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CHAPTER 1

INTRODUCT ION

Hyperthermia has recently gained recognitiom as a clinical

tool for treating tumor tissue, wusuwally as an  adjunct to
chemotherapy or radiation treatment. Any of several types of
applicators may be wused to provide the mnecessary heating,

including radio frequency, microwave and ultrasound [Lele, 1980;
Hynynen et al., 1981]. Of these microwaves and ultrasound are
increasingly used, each presenting advantages in different
situations, Ultrasound 1is - excellent for heating, including
heating of deep structures, in areas unobstructed by gas or bone.
At frequencies which proQide the appropriate heat gemeration rates
in tisswue, ultrasonic waves have a smaller wavelength than
microwaves and c¢onsequently <can be focused more easily for
localized hyperthermic treatment [Christensen and Durmney, 1981].
For this reason wultrasound is being used increasingly for local
hyperthermia.

Ultrasound has traditionally been applied by fixzxed focus
applicator systems which have to be adjusted by hand prior to
treatment and mechanically moved to change the location of the
focus [Lele, 19801. The use of a phased array for applying the
ultrasound offers the advantage of relying on electromnic rather
than mechanical means to move the ultrasound beam and allows for
arbitrary scanning patterns that can be made to conform to the
shape and size of the tumor. |

An ultrasonic phased array for hyperthermia would gemnerally

be operated in a continuous wave (cw) mode to provide the power



nece ssary fortlarge heating rates. The phase of the signal
applied to each element of the array could be controlled digitally
by the use of counters [Benkeser, 1983]1. The array surface should
be as large as practical to providezsufficient‘power generation
with adequate heat dissipation for the source. However, there are
other design parameters that are not as easily specified. These
include deciding between a one dimensional and a two dimensional
‘array, choosing element dimensions and separation and determining
the number of bits necessary for adequate phase resclution in the
digital phase control system,

This thesis &eals with the theoretical computation of the
field quantities and heat generation rates produced by a phased
array applicator. The model vdeveloped allows theoretical
determination of the parameters which produce the ultrasonic field
‘such that it meets the design criteria. Briefly, some of the
design specifications include the limits of the treatment area,
the focal size, and the magnitude of any off focus maxima in the
field. Specifically, the treatment area and therefore the area
scanned by the array should be a minimum of 100 mm by 100 mm. The
3 dB beam width at the focus should not exceed 20 mm. The
intensity and thus heating rate at the focus should be at least 3
dB greater than at any other point in the field for all beam
locations. |

The remainder of this thesis is organized as follows. In
Chapter 2 several methods are described that can be used to
calculate the field produced by anm ultrasonic array. In Chapter
3 the calculation of heating rate from a knowledge of the pressure

field or element source power is detailed. In Chapter 4 the



accuracy necessary for the digital phasing system is determined.
The possibility of uwusing phase shifts to reduce grating lobes is
explored in Chapter 5.  Recommendations for future work are

presented in Chapter 6.



CHAPTER 2
MODELLING THE FIELD PRODUCED BY THE ARRAY

2.1 Theory

The design of an ultrasonic phased array requires a means of
examining and comparing various array configurations. The
ultimate test of a hyperthermia phased array design is to
construct the array and measure its field and heat production.
However, many different array designs need to be investigated and
many parameters determined. Fabricating all possible array
designs would be too time consuming and expensiﬁe so a theoretical
method of evaluating different array designs is mnecessary. The
approcach is to determine, from the calculated acoustic field, the
proper choice of parameters to meet the design specifications
given in Chapter 1.

Severa; different methods of <calculating the pressure
distribution due to a phased array are examined in this chapter in
order to determine the most efficient method. The pressure
distribution was <calculated <rather than the more meaningful
quantity of heat generation rate sincev there is a simple
relationship between them.

The problem of finding the pressure field for a plane phased
array 1is a special case of the problem of finding the radiation
field produced by an arbitrary source set in an infinite baffle
[Kinsler et al., 1982]1. For such a source, each infinitesimal
element of area dS on the source contriﬁutes dp of pressure given

by



dp = 5K (y . asye (WEKD)

ST (2.1)

where p is the density of‘the medium, ¢ is the sound speed in the
medium, k is the wave number (2n divided by the wavelength), r is
the distance from dS to the point in the field where dp is Dbeing
calculated, and u is the <complex velocity distribution of the
surface S. If the propagation medium has an attenuation
coefficient a, Eq. (2.1) must be modified to give

jpck

-ar ej(wt—kr)
2rr

~dp = (u - ds) e (2.2)

For the geometry shown inmn Fig. 2.1 with S 1lying in the x - y

plane (z = 0 plame), the total pressure is
. jwt ~(a+ik)r
= lﬂ%%i——— u(xo,yo) % ds (2.3)
s
where u(xo.yo) = uolxy,y5)exp(jflx,,y,)) and 2, (x4,7,) and

B(xo,yo) are the magnitude and phase angle, respectively, of the

surface velocity of the element at (xo’yo)‘ Since the actual
pressure is the real part of Eq. (2.3), the time dependence can
be dropped and the magnitude of the remaining expre;sion will give
the pressure amplitude. Actual ~ pressure is obtained by
multiplying thev pressure amplitude by cos(wt + y) where y is the
phase angle from Egq. (2.3) with time dependence removed. ‘VThe

pressure amplitude provides all the necessary field information
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and is given by the magnitude of the expression

. -{o+jk)r
_ Jpck , e S
o = S5 u(Ao,yo)r ds . (2.4)

s
Equation (2.4) can be evaluated using several different numerical
approximations which are discussed in the remainder of this

chapter,

2.1.1 Fourier Transform Method

The efficiency of the Fast Fourier Transform (FFT) algorithm
has led to its wtilization in the calculation of acoustic fields
[Stepanishen and Benjamin, 1981; Williams and Maynard, 1982].
Care must be taken to ensure that the transform is used correctly,
i.e., the source is sampled sufficiently and zero padding is done
correctly. An application of the transform for field calculations
follows. |

For the geometry illustrated inm Fig. 2.1, the appropriate
value for =r may be substituted into Eq. (2.4) and u(xo,yo)

defined on the entire x — y plane such that it is equal to =zero

for points not on the array yielding the expression

(k) Jixx)? v ey )P e 2

=0 - - J(x—xo) + (y-yo) + 7

which can be immediately recognized as a convolution integral.
Using the operator ** to represent a two dimensional convolution

over x and y, Egq. (2.5) can be rewritten as



e—(a+jk)«/kz+y2+zz

2. 2 2
X“+y 4z

. Jpck

(2.6
o 2T )

u(x,y) **

Since the Fourier transform of the convolution of two functions is
the product of the fumctions, the use of the Fourier transform

N\

simplifies the evaluation of the equation. Let Fx' F and ny be

yl
‘the Fourier transforms over x, over y, and over x and y,
respectively. For a linear array, u(z,y) is separable in x and y,
i.e., u(x,y) is the product of ux(x) and ny(y), Then, Po(ml,wz),
U(ml,mz), U,(0y), and Uy(wz) can be represented by ny{Po}’
ny{u}. Folu,}, and Fy{uy}, respectively. Transforming Eq. (2.6)

and nsing the separability of u(x,y) gives

o~ (@3 K)/x sy en?
Xy /2 2 2
X“+yT4z

_ Jjock ,
Polwswy) = =0, (0))U (w)) F

The pressure P, is simply the inverse Fourier transform of Egq.

(2.7) or

OIS IV SR

F
Xy /2 2 2
X +y 4z

(2.8)

Ux(wlﬂly(mz)

A circular convolution can be evaluated numerically wusing a
Fast Fourier Transform (FFT) algorithm, but Eq. (2.6) contains a
linear convolution. The array geometry is specified for the FFT

by providing the complex velocity values for a matrix of points on



the surface of the array. For a linear Aconvolution to be
evaluated using a circular convolution, the data matrixzx must be
‘padded with zeros so there is mno wraparound effeét [Oppenkheim and
Schafer, 1975]. Padding must be done with a number of zeros equal
to the number of data points in each direction of the data matrix.
For a two dimensional matrix of data points, the padded matrix
will contain twice the number of points in both the x and y
directions as the original data matrix and, therefore, will
include four times the number qf points found in the original data
matrix, Evaluating Eq. (2.8) using the FFT will not give just
.one pressure point, but will give values for an array of points in
a constant z plane lqcated at the same x and y positions as the
points at which the array was specified and extending into the
zero padded area surrounding the array.

An example of the number of points necessary when using this
method can be illustrated by the examination of an array operated
at 600 kHz, having a corresponding wavelength of A = 2.5 mm, with
.maximum dimensions of 50 mm by 50 mm. For a sampling increment of
one sixth of a wavelength, sufficient to satisfy the Nyquist
sampling criterion, the array would be represented by 120 by 120
nonzero points in the x — y plane. Padding the data with an equal
number of zeros gives a field of 240 by 240 points, but since an
FFT requires a number of points that is an integer power of 2, an
array of 256 by 256 points must be used.

To evaluate the pressnre using this method, Ux(”l) and Uy(wz)
first need to be evaluated by transforming ux(x) and uy(y) using
oﬁe dimensional FFTs with sufficient zero padding. Ux(wl) could

be calculated mnumerically by assuming ux(x) is a rectangle
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function of length h and since U_(wy) is the Fourier transform of
a rectangle function

w, h |
. 1
ZSIH(T)
_\zi | (2.9)

Ux (wl) = wl

For an array of equal element spacings s, element widths w,
complex surface velocities u , and number of elements N, centered

on the y axis

N .
_ s(N+ 1) C(2.10)
uy(y) = :E: unrect(y M e ns) v
n=1
W, W
ZS;n(—%—) —-jw(s(N2 L) ns) (2.10)
Uyﬁuz) = ™ u e .
n=1

Thus, U (wy) and Uy(mz) can be calculated numerically by using an
FFT or analytically by using the exact transform expressions.

A two dimensional FFT ﬁeeds to be wused to evaluate the
transform of exp(~(e + jk)r)/r. This transform is then multiplied
by Ux(ml)Uy(mz), the inverse two dimensional FFT is taken, and the

result is multiplied by the constant jpck/2n to give the pressure

?,.

A lower limit on the time required for such a program to run
can be obtained by assuming that the FFT calculations require the
majority of computer time. Assuming that the multiplication
operations in the FFT <calculation are the most time consuming

¢

allows the run time to be calculated since for an FET of length N



11

there are Nlog,N multiplications. If the program is implemented
on the Perkin Elmer 7-32 wused at the Bioacoustics Research
Laboratory where a complex multiplication takes an average time of
208 microseconds,  the tofal run time for the given example would
be greater than six minutes.

Six minutes is a reasonable amount of time to <calculate a
constant z plane of values, bﬁt if it is desired to calculate only
a set of points along the z axis, six minutes is a prohibitively
long time for calculating each point. Also, as was noted, the
field points <calculated are at the same x and y locations as the
points used to represent the hyperthermia array. In order to
calculate .the field points over a larger area with the same
resolution, the FFT size would need to be increased; the spacing
of the input points needs to be kept the same to preserve the same
accuracy. Also, if it is not desired to calculate field points at
the same spacing as is mnecessary to represent the array, then
there is much wasted computation in determining the additional
field points. Therefore, determining the field by exact transform
is not an efficient general method.

The Fourier transform method can be applied wusing different
approximations. The first set of approximations is known as the
Fresnel approxiﬁation and assume that z >> x and z 2>> y so thaé

the terms in Eq. (2.8) can be simplified as follows.

