0
               MS6:
                         MOV A.B
                         CLR C
055D C3
                         ADD A,$76
055E 2576
                         MOV $76,A
0560 F576
                         JNC MS7
0562 5002
                         INC $75
0564 0575
               MS7:
                         MOV A,R2
0566 EA
                         MOV B,R5
0567 BDF0
                         MUL AB
0569 A4
                         CLR C
056A C3
056B 2576
                         ADD A,$76
                         MOV $76,A
056D F576
                         JNC MS8
056F 5002
                         INC $75
0571 0575
0573 E5F0
               MS8:
                         MOV A,B
                         ADD A,$75
0575 2575
                                         ; WILL NOT HAVE CARRY HERE
                         MOV $75,A
0577 F575
                         MOV A,R3
0579 EB
                         MOV B,R4
057A 8CF0
                         MUL AB
057C A4
                         CLR C
057D C3
                         ADD A,$76
057E 2576
                         MOV $76,A
0580 F576
                         JNC MS9
0582 5002
                         INC $75
0584 0575
                MS9:
                         MOV A,B
0586 E5F0
0588 2575
                         ADD A,$75
                         MOV $75,A
058A F575
                         MOV A,R2
058C EA
058D 8CF0
                         MOV B,R4
                                         ; B SHOULD EQUAL ZERO
                         MUL AB
058F A4
                         ADD A.$75
0590 2575
                         MOV $75,A
0592 F575
                                         ; RESULT IN ($75,$76,$77,$78,$79)
                         RET
0594 22
                THE DIV51 ROUTINE DIVIDES ($75,$76,$77,$78,$79) BY (R2).
00595
                ;THE RESULT IS STORED IN ($75,$76,$77,$78,$79).
                DIV51
                         EQU $
0595
                          MOV R3,#ZERO
 0595 7B00
                          MOV R4,$75
 0597 AC75
                          MOV R5,#ZERO
 0599 7000
                         CALL SUBIT
 0598 120508
```

```
059E 8D75
                          MOV $75,R5
 05A0 EC
                          MOV A,R4
                                         ;SHIFT LEFT
 05A1 FB
                          MOV R3,A
                                         ;R3 SHOULD HAVE BEEN ZERO
 05A2 AC76
                          MOV R4,$76
 05A4 7D00
                          MOV R5,#ZERO
005A6
                          VALL SUBIT
 05A6 8D76
                          MOV $76,R5
 05A8 EC
                         MOV A,R4
 05A9 FB
                          MOV R3,A
 05AA AC77
                         MOV R4,$77
 05AC 7D00
                         MOV R5,#ZERO
 05AE 1205C8
                         CALL SUBIT
 05B1 9D77
                         MOV $77,R5
 05B3 EC
                         MOV A,R4
 0584 FB
                         MOV R3,A
 05B5 AC78
                         MOV R4,$78
005B7
                         MNOV R5.#ZERO
 05B7 1205C8
                         CALL SUBIT
 05BA 8D78
                         MOV $78,R5
 05BC EC
                         MOV A,R4
 05BD FB
                         MOV R3,A
05BE AC79
                         MOV R4,$79
05C0 7D00
                         MOV R5,#ZERO
0502 120508
                         CALL SUBIT
05C5 8D79
                         MOV $79,R5
05C7 22
                         RET
                ;THE SUBIT ROUTINE PERFORMS THE SUBTRIACTION (R3,R4) - R2
                ; ONLY WHEN NO CARRY (FROM R3) EXISTS.
05C8
                SUBIT
                         EQU $
05C8 C3
                         CLR C
05C9 EC
                         MOV A,R4
U05CA 9500
                         SUBB A,R2K
05CC EB
                         MOV A,R3
05CD 9400
                         SUBB A, #ZERO
                                        ;TAKE CARE OF CARRY FROM R4
05CF 5001
                         JNC SOSUB
0501 22
                         RET
05D2 OD
                SOSUB
                         INC R5
05D3 C3
                         CLR C
05D4 EC
                         MDV A,R4
05D5 9A
                         SUBB A.R2
05D6 FC
                         MOV R4.A
05D7 EB
                        MOV A,R3
05D8 9400
                        SUBB A,#ZERO
```

```
MOV R3.A
05DA FB
                                        ; END OF SUBIT
                         JMP SUBIT
05DB 80EB
               THE GAIN ROUTINE FINDS THE GAIN, M, BASED ON THE POINTS
               ; (X1,Y1) AND (X2,Y2)
               M = (Y2-Y1)/(X2-X1)
               :(X2-X1) IS STORED IN (R4,R5) AND Y1 AND Y2 ARE STORED
                ; BEGINNING AT MEMORY LOCATION $20 AND $40, RESPECTIVELY,
               ; IN BYTE PAIRS.
