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CHAPTER 1 

INTRODUCTION 

The counterpropagation method has been proposed for imaging the nonlinear 

parameter B/A (defined in Equations (1.4) and (1.5)). This method is based on the 

nonlinear interaction of counterpropagating pump and probe waves. However, in previous 

formulations, the pump reflections from the interfaces in the medium were not taken into 

account These reflections copropagate with the probe and modulate it nonlinearly. The 

copropagating pump reflections cause more nonlinear interaction with the probe than the 

counterpropagating interactions; this will be shown using mathematical, simulation, and 

experimental techniques. The mathematical formulation of the nonlinear interaction of these 

pump reflections with the probe (called the copropagation reflection model) shows that this 

nonlinear interaction has the potential to form a basis for a nonlinear imaging system. 

This chapter reviews the fundamental wave equations, explains the relationship of 

the nonlinearity parameter to pathological conditions, simulates nonlinear wave 

propagation, discusses nonlinear interaction of sound waves, and summarizes existing 

nonlinear ultrasonic imaging systems. Finally, the scope and purpose of the underlying 

research are presented leading to to a new simulation program and a new analytical model. 

1.1 The Nonlinear Wave and State Equations 

The nonlinear distortion of ultrasound pulses is analytically modeled in this section 

following the derivations by Beyer (1974). For a planar ultrasound wave, the propagation 

displacement along the direction of propagation y is related to the propagation velocity as 

dy/dt = c , (1.1) 
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where t is time. As will be shown later the velocity of propagation is not a constant, and 

the different components of the wave travel at different velocities. 

The effective wave velocity, for a mechanical wave traveling in a moving medium, 

is the vector sum of the velocity of propagation when the medium is stationary and the 

velocity of the moving medium. The mechanical or acoustic wave is the result of the 

propagation of the medium particle oscillation energy. For a longitudinal, planar acoustic 

wave, the particle oscillation is either in the same direction or in the opposite direction of 

the wave propagation. In the positive half-cycle of the particle oscillation, the particle 

velocities are in the same direction as the propagation velocity, c; for the negative half-

cycle, the particles move in the opposite direction to the wave propagation. Taking the 

particle velocity as u, the effective propagation velocity is 

dy/dt = c + u . (1.2) 

The nonlinearity of the wave propagation is also affected by the dependence of the 

propagation velocity, c, on the particle velocity, u. The relationship between the particle 

velocity and propagation velocity is derived from the state equation. The state equation 

describes a relationship between the pressure, p, and the density, p, of a medium. A 

common way to describe the state equation is to expand the pressure in a Taylor's series 

about the ambient density as 

p = p0 + (6p / 5p )SiP . Po (p-p<,) + (1/2!) (52p / 5p2 )s?p . Po (p-p0)2 

+ (l/3!)(63p/6p3)StP.Po(p-p0)3 + ... , (1.3) 

where p0 and p0 are the ambient pressure and ambient density of the medium, respectively, 

and s denotes the isentropic process. Defining the coefficients of the Taylor series A, B, 
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A - p0 (6p /6p ) S ( P . Po = po c0
2 (1.4) 

B-p 0 2(52p/5p2) S i P .p o (1.5) 

C-p 0 3(53p/6p3) S f P .p o (1.6) 

gives 

p = p0 + A ((p-p0)/Po) + (B / 2!) ((p-p0)/p0)2 + ( a 3!) ((p-p0)/p0)3 + ... . 

(1.7) 

The acoustic nonlinearity parameter (B/A) is used to approximate the propagation velocity, 

c, to the second order as 

c2 = (6p/5p)s 

= A/p0 + B(p-p 0 ) /po 2 

= c0
2 (1 + (B/A) (p - p0) / p0) . (1.8) 

Velocity is not a constant; it depends on B/A and the condensation ((p-p0)/Po) which is 

related to the amplitude of the acoustic wave. The derivation by Blackstock (1972) showed 

that 

c = cQ + (B/2A)u. (1.9) 

Combining Equations (1.9) and (1.2) results in 

dy/dt = c + u 

= c0 + ((B/2A)+l)u . (1.10) 
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Propagation velocity (dy/dt) is a function of the particle velocity, u (which could have 

positive and negative values) as seen in Equation (1.10). The different parts of the wave 

have different particle oscillation amplitudes and propagate at different velocities. This 

amplitude-dependent propagation speed leads to a distortion of the waveform with its 

propagation. The nonlinear waveform distortion produces the secondary effect of 

harmonic generation and results in the transfer of ultrasound energy to higher harmonics. 