5 ( 2 2\
. . X y
o @ik xTeyTezT o o~ (arjk)iz + 2z F ?EJ ‘ (2.12)
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1 -1
Tz

‘V/fz 5 5 (2.13)
T vy o+ oz |

Two terms of the binomial expansion for the radical are necessary
in the phase ferm approximation (Eq. (2.12)) because an error of
half a wavelength in the phase term causes the effects of the
radi#tion from a givemn point to be subtractive rather than

additive. Applying the approxzimations yields

. , ,
o 2 2 2 . L X Ny
- (o+ k)a/;f:—i:;‘ -(a+jk)z -(o+jk)5— -(a+jk) 5=
o~ (I~ Y =8 F Ye 2Z 0 £ <e 220 (2.14)

F _—
Xy 555 z X
o x“+yTez

This rearrangement is possible because the function becomes
separable in x and y when the approximations are applied. Using

the transform Fx{exp(—xz/ZGz)} = c(Zn)'Sexp(-szlz/Z) gives

2 (w2ed)
- (a+jk) x2+y2+22 - (a+jk)z - :——l;ﬁil—
F {8 = 2. 2(a+jk) (2.15)
il VA a+jk -
fxT+y ez
Substituting this expression into Eq. (2.8) yields
Z(m2+w2)
jpkc -1 -(arjk)z - Z(Qijki
= 482 p” (2.16)
Po(¥) = §5% Fxy 1 % (wl)Uy(wz) e

Thus, using the Fresnel approximations, a form for the pressure is

obtained containing only one two dimensional FET. The accuracy of



13

this approximation will ©be discussed after the Fraunhofer
approximation is examined.
The Fraunhofer appfoximation uses the distance from the

origin R in its approximations by assuming that R >> X and

R >> yoo Thus.

2,2
Yo

csi e xex )2 ¢ oy )P - (ilon/R22xx -2y ex

o -6 (2.17)

Using the first two terms of a binomial expansiom of the radical

yields

.

2 2
X y
. 2 2 2 . ( 0 0 o)
“(OH'Jk)“'/Z *(x-x ) + (Y“YO) _ ~(a*jK){R - < T 'Wm'm
e ~ e . (2.18)

For kx02/2R + ky02/2R small compared to m, omission of these terms

produces a negligible phase error and gives the expression

XX yy
3V x)? + Gy -Gk (R - o2 - —§9)
e ° O e _ (2.19)

Using Eq. (2.19), assuming 1/r ® 1/R and substituting into Eq.

(2.4) yields

- '(G*jk)(R "R TR,
= 6% [ 2 (2.20)
Py = G | u e ) & ds . :
S

Taking advantage of the separability of u(x,y) leads to
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<0 QO
: . (a+jk)—— (a+jk)——
_ jpck -(a+jk)R R R (2.21)
o~ 2mrR_°© ux(Xo) © dxo uy(yo) © Clyo )
- 0 -0

Assuming that the attenuation term in the integrals can be
neglected and noting that the two remaining integrals represent

Fourier transforms gives

- Jock -(o+jK)R  -kx -ky, (2.22)
o 2mR °© U R Uy o

Thus, the Fraunhofer approximation requires the evaluation of the
transforms of u_ angd uy (Eq. (2.9) and Eq. (2.11)). If an FFT
is used to evaluate Ux and Uy, then the points at which the field
is calculated will be spaced by 2nR/kNAx where N is the FFT size
in the x direction and Ax is the sampling increment on the array.
For  the sampling increment of the previous example with Ax equal
to one sixth of a wavelength, the points in the figlds are spaced
by 6R/N, For a typical N, i.e., N = 256, the field spacing is
0.023R; for a given N the spacing of the field points is
proportional to the distance from the array.

The major difference ©between the Fraunhofer and Fresnel

approximations is that the Fraunhofer approzimation drops the

(x 2

o ¥ yoz)/ZZ term from the exponent by assuming that the source

is small., Also the Fresnel approximation gives the field for a
constant z plane while the Fraunhofer approximation evaluates the

Field on a constant R surface.
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Both approximations become inaccurate as x and y approach =z
in magnitude. The main source of error is the approximation used
in the phase term since ah‘error of one half of a wavelength in
the approximation for r'will cause the contribution to the field
by an element to be destructive rather than constructive or vice
versa. Errors in r for the Fresnel and Fraunhofer approximations
are shown in Table 2.1 for various x and y values. Both
approximations become unacceptably inaccurate for field points in
the treatment field with large x and y displacements.

Thus, the Fourier transform metﬁod for finding the field
pattern can be rejected. For solving the wexact «case the
calculated field points are spaced téo closely requiring excess
computation time and are limited to an area which is too small.
The approximate solutions require less calculation time but are

not valid for a sufficiently large area.

2.1.2 Method of Equidistanf Areas

The pressure can also be found by <considering it as the
summation of the pressures produced by the individual elements.
The pressure produced by each element can Dbe calculated by
dividing the element surface into incremental areas each of which
contributes an incremental pressure of a constant .phase at the
field point [Freedman, 1959]. The mathematical implementation of
this method is discussed below.

The pressure produced at a point due to one element of size

h by w is
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. h w .
ipcku , -(a+jk)r
p =1 e dx dy, | (2.23)
o] 2m : T v :
o} o
where r is the distance to each incremental area given by dxody0

and B, is the complex surface velocity on the contributing

element. The presence of r in the integrand suggests that Egq.
(2.23) might' be simplified if the integration were performed in
polar rather than rectangular coordinates. Consider the geometry
of Fig. 2.2, which shows the projection of r, s in the figure,
onto the x - y plane. B1(s) and B,(s) are the extreme angles for

a given s, and s_. and s are the minimum and maximum s values,
min max
respectively. From these detinitions the expression for P, is

found to be

fBZ(S)

jpckun [smax e—(a+jk)r (
T ce—e— —_— . | 2.24
P, 5 J = sdBds )
Smin  £1(8)

Integrating with respect to B gives

jpckun Smax - (a+jk)r
- 2.2
Py =~ © (8,(s)-8, (s))sds . (2:25)
s .
min
Defining an incremental area dA for theb‘s integration as

dA = (ﬁz(s) - B1(s))sds, Eq. (2.25) becomes
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Figure 2.2 Geometry Used for Equidistant Area Method
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S
max o -+
< dA . _ (2.26)

izl

" The pressure due to the entire array can be expressed in a form
that c¢an be evaluated numerically by changing Eq. (2.26) to a

summation and summing the contributions from the N array elements

N Smax
’ . ~-{a+jk)Tr
p = Jpck u g @l (2.27)
o 2m n T : '
n=1 S=S5 .
min

where AA = (B,(s) - B4(s))sAs as shown in Fig. 2.3. The problem
reduces to finding the area of AA which is the intersection of the
area enclosed Dbetween two concentrié circles and the area within
a rectangle of size h by w.

The area between two concentric circles intersecting the area
within a rectangle is found by determining the intersection of the
rectangular area and the area within the larger «c¢ircle and
subtracting fhe intersection of the rectangular area and the area
within the smaller circle. Thus, a simple general method 1is
needed for the calculation of the intersection of a circular area
and a rectangular area. Because there are many different ways
that a circular area and a rectangular area can intersect, a
method is needed that will | account for all possible
configurations. One procedure that works is to find the area of
the circle and subtract those areas of the circle outside of the

rectangle to leave the area of intersection.



AA

Figure 2.3 Geometry for Numerical Integration
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Specifically, after the area of the «c¢ircle is found, the
several shaded areas shown in Fig., 2.4 are subtracted. These
areas are determined from the line defining the appropriate side
of the rectangle and the curve defining the circle. However, the
shaded areas shown in Fig. 2.5 must be added back:bag they are
subtracted twice by the application of the subtraction scheme as
defined. The area remaining, after making these adjustments to
the area of the circle, is the area of the rectangle within the
circle.

The areas described in the last paragraph must be <calculated
from the radius of the <circle, the coordinates of the circle
center, the size of the element, and the location of the element.
The first area to be calculated is the area of the circle which is
simply nrz.

The subtracted areas, thé area defined by a chord and an arc,
are found using the geometry of Fig. 2.6. The area must Dbe
expressed in terms of r and 4 since they are the given variables.
The area of the regionm of interest is found by taking the area of
the sector of angle © and subtracting the area of triangle AOB as

shown in Eq. (2.28).

2 }
A=£2£3--da . ' (2.28)

The variables a and  in terms of r and d, the given wvariables,

are

a=nft? - d° (2.29)
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. 2 2 ' :
Q =2tan'1(—-1ac1—‘—§—). (2.30)

Thus, the total area can be expressed as

/ 2 2
A= rz tan-l(-—QE——lég ) - d«/r2 - d2 . (2.31)

d

The inverse tangent function used in the above equations needs to
be va two argument arctangent function when implemented on a
.computer so that the proper sign is'usgd. This method gives the
correct area even for negative values of d.

The areas to be added back onto the total area must be
calculated from the same given variables as the areas subtracted
from the total. The geometry is shown in Fig., 2.7 and the area
of interest is defined by an arc and two lines intersecting at a
right angle. The two possible ways of calculating the area are by
finding the area of triangle ABC and adding the area defined by
chord BC and arc BC, or by finding the area of sector COB and
subtracting the areas of triangles AOC and AOB. Since both ways
yield expressions of similar complexity, only the first method
will be examined. The area needs to be found in terms of r, dl’
and d,, but the intermediate variables f;, f,, s, and d will be

defined first.

f =a/r" - d°-4d ' : (2.32)
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f - 2_2_
1 AT d1 d2 (2.33,

1 [T ‘
a_E‘/f1+f2 (2.34)
d=~lr%_a% . (2.35)

-The area can be expressed using these variables as

1 2 -1.a
A= §~f1f2 + 17 tan (EJ - ad . , (2.36)

Combining Egs. (2.32) to (2.36) yields the area of Fig. 2.7 in
terms of the given variables. Using these approaches to calculate
the areas defined in Figs. 2.6 and 2.7, the calculation of the
intersection of a circular area and a rectangﬁlar area may be
completed.

The area of intersection formed by two concentric circles and
a rectangle c¢an be wused to determine an area which is
approximately equidistant from the field point for the entire
source. The expression sAs/r defines the range in r 'for that
area. The maximum distance error is Ar/2 for any point of an area

AA. The limits for s, s and s are found easily as s is

min max’ max
always the distance from the projection of the field point on the
X -y plane to the farthest corner of the element and Smin is (1)
zero if the field point is within the =x and y ranges of the

element, (2) the distance from the field point projection to the
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closest side of ‘the element if the field point is within only the
x or y range of the element, or (3) the distance from the field
point projection to the nearest corner if the field point is ﬁot
in the x or y range of the element.

This equidistant area method is best suited for source
geometries where thé equidistant areas are large, such as for the
case of large unfocused planar transducers. Because of the narrow
widfhs of linear phased array elements, dividing each element into
equidistant areas produces many small areas and does not justify
the complex <c¢omputation used to determine each area. The effect
of these approximations on field point pressure error is difficult
to determine. Thus, for the array transducers of interest im this

study, this method does not appear to be the best choice.

2,1.3 Point Radiator Method

One of the most straightforward methods that may be wused to
calculate the field involves representing the source by a large
number of point radiators. This method is wused for nearfield
calculations and has been used to describe the field for circular
piston sources [Zemanek, 1970]. The method is implemented by
dividing the source into incremental areas that are small enough
that the field produced by each can be approximated as that due to
a point source placed at the center of the incremental area with
an amplitude proportional to the size of the incremental area.
This representation can be used only if the dimensions of the
incremental ~areas are small compared to a »wavelengtﬁ. The
integral over the surface (Eq. (2.4)) thern becomes a summation

"over the surface
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. -(a+jk)r
= JpckAA e 2 3
o > u(xo,yo)r (2.37)
surface
where the incremental érea AA = AhAw is used with Ah and Aw chosen

to be much less than a wavelength.