               ; THE DIFFERENCE, (Y2-Y1) IS MULTIPLIED BY (256) **2 TO MAKE
               THE DIVISION EASIER.
OSDD
               GAIN
                         EQU $
               FIRST CHECK TO SEE IF THE PROBE WAS DISCONNECTED.
               ; THAT IS, IF Y1 OR Y2 = #$9999
                SUSUALLY IF ONE DOES THEY BOTH DO
                         MOV A, @RO
05DD E6
                         DEC RO
05DE 18
                         CUNE A.#$99,CH1
05DF B49908
                         MOV A, @RO
05E2 E6
                         CJNE A,#$99,CH1
05E3 B49904
                ;HAVE Y1 = #$9999
                         CALL FLAG
05E5 12051C
                         RET
05E9 22
                ;CHECK IF Y2 = #$9999
                CH1:
                         MOV A, @R1
05EA E7
                         DEC RI
05EB 19
05EC B49908
                         CJNE A,#$99,CH2
                         MOV A, 2R1
05EF E7
                         CJNE A,#$99,CH2
05F0 B49904
                ;HAVE Y2 = #$9999
                         CALL FLAG
05F3 12061C
                         RET
05F6 22
                ; NEITHER Y1 OR Y2 EQUAL #$9999 SO PROCEED WITH THE REST OF
                ; THE GAIN ROUTINE
                CH2:
                         INC RO
05F7 08
                         INC RI
                                        RESTORE RO AND R1
05F8 09
                         CLR C
05F9 C3
                         MOV A, eR1
05FA E7
                                        ; A=(LSB OF Y2)-(LSB OF Y1)
                         SUBB A, @RO
05FB 96
                                         STORE LSB OF THE DIFFERENCE IN R7
                         MOV R7,A
05FC FF
                         DEC RO
05FD 18
                         DEC R1
05FE 19
                         MOV $73,R0
                                        ; SAVE RO
05FF 8873
                         MOV A, @R1
0601 E7
                                         ; A = (MSB OF Y2)-(MSB OF Y1)-BORROW
0602 96
                         SUBB A,@RO
```

```
0403 FE
                           MOV R6.A
                                          ; SAVE MSB OF DIFFERENCE IN R6
                 ;DIVIDE (R6,R7,00,00) BY (R4,R5)
                 ; (R6,R7,00,00) IS (R6,R7) * (256**2)
  0604 757500
                          MOV $75,#ZERO
  0607 BE76
                          MOV $76,R6
  0609 8F77
                          MOV $77,R7
                          MOV $78,#ZERO
  0608 757800
 060E 757900
                          MOV $79, #ZERO
 0611 7800
                          MOV R3,#ZERO
 0613 757B00
                          MOV $7B, $ZERO
 0616 120626
                          CALL DIV43
                 ; THE GAIN IS RETURNED IN ($78,$7C,$7D)
                 ;THIS IS THE GAIN * (256) **2
 0619 A873
                          MOV RO,$73
                                         ; RESTORE RO
 061B 22
                          RET
                 ; THE FLAG ROUTINE FLAGS THE GAIN BY ASSIGNING ($78,$7C,$7D)
                 ;TO BE EQUAL TO (#$999999)
 061C
                 FLAG
                          EQU $
 061C 757B99
                          MOV $7B,#$99
 061F 757C99
                          MOV $7C,#$99
 0622 757099
                         MOV $70,#$99
 0525 22
                         RET
                ; THE DIV43 ROUTINE DIVIDES ($76,$77,$78,$79) BY (R3,R4,R5)
                ; THE METHOD USED IS LONG DIVISION
                ;THE RESULT IS STORED IN ($78,$70,$70)
0626
                DIV43
                         EQU $
                ; CHECK IF R3 = 0
0626 EB
                         MOV A.R3
0627 6012
                         JZ DD1
0629 7800
                         MOV RO, #ZERO
062B AF79
                         MOV R7,$79
062D 120663
                         CALL SUBOK
0630 887C
                         MOV $7C,RO
0632 7800
                         MOV RO, #ZERO
0634 7F00
                         MOV R7,#ZERO