1.1.1 Formulation of the wave equation in Lagrangian coordinates 

The generation of harmonics is analytically modeled in this section. A fluid particle 

at rest at point a, under the action of a harmonic wave, will undergo oscillations. The 

instantaneous position of this particle will be labeled y. 

y = a + C . (1.11) 

The displacement of the particle originally at a is C The quantity a defines the point along 

the y-axis of the Lagrangian coordinate system and along with t, are known as the 

lagrangian coordinates. 

The particle velocity in these coordinates, u^(a,t), is described as 

u K a , t ) = ^ = ^ , (1.12) 
ot ot 

and the Lagrangian acceleration as 

rS • 
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Consider a small element of fluid with volume dadxdz initially at rest Apply a plane wave 

traveling in the y-direction: the particle originally at rest at a will be displaced a distance £, 

while that ordinarily at rest at a+da will be displaced a distance C+d£. Since these new 

boundaries of the Lagrangian fluid element could be written as xL and xL+dxL, the 

displaced and distorted volume dV could also be written as dxdydz. If the density of the 

fluid at rest is represented by p0 and that of the displaced fluid by pL, then 

pL dyLdxdz = p0dadxdz , (1.14) 

since the total mass in the fluid box must be the same in the two cases, and thus 

pL = P o f L - (1-15) 
dyL 

Since yL = a + £, Equation (1.15) becomes 

pL = p 0 ( l + ^ ) - 1 . (1.16) 
5a 

If the pressure at any instant at the left side of the volume element is pL, while the 

pressure on the right ispL+ (8pL/8yL) 8yL, then the net force to the right on the fluid in the 

volume element dV is -(8pL/8yL) 8yL dx dz, and the equation of motion becomes 

^-dykixdz = (podadxdz)C n I7t 
5yL v-1-1' 

or 
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MSt.."*.,,; . (1.18, 
6yL 5a 6a 

The sound speed c is now defined as 

< * - $ £ , (1.19) 
op ' 

where the derivative is taken under adiabatic conditions. Using Equation (1.16), arrive at 

6pL_ 6pL5pL_ c2p0 a
2C 

6a 5pL 6a dt2 da2 

Using Equation (1.18), Equation (1.20) becomes 

(1.20) 

^ = _ ^ _ ^ , (1.21) 

*= ( l + & ^ 
oa 

which is the equation of motion for an acoustic wave in one dimension. 

For the special case of an ideal gas (which later will be related to liquids), the 

adiabatic relation can be written as 

p = p„(—)? , d.22) 
Po 

where y is the ratio of the specific heats. Then, Equation (1.19) becomes 
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c 2 = 3 ± = W o ( i ) T - l = 2 » 1 . (1.23) 
apt Po Po P. J ^ 

8a 

Substituting this expression in Equation (1.21) leads to 

This is the nondissipative wave equation in one dimension in Lagrangian coordinates. 

With liquids, the following approach is used to arrive at the wave equation. The 

Taylor expansion of the pressure in terms of the density for the isentropic case is utilized 

(Equation (1.3). An expression for c2 in a liquid medium is now derived in terms of the 

parameters A, B, and C. This expression is 

c2 = c2 [ l + (^)s + (Jl-)s2 + ...] . (1.25) 

It is more convenient to establish the relation between the parameter y in Equation 

(1.22) with the ratio B/A. If Equation (1.22) is expanded in powers of the condensation s, 

then 

p = Pod+s)7 = Po[ 1 + Y S - A ^ s2 + ...] . (1-26) 

Comparing this expansion with Equation (1.3) term by term, it is established that B/A = 

y-1 for the ideal gas. The nondissipative wave equation in one dimension becomes 
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s . * a . (I.:?) 
3t2 3C 2 +B> 2 

U+3a*' A 

1.1.2 Solution of the wave equation 

Equation (1.27) is a nonlinear differential equation; it describes the nonlinear 

propagation of an acoustic wave in a nondissipative medium. Plane wave solutions to this 

differential equation are given by Fubini, Fay, and Blackstock. The Fubini solution 