If this method is used to find the pressure for a set of
points in a constant z plane where the field points have the same
x and y lo?ations as the equally spaced points used to represent
the array, and if the number of points is equal to a power of two
in both the x and y directions, then this method would be
equivalent to finding the field u#ing a two dimensional linear
convolution as described in Sectiom 2.1.1 dealing with the Fourier
transform. The advantages of the point radiator method over the
linear <convolution technique are evident when the constraints of
the linear convolution are examined: (1) the points wused to
represent the array have to ©be spaced evenly giving many zero
roints in the space between elements, (2) the field points need to
be spaced the same as the sample points, (3) a complete set of
poinrts in a constant z plane need to be evaluated, and (4) if an
FFT is used to implement the linear convolution then the number of
points needs to be an integer power of two.

For an accuracy equivalent to using the Fourier transform,
the point radiators must Dbe separated by one sixth of a
wavelength, the same sampling frequency as used for  the TFourier
transform method. The point radiator method is most advantageous

when the field is evaluated as a function of z, and for examining
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an array having large spacings between elements as with a

nonuniformly Spaqed array.

2.1.4 Rectangular Radiator Method

The phased array can also be represented by a number of
subelements that are too large to be represented as point sources.
The total pressure P, at a point in the field is then the sum of

the pressure contributed from each subelement as shown in the

following relation

- N .
. -(o+jk)r
_ Jpck 2: e ' (2.38
P, oo u dxodyo , )
n=1 J A
where N is the number of subelements of size AA = AhAw and u is

n

the complex surface velocity for subelement n. The subelements
are chosen so that each subelement represents part of only one
element and does mnot contain any of the space between elements.
The center of subelement n is denoted by (xn’yn) to simplify the
analysis that follows. To simplify the integration, a coordinate

system in X, and y, with its origin centered on the subelement is

defined as shown in PFig. 2.8 . Applying this to Eq. (2.38)

yields
N Ah Aw
. 2 7 -(a+jik)r
_ Jpck { e
Py o u J = dxodyo (2.39)
n=1 AR

2

N'[;
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where

)
IV (x—xn-xo)z ey )t - - (2.40)

By choosing Ah and Aw to be small, the distance to the field point
is made much greater than the dimensions of the source and the

Fraunhofer approximations can be applied. The variables x' and y'

are then defined as x' = x - X, and y' =y - y, for application of

the approximation. Using Eq. (2.19) with x' and y’' replacing x
and y, the approximation 1/r = 1/R, and substituting into Eq.

(2.39) gives

N S i iky'yg
n=1 _bw |_an
2 2
where
R=a\/22+x'2+y'2 . _ (2.42)

Integrating and simplifying Eq. (2.41) gives

N

. u _ . 1 '
.- lE%%éé :E: Eg-e (o+Jk)R sinc(Egﬁéﬂ) sinc(kgRAh) . (2.43)

n=1
Equation (2.43) is in a form that can be readily evaluated
using a computer., Due to the approximation resulting from the use
of Eq. (2.19), Eq. (2.43) is accurate only when
kx02/2R + ky02/2R is small <compared to n and when 1/r ¥ 1/R.
Since the maximum. values of X, and y, are Aw/2 and Ah/2,

respectively, these conditions can be expressed as

kAw2/8R + kAh2/8R small compared to @ and 1/r ® 1/R. Choosing
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kAw2/8R + h?/8R small ensures that 1/r ~ 1/R so that only one
condition is mnecessary. The condition that =m > ksz/SR can be
rewritten as R »> k(Aw/2)%/2xn, which is equivalent to the
provision that the field point be in the farfield fgr an element
dimension Aw. Since z is less than R, an equivalent condition is
z ) k(Aw/2)2/2n. A constant C can Bbe defined and given a
sufficiently large value such that the above condition is given by

the following relation.

Ah,Aw < Ciﬂz . v (2.44)

The inequality sign is used so that Aw or Ah may be chosen to be
smaller than the value an equality would yield such that the exact

area of each element can be represented.

As the distance from the array becomes greater, the
constraint on the size of the subelements is relaxed until the
limiting case is reached where z is so large that Aw = w and
Ah = h. For very large z, the farfield expression is

. N . K(x-x_)w K(y-y )h

- Jockhw u e (@+JKIR sinc(—————ll-—) sinc(—————g——) (2.45)
0 2T n 2R 2R )
' n=1

which is valid for R >> kw?/8x and R >> kh2/8n. This illustrates
that the rectangular radiator method is well suited for a wide
range of field point locations and element sizes and that it will
minimize <calculation time if it is implemented to use the largest

subelement size that will maintain the desired accuracy.

2.1.5 Rectangular Radiator Approximation Method

A comparison of the expressions for the point radiator method
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(Eq. (2.37)) and the rectangular radiator method (Eq. (2.43))
shows that the difference is the directivity term
sinc(kx’'Aw/2R)sinc(ky’'Aw/2R) included in the latter. Since the
calculation of the'pressure does not require the full accuracy of
the sine function in the evaluation of the sinc function, an
approximation for the sinc function is possible. Four of the
forms that could be wused for an: approximation are (1) power
series, (2) Chebyshev polynomial, (3) continued fraction and (4)
rational function [Froberg, 19691]. "The power series

x2 2 %8 );8
Sinc(x)=1-§—!—+—5—!_-7_l-+§—l—-'.' ' (2.46)

and the rational function

2 4
sinc(x) = 1 - 0.133563936x . + 0.0032811761x (2.47)

1 + 0.0331027317x" + 0.0004649838)(4

are examined briefly. The approximations are implemented by
replacing the directivity term in Egq. (2.43) with the appropriate
approximation,

The number of terms used in the power series approximation
can be selected to control the range of the argument of the sinc
function for which acceptable accuracy is obtained. Using only
the first term in the power series expansion gives a directivity
term equal to one and is equivalent to using the point radiator
method of Eq. (2.37). Using this approximation the argument of
the sinc function must be less than 0.55 in order to 1limit the
maximum error to five‘percent. Examination of the argument of the

sinc function reveals that its largest possible value occurs when



34

x!' = R. Restricting the sinc function argument to be less than

0.55 for the largeét possible argument yields

kgw < .55 | | (2.48)

Substituting A = 2n/k gives

Aw <%7—x - | (2.49)

which supports the choice of one sixth of a wave length spacing
used for the point radiator method.

Since for a given amount of computation, the rational
function expression is accurate over a larger range than the power
~series expansion [Froberg, 1969], a multiPle term rational
function was examined. Equation (2.,47) is accurate to within five
percent for argument magnitudes less than four so that wusing the

reasoning applied to the development of Eq. (2.49) the condition

Aw < 1.2 X (2.50)

"is reached. However, grating lobes appear when equally spaced
elements are wider than one wavelength, so element widths have
been kept below a wavelength for this investigation. Thus, the
rational function approximation or a power series expansion with
a sufficient number of terms can be used for evaluation of the x
dependent sinc function. To use either approximation for the y
dependent sinc function, Ah would have to be chosen to satify both
Eq. (2.44) and the inequality applied to Aw above. Thg
rectangular radiator approximation method uses the same approach
as the rectangular radiator method, but it is more efficient

because of its ‘additional approximations, However, these



35

additional approximations result in larger errors so that this

method must be'used with caution.

2.2 Results

Programs were writtem to implement each of the field
calculation methods described in Sectiom 2.1. All of the programs
were written in Fortran except for a pre—existing FFT routing
which used assembly language. Listings of the programs as they
were implemented on the Bioacoustics Research Laboratory’s Perkin
Elmer 7/32 computer form the Appendices.

Results of the programs were compared for a sixteen element
linear phased array. The array was chosen to have eleﬁents 2.5 mm
wide by 50.0 mm high with 3.0 mm distance between adjacent element
centers and to have an operating frequency of 600 kHz. The phases
for the array elements were specified to produce a focus at an x
distance of 3 c¢cm from the center of the array and a z distance 10
cm from the array.k Figures 2.9 through 2.13 show the field
intensity, which is proportional to the square of the pressure, as
a function of x at z = 10 ¢cm for éach of the calculation methods.
Figures 2.9 through 2.13 show the intensity obtained using the the
Fraunhofer approzimation, the point raditator, the equidistant
area, the rectangular radiator, and the «rectangular radiator
approximation methods, respectively. No results were obtained for
the Fourier Transform method without approximations or the Fresnel
épproximation method ©because the array size was too large to be
represented in the core memory of the Perkin Elmer 7/32 <computer.
The difference in the result produced wusing the Fraunhofer

approximations shows the limitations encountered when using simple
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approximating techmniques.

The time for computing each field profile is mnoted in the
figure <captions. The computation time varies significantly for
methods which yield similar accuracy. It is readily seen that the
rectangular radiator method gives accurate results with a minimuem
of calculation time, The determination of an efficient method for
calculating the field produced by an array was necessary because
the field calculation program will be used extensively to test new
design concepts dufing the development of a phased array for

hyperthermia.
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CHAPTER 3
CALCULATION OF HEATING

Thei goal of an ultrasonic hyperthermia array is to produce
localized heating. Thus, it is desirable to determine the heat
generation rate as a function of space and its relation to the
power radiated. Since the power radiated from an ultrasonic
transducer is expected to be a limiting variable for hyperthermic
treatment, the relationship between power radiated and heat
generation rate will give the maximum possible heating for a given
array configuration.

The relationship between heating per unit volume and pressure

[Nyborg, 1981] is expressible as
<q>=o(,p2/pc (3.1)
v o .

where a, P, and ¢ are the attenuation, density, and sound
velocity, respectively, of the medium. The pressure amplitude P,

is given by

ek [ uelP K l
p, = |15k 0 o(arilr g (3.2)
S

where U, and B are the magnitude and phase, respectively, of the
surface velocity. Equationm (3.1) is valid for a single frequency
field where the effects of shear viscosity can be ignored. Thus,
the heating rate at any location canm be calculated by using one of
the methods described in Section 2.1 to determine the pressure

amplitude and then applying Eq. (3.1).
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Alternately, the heat gemeration rate can be expressed in
terms of the . total power radiated by finding the relationshipr
between the pressure and the radiated power. Defining W as tﬁe
total average power —radiated by an element and I as the average
inten;ity gives W = Ihw. The average power radiated over a

complete cycle can be expressed as

T

W= ‘Re%fs} Re{uoejwtidt (3.3)

1

T
o

where £ is the force of the medium on the radiating surface, u is

the magnitude of the surface velocity, and T is the length of one

period.

At this point, it is necessary to introduce the "radiation
impedance which is defined as the ratio of the force produced by
the element to the surface velocity of the element. Assuming that
each element can be represented as a rigid source in rectilinear
motion, the radiation impedance is

£
Z =—-——-§-—-€ . (3.4)
CON 4

o}

which can be separated into its real and imaginary components as

Z_ = R_ +iX_ . (3.5)

The ~radiation impedance for rectangular sources has been
calculated by several investigators [Swenson and Johnson, 1951;
Arase, 1964; Lindemann, 1971] and tabulated [Burmett and Soroka,
19721. The tables generated by Burmett illustrate that for

rectangular sources with sizes and length to width ratios 1ike
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those of linear array elements (.5 to 1 wavelength wide and length
to width ratios from 10 to 50), the <real component of the
radiation impedance is dominant and approximately equal to pchw.