                                        ; VALUE OF R7 HERE DOES NOT MATTER
0636 120663
                        CALL SUBOK
0639 887D
                        MOV $7D,RO
0638 857778
               DD1:
                        MOV $78,$77
063E 857677
                        MOV $77,$76
```

```
MOV $76,$75
0641 857576
                         MOV $75,#ZERO
0644 757500
                         MOV RO, #ZERO
0647 7800
                         MOV R7,#ZERO
0649 7F00
                         CALL SUBOK
0648 120663
                         MOV $78,R0
064E 887B
                         MOV RO, #ZERO
0450 7800
0652 7F00
                         MOV R7, #ZERO
                         CALL SUBOK
0654 120663
                         MOV $7C,RO
0457 887C
0659 7800
                         MOV RO, #ZERO
                                        : VALUE OF R7 HERE DOES NOT MATTER
                         MOV R7,#ZERO
065B 7F00
                         CALL SUBOK
065D 120663
                         MOV $7D,R0
0440 887D
                         RET
0662 22
                į
                ; THE SUBOK ROUTINE CHECKS IF THE SUBTRACTION OF (R3,R4,R5)
                ;FROM ($75,$76,$77,$78) WILL CAUSE A NEGATIVE RESULT.
                ; IF IT WILL, LESH IS CALLED TO SHIFT ($76,$77,$78) ONE BYTE
                ; LEFT. OTHERWISE, THE SUBTRACTION IS PERFORMED UNTIL IT
                ; CAUSES A NEGATIVE RESULT.
                THE NUMBER OF SUBTRACTIONS IS RETURNED IN RO
                SUBOK
                         EQU $
0663
                         CLR C
0663 C3
                         MOV A,$78
0664 E578
                         SUBB A,R5
0666 9D
                         MOV A,$77
0667 E577
                                         ; WITH BORROW
                         SUBB A,R4
0469 9C
                         MOV A,$76
066A E576
                                         ; WITH BORROW
                         SUBB A,R3
066C 9B
                         MOV A,$75
066D E575
                         SUBB A, #ZERO
                                         :WITH BORROW
066F 9400
                         JNC QR1
                                         ; MAY SUBTRACT
0671 5004
                ; IF THERE IS A CARRY HERE, NEED TO SHIFT ONE BYTE LEFT
                         CALL LFSH
0673 120690
                         RET
0676 22
                QR1:
                         INC RO
0677 08
                                         THIS TIME STORE THE RESULT
                          CLR C
0678 C3
                          MOV A,$7B
0679 E578
                          SUBB A,R5
067B 9D
                          MOV $78,A
067C F578
                          MOV A,$77
067E E577
                          SUBB A,R4
                                         ;WITH BORROW
0480 9C
```

```
0481 F577
                         MOV $77,A
0683 E576
                         MOV A,$76
0485 98
                         SUBB A,R3
                                        ; WITH BORROW
0686 F576
                         MOV $75,A
0488 E575
                         MOV A,$75
068A 9400
                         SUBB A,#ZERO
                                        ; WITH BORROW
048C F575
                         MOV $75,A
048E 80D3
                         JMP SUBOK
                                         ; END
                ;THE LFSH ROUTINE SHIFTS THE BYTES IN ($76,$77,$78,$79)
               ; LEFT ONE BYTE. THE VALUE IN R7 IS SHIFTED IN ON THE RIGHT
                ; AND THE LEFT BYTE IS SHIFTED INTO $75.
                ; THE RESULT IS IN ($75,$76,$77,$78).
               LFSH
0690
                         EQU $
0690 857675
                         MOV $75,$76
                         MOV $76,$77
0693 857776
                         MOV $77,$78
0696 857877
0699 8F78
                         MOV $78.R7
069B 22
                         RET
               ; THE INTO ROUTINE FINDS THE OFFSET B = Y1 - M # X1.