(Beyer, 1974) is valid for the weak nonlinearity region (o<l, o is distance normalized to 

the discontinuity distance which is the distance at which the slope of the wave goes to 

infinity). Blackstock's solution (1966) is valid for the region l<a<3.5, the weak shock 

region. The nonlinearities encountered in most biomedical applications of ultrasound are in 

the weak nonlinearity region or in the weak shock region. Fay's solution (Beyer, 1974) 

describes a fully developed shock wave (saw-tooth or N-wave) and is valid for the region 

c>3.5. These solutions are given in terms of Fourier series expansions. The physical 

significance of these solutions is easy to interpret such as the harmonic generation resulting 

from the nonlinear distortion and the production of shock waves. 

The solution to another nonlinear differential equation approximating Equation 

(1.27) is given by Burger. The nonlinear differential equation describing the equation of 

motion can be transformed to a Burger's equation format An exact solution, taking into 

account viscosity, is available for Burger's equation. However, this solution is not easy to 

interpret physically. Each of these solutions is discussed in more detail later. 

1.1.2.1 Fubini solution 

Equation (1.27) was solved by Earnshaw. Assume a boundary condition on the 

particle velocity at the origin, y = 0, to be 
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u(0,t) = UQ sin cot , (1.28) 

where Uo is the magnitude of the particle velocity at the y = 0, co is the angular frequency 

and t denotes time. Eamshaw's implicit solution can be expressed as 

u(y,t) = u o s in [ (0 t - ^ ( l+ i - ^ rT L - 1 ] , (1.29) 

where cQ is the infinitesimal speed, B/A is the nonlinearity parameter, and u/cQ is the Mach 

number. For a low Mach number, Equation (1.29) can be written using a binomial 

expansion of the term in the inner parentheses as 

u(y,t) = UoSm[<ot-^(l-(l+^)£)] • (1.30) 

From the argument of Equation (1.30), it is seen that the phase of the planar wave 

is modulated by its own amplitude, the particle velocity u(y,t). The Fubini solution was 

obtained by expanding Equation (1.30) in a Fourier series as 

- j,(2y_) 

u7 = 2L-hy"- s i n n(w t-ky> ' (1.3D 
n=1 T. 

where Jn is the nth-order Bessel function of the first kind. The effect of nonlinear 

distortion is readily seen as harmonic generation. 
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1.1.2.2 Burger's equation 

If the viscosity of a dissipating medium is taken into account, the equations 

governing the wave propagation can be expressed by the Navier-Stokes equation (Kinsler 

et al., 1982) as 

•S~&'*"*S; • 
where r| and TJB are the shear and bulk viscosities, respectively. The quadratic equation of 

state is (Kinsler et al., 1982) 

This equation substituted in Equation (1.32) gives 

4-g-^&'#4-)$ • 
Equation (1.34) can be written in the Burger's equation format with the coordinate 

transformation, x = y - c0t and T = t, and by neglecting terms higher than the second order, 

as 

"s-i^s-f £ • ( U 5 > 

where a is the absorption coefficient Equation (1.35) has an exact solution for the particle 

velocity as 
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£ (-!)"+! n ln(L) e-n2ay s i n n(wt-ky) 
^ = ^ L _ , (1.36) 

Io(§) + 2 J (-1)" ^(foe-n^y cos n(wt-ky) 
n=l 

where In is the Bessel function of order n of the first kind of the imaginary argument This 

function is given as 

in(y) = G)-nJn(iy) , (1.37) 

and T = (1+B/2A) (uo/c0cc) (2%/X). The Burger's solution stated in Equation (1.36) takes 

into account viscosity and is valid for all ranges of o, but it requires numerical evaluation 

before physical interpretations can be extracted from it 

1.1.3 Diffraction theory 

The above solutions do not take diffraction into account The acoustic beam could 

possibly diffract as it propagates away from the source. The starting point for almost all of 

the work on diffraction theory in nonlinear acoustics is the derivation of an ad hoc 

approximation of the equation of motion as pointed out in a survey by Kuznetsov (Beyer, 

1974). Heaps (1962) started with the Euler equation of motion and derived a set of 

equations involving the acoustic pressures of different frequency components. Westervelt 

(1963) and Tjetta and Tjotta (1981) used the LighthiU's exact equations (Beyer, 1974) for 

fluid motion in calculating the diffraction pattern of the scattered wave in parametric 

acoustic arrays. The analytical methodology constructs a set of equations governing 

motion in a fluid medium. A differential equation is derived from the equations of motion 

taking into account different absorption mechanisms and the nonlinearity of the medium. A 

set of equations governing different frequency components is derived assuming time 
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harmonic motion and a Fourier series representation of the acoustic field. The set of 

equations is then solved for the harmonic components of the scattered field. 