Rearranging Eq. (3.4) to solve for fs and‘snbstitutingv into
Eq. (3.3) gives

W= ejwtgdt . (3.6)

1
T

T .
[ Re % Zru.oert } Re { u,

‘o

Using Eq. (3.5) to replace Zr yields

T
J Re{(Rr+jXr) uo(coswt+jsihwt)} u, coswtdt . (3.7)

Further simplfication and integration give

W=%—u2R . (3.8)

o T

Substituting pchw for R and Ihw for W in Eq. (3.8) and solving

for B, yields

u = _J[=— . (3.9)

The complex surface velocity is then

u=u ejB = /EE- ejB . (3.10)
o pc

This equation gives the surface velocity of an element, as used in
Eq. (3.2), in terms of the average intensity emitted from the
element. This allows the pressure and heat generation rate to be

calculated for a given acoustic intensity at the element surface.
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CHAPTER 4
DETERMINATION OF THE NUMBER OF BITS FOR PHASING

‘4 .1 Theory

Since digitally programmable counters were chosen to <control
the phase of the signals applied to the elements of the array, the
appropriate number of bits to be used in the counters needs to be
determined. The cﬁoice of programmable  counters allows each
counter to be initialized to any count state, which determines the
phase of the output. One full count corresponds to each cycle of
the output frequency. Thué, for a full count of N, one output
cycle results for <each N inpﬁt cycles and the phase can be
adjusteé in quantum steps of 360/N degrees. Clearly, as more bits
are psed N becomes lgrger, the phasing becomes more precise, and
the focus better defined. A large number of bits means that a
high cloék rate (input frequency) is required and more complex
circuitry is necessary to support the increased resolution,
whereas a small naumber of bits makes implementation of the
electronics simpler ©but may result in a degraded focus. A model
was developed to determine the performance degradation due to
gquantization error so that the tradeoff between simplicity and
performance could be examined.

The model provides the decrease in intensity at the focus for
the average and worst case quantization error. For points in the
field that are not near the focus, the quantization error will not
affect the average intensity since the phases are essentially

random. The worst case rise im intensity at these points 1is
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calculated making certain assumptions about the distribution of
the phases at these points.

The average degradation of intensity at the focus can be
calculated easily since it is desired that the contributions from.
all of the elements have the same phase wﬁen they reach the focal
pqint. Quantization to n bits quantizes the phases to 2nmn/2%
radians so that the greatest phase error possible is n/2® radians.
For the average case, phase er?ors will be distributed uniformly
from -n/2% to =n/2® as shown in Fig. 4.1. The amplitude at the
focal point due to such a phase distribution,:normalized to unit
amplitude for completely additive phasing, is

'rr/2n

n . n
A=—§-—- e I8 d8=%-— sin(——g—) . (4.1)
2

-Tr/2n
The evaluation of this expression for different valaes of =n is
presented in Table 4.1. These values agree with those calcunlated
for the electromagnetic case by Steinberg [Steinberg, 1976]. As
expected, as n becomes large, the quantization error becomes less
and the intensity approaches one.

The worst case quantization at the focus is when all the
phases are at the maximum error, half with positive phase error
and the other half withlnegative phase error. After quantization
the ©phases are distributed as shown in Fig. 4.2, The amplitude

for worst case guantization is

. o.n . ,.n
A = }--ejﬁ/2 + l—e‘Jn/2 = cos[ -} . (4.2)
2 2 2n
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Table 4.1 Effect of Phase Quantization

Average Intensity Maximum Intensity
Number Maximum Decrease at Focus Decrease at Focus
of Phase Error Due to Quantization Due to Quantization

bits n (degrees) ) (dB) _ (dB)

1 90.0 3.922 infinite

2 ' 45.0 0.912 3.010

3 22.5 0.224 0.688

4 11.25 0.0559 0.169

5 5.63 0.0140 0.0419

6 2.81 0.0035 0.0105

7 1.41 0.0009 : 0.0026

8 0.703 0.0002 0.0007
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Table 4.1 also shows the intensity at the focus for worsé case
quantization, As is expected, the intensity at the focus is
always less in the worst case than the average case.

The-effect of guantization error on the intensity at points
#way from the focus (noise points) will now be examined. To
represent a noise point, a phase distribution representative of an
off focus point needs to be chosen. Three possible phase
distributions to represent mnoise points are shown in Fig. 4.3.
A model is sought that can be used tb represent both low intensity
énd_high intensity points. The parameters y, o, and & allow for
variance of the noise point intensity for <each of fhe
distributions shown.

The range of intensity levels that <can be represented by
using the distribution of Fig. 4.3a was determined by finding the
intensity 1level for a given y. The normalized amplitude for such

a distribution of phases is given by

o} m

2v8\ ] 1 2 '
A = (-é.f+y+%@) IBag + (2_ﬂ +Y_-§§-)e38d3 (4.3)

- (o]

which integrates to 8y/n. The maximum representable amplitude 1is
for y=1/2x, which gives an amplitude of 0.41 with a corresponding
intensity of -7.84 dB. Since grating lobes cam often peak above
-3 dB and the noise points of greatest concern are those of high
amplitude, this method does not have a sufficient range Qf
intensity.

The Gaussian distribution of phase errors as shown in Fig.

4.3b has a normalized amplitude of



-0 O 0

Figure 4.3 Phase Distributions for Noise Point Representation
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T

2,2 . :
A= ——— e B /20 eJBdB. (4.4)

Oaf2T
-
This expression truncates the extended portions of the curve, and

for small o (less than 7n) the limits can be changed to infinity

without much effect. Changing the limits and integrating gives

-~ [ 2,2 2
A =-7;% e B /20 cospdg = e ° /2 (4.5)
o

By the proper choice of ¢, the amplitude can be set from zero to
one, remembering that for 1large o there is wraparound and the
disribution becomes less Gaussian in shape.

For the Gaussian distribution of phase errors, the worst case
quantization changes the distribution to look like Fig. 4.4. The

amplitude of the noise after worst case quantization is

2 2
v (= oz o - e D
a=X2 |t o2 gp L M e 9 e 2 4.
am 3
o ov2m | |
(4.6)
2
. il
® - 82 J(B""ﬁ‘)
e 20 e 2 dp
I
o
The integrals of Eg. (4.6) can be simplified, but still must be

evaluated numerically using a computer. The impetus for choosing
a Gaussian distribution for a2 model is that for a random event
sampled at random, the distribution approaches a Gaussian.

The modelling of the phases at a noise point as equivalent to

two impulse functions of equal weighting is attractive because of
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Figure 4.4 Worst Case Quantization of Gaussian Phase Distribution
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the simplicity of the <calculations involved. For two impulse
functions with weightings of one half 1located at 2 and -2
representing the ophasing at the mnoise point, the resulting
amplitude is simply cos(Q2). VWorst case quantization error brihgs
the impulses <closer together as shown in Fig. 4.5 and gives a

resulting amplitude of

1 For @ < m/2"

cos(Q-m/2") For @ > m/2"t (4.7)

A simple relation exists between the intensity in the wunguantized
signal and the angle Q. Thus, for a given intensity for the
unquantized signal, a calculation of the maximum possible
intensity of the quantized signal can be made for a given number
of bits assuming that the model used is representative of typical

phasings.

Comparisons of the results for a Gaussian phase distribution
and those for a two impulse phase distribution show that the
distributions are affected similarly by quantization errors. This
similarity of reactiom to phase errors leads to the <conclusion
that although the two impulse representation does not accurately
represent the actual phase distribution at a noise point, it «can
be wused as a model to predict the effect of phase on noise point

amplitude.
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CHAPTER 5

USING PHASE SHIFTS TO REDUCE GRATING LOBES

5.1 Theorxy

The results of the intensity field ploté show that the focal
region is much more localized than necessary and fhat the grating
lobe is the main hindrance to wider steering angles. The
possibility of allowing some bro#dening of the focus to reduce the
grating lobes is examined in this chapter. When a phasing scheme
is chosen suéh that the contributions from all the elements do not
add in phase at the focus, there is a lessening of the intensity
at the focus. The tradeoff then becomes one of decreasing the
intensity of the grating lobes more than it is decreased in the
focal region.

The inspiration for this manipulation of phases comes from
the two impulse phase distribution for modelling the phases at a
noise point. For a  givenm number of bits, the rise in the
~intensity for worst case quantization is more for a point with a
lower initial intensity (Eq. (4.7)). Thus, when the same phase
shift is added to two different points, the intemnsity at the point
with the lower initial intensity will change more. If the phase
shifts are made so that they reduce the intensity at a point on
the grating 1lobe, »that reduction will ©be greater tham the
intensity reduction at the focus so that the ratio of the focal
intensity .to the grating 1lobe intensity is imcreased and the
grating lobe is reduced relative to the focal ©point. This
reasoning is not dependent on the distribution of the phase errors

~at the noise point, but assumes that the phase shifts are made
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such that the intensity is reduced at the noise point. However,
this method <cannot predict what will occur at points other than
the focus and the point <chosen to be reduced. The possible
reduction im the grating 1lobe can be illustrated by Fig. S5.1.
Figure 5.1 shows the intensity loss as a functiom of initial
intensity levél that occurs when phase shifts of five, ten, and
twenty degrees are added to the two impulse phase distribumtion.
The intensity 1level before adding the phase shifts is a function
of the locations of the impulse functions. Twenty degrees 1is
chosen as the maximum phase shift illustrated because above twenty
degrees- the intensity at the focus is lowered by over ten percent

by the phasing which is too great a sacrifice of power.

5.2 Results

This method is implemented by phasing the array elements for
a desired focus and then choosing an off focus point where the
intensity level is to be lowered. The point would wusually be
chosen as a grating lobe peak, which counld be located by using an
exact field calculation or a farfield approximation. The relative
phase of the pressure contributed from each element to the field
at the <chosean point is then calculated along with the total
rélative phase at the point. The phase contributed from an
element is compared with the total phase and the phase of the
driving signal is shifted by a2 fixed phase shift so that the
difference between the contributed phase and the total phase is
made larger. The magnitude of the fixed phase shift is dependent

on the acceptable loss of power at the focus.
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The shift method was implemented for a sixteen element linear
phased array. The array had elements 2.5 mm wide by 50.0 mm high
with 3.0 mm distance between adjacent element centers. Figure 5.2
shows an intensity profile computed by specifying phases for the
arrﬁy elements that would produce a focus at an x distance of 3 cm
from the center of the array andva z distance 10 cm from the
array. The figure shows the field intensity as a functiom of x at
2z = 100 mm. The location of the grating lobe is at x = -6.5 ¢cm in
Fig. 5.2, The grating lobe amplitudevwas reduced by using phase
shifts of twenty degrees. The necessary calculations of ophases
are shown in Table 5.1 and the resultant intensity distribution is
shown in Fig. 5.3, Figures 5.2 and 5.3 can be directly compared
to see the field changes resulting from adding phase shifts. The
addition of phase shifts has lowered the intensity at the grating
lobe maximum by 1 dB, which is only a small fraction of the 10 dB
loss that would be ©predicted by using the graph of Fig. 5.1.
This suggests that the two impulse phase distribution model is not
sufficient for predicting the effect of phase shifts on grating
lobe intensities.

A method of decreasing the grating lobe by using phase shifts
has been demonstrated. Although the method works, the performance
improvement does mnot justify the necessﬁry calculations for

finding which direction to apply the shift to each element.
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Table 5.1 <Calculations Necessary for Phase Shifting (Phases in Degrees)

Phasing on Phase at | Phasing on
X Coordinate  Element for Grating Lobe Phase Shift Element
of Element Unshifted  for Unshifted to Reduce After 20°
Element Center (mm) Focus _ Focus Grating Lobe Phase Shift
1 ~-22.5 149.83 316.16 +20 169.83
2 -19.5 313.58 304.36 +20 333.58
3 -16.5 126.65 292.16 +20 146.65
4 -13.5 309.39 - 280.24 +20 329.39
5 -10.5 142.12 . 269.26 -20 122.12
6 - 7.5 345.17 259.87 ‘ -20 325.17
7 - 4.5 198.85 _‘252.73 -20 178.85
8 - 1.5 63.48 248.47 -20 43.48
9 1.5 299.36 247.71 -20 279.36
10 4.5 186.77 251.04 -20 166.77
11 7.5 85.96 259.03 -20 65.96
12 10.5 357.18 272.22 -20 337.18
13 13.5 280.66 291.13 +20 300.66
14 16.5 - 216.59 316.22 +20 236.59
15 19.5 165.12 347.91 +20 185.12

16 22.5 126.40 386.40 +20 146.40
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CHAPTER 6
RECOMMENDATIONS FOR FUTURE WORK

The most promising method of improving the perfdrmance of the
array without decreasing the minimum spacing of the elements
appears to be using nonuniformly spaced elements. The wuse of
nonuniformly spaced elements has been shown to significagtly
reduce grating lobe levels for electromagnetic arrays [Lo, 19671,
and, because of the similar wave nature of ultrasound, the same
improvements can be expected for anm nltrasénic hyperthermia array.