               ;FIRST MULTIPLY M * X1
               ;X1 IS STORED IN ($7E,$7F), (VOLTAGE)
               ; (M * 256**2) IS STORED IN ($78,$70,$70)
0690
               INTC
                        EQU $
               FIRST CHECK IF THE GAIN IS FLAGGED #$999999
069C E57B
                        MOV A.$7B
069E B4991A
                        CJNE A,#$99,W1
06A1 E57C
                        MOV A,$7C
06A3 B49915
                        CJNE A,#$99,W1
06A6 E57D
                        MOV A,$7D
06A8 B49910
                        CJNE A,#$99,W1
               ;HAVE GAIN FLAGGED SO FLAG THE OFFSET WITH #$99 99 99 99
06AB 757599
                        MOV $75,#$99
06AE 757699
                        MOV $76,#$99
06B1 757799
                        MOV $77,#$99
0684 757899
                        MOV $78,#$99
06B7 757999
                        MOV $79,#$99
06BA 22
                        RET
               GAIN NOT FLAGGED SO PROCEED WITH NORMAL INTO ROUTINE
06BB AA7E
               W1:
                        MOV R2,$7E
06BD AB7F
                        MOV R3,$7F
06BF 7C00
                        MOV R4,#ZERO
06C1 AD7B
                        MOV R5,$7B
```

```
MOV R6.$7C
04C3 AE7C
                        MOV R7,$7D
06C5 AF7D
06C7 91E7
                        CALL MUL24
               RESULT RETURNED IN ($75,$75,$77,$78,$79)
               ;SUBTRACT Y1 - (M * X1)
                        INC RO
0409 08
                        CLR C
06CA C3
06CB E4
                        CLR A
                        SUBB A,$79
06CC 9579
06CE F579
                        MOV $79,A
                        CLR A
06D0 E4
                        SUBB A.$78
                                       ; WITH BORROW
06D1 9578
06D3 F578
                        MOV $78,A
                        MOV A, @RO
06D5 E6
                                    ; WITH BORROW
06D6 9577
                        SUBB A,$77
06DB F577
                        MOV $77.A
06DA 18
                        DEC RO
06DB E6
                        MOV A, eRO
06DC 9576
                        SUBB A.$76
                                       :WITH BORROW
06DE F576
                        MOV $76,A
06E0 E4
                        CLR A
                                       ; WITH BORROW
06E1 9575
                        SUBB A,$75
                        MOV $75,A
                                       : IGNORE THE CARRY
06E3 F575
               ţ
06E5 22
                        RET
               ; THE SAVE ROUTINE LOADS THE GAIN AND THE OFFSET INTO
               ; EXTERNAL RAM.
               ; THE GAIN REQUIRES 3 BYTES AND THE OFFSET REQUIRES 5 BYTES
               SO EVERY EIGHTH BYTE BEGINS A NEW GAIN AND OFFSET FOR A
               ; DIFFERENT CHANNEL.
                        EQU $
04E6
               SAVE
                        MOV A,$72
06E6 E572
04E8 75F008
                        MOV B.#$08
                                       ; B IS ZERO HERE
                        MUL AB
OGEB A4
06EC 758300
                        MOV DPH. #ZERO
06EF F582
                        MOV DPL,A
06F1 E57B
                        MOV A,$7B
                        MOVX @DPTR,A
06F3 F0
                        INC DPTR
06F4 A3
                        MOV A,$7C
06F5 E57C
                        MOVX @DPTR, A
06F7 F0
                        INC DPTR
06FB A3
                        MOV A,$7D
06F9 E57D
                                       HAVE GAINED STORED
                        MOVX @DPTR,A
O6FB FO
                        INC DPTR
OAFC A3
                        MOV A,$75
06FD E575
                        MOVX @DPTR,A
O&FF FO
```

```
0700 A3
                        INC DPTR
0701 E576
                        MOV A.$76
0703 F0
                        MOVX @DPTR,A
                        INC DPTR
0704 A3
0705 E577
                        MOV A.$77
0707 F0
                        MOVX @DPTR,A
                        INC DPTR
0708 A3
0709 E578
                        MOV A,$78
                        MOVX @DPTR, A
070B F0
                        INC DPTR
070C A3
                        MOV A,$79
070D E579
070F F0
                        MOVX @DPTR,A
                                      ; HAVE OFFSET STORED
0710 22
                        RET
               THE CORR ROUTINE FINDS THE CORRECTED TEMPERATURE USING THE
               STORED GAIN AND OFFSET FOR THE PARTICULAR CHANNEL.