Ingenito and Williams (1971) assumed that the fundamental and the second 

harmonic are the only significant frequency components 

<Kx,y,z,f) = £ <h(x,y,z,t) 

«<h(x,y,z,t) + <fc(x,y,z,t) , (1.38) 

where (fa is the solution of the linear wave equation; <(>i and fo are the fundamental and the 

second harmonic of the velocity potential, respectively. A differential equation that governs 

d>2 was given as 

(v*-l-£k.-.-L* 
I cgdt2/ 2c2 at] \ cgat2/ c 2 \ a t , 

(1-39) 

Assuming <J>i and (J>2 are time harmonic, their format is 

(h = «Pi(x,y,z) e-iut 

<k = (P2(x,y,z)e-Jwt (1.40) 

Equation (1.39) was then solved, in cylindrical coordinates (r,6,z), for the second 

harmonic acoustic field generated by a circular disc centered at the r=0 and z=0 plane. 

Then <p%(r,z) can be expressed in terms of cpi(r,z) 

%(r,z) = - eikocpf(r^-J)da (1.41) 
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where y = (B/A + 1) and c0 is the speed of sound. For a disc receiver of radius a, the 

output voltage resulting from the second harmonic is proportional to the average of cp2 over 

its surface 

(<P2(r,z)) = - 3J' H^-ft" • 
/<T=0 

(1.42) 

where < > represents the spatial average over the transducer face. The integrand had been 

evaluated by Bass (1958) as 

=̂-H4-6)v̂  *i (1.43) 

where UQ is the velocity amplitude of the vibrating source disc, and C is given by 

C = (|)[V(z2 + 4a2)-z] (1.44) 

Substituting Equations (1.43) and (1.44) into Equation (1.42) produces another 

integral equation 

^<r*))-!*|p!ltfi*(J + l) , (1.45) 

where 

=-^e?ff(VeT^-er5-^-(VeT747-e)1-5 

Vjrk Jz L 8a2 
d6 (1.46) 
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Converting the velocity potential into acoustic pressure, using the planar small-signal 

dissipationless relationship, p% = -j<op0<P2, arid po=PoC0Uo, gives 

I(p2)| = copo|(cp2)| 

_wp2(B/A+2)|z^| 
2pocg 12 I 

= « ^ ) z | l + 2 1 | . (1.47) 
2poCjj 

The finite aperture diffraction effects depend on B/A and the distance of propagation. 

1.2 Acoustic Nonlinearity Parameter B/A of Biological Media and Its 

Significance 

The B/A parameter is related to the mechanical properties of a biological medium. 

The B/A values for various liquids and biological media have been compiled by Zhang 

(1990) and Everbach (1989). The reported B/A parameter ranges from 5 to 12. Linear 

dependence of the B/A parameter on concentration has been reported in aqueous solutions 

of bovine serum albumin, hemoglobin, dextran T2000, dextrose, sucrose and polyethylene 

glycols (Law, 1984; Law et al., 1985; Cobb, 1982; Gong et al., 1984). 

A mixture's B/A value can be calculated using the mixture laws (Apfel, 1983,1986; 

Sehgal et al., 1986a). These mixture laws have been used to model tissues as mixtures of 

the three components— water, fat and protein— from which the chemical composition of 

tissues can be determined from the measurements of density, velocity and B/A (Apfel, 

1986; Sehgal et al., 1986a; Dong et al., 1987). 