The difficulty in'designing a nonnnifo¥m1y spaced array is
that there is no analytical method that will give the optimum
spacing. As was noted by Lo [Lo, 1967], the only way of assuring
that the optimum spacing is used is by finding the sidelobe height
for all possible arrangements and choosing thé spacing with the

lowest sidelobe level.
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APPENDIX A

FOURIER TRANSFORM METHOD PROGRAM

#BATCH

C THIS PROGRAM CALCULATES AND PLOTS THE NEARFIELD PRESSURE

C DISTRIBUTION PRODUCED BY A LINEAR ULTRASONIC PHASED ARRAY

C USING THE FOURIER TRANSFORM METHOD. THE INPUTS ARE THE ARRAY

C TO FIELD POINT DISTANCE, NUMBER OF ELEMENTS, ELEMENT HEIGHT,

C ELEMENT WIDTH, AND ELEMENT PHASINGS. FOR THIS IMPLEMENTATION

C THE ARRAY IS SAMPLED AT 1/3 MM SPACING AND INPUT DIMENSIONS ARE
C ENTERED AS INTEGER NUMBERS OF SAMPLE POINTS.

c

s NrEe!

98

99
102
103
106
101

104
105

322

423

COMPLEX Y(256),X(128),D(256),A(128,129),PQ(20),CAK
DIMENSION NES(128),NEF(128) '

DIMENSION ADAT(128),XM{(130),YM(130)

DATA NPX, NPXP3,NPXH, NPXHP1,6NX,NPXP1/128,131,64,65,7,129/
DATA NPY,NPYP3,NPYP2,NY,NPYHP1/256,259,258,8,129/

DATA WVELGH/7.5/

AK=2.0%3,1415926/WVELGH

CAK=CMPLX(0.0,-AK)

INPUT ARRAY GEOMETRY.

WRITE(6,98) '

FORMAT (' ENTER DISTANCE TO IMAGE PLANE (50 TO 500 MM)')
READ(5,99)ZDIST

ZDIST=ZDIST*3.

FORMAT (F20.4)

WRITE(6,102)

FORMAT (' ENTER NUMBER OF ELEMENTS IN I2 FORM')
READ(5,103)NE

FORMAT (I2)

WRITE(6,100)

FORMAT (' ENTER HT OF ELEMENTS I3 FORM (ODD # OF POINTS)')
READ(5,101)NH

FORMAT (I3)

WRITE(6,104) .

FORMAT (* ENTER ELEMENT WIDTH IN I3 (ODD NUMBER OF POINTS)')
READ(5,101) NW

WRITE(6,105)

FORMAT (' ENTER DISTANCE BETWEEN ELEMENT CENTERS IN I3')
READ(5,101)NS

WRITE(6,322)

FORMAT (' ENTER X COORDINATE OF FOCUS RELATIVE TO ARRAY’,
#' CENTER IN F FORMAT')

READ(5,99)FOCUS

FOCUS=FOCUS*3. .

XVAL=-FLOAT ( (NE-1)*NS) /2.

DO 423 I=1,NE

RDIST=SQRT( (FOCUS-XVAL) **2+ZDIST**2)

PHAS=AK*RDIST

PQ(I)=CMPLX(COS(PHAS),SIN(PHAS))

XVAL=XVAL+FLOAT (NS)

CONTINUE



USE SEPARABILITY OF SURFACE VELOCITY IN X AND Y TO SPEED

CALCULATE THE PRESSURE FOR THE WHOLE ARRAY,

FORM AND TRANSFORM X VELOCITY DISTRIBUTION.

aacaoacaoaaan

DO 1 I=1,NPX

1 X(I)=CMPLX(0.,0.)
NXBEG= (NPXP3-NVW) /2
NXEND=NXBEG+NW-1
DO 2 J=NXBEG, NXEND

2 X(J)=CMPLX(1.,0.)
CALL FFT(X,NX,0)

C FORM AND TRANSFORM Y VELOCITY DISTRIBUTION.

DO 4 I=1,NPY

4 Y(I)=CMPLX(0.,0.) ?
NYBEG=(NPYP3-NH) /2
NYEND=NYBEG+NH-1
DO § J=NYBEG, NYEND

5 Y(J)=CMPLX(1.,0.)
CALL FFT(Y,NY,0)

C FORM WEIGHTING MATRIX AND TRANSFORM.

DO 50 I=1,NPX
DO 51 J=1,NPYHP1

5§51 A(I,J)=CMPLX(0.,0.)

50 CONTINUE
DO 61 I=1,NPX
IF(I .GE. NXBEG .AND. I .LE. NXEND)GO TO 61
CEE=NPXH-ABS(NPXHP1-FLOAT(I))
ARG=SQRT(ZDIST**2+CEE*#*2)
D(1)=CEXP(CAK*ARG) /ARG
DO 62 J=2,NPYHP1
IF(J .GE. NYBEG)D(J)=CMPLX(0.,0.)
IF(J .GE. NYBEG)GO TO 59
CEE=NPXH-ABS(NPXHP1-FLOAT(I))
ETA=FLOAT (J-1)
ARG=SQRT(ZDIST**2+CEE*#*2+ETA*%2)
D(J)=CEXP (CAK*ARG) /ARG

59 INC=NPYP2-7J

62 D(INC)=D(J)
CALL FFT(D,NY,0)
DO 63 J=1,NPYHP1

63 A(I,J)=D(J)

61 CONTINUE
DO 64 J=1,NPYHP1

64 CALL FFT(A(1,J),NX,0)

C

TRANSFORM EVALUATION. THE FIELD IS CALCULATED BY FINDING THE
PRESSURE PRODUCED BY ONE ELEMENT AND USING SUPERPOSITION TO

C MULTIPLY VELOCITY DISTIBUTION TRANSFORM BY WEIGHTING FUNCTION

C TRANSFORM TO PERFORM CONVOLUTION.
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8
6

15

DO 6 I=1,NPX
D(1)=X(I)*Y(1)*A(I,1)
DO 7 T¥=2,NPYHP1
D(T)=X(I)*Y(J)*A(I,7T)
IND=NPYP2-J

D (IND)=D(J)

CALL FFT(D,NY,1)

DO 8 J=1,NPYHP1
A(I,T)=D(I)

CONTINUE

DO 15 J=1,NPYHP1

CALL FFT(A(1,J),NX,1)
IF(NE .EQ. 1)GOTO 17

65

SHIFT FIELD PRODUCED BY ONE ELEMENT TO PRODUCE FIELD FOR AN
ARRAY OF ELEMENTS.

70

71

73 .

72

75
74

MAX=(NE-1)*NS
NSTART=-(MAX/2)
NFINIS=NSTART+MAX
DO 70 I=1,NPX
NES(I)=1
NEF(I)=NE

IF(NSTART+I .LT. 1)NES(I)=2-(NSTART+I)/NS
IF(NFINIS+I .GT. NPX)NEF(I)=NE-1~(NFINIS+I-NPXP1) /NS

DO 74 J=1,NPYHP1

DO 71 I=1,NPX
D(I)=CMPLX(0.,0.)

DO 72 I=1,NPX
NST=NES(I)

NFI=NEF(I)

DO 73 K=NST,NF1I
IND=I+NSTART+ (K~1) #NS
D(I)=D(I)+A(IND,T)*PQ(K)
CONTINUE

DO 75 I=1,NPX
A(I,J)=D(I)

CONTINUE

DISPLAY PRESSURE FIELD.

17

390

NP=NPX

PDAMAX=1,.E-10

DO 17 I=1,128
ADAT(I)=CABS(A(I,128))

CALL PLOTS(0.0,7)

DO 390 I=1,NP
PDAMAX=AMAX1(ADAT (1) ,PDAMAX)
DBPMAX=20.#*ALOG10(PDAMAX)
STEP=1/3.

START=-21.,33333

DO 400 I=1,NP
XM(I)=.1*(START+(I-1)*STEP)

YM(I)=(-DBPMAX)+20.*ALOG10(ADAT(I)+1.E-5)
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400 IF(YM(I) .LT. -21.)YM(I)=-21.
CALL SCALE(XM,9.0,NP,1)
CALL AXIS(.5,1.,'DISTANCE (CM)',-13,9.,0.,XM(NP+1),XM(NP+2))
CALL AXIS(.5,1.,'INTENSITY IN DB’,15,7.,90.,-21.,3.)
CALL PLOT(0.5,1.,-3) '
CALL LINE(XM,YM,NP,1,0,2)
CALL PLOT(0.,0.,10)
CALL PLOT(0.,0.,11)
STOP
END
C
C THE SUBROUTINE FFT PERFORMS A ONE DIMENSIONAL FFT OR IFFT
C USING ASSEMBLY LANGUAGE. THE ARGUMENTS ARE THE COMPLEX DATA
C VECTOR A, M WHERE 2*#*M IS THE FFT SIZE, AND OPT WHERE OPT=0
C FOR AN FFT AND OPT=1 FOR AN IFFT.
c
SUBROUTINE FFT (A, M, OPT)
COMPLEX A(1),U,W,T
INTEGER*4 $1(16),82(16),S,0PT
N = 2%}
#ASSM
STM 0,81
LIS 1,8
LR 2,1
L 3,N
SIS 3,2
SLLS 3,3
L 4,N
SLLS 4,2
LIS 5,0
L 10,A
LOOP3 LR 6,4
LOOP4 CLR 5,6
BTFS 8,JUMP1
SR 5.6
. SRLS 6,1
B LOOP4
JUMP1 AR 5,6
: CLR 1,5
BFC 8 ,JUMP2
L 6,0(1,10)
L 7,4(1,10)
L 8,0(5,10)
L 9,4(5,10)
ST 6,0(5,10)
ST 7,4(5,10)
ST 8,0(1,10)
ST 9,4(1,10)
JUMP2 BXLE 1,LO0OP3
, LM 0,81
#FORT
PI = 3,1415926535
S=-1
IF(OPT.EQ.1)S8=1
bo 20

L=1,M



= LE/2

(1.,0.)

CMPLX(COS(PI/LE1l) ,S*SIN(PI/LE1))

#ASSH
STM
STME
LE
LE
LIS
LIS
L
SIS
SLLS
L
SLLS

LOOP1 L
AR
L
SLLS
L
SIS
SLLS
AR

LOOP2 LE
LE
LER
LER
MER
MER
'MER
MER
SER
AER 10,8
LE 6,0(3)
LE 8,4(3)
_LER 12,6

LER 14,8

AER 12,4

AER 14,10

SER 6,4

SER 8,10

STE  6,0(3,6)

STE 8,4(3,6)

STE 12,0(3)

STE  14,4(3)

BILE 3,LOOP2
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LE 4,V
LE 6,W+4
LER. 8,6
LER 10,6
MER 8,2
MER 10,0
MER 0,4

.MER 2.4



SER 0,8

AER 2,10
BXLE 0,LOOP1
LME 0,S2
LM 0,s1

#FORT
20 CONTINUE
IF(OPT .EQ. 0) GO TO 100
#ASSM
STM
STME
L
LIS
L
SIS
SLLS
AR
L
FLR
LOOP5 LE
LE
DER
DER
 STE
STE
BXLE 1,LOOPS
LME 0,82
LM 0,81

N R

COPOPZHWMZRPMLH
—~ S~
[y
o
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#FORT
100 CONTINUE
RETURN
END
#BEND
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APPENDIX B

FRAUNHOFER APPROXIMATION METHOD PROGRAM

#BATCH

THIS PROGRAM CALCULATES AND PLOTS THE PRESSURE DISTRIBUTION
CAL CULATED USING THE FRAUNHOFER APPROXIMATION,

THE PROGRAM IS WRITTEN FOR EQUALLY SPACED ELEMENTS OF

EQUAL WIDTHS.