               ; IT IS CALLED WITH (R1,R2) = Y, THE 12 BIT NUMBER READ FROM
               THE A/D AND R7 HOLDING THE CHANNEL NUMBER.
               FINDS X IN Y = M * X + B
               ; THAT IS X = (Y - B) / M
0711
               CORR
                        EQU $
                        CALL REC
0711 120750
               ; REC RETURNS THE GAIN IN ($78,$7C,$7D) AND THE OFFSET IN
               ; ($75,$76,$77,$78,$79) FOR THE CHANNEL WHOSE NUMBER IS IN R7
               CHECK IF THE GAIN IS FLAGGED WHICH IMPLIES THAT THE OFFSET
               ; IS ALSO, SO NO NEED TO CHECK BOTH.
0714 E57B
                        MOV A,$7B
0716 849911
                        CJNE A,#$99,Q1
0719 E57C
                        MOV A,$7C
071B B4990C
                        CJNE A,#$99,Q1
071E E57D
                        MOV A,$7D
0720 B49907
                        CJNE A,#$99,Q1
               ; THE GAIN IS FLAGGED SO FLAG X IN ($7C,$7D)
                        MOV $7C,#$99
0723 757099
                        MOV $70.2$99
0726 757099
0729 22
                        RET
               ; SUBTRACT (Y-B), THAT IS ACTUALLY ((Y*(256**2) - B)
               Q1:
                        CLR C
072A C3
0728 7400
                        MOV A, #ZERO
                        SUBB A,$79
0720 9579
                        MOV $79,A
072F F579
                        MOV A, #ZERO
0731 7400
                        SUBB A,$78
                                       : WITH BORROW
0733 9578
```

```
0735 F578
                        MOV $78.A
0737 EA
                        MOV A,R2
                                        ; WITH BORROW
                        SUBB A,$77
0738 9577
073A F577
                        MOV $77,A
073C E9
                        MOV A,RI
                                        ; WITH BORROW
                        SUBB A,$76
073D 9576
073F F576
                        MOV $76,A
0741 7400
                        MOV A, #ZERO
                                        ; WITH BORROW
0743 9575
                        SUBB A,$75
                                        ;$75 HERE SHOULD BE 0
0745 F575
                        MOV $75,A
               ; ($75,$76,$77,$78,$79) = (Y - B)
               ; DIVIDE (Y - B) / M = X
0747 AB7B
                        MOV R3,$7B
0749 AC7C
                        MOV R4,$70
074B AD7D
                        MOV R5,$70
074D D126
                        CALL DIV43
                                        :RETURNS X IN ($78,$7C,$7D)
074F 22
                        RET
               ; THE REC ROUTINE LOADS THE GAIN AND OFFSET FROM RAM, FOR THE
               ; CHANNEL NUMBER STORED IN R7, INTO MEMORY LOCATIONS
               ;($7B,$7C,$7D) AND ($75,$76,$77,$78,$79) RESPECTIVELY.
               REC
                        EQU $
0750
               ; FIND THE BEGINNING ADDRESS FOR THE PARTICULAR CHANNEL
0750 EF
                        MOV A,R7
                        MOV B,#$08
0751 75F008
0754 A4
                        MUL AB
                                        ;B IS ZERO
0755 758300
                        MOV DPH, #ZERO
                        MOV DPL,A
0758 F582
                        MOVX A, @DPTR
075A E0
                        MOV $78,A
075B F57B
075D A3
                        INC DPTR
075E E0
                        MOVX A, @DPTR
075F F57C
                        MOV $7C,A
                        INC DPTR
0761 A3
                        MOVX A, @DPTR
0762 E0
                                       ; HAVE GAIN IN ($78,$7C,$7D)
                        MOV $70,A
0763 F57D
0765 A3
                        INC DPTR
                        MOVX A, @DPTR
0766 E0
                        MOV $75,A
0767 F575
                        INC DPTR
0769 A3
                        MOVX A, EDPTR
076A E0
076B F576
                        MOV $76,A
```

```
076D A3
                        INC DPTR
                        MOVX A, @DPTR
076E E0
076F F577
                        MOV $77,A
                        INC DPTR
0771 A3
                        MOVX A, EDPTR
0772 E0
0773 F578
                        MOV $78,A
                        INC DPTR
0775 A3
                        MOVX A. @DPTR
0775 E0
                                        ; HAVE OFFSET IN ($75,$76,$77,$78,$79)
0777 F579
                        MOV $79,A
                        RET
0779 22
               THE TEMP ROUTINE FINDS THE TEMPERATURE BASED ON THE VOLTAGE
               STORED IN ($7C,$7D). THE EQUATION USED IS
               ;T = -27.27 * V**2 + 7,237,085 * V + 116,878,675
               ; WHEN THE RESULTING T IS DIVIDED BY (256**3), HAVE THE
               :TEMPERATURE * 100 WHICH IS STORED IN (RO,R1).