The B/A values for protein and carbohydrate, in solid state, are estimated from the 

B/A data of their aqueous solutions, of known composition, using the mixture laws. The 
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B/A parameter of single-component liquids takes values close to 5 for inorganic liquids and 

10 for organic liquids. The B/A value for pure fat has been determined to be between 9.9 

and 11.5 (Everbach, 1989; Errabolu et al., 1987; Apfel, 1983). Fat, protein, and 

carbohydrate have essentially very similar B/A values (Zhang, 1990). For pure substances 

known as constituents of tissues, water has a B/A value of about five, while fat, protein, 

and carbohydrate have values of about ten. The mixtures of these components have 

intermediate B/A values. Investigation of the B/A parameter of tissue has also shown a 

dependence on structural features. Law et al. (1985) reported the decrease of the B/A value 

from 7.7 of intact beef liver to 6.8 of the same beef liver homogenized. 

Researchers have found that the B/A value of blood is slightly higher than that of a 

solution containing the same amount (dry weight) of protein (Law et al., 1985). The 

explanation is that the red cells of blood are composed of a hemoglobin solution contained 

in a membrane, thus placing blood in a higher structural hierarchy. The intact liver, which 

is much more complex in structure than blood, has a correspondingly greater B/A value. 

Homogenization of the liver, which destroys the structure to some extent, leads to a 

decrease in the B/A value (Law et al., 1985). 

Several research results indicate a possible relationship between B/A and tissue 

composition, particularly in the relative amounts of water and fat (Law, 1984; Bjorno, 

1986; Sehgal et al., 1984, 1986a). This raises the possibility of estimating the tissue 

composition from B/A and sound speed (Sehgal et al., 1986a). Tissue is composed mostly 

of water which is either bound or unbound (free). The state of water in biological tissue 

plays an important role in the cellular structure and the health of tissue. The B/A of bound 

water is estimated to be approximately 0.4, whereas the B/A of free water is approximately 

8.0 (Yoshizumi et al., 1987). The ratio of free water to bound water in malignant tissue 

such as in a multiple myeloma is higher than in the surrounding healthy tissue. The state of 

water in tissue has been imaged by NMR imaging and has been useful in medical diagnosis 
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(Sehgal et al., 1985). Determination of the state of water using B/A might also be possible 

and more economical. 

Several investigators have studied the nonlinear propagation of acoustic waves in 

biological media (Bacon, 1986; Dunn et al., 1981; Law, 1984; Cobb, 1982; Zhang 1990). 

One aspect of these studies has been the measurement and analysis of the acoustic 

nonlinearity parameter, B/A, of biological media. The acoustic nonlinearity parameter 

relates the diverse nonlinear phenomena observed in ultrasound propagation to the general 

nonlinear wave propagation theory. Extensive work has been performed on the 

measurement and the investigation of the B/A parameter (Beyer, 1974; Beyer, 1960; Cobb, 

1982; Coppens et al., 1965; Dong et al., 1987; Errabolu et al., 1987; Everbach, 1989; 

Gong et al., 1984; Law et al., 1985; Narayana and Swamy, 1981; Sehgal et al., 1984, 

1986b; Sun and Zhao, 1985; Zhu et al., 1983; Zhang, 1990). One of the goals of studying 

the acoustic nonlinearity parameter B/A has been to provide more accurate modeling of the 

propagation of finite amplitude waves in biological media. The accurate modeling of 

ultrasound propagation through biological media may allow a more effective administration 

of therapeutic ultrasound dosage (Swindell, 1985) and the production of higher-quality 

images (Bjorno and Lewin, 1982; Rugar, 1984). 

1.3 Simulation of Nonlinear Wave Propagation 

1.3.1 Nonlinear distortion 

Studies by Pestorius and Blackstock (1974) of finite amplitude noise propagation in 

tubes have produced software packages useful in studying general nonlinear waveform 

distortion in acoustics. The waveform distortion depends on the rate of wave propagation. 

The rate of propagation dy/dt of a given displacement velocity u is given by 

dy/dt = c0 + P u , (1.48) 
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where P is (1+B/2A). This equation can be rewritten and approximated as 

At the discontinuity of a shock wave, this equation becomes 

dt/dy • (l/co) [ 1 - (P/Co) ((ua + ub)/2) ] , (1.50) 

where ua and % are the values of u just ahead of and just behind the shock. Pestorius and 

Blackstock began with Equation (1.49) and wrote it in the form of a difference relation, 

solving the latter using a computer. The computer program evaluates the propagation time 

of the wave through a small distance y; the new time, space relationship is 

tnew = told-PUoldy/Co2- ( L 5 l > 

This updated time is associated with a particular point on the waveform. The new 

waveform is tested for multiple values. If it is still single-valued, the process is repeated. 