C

[eNeNe!

-C

C

C

COMPLEX X(1024),RAI(16)
DIMENSION XN(135),YM(135), XM(135)

ASSIGN CONSTANTS.

DATA NE, SPAC,DX,FREQ,N,LOC/16,3.,.25,600.,1024,406/
DATA FOCUSX,FOCUSZ,PLOTZ,NP/3000.,10000.,100.,133/
SPACT=SPAC*FLOAT (NE-1)

WAVE=1500./FREQ

CAK=2.%3.14159265/WAVE

CREATE VECTOR REPRESENTING X CROSS SECTION OF ARRAY.

10

Do 10 I1=1,N
X(1)=(0.,0.)
XVAL=-SPACT/2.
DO 20 J=1,NE
LOC=L0C+12

PHASE ELEMENTS TO CREATE FOCUS AT (FOCUSX,0,FOCUSZ).

30
20

RDIST=SQRT( (FOCUSX-XVAL) **2+FOCUSZ**2)
XVAL=XVAL+SPAC

CAR=CAK*RDIST
RAI(JY)=CMPLX(COS(CAR),SIN(CAR))

DO 30 K=1,10

IT=LOC+K-1

X(IT)=RAI(])

CONTINUE

CONTINUE

TRANSFORM X VECTOR.

CALL FFT(X,10,0)

ACCOUNT FOR NEGATIVE SIGN IN FRAUNHOFER APPROXIMATION
EQUATION.

40

50

DO 40 I=1,67
LOC=68-1
XN(I)=CABS(X(LOC))
CONTINUE

DO 50 1=68,133
LOC=1092-1
IN(I)=CABS(X(LOC))
CONTINUE

XM(67)=0.

CALCULATE X LOCATIONS OF POINTS TO BE PLOTTED.

60

DO 60 I=1,66

XT= PLOTZ/SQRT((FLOAT(N)*DX/WAVE/FLOAT(I))**2—1)
I1=67-1

XM(11)=-XT

I2=67+1

XM(12)=XT

CONTINUE

WEIGHT VALUES BY 1/R.



70

bo 70 1=1,133
XN(I)=XN(I)/SQRT(FOCUSZ**2+XM(I)**2)
70 CONTINUE
C GRAPH OUTPUT
C PLOTTING ROUTINE
CALL PLOTS(0.0,7)
PDAMAX=0,
DO 390 I=1,NP
390 PDAMAX=AMAX1(XN(I),PDAMAX)
DBPMAX=20.*AL0G10(PDAMAX)
DO 400 I=1,NP
YM(I)=(-DBPMAX)+20,*ALOG10(XN(I)+1,E-5)
400 IF(YM(I) .LT. -21.)YM(I)=-21.
CALL SCALE(XM,9.0,NP,1)
CALL AXIS(.5,.5,'DISTANCE (CM)'’',-13,9.,0.,XM(NP+1),XM(NP+2))
CALL AXIS(.5,.5,'INTENSITY IN DB’,15,7.,90.,-21.,3.)
CALL PLOT(0.5,0.5,-3)
CALL LINE(XM,YM,NP,1,0,2)
CALL PLOT(0.,0.,10)
CALL PLOT(0.,0.,11)
STOP
END

THE SUBROUTINE FFT PERFORMS A ONE DIMENSIONAL FFT OR IFFT
USING ASSEMBLY LANGUAGE. THE ARGUMENTS ARE THE COMPLEX DATA
VECTOR A, M WHERE 2*#*M IS THE FFT SIZE, AND OPT WHERE OPT=0
FOR AN FFT AND OPT=1 FOR AN IFFT. BECAUSE OF ITS LENGTH FFT IS
OMITTED HERE AND THE READER IS REFERRED TO APPENDIX A FOR

THE COMPLETE SUBROUTINE LISTING.

SUBROUTINE FFT (A, M, OPT)

OO OOOCOQAOOQN

BEND
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APPENDIX C

POINT RADIATOR METHOD PROGRAM

THIS PROGRAM CALCULATES AND PLOTS THE NEARFIELD PRESSURE
DISTRIBUTION PRODUCED BY A LINEAR ULTRASONIC PHASED ARRAY
USING THE POINT RADIATOR METHOD, THIS PROGRAM ALLOWS FOR
VARIABLY SPACED ELEMENTS OF DIFFERENT WIDTHS.

COMPLEX RAI(20),ACX(200),VWT

DIMENSION ADAT(200) ,FOCUS(3),SPAC(20) ,NWDTH(20),IB(4)
DIMENSION XM(202),YM(202),START(3),DIFF(3)

INTEGER*4 CHAR(3)

DATA SPAC(1),SPACT, PDAMAX,PI/0.,0.,-1.,3.141592654/
DATA CHAR(1),CHAR(2),CHAR(3)/'X’','Y','Z'/

DATA IS ENTERED WITH DIMENSIONS IN MM.

10

20

30

40
50

52

55

57

58

60

70

80

90

110

"WRITE(6,10)

FORMAT (' ENTER 1 FOR X-SCAN, 2 FOR Y-SCAN, OR 3 FOR Z-SCAN’)
READ(5,20) ITYPE

FORMAT(I1)

WRITE(6,30)

FORMAT (' ENTER OPTION CODE OF 4 DIGITS, 1=YES, 0=NO',/,

#' OPTIONS:VARIABLE MAGNITUDE, FOCUSED PHASE, VARIABLE SPACING’
#1° VARIABLE WIDTH')

READ (5,40) ICODE

FORMAT (14)

DO 50 I=1,4

IB(I)=ICODE/10*#*(I-1)-ICODE/10%*I#10

WRITE(6,52)

FORMAT (' ENTER FREQUENCY IN KHZ')

READ(5,90)F

WRITE(6,55)

FORMAT (' ENTER NUMBER OF SAMPLE POINTS PER MM')
READ(5,90)PPMM ‘

CAK=-2 ,*PI*F/1500./PPMM

WRITE(6,57)

FORMAT (' ENTER NUMBER OF POINTS TO BE PLOTTED IN I3')
READ(5,58) NP

FORMAT (I3)

WRITE(6,60)

FORMAT (' ENTER NUMBER OF ELEMENTS IN I2 FORM')
READ(5,70) NE :

FORMAT (I2)

WRITE(6,80)

FORMAT (' ENTER ELEMENT HEIGHT (3 DB) IN MM (F FORMAT)')
READ(5,90)T1 '

FORMAT (F20.10).

NH=2*INT(T1*PPMM/2.)

IF(IB(1) .EQ. 1)GOTO 120

WRITE(6,110)

FORMAT (' ENTER ELEMENT WIDTH (3 DB) IN MM (F FORMAT)')
READ(5,90)T1

NW=T1*PPMM
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120 IF(IB(2) .EQ. 1)GOTO 170
WVRITE(6,130)
130 FORMAT(' ENTER ELEMENT SPACING IN MM (F FORMAT)')
READ(5,90)SPACE
170 DO 290 I=1,NE
RAI(I)=CMPLX(1,,0.)
IF(IB(4) .EQ. 0 .AND. IB(3) .EQ. 1)GOTO 220
T2=0.0
IF(IB(3) .EQ. 1)GOTO 190
WRITE(6,180)I
180 FORMAT(' ENTER ELEMENT ’',I2,' PHASE(DEG) IN F FORMAT'’)
READ(5,90)T2
190 Ti=1.
IF(IB(4) .EQ. 0)GOTO 210
WRITE(6,200)1
200 FORMAT(’ ENTER ELEMENT ',I2,’ MAGNITUDE IN F FORMAT')
READ(5,90)T1
210 RAI(I)=CMPLX(T1*COS(T2#%.017453293),T1*SIN(T2#%,017453293))
220 IF(IB(1) .EQ. O)NWDTH(I)=NVW
' IF(IB(1) .EQ. 0)GOTO 260
WRITE(6,230)I
230 FORMAT(' ENTER WIDTH (3 DB) OF ELEMEMT',I2,’ IN MM')
READ(5,90)T1
NWDTH(I)=T1*PPMM
260 IF(IB(2) .EQ. 0)SPAC(I+1)=SPACE
IF(IB(2) .EQ. 0)GOTO 280
IF(I .NE. NE)WRITE(6,270)1I
270 FORMAT(' ENTER DISTANCE TO NEXT ELM CENTER AFTER ELM ',I2)
IF(I .NE. NE)READ(5,90)SPAC(I+1)
280 SPAC(I)=SPAC(I)*PPMM
SPACT=SPACT+SPAC(I)
290 CONTINUE
DO 310 I=1,3
WRITE(6,300)CHAR(I)
300 FORMAT(' ENTER ',Al1,' STARTING POINT IN MM (F FORMAT)')
READ(5,90) TEMP
310 START(I)=TEMP*PPMM
VRITE(6,320)CHAR(ITYPE)
320 FORMAT(' ENTER ’,Al,’ INCREMENT IN MM (F FORMAT)"')
READ(5,90) TEMP
STEP=TEMP*PPMM
C
€ COORDINATES OF FOCAL POINT ARE SPECIFIED FOR PHASING ELEMENTS.
C .
IF(IB(3) .EQ. 0)GOTO 329
Do 327 I=1,3,2
WRITE(6,322)CHAR(I)
322 FORMAT(' ENTER '’',Al,' LOCATION OF FOCUS RELATIVE TO ARRAY’,
#' CENTER IN F FORMAT')
READ(5,90)FOCUS(I)
- FOCUS(I)=FOCUS(I)*PPMM
327 CONTINUE
WRITE(6,3271)
3271 FORMAT(' ENTER NUMBER OF BITS FOR QUANTIZATION IN I2")
READ(5,70) IQ
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3278

328
329

73

IQ=2%*%*]1Q

XVAL=-SPACT/2.

DO 328 I=1,NE

XVAL=XVAL+SPAC(I)

RDIST= SQRT((FOCUS(l)*XVAL)‘*2+FOCUS(3)**2)
CAR=—~CAK*RDIST

IF(IQ .EQ, 1)GO TO 3278

CAR=2 ,*PI*INT(.5+FLOAT(IQ)*CAR/(2.*PI))/FLOAT(IQ)
ANG=CAR*180./PI

WRITE(6,90) ANG

"RAI(I)=RAI(I)*CMPLX(COS(CAR),SIN(CAR))

CONTINUE
CONTINUE

C USE DO LOOPS TO CALCULATE THE CONTRIBUTION AT EACH FIELD POINT
C FROM EACH ELEMENT POINT.

- C

330

340
350
360
370

380

390

DO 330 I=1,NP

ACX(I)=CMPLX(0.,0.)
XBEG=(~1.+SPACT+ (FLOAT (NWDTH(1)Y+NWDTH(NE))/2.))/2.
YBEG=FLOAT (NH-1) /2.