               TEMP
                        EQU $
077A
                        MOV R4,$70
077A AC7C
                        MOV R5,$70
077C AD7D
077E 91BF
                        CALL SQU
               ; SQU RETURNS THE SQUARE OF (R4,R5) IN (R4,R5,R6,R7)
               :MULTIPLY 2727 * (V**2)
                        MOV R2,#$0A
0780 7A0A
                        MOV R3,#$A7
0782 7BA7
0784 91E7
                        CALL MUL24
               ; MUL24 MULTIPLIES (R2,R3) * (R4,R5,R6,R7)
               RESULT RETURNED IN ($75,$76,$77,$78,$79)
               ; NEXT DIVIDE BY 100 SINCE REALLY WANTED 27.27 INSTEAD OF
               ;2727 MULTIPLIED BY V**2.
                        MOV R2,#$64
0786 7A64
                        CALL DIV51
0788 B195
               ; SINCE NEED TO USE MUL24 ROUTINE AGAIN, STORE THE RESULT IN
               ; ($65,$66,$67,$68,$69).
                        MOV $65,$75
078A 857545
                        MOV $66,$76
078D 857666
                        MOV $67,$77
0790 857767
0793 857868
                        MOV $68,$78
                        MOV $69,$79
0796 857969
               :NOW MULTIPLY 7,237,085 * V
               ;V WAS STORED IN ($7C,$7D)
                        MOV R2,$7C
0799 AA7C
                        MOV R3,$7D
079B AB7D
                        MOV R4,#ZERO
079D 7C00
                        MOV R5,#$6E
079F 7D6E
                        MOV R6,#$6D
07A1 7E6D
```

```
07A3 7FDD
                         MOV R7.#$DD
07A5 91E7
                         CALL MUL24
               ;SUBTRACT ($65,$66,$67,$68,$69) FROM THE RESULT IN
               ; ($75,$76,$77,$78,$79)
               ;STORE THE DIFFERENCE IN (RO,R1,R2,R3,R4)
07A7 C3
                         CLR C
                         MOV A, $79
07A8 E579
                         SUBB A,$69
07AA 9569
07AC FC
                         MOV R4,A
                         MOV A,$78
07AD E578
                         SUBB A,$68
                                        ; WITH BORROW
07AF 9568
                        MOV R3.A
07B1 FB
                        MOV A,$77
0782 E577
                                        ; WITH BORROW
0784 9567
                        SUBB A,$67
                         MOV R2,A
07B6 FA
07B7 E576
                        MOV A,$76
07B9 9566
                         SUBB A,$66
                                        ; WITH BORROW
07BB F9
                        MOV RI,A
07BC E575
                         MOV A,$75
                                        ; WITH BORROW
07BE 9565
                        SUBB A,$65
                                        ; THERE SHOULD BE NO BORROW GENERATED
07C0 F8
                        MOV RO.A
               ;ADD 116,878,675
07C1 C3
                        CLR C
                        MOV A,R4
07C2 EC
                        ADD A,#$53
0703 2453
                        MOV R4,A
07C5 FC
                        MOV A,R3
07C6 EB
                        ADDC A,#$6D
                                        ; WITH CARRY
07C7 346D
07C9 FB
                        MOV R3,A
                        MOV A,R2
07CA EA
                                        :WITH CARRY
07CB 34F7
                        ADDC A,#$F7
                        MOV R2,A
O7CD FA
                        MOV A,R1
07CE E9
                                        ; WITH CARRY
07CF 3406
                        ADDC A,#$06
0701 F9
                        MOV R1,A
07D2 E8
                        MOV A,RO
                                        ; WITH CARRY
                        ADDC A,#ZERO
07D3 3400
                        MOV RO.A
0705 FB
               :TRUNCATE THE LOWER THREE BYTES.