If it has multiple values, Equation (1.50) is used; the shock is located and particle velocities 

are corrected. 

This program was used to simulate situations with known experimental outcomes. 

The experimental problem to which Pestorius and Blackstock addressed themselves 

involved propagation in a tube and required the introduction of a computational procedure 

to take into account both the attenuation and dispersion that are characteristic of tube 

propagation. The algorithm developed made it possible to predict very closely the behavior 

of both single pulses and noise in propagation through an air-filled aluminum tube of 96-ft 

length by 2-in width. The received pulse shapes, experimental and computed, matched 

each other very closely. 
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1.3.2 Absorption 

The close match between theory and experiment was partly due to incorporating 

absorption into the computer program. To formulate the absorption algorithm, it is 

necessary to consider a single frequency component of an arbitrary spherical wave. If the 

complex amplitude of the component is U0 at a distance r0, the amplitude U at a distance r 

is, in the absence of nonlinear distortion, given by 

U = £oUoe-8(Mb) . (1.52) 

The factor exp(-j(27r/X)(r-r0)) does not appear because the wave is represented in the time 

domain in terms of the retarded time f=t-(r-r0)/c0. If r=r0
+Ar, where Ar is the propagation 

distance step, Equation (1.52) becomes 

U = ^e—U„e-&Ar , (1.53) 
r0+Ar 

where d is the attenuation parameter. 

1.3.3 Wave propagation algorithm 

Orenstein and Blackstock (1982) used these formulas (Equations (1.53) and (1.51)) 

to simulate the propagation of acoustic signals in air. The initial waveform representing the 

acoustic signal is the input at r=r0- The waveform is transformed from the time domain to 

the frequency domain via a fast Fourier transform (FFT), and absorption is applied 

(Equation (1.53)). The waveform is then transformed back to the time domain by an 

inverse FFT, and the nonlinear distortion is applied (Equation (1.51)). The waveform 

propagation distance becomes r0+Ar, and the process is repeated until r equals a specified 

propagation distance. 
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Small time, or propagation distance, steps are taken to ensure that no shocks form 

during a nonlinear distortion step. The absorption step is applied before the distortion step 

to handle occasions in which the initial waveform contains a discontinuity (shock). The 

shock formation distance is calculated after each absorption step. The next value of Ar is 

chosen as one-tenth of the shock formation distance. This formulation ensures that 

multiple values do not occur in the nonlinear distortion step. After the distortion step, the 

time increments between the points in the waveform are no longer equally spaced. The 

FFT routine requires that the time increments be equally spaced. An interpolator is used to 

find equally spaced time increments. Cotaras and Blackstock (Beyer, 1974) used a similar 

algorithm for numerically implementing the weak shock theory for an attenuating 

inhomogeneous ocean. This algorithm took into account the change in absorption 

coefficient with ocean depth. 

1.4 Nonlinear Interaction of Sound Waves 

1.4.1 Formulation of the scattered wave solution 

The simulation program described in Section 1.3 deals with the nonlinear distortion 

of a single waveform; however, the work here is directed towards the nonlinear interaction 

of two ultrasound pulses. The ultrasound waves interact in a nonlinear manner and 

produce mixing products. One of the oldest observations in nonlinear acoustics was made 

by Sorge in 1745 and independently reported by Tartini in 1754. These two musicians 

found that the sounding of two musical tones of high intensity results in the appearance of a 

lower tone whose frequency is equal to the difference between the two original tones. The 

sound is known as the Tartini tone. The signals had to be quite intense before a difference 

tone could be observed, and this tone was weak. Helmholtz (Beyer, 1974) undertook an 

analytical study of this problem and discovered the existence of a sum frequency as well as 

a difference frequency. Rucker and Edser (Beyer, 1974) excited a tuning fork at the sum 

frequency, thus identifying the interaction as an objective one, that is, actually occurring in 
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the medium. Lamb (Beyer, 1974) used a perturbation technique to show the existence of 

both the sum and the difference frequencies. His work was confirmed experimentally by 

Jenkins, O'Neil, and Thuras (Beyer, 1974). Two sound beams traveling in the same 

direction produce sum and difference frequencies in the medium. 