EXSTAR=START (1) +XBEG

EYSTAR=START(2) +YBEG

IF(ITYPE .NE. 2)NH=NH/2

DIFF(3)=START(3)

DO 370 K=1,NE

WT=RAI(K)

EXSTAR=EXSTAR-SPAC(K)

NW=NWDTH (K)

DO 360 L=1,NW

DIFF(1)=EXSTAR-L+1

DO 350 M=1,NH

DIFF(2)=EYSTAR-M+1

DIFFTP=DIFF(ITYPE)

DO 340 I=1,NP
ARG=SQRT(DIFF(1)*#*2+DIFF(2)**2+DIFF(3)**2)
CAKARG=CAK*ARG
ACX(I)=ACX(I)+WT*CMPLX(COS(CAKARG) /ARG, SIN(CAKARG) /ARG)
DIFF(ITYPE)=STEP+DIFF(ITYPE)

CONTINUE

DIFF(ITYPE)=DIFFTP

CONTINUE

CONTINUE

CONTINUE

DO 380 I=1,NP

ADAT(I)=CABS(ACX(I))

SPECIALIZED PLOTTING ROUTINE IS USED FOR DISPLAYING THE DATA.

CALL PLOTS(0.0,7)

DO 390 I=1,NP

PDAMAX=AMAX1(ADAT(I) ,PDAMAX)
DBPMAX=20.*AL0OG10(PDAMAX)

DO 400 I=1,NP
XM(I)=(START(ITYPE)+(I-1)*STEP)/PPMM



400

74

YM(I)=(-DBPMAX)+20.*ALOG10(ADAT(I)+1.E-50)
IF(YM(I) .LT. -21.)YM(I)=-21.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
STOP
END

SCALE(XM,9.0,NP,1)

AXIS(0.5,0.5,'DIST (MM)’,-9,9.0,0.0,XM(NP+1),XM(NP+2))
AXIS(0.5,0.5,'POWER (DB)’,10,7.0,90.0,-21.,3.)
PLOT(0.5,0.5,-3)

LINE (XM, YM,NP,1,0,2)

PLOT(0.,0.,10)

PLOT(0.,0.,11)



APPENDIX D

EQUIDISTANT AREA METHOD PROGRAM

#BATCH

C THIS PROGRAM CALCULATES AND PLOTS THE NEARFIELD PRESSURE

C DISTRIBUTION PRODUCED BY AN ULTRASONIC LINEAR PHASED ARRAY
C USING THE EQUIDISTANT AREA METHOD.

C

430

441

98
99
102
103

100
104
105

322

450

423

DIMENSION PT(3),ADAT(200),XM(202),YM(202)
COMPLEX AC,PQ(20),AS

DATA PT(2)/0./

DATA FREQ,PDAMAX/600.,1.E-10/

NP=200

STEP=.8

START=-80.

WRITE(6,430)

FORMAT (' ENTER DELTA SIZE')
READ(5,441)DELTA

FORMAT(F20.10)

AK=2#%3,1415926536*FREQ/ 1500,

CAK=-AK

WRITE(6,98)

FORMAT (' ENTER DISTANCE TO IMAGE PLANE (50 TO 500 MM)')
READ(5,99)PT(3)

FORMAT(F20.4)

WRITE(6,102)

FORMAT(' ENTER NUMBER OF ELEMENTS IN I2 FORM')
READ(5,103)NE

FORMAT(I2)

WRITE(6,100)

FORMAT (' ENTER ELEMENT HEIGHT IN F FORMAT')
READ(5,99)HT

WRITE(6,104)

FORMAT ('’ ENTER ELEMENT WIDTH IN F FORMAT')
READ{5,99)VI

WRITE(6,105)

FORMAT (' ENTER ELEMENT SPACING IN MM (F FORMAT)')
READ(5,99)8P

WRITE(6,322)

FORMAT (' ENTER X COORDINATE OF FOCUS RELATIVE TO ARRAY’,

#' CENTER IN F FORMAT')
READ(5,99)F0CUS
XST=-SP*FLOAT(NE-1)/2.

XVAL=XST

DO 423 J=1,NE
RDIST=SQRT((FOCUS-XVAL)**2+PT(3)**2)
PHAS=AK*RDIST
PQ(J)=CMPLX(COS(PHAS),SIN(PHAS))
WRITE(6,450)PQ(J)

FORMAT(2F10.4)

XVAL=XVAL+SP

CONTINUE

Y1=-HT/2.

Y2=HT/2.

75
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DO 1 I=1,NP
PT(1)=STEP*I+START
XVAL=XST
AS=(0.,0.)

DO 2 J=1,NE
X1=XVAL-VWI/2,
X2=XVAL+VWI/2,
AC=(0.,0.)

FIELD CALCULATES THE FIELD AT ONE POINT DUE TO ONE ELEMENT.

CALL FIELD(PT,X1,X2,Y1,Y2,CAK,DELTA,AC,NUM,0.,0.)
AS=AS+PQ(T)*AC
XVAL=XVAL+SP
2 CONTINUE
ADAT (I)=CABS(AS)
CONTINUE

ROUTINE TO PLOT DATA.
PLOTTING ROUTINE

CALL PLOTS(0.0,7)
DO 390 I=1,NP

390 PDAMAX=AMAX1(ADAT(I),PDAMAX)

DBPMAX=20.*ALOG10(PDAMAX)

DO 400 I=1,NP

XM(I)=.1*(START+(I~-1)*STEP)
YM(I)=(-DBPMAX)+20,*ALOG10(ADAT(I)+1.E-5)

400 IF(YM(I) .LT. -21.)YIM(I)=-21.

CALL SCALE(XM,9.0,NP,1)

CALL AXIS(.5,1.,'DISTANCE (CM)’,-13,9.,0.,XM(NP+1),XM(NP+2))
CALL AXIS(.5,.5,'INTENSITY IN DB’,15,7.,90.,-21.,3.)

CALL PLOT(0.5,1.,-3)

CALL LINE(XM,YM,NP,1,0,2)

CALL PLOT(0.,0.,10)

CALL PLOT(0.,0.,11)

sTOP .

END

FIELD IS A SUBROUTINE TO CALCULATE THE FIELD AT ONE POINT DUE
TO ONE ELEMENT. THE ARGUMENTS OF FIELD ARE: THE COORDINATES
OF THE FIELD POINT PTy THE LOCATIONS OF THE FOUR SIDE OF THE
ELEMENT X1, X2, Y1, AND Y2y THE WAVE NUMBER CAKp THE MAXIMUM
DISTANCE ERROR FOR EACH AREA DELTAp THE ATTENUATION ATTENp AND
THE PERCENT ABSORBTION PCTABS. THE OUTPUTS OF FIELD ARE

THE COMPLEX PRESSURE ACMPLX AND THE NUMBER OF AREAS NECESSARY
NUM.

SUBROUTINE FIELD(PT,X1,X2,Y1,Y2,CAK,DELTA, ACMPLX, NUM,
#ATTEN, PCTABS)
DIMENSION PT(3),DI(4),D(4)
COMPLEX ACMPLX
FIND THE CLOSEST POINT ON THE ELEMENT TO THE FIELD POINT.
CPX=PT (1)
CPY=PT (2)
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IF(PT(1) .LT. X1)CPX=X1
IF(PT(1) .GT. X2)CPX=X2
IF(PT(2) .LT. Y1)CPY=Y1
IF(PT(2) .GT. Y2)CPY=Y2
C FIND THE RADIUS ASSOCIATED WITH THE CLOSEST POINT.
RAD1=SQRT((PT(1)-CPX)**2+(PT(2)-CPY)**2)
C FIND THE RADIUS TO THE FUTHEREST POINT ON THE ELEMENT (RMAX).
D(4)=PT(1)-X1
D(2)=X2-PT(1)
D(1)=PT(2)-Y1
D(3)=Y2-PT(2)
DI(1)=SQRT(D(4)**2+D(1)*%2)
DI(2)=SQRT(D(2)**2+D(1)**2)
DI(3)=SQRT(D(2)**2+D(3)**2)
DI(4)=SQRT(D(4)**2+D(3)**2)
RMAX=AMAX1(DI(1),DI(2),DI(3), DI(4))
NUM=0
AREA1=0.
SUM=0.

aacaa

LOOP ON EQUIDISTANT AREAS,

100 CONTINUE
NUM=NUM+1
C FIND DISTANCE TO INNER RING.
PT32=PT(3)**2
DIST=SQRT(RAD1#*%2+PT32)
C FIND RADIUS ASSOCIATED WITH DELTA + DISTANCE.
RAD2=SQRT( (DIST+DELTA)**2-PT32)
C . STOP ITERATIONS WHEN FURTHEREST DISTANCE IS REACHED.
IF(RAD2 .GT. RMAX)RAD2=RMAX
C FIND AREA IN RAD1.
IF(NUM .EQ. 1)GO TO 53
CALL AREA(PT,RAD1,X1,X2,Y1,Y2,AREA1,DI,D)
C REPEAT FOR RAD2.
53 CALL AREA(PT,RAD2,X1,X2,Y1,Y2,AREA2,DI,D)
AREA IS (AREA FOR RAD2 - AREA FOR RAD1).
ADD AREAS FOUND FOR EACH RING.
AR=AREA2-AREA1
ARG=DIST+DELTA/2
ACMPLX=ACMPLX+AR*CEXP (CMPLX (ATTEN, CAK*ARG) ) /ARG
c SUM=SUM+AR
IF(RAD2 .EQ. RMAX)GOTO 500
RAD1=RAD2
GOTO 100
500 CONTINUE
C WRITE(6,340)SUM, NUM
€340 FORMAT(F20.10,110)
RETURN
END

aa

C N
C SUBROUTINE AREA CALCULATES THE AREA AT A GIVEN RADIUS.
- C

SUBROUTINE AREA(PT,RAD,X1,X2,Y1,Y2,VAL,DI,D)
DIMENSION PT(3),ISIDE(4),ICORN(4),DI(4),D(4)
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FIND TOTAL AREA OF CIRCLE FIRST.’
RADSQ=RAD**2
VAL=3,1415926536*RADSQ

FIND WHICH SIDES OF RECTANGLE ARE IN CIRCLE OF RADIUS RAD.
SIDE IS IN CIRC IF: 1) CORNER AT END OF SIDE IS IN CIRC
OR 2) CIRC EXTENDS PAST SIDE AND CENTER IS BETWEEN CORNERS.

FIND NUMBER OF CORNERS ARE INCLUDED IN RADIUS.

ICORN=1 FOR CORNER WITHIN CIRCLE, 0 FOR OUTSIDE.
DO 20 I=1,4
ICORN(I)=0
ISIDE(I)=0
IF(DI(I) .GE. RAD)GOTO 20

ADD TRIANGLAR AREA FOR EACH CORNER IN CIRCLE.
ICORN(I)=1 :
IF(I .GT. 1)D1=D(I-1)
IF(I .EQ. 1)D1=D(4)
D2=D (I)
F1=SQRT(RADSQ-D2%*2)-D1
F2=SQRT(RADSQ-D1*#%2)-D2
S=.5%SQRT(F1**2+F2%+2)
ROOT=SQRT (RADSQ-S**2)
VAL=VAL+(.5*F1*F2+RADSQ*ATAN2 (S, ROOT) ~S*ROOT)

20 CONTINUE

ISIDE=1 FOR ANY PART OF SIDE IN CIRCLE, 0 OTHERWISE.
IF(ICORN(1)+ICORN(2) .GE. 1)ISIDE(1)=1
IF(ICORN(2)+ICORN(3) .GE. 1)ISIDE(2)=1
IF(ICORN(3)+ICORN(4) .GE. 1)ISIDE(3)=1
IF(ICORN(1)+ICORN(4) .GE. 1)ISIDE(4)=1
IF(PT(2) .LT. YL .OR. PT(2) .GT. Y2)GOTO 60
IF(RAD .GT. D(4))ISIDE(4)=1
IF(RAD .GT, D(2))ISIDE(2)=1

60 IF(PT(1) .LT. X1 .OR. PT(1) .GT. X2)GOTO 130
IF(RAD .GT. D(1))ISIDE(1)=1
IF(RAD .GT. D(3))ISIDE(3)=1

130 CONTINUE

SUBTRACT AREA FOR SIDE IN CIRCLE.
DO 70 I=1.,4
IF(ISIDE(I) .EQ. 0)GOTO 70
ROOT=SQRT(RADSQ-D(1)*%*2)
VAL=VAL-(RADSQ*ATAN2 (ROOT,D(I))-D(I)*ROOT)
70 CONTINUE
RETURN
END

#BEND
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APPENDIX E
RECTANGULAR RADIATOR METHOD PROGRAM

THIS PROGRAM CALCULATES AND PLOTS THE NEARFIELD PRESSURE
DISTRIBUTION PRODUCED BY AN ULTRASONIC LINEAR PHASED ARRAY
USING THE RECTANGULAR RADIATOR METHOD. THIS PROGRAM ALLOVWS
FOR VARIABLY SPACED ELEMENTS, THE RECTANGULAR RADIATOR
APPROXIMATION IS USED BY SUBSTITUTING THE INDICATED
STATEMENTS.