               ; SAME AS DIVIDING BY (256) **3
               ; SO RESULT IS IN (RO,R1).
0706 22
                        RET
               ; THE CONV ROUTINE WILL CONVERT THE NUMBER IN (RO,RI) TO THE
               FOUR BYTE ASCII EQUIVALENT, WHICH WILL BE STORED IN
               ; (R4,R5,R5,R7).
```

```
0707
               CONV
                        EQU $
               ; DIVIDE (RO,R1) BY 10. THE REMAINDER IS THE LEAST
               SIGNIFICANT DIGIT OF THE ASCII EQUIVALENT
                        MOV R2,#ZERO
0707 7A00
                        MOV R3,#ZERO
0709 7800
                        CALL DIV21
07DB 1207FF
               ; RETURNS THE QUOTIENT IN (R2,R3) AND THE REMAINDER IN R1
                        MOV A.R1
07DE E9
                                       :TO CONVERT TO ASCII
                        ORL A.#$30
07DF 4430
                        MOV R7.A
07E1 FF
               REPEAT THE DIVISION TWO MORE TIMES TO SET THE NEXT 2 BYTES
               SETUP FOR DIV21
                        MOV A,R2
07E2 EA
07E3 F8
                        MOV RO, A
                        MOV A,R3
07E4 EB
                        MOV R1,A
07E5 F9
07E6 7A00
                        MOV R2,#ZERO
                        MOV R3, #ZERO
07EB 7B00
                                       ;QUOTIENT IN (R2,R3), BUT R2=00
                        CALL DIV21
07EA 1207FF
                        MOV A,R1
07ED E9
                        ORL A, $$30
07EE 4430
                        MOV R6,A
07F0 FE
                        MOV A,R3
07F1 EB
                        MOV B. TEN
07F2 75F00A
                        DIV AB
07F5 84
               ; THE REMAINDER B IS THE THIRD BYTE
               ; A HOLDS THE FOURTH BYTE
                        ORL A,#$30
07F6 4430
                        MOV R4,A
07F8 FC
07F9 E5F0
                        MOV A.B
                        ORL A,#$30
07FB 4430
                        MOV R5.A
O7FD FD
                        RET
07FE 22
               ; THE DIV21 ROUTINE DIVIDES THE TWO BYTE NUMBER IN (RO,R1).
               BY 10 USING LONG DIVISION
               ;STORE THE RESULT IN (R2,R3) AND THE REMAINDER IN R1.
               DIV21
                        EQU $
07FF
                ; CHECK IF THE SUBTRACTION CAUSED A BORROW
07FF C3
                        CLR C
                        MOV A,RO
0800 E8
                        SUBB A, #TEN
0801 940A
0803 5003
                        INC RR1
                        JMP RR2
0805 020810
```

```
RR1:
                        INC R2
0808 0A
                        CLR C
0809 C3
                        MOV A,RO
080A E8
                        SUBB A, #TEN
080B 940A
080D F8
                        MOV RO,A
                                        ;STORE THIS TIME
080E 80EF
                        JMP DIV21
0810 C3
               RR2:
                        CLR C
                        MOV A,R1
0811 E9
                        SUBB A, TEN
0812 940A
0814 E8
                        MOV A,RO
                                        ; WITH BORROW
                        SUBB A, #ZERO
0815 9400
                        JNC RR3
0817 5001
0819 22
                        RET
               ; QUOTIENT RETURNED IN (R2,R3) AND REMAINDER IN R1
                        INC R3
081A 0B
               RR3:
                        CLR C
081B C3
081C E9
                        MOV A,R1
081D 940A
                        SUBB A, #TEN
                        MOV R1,A
081F F9
                        MOV A,RO
0820 E8
                                        ;WITH BORROW
0821 9400
                        SUBB A, #ZERO
                        MOV RO,A
0823 F8
                        JMP RR2
                                        ; END OF DIV21
0824 80EA
               ; THE OUT ROUTINE WILL OUTPUT THE TEMPERATURE STORED IN
               ; (R4,R5,R6,R7) IN ASCII BYTES TO THE TERMINAL.