The interaction of two sound beams has been studied analytically. Almost all of the 

theoretical work on the nonlinear interaction of two sound beams (scattering of sound by 

sound) began with the paper by M.J. Lighthill on sound produced by turbulence (Beyer, 

1974). In this paper Lighthill presented the exact equations of motion for an arbitrary fluid 

in the form 

5 p + 5 ( p u 0 = 0 

St 8xi 

8(puj) | cZ 8p _ STy 

St Sxi Sxi 

6.cSv'p,AL. (1.54) 
St2 Sxj SXJ 

where the stress Ty is defined by the relation 

Tjj = uiUj+pij-pc88ij . (1.55) 

Here puiuj is the instantaneous Reynolds stress tensor, py the compressive stress tensor, 

and Sy the Kronecker delta. In effect, the sound field radiated by fluid flow (including the 

interacting sound beams) is equivalent to one produced by a static distribution of acoustic 

quadrupoles with source strength density given by Ty. 
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Westervelt (1963) solved the equations by Lighthill for collinear beams and 

formulated the equation for the scattered pressure as 

The quantity F is 

F = . ^ ( l + i . ) p i p 2 , (1.57) 
PS 4 2fL 

where pi and p% are the pressures of the primary sources, R is the distance from the source 

to the receiver, 6 is the angle between the receiver and the acoustic axis of the source (the 

observation angle), and a.\ and a 2 are the attenuation coefficients at the primary 

frequencies. 

Equation (1.56) provides the beam profile. The beam profile could be used to 

calculate the half pressure point The half-width of the beam 61/2 at the half pressure point 

was theoretically derived by Westervelt as 

8i/2 = 2% 3"4 (£-)1/2 , (1.58) 

where a is the attenuation coefficient of the primary beam. This equation could be utilized 

to calculate the beam width of the scattered wave. The beam width and the beam pattern of 

the scattered waves have been studied extensively. The numerical and experimental 

research by Bellin and Beyer (Beyer, 1974) and Benet (Beyer, 1974) showed that the beam 

pattern of the (sum) scattered frequency in the nearfield equaled the product of the beam 

patterns of the primary beams. 
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1.4.2 Beam profile at the farfleld of a plane piston 

The beam pattern at the farfield of a plane piston has been calculated theoretically. 

The problem of the nonlinearities of the farfield of a plane piston is taken to be that of a 

spherical source with boundary conditions at the effective starting point of spreading. 

Lockwood, Muir and Blackstock (Beyer, 1974) assumed that the particle velocity 

amplitude at this point is given by (uo/c0)D(6), where D(6) is the infinitesimal amplitude 

directivity function in the farfield of a circular, baffled, plane piston. 

= 2Ji(kasin6) ? (1.59) 
ka sin6 

where a is the radius of the source, k is the wave number, and 6 is the angle between the 

receiver and the source. In the weak nonlinearity region, the analysis based on the weak 

shock theory of Blackstock results in 

D»(6) = [D(6)]n , (1.60) 

where D°(6) is the directivity of the nth harmonic. The harmonic components of the wave 

become progressively narrower. 

1.5 Proposed Nonlinear Ultrasonic Imaging Systems and Definition of 
System Parameters 

1.5.1 Imaging methods based on dependence of sound speed on pressure 

The methods in this category take advantage of the change in the sound speed 

caused by pressure. The change in the sound speed is also related to the value of the 

nonlinearity parameter in the region where the pressure has been changed. A change in the 

pressure is generated by a relatively high-intensity acoustic wave at low frequency. This 

acoustic wave is called the pump. A high-frequency, low-intensity coherent wave probes 
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the portion of the medium where the sound speed has been changed by the pump. If the 

probe propagates along the y-axis, the propagation time of the probe is given as 

- M ^fe* • (1.61) 

where L is the length of the medium and p is the change in pressure caused by the pump. 

Equation (1.61) could be approximated (for pump pressures less than 50 atm) as 

f* &p , r'f-p 
t=l i(l"^r)dy = fe- £-j<* , (1.62) 

2p0c§ ** | 2p0c§ 
'o 

where the approximation is valid, since (B/A)p / 2p0c0
2 is much smaller than one for pump 

pressures less than 50 atm. The time of flight of the probe depends on the acoustic 

nonlinearity parameter of the medium, as seen in Equation (1.62). 