COMPLEX RAI(150) ,ACMPLX(300) ,WT, EXPARG, TEMP
DIMENSION ADAT(300),SPAC(150) ,WGHT(50)
DIMENSION DIFF(3),IB(5),XM(302),YM(302)
DATA SPAC(1),SPACT,PDAMAX/0.,0.,1.E-10/
DATA RHO,PI/1.,3.1415926536/

DATA ENTRY SECTION.
ELEMENT SIZES ARE ENTERED IN MM.

WRITE(6,10)
10 FORMAT(' ENTER NUMBER OF FIELD POINTS IN I3(UP TO 300)’)
READ(5,11) NP
11 FORMAT(I13)
WRITE(6,25)
25 FORMAT(' ENTER FREQUENCY IN KHZ')
READ(5,90)FREQ
WRITE(6,27)
27 FORMAT(' ENTER FARFIELD CONSTANT’)
READ(5,90)FAR
MINHD2=5.
WAVE=1500./FREQ
PIDW=PI/WAVE
CAK=2 .*PIDVW
WRITE(6,28)
28 FORMAT(' ENTER ATTENUATION AT 1MHZ IN NEPERS/CM ')
READ(5,90) ATTEN
ATTEN=ATTEN*(FREQ/1000.)**1.1
WRITE(6,21)ATTEN
21 FORMAT('®' ATTENUATION AT OPERATING FREQ IS ',F8.6,°’ NEP/CM')
ATTEN=ATTEN/10.
WRITE(6,30)

30 FORMAT(' ENTER OPTION CODE OF 5 DIGITS, 1=YES, 0=NO',/,
#' OPTIONS:VARIABLE MAGNITUDE, FOCUSED PHASE, VARIABLE SPACING’
#1°' VARIABLE WIDTH, VERT GAUSSIAN SHAPE')

READ(5,40) ICODE
40 FORMAT(IS5)
ICODE IS THE OPTION CODE.
DECODE ICODE INTO 6 IB’'S: 1=YES, 0=NO.
DO 50 I=1,5
50 IB(I)=ICODE/10#%#*(I-1)-ICODE/10%*I%10
WRITE(6,60)
60 FORMAT(' ENTER NUMBER OF ELEMENTS IN I3 FORM’)
READ(5,11)NE
WRITE(6,80)
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90

80

FORMAT (' ENTER ELEMENT HEIGHT (3 DB) IN MM (F FORMAT)')
READ(5,90)HT :
FORMAT (F20.5)

C SINCE HT IS 3 DB HEIGHT FOR GAUSSIAN, INCREASE HT SO COMPLETE
C GAUSSIAN CURVE CAN BE REPRESENTED.

110

120

130

IF(IB(1) .EQ. 1)HT=2.4*HT

IF(IB(2) .EQ. 1)GOTO 120

WVRITE(6,110) :

FORMAT(' ENTER ELEMENT WIDTH IN MM (F FORMAT)')
READ(5,90)WIDTH

IF(IB(3) .EQ. 1)GOTO 170

WRITE(6,130)

FORMAT(’ ENTER ELEMENT SPACING IN MM (F FORMAT)')
READ(5,90)SPACE

C LOOP ON NUMBER OF ELEMENTS TO GET SPACES AND PHASES.

170

180

190

200

210
220

270

280
290

DO 290 I=1,NE

RAI(I)=CMPLX(1.,0.)

IF(IB(5) .EQ. O .AND. .IB(4) .EQ. 1)GOTO 220

T2=0.0

IF(IB(4) .EQ. 1)GOTO 190

WRITE(6,180)1X

FORMAT (' ENTER ELEMENT ’',I2,' PHASE(DEG) IN F FORMAT')
READ(5,90)T2

T1i=1.

IF(IB(5) .EQ. 0)GOTO 210

WRITE(6,200)1

FORMAT (' ENTER ELEMENT ',I2,' MAGNITUDE IN F FORMAT')
READ(5,90)T1

RAI(I)=CMPLX(T1*COS(T2*.017453293) ,T1*SIN(T2*%.017453293))
CONTINUE :

IF(IB(3) .EQ. 0)SPAC(I+1)=SPACE

IF(IB(3) .EQ. 0)GOTO 280

IF(I .NE. NE)WRITE(6,270)1I

FORMAT(’ ENTER DISTANCE TO NEXT ELM CENTER AFTER ELM ',I2)
IF(I .NE. NE)READ(5,90)SPAC(I+1)

SPACT=SPACT+SPAC(I)

CONTINUE

C GET STARTING POINT AND INCREMENTS.

300

301

312

322

WRITE(6,300)

FORMAT(’ ENTER Z DIST FOR FOCUS AND PLOT IN MM (F FORMAT)')
READ(5,90)ZDIST '

WRITE(6,301)

FORMAT(’ ENTER X STARTING POINT IN MM (F FORMAT)')
READ(5,90)START

WRITE(6,312)

FORMAT(' ENTER X INCREMENT IN MM (F FORMAT)')
READ(5,90)STEP

IF(IB(4) .EQ. 0)GOTO 329

WRITE(6,322)

FORMAT (' ENTER X COORDINATE OF FOCUS RELATIVE TO ARRAY’,
#' CENTER IN F FORMAT’)

READ(5,90)FOCUS

- WRITE(6,3271)

3271 FORMAT(' ENTER NUMBER OF BITS FOR QUANTIZATION IN I2')

READ(5,3272)1Q



3272 FORMAT(I2)
IQ=2*%*]1Q
C  CALCULATE PHASES FOR ELEMENTS TO ACHIEVE A FOCUS.
XVAL=~SPACT/2.
DO 328 I=1,NE
XVAL=XVAL+SPAC(I)
RDIST=SQRT( (FOCUS—XVAL)**2+ZDIST*%*2)
CAR=CAK*RDIST
IF(IQ .EQ. 1)GO TO 3278
CAR=2 ,*PI*INT(.5+FLOAT(IQ)*CAR/(2.*PI))/FLOAT(IQ)
3278 CONTINUE
RAI(I)=RAI(I)*CMPLX(COS(CAR),SIN(CAR))
328 CONTINUE
329 CONTINUE
C ININTIALIZE DATA VECTOR.
DO 330 I=1,NP
330 ACMPLX(I)=CMPLX(0.,0.)
DO 331 I=1,50
331 VWGHT(I)=1.

C CALCULATE FIELD,
DIFF(1)=START+(SPACT+VWIDTH) /2.
DIFF(2)=0.

SNE=DIFF (1)
NH=2+INT(HT/SQRT(WAVE*ZDIST/FAR))
NHD2=NH/2

IF(NHD2 .LT. MINHD2)NHD2=MINHD2
YINC=HT/FLOAT (NHD2*2)
CNSTY=PIDW*YINC

IF(IB(1) .EQ. 0)GO TO 335

C LOOP TO CLACULATE GAUSSIAN WEIGHTINGS.
5=0. :

DO 334 I=1,NHD2
WGHT(I)=EXP(-8.*(YINC*(-.5+FLOAT(I))/HT)**2)
S=S+WGHT(I)

334 CONTINTUE
S=2 . *FLOAT(NHD2) /S
DO 336 I=1,NHD2

336 WGHT(I)=WGHT(I)®*S

335 DIFF(2)=DIFF(2)+YINC/2.
NW=1+INT(WIDTH/SQRT(WAVE*ZDIST/FAR))
XINC=WIDTH/FLOAT (NW)
CNSTX=PIDW*XINC
DO 370 K=1,NE
DIFF(1)=DIFF(1)-SPAC(K)
IF(K .EQ. 1)DIFF(1)=DIFF(1)-XINC/2.
WT=RAI(K)*CMPLX(XINC*YINC,0.)
SNH=DIFF(2)
SNW=DIFF (1)
DO 360 L=1,NW
SNXP=DIFF (1)
DO 350 M=1,NHD2
DO 341 IX=1,NP
ARG=SQRT(DIFF(1)**%2+DIFF(2)**2+ZDIST**2)
XARG=CNSTX*DIFF (1) /ARG

C FOR THE RECTANGULAR RADIATOR APPROXIMATION, THE COMMENTED
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341

350

360

370

380

82

STATEMENTS FOLLOWING ARE SUBSTITUTED FOR THE TWO STATEMENTS
THAT DIRECTLY FOLLOV,

XARG2=XARG**2
XARG4=XARG2**2
SINCX=(1.-.133563936*XARG2+.32811761E~-2*XARG4)/

#(1.+.331027317E~-1*XARG2+.4649838E-3*XARG4)

SINCX=1. ’
IF (ABS(XARG) .GT. .0001)SINCX=SIN(XARG)/XARG

THE TWO PRECEEDING STATEMENTS ARE NOT USED WITH THE
APPROXIMATION METHOD.

YARG=CNSTY*DIFF(2) /ARG
SINCY=1.

-IF(ABS(YARG) .GT. ,0001)SINCY=SIN(YARG)/YARG

EXPARG=CEXP (CMPLX(-ARG*ATTEN, ~ARG*CAK) )
TEMP=EXPARG*WT*CMPLX(WGHT (M) *SINCX*SINCY/ARG,0.)
ACMPLX(IX)=ACMPLX(IX)+TEMP
DIFF(1)=DIFF(1)+STEP

CONTINUE

DIFF (1) =SNXP

DIFF(2)=DIFF(2)+YINC :
CONTINUE

DIFF(2)=SNH

DIFF(1)=DIFF(1)-XINC

CONTINUE

DIFF (1) =SNVW

CONTINUE

DIFF(1)=SNE

DIFF(2)=0.

DO 380 I=1,NP

ADAT(I)=CABS(ACMPLX(I))

CONTINUE

C PLOTTING ROUTINE

390

400

CALL PLOTS(0.0,7)

DO 390 I=1,NP

PDAMAX=AMAX1(ADAT(I),PDAMAX)

DBPMAX=20.*ALOG10(PDAMAX)

DO 400 I=1,NP

XM(I)=.1#(START+(I-1)*STEP)
YM(I)=(-DBPMAX)+20.*ALOG10(ADAT(I)+1.E-5)

IF(YM(I) .LT. -21.)YM(I)=-21.

CONTINUE

CALL SCALE(XM,9.0,NP,1)

CALL AXIS(.5,1.,'DISTANCE (CM)’',-13,9.,0.,XM(NP+1),XM(NP+2))
YM(NP+1)=-21.

YM(NP+2) =3,

CALL AXIS(0.5,1.,'INTENSITY’ ,9,7.0,90.0,YM(NP+1),YM(NP+2))
CALL PLOT(0.5,1.,-3)

CALL LINE(XM,YM,NP,1,0,2)

CALL PLOT(0.,0.,10)

CALL PLOT(0.,0.,11)

sSTOP

END
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