0826
               OUT
                        EQU $
                        MOV A,R4
0826 EC
0827 1202F8
                        CALL OUTCH
                        MOV A,R5
082A ED
                        CALL OUTCH
082B 1202F8
                        MOV A, #POINT
082E 742E
0830 1202F8
                        CALL OUTCH
                        MOV A,R6
0833 EE
                        CALL OUTCH
0834 1202F8
                        MOV A.R7
0837 EF
                        CALL OUTCH
0838 1202F8
083B 22
                        RET
0000
                        END
```

SOURCE FILE NAME: CAL2.ASM ---- SYMBOL TABLE ----

ACC	00E0	DSPLY	8000	MS2	0523	PR1	0190	RR3	081A
AGAIN	032F	ECHO	0317	MS3	052E	PR10	0209	SAM	012E
ALTCH	0074	ERFR	0267	MS4	053B	PR11	0215	SAMPLE	0275
B	00F0	ERR	0292	MS5	0546	PR12	0221	SAVE	06E6
B1200	02CC	ET100	0443	MSA	055B	PR13	0220	SBUF	0099
B192	02F0	ET2	0402	MS7	0566	PR14	0239	SCON	0098
B2400	02D5	ET3	0412	MSB	0573	PR2	01A9	SOSUB	05 D2
94800	02DE	ETT	0448	MS9	0586	PR3	0185	SQP1	04DA
B600	02C3	FINISH	0334	MT	03A8	PR4	0101	SQP2	04E5
89600	02E7	FLAG	061C	MUL24	04E7	PR5	01CD	SQU	04BF
BAUD	02A8	FN1	0157	NEXT	0327	PR6	0109	START	0095
BELL	0007	FORT	0040	NN	0177	PR7	01E5	SUBIT	05CB
BLANK	0020	FORT1	0041	NN1	017A	PR8	01F1	SUBOK	0663
CALIB	0336	FR	0254	NOERR	0297	PR9	01FD	TCON	0088
CH1	05EA	FRE	025D	NT1	03 B5	PRE	023B	TEMP	077A
CH2	05F7	GAIN	0 5DD	NT2	03BB	PRMT	003E	TEN	000A
CHNL	023C	GOTIT	02F3	NT3	0306	PROBE	0185	TEST3	03 89
CHX	0142	INCH	0300	NT4	03CC	PROMT	031C	TH1	0080
CONV	0707	INIT	0000	NT5	03E1	PT	03 E9	THE	0595
CORR	0711	INTC	069C	NT6	03E7	PTER	03F0	TI	0099
CR	000D	LF	000A	NT7	0429	PTS	03F5	TMOD	0089
CRLF	030A	LFSH	0690	ВТИ	0439	PTST	03FC	TR1	008E
DATAH	E000	LOAD	044E	OUT	0826	Q1	072A	TWEN	0020
DATAL	F000	LPF	036E	OUTCH	02FB	QR1	0677	TWEN1	0021
0D1	063B	MAIN	011D	P1	0070	RDY	0096	VOLT	0460
DIV21	07FF	MESS	0323	P3	00B0	REC	0750	W1	04BB
DIV43	0626	MORO	0160	PCON	0087	REDO	03AC	ZERO	0000
DIV51	0595	MORI	016A	PDATAH	C000	RI	0098		
DPH	0083	MORE	0129	PDATAL	D000	RR1	8080		
DPL	0082	MS1	050E	POINT	002E	RR2	0810		

REFERENCES

- [1] A. Gharakhani, "The Design of Multiple Channel Thermometry System for Use in Hyperthermia," M.S. Thesis, University of Illinois, Urbana, unpublished, 1984.
- [2] "Manual on the Use of Thermocouples in Temperature Measurement," American Society for Testing and Materials, pp. 20-23, 1981.
- [3] Analog Devices, "Monolithic Thermocouple Amplifier with Cold Junction Compensation," 1982.
- [4] R. L. Powell, W. J. Hall, C. H. Hyink, Jr., and L. L. Sparks,
 "Thermocouple Reference Tables Based on the IPTS-68,"
 National Bureau of Standards MN-125, Department of Commerce,
 Washington, D.C., 1974.
- [5] A. V. Oppenheim and R. W. Schafer, <u>Digital Signal Processing</u>, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975), pp. 413-418.
- [6] Intel Corporation, "MCS-51 Family of Single Chip Microcomputers User's Manual," Chapter 4, 1981.
- [7] "ASTM Standards on Precision and Accuracy for Various Applications," American Society for Testing and Materials, 1977.