Equation (1.62) forms the basis for many proposed imaging systems. Different 

imaging systems have been proposed depending on the pump and probe geometry. Ichida 

et al. (1984) have used a perpendicular pump and probe geometry. The instantaneous time 

delay for this geometry becomes 

9r(y) p(y-CoT) 
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The time delay is very small and could be multiplied by the angular frequency of the probe 

to provide the phase shift. The instantaneous phase shift and the pump pressure can be 

measured leading to an estimate of the nonlinear parameter. 

Sato et al. (1985) proposed a counterpropagation geometry for the imaging system. 

In this system, the pump and the probe propagate towards each other. The instantaneous 

time delay experienced by a point on the probe is 

. , , f A*30 P * ^ " ^ 
^ N 2p.W(y) "y • <"*> 

yo 

This time delay could be considered as a phase modulation of the probe. Deconvolution of 

the phase function with the pump pulse leads to an estimate of the acoustic nonlinearity. 

Two-dimensional images of the nonlinear parameter are provided by the mechanical or 

electrical scanning of the pump and probe waves. 

Cain (1986) proposed a reflection mode imaging system. A probe followed by a 

pump is launched towards a planelike or a pointlike reflector. The probe can have a 

coherent or a chirp waveform. The pump can have an intense short duration or a coded 

long duration pulse. The pump interacts with the reflected probe and the probe phase is 

modulated. The acquired phase of the probe was shown in a numerical example to be very 

small (less than a few degrees; Cain, 1986) and no phase wrapping occurred. The 

instantaneous phase of the probe is given as 

fC(,T/2 
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Deconvolution of the extracted phase of the probe with the pump leads to an estimate of the 

nonlinearity parameter profile. 

1.5.2 Tomographic techniques based on the parametric array by Westervelt 

Nakagawa et al. (1984) proposed the utilization of the scattered wave resulting from 

the nonlinear interaction of two copropagating ultrasound pulses for imaging the B/A 

parameter. The average value of the scattered wave over the receiver surface is (Cai, 1988) 

Jo 

where p0 is the amplitude of the wave launched into the medium, r is the position vector, 

|F| represents diffraction loss, and Y is the length of the medium. Projections of the 

nonlinear parameter are obtained from different angles. The line integral formulation in 

Equation (1.66) is then used to reconstruct the nonlinear parameter image. This nonlinear 

ultrasonic imaging system produced images of the nonlinear parameter (Nakagawa et al., 

1986). 

1.6 Scope and Purpose of the Thesis 

The reflection mode nonlinear ultrasonic imaging system will be systematically 

analyzed building on the theory and the simulation material presented in this chapter. The 

different components of the reflection mode imaging system will be elaborated upon, 

including time-delay formulation of the nonlinear interaction of ultrasound pulses, beam 

profiles of the acoustic signals, methods of demodulation, simulation techniques, and 

experimental methods. A signal processing method for producing B/A images in the 

reflection mode is presented. 
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Reflection mode imaging of the B/A parameter is developed in this dissertation. 

Chapter 2 discusses the mathematical modeling of the reflection mode nonlinear 

interactions. These nonlinear interactions are modeled either as counterpropagation or 

copropagation reflection. The nonlinear interactions are simulated in Chapter 3. The 

simulation results for the two possible cases of nonlinear interaction, namely, the 

counterpropagation and copropagation reflections, are shown. Copropagation reflection 

experiments are described in Chapter 4. These experiments are presented for various 

materials to verify the mathematical model produced in Chapter 2. The results of the 

comparison between the mathematical models and the experiments are discussed in Chapter 

5. Chapter 5 also contains the suggestions for future work and discusses the limitations of 

the present study. 
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CHAPTER 2 

MATHEMATICAL MODELING 

In this chapter, the counterpropagation model is investigated to identify nonlinear 

interaction mechanisms which have not been taken into account previously. Specifically, 

past counterpropagation models have not taken the pump reflections into account. These 

reflections generate nonlinear interactions through copropagation of the reflected pump with 

the probe. This chapter will demonstrate that the sensitivity of the probe to phase 

modulation by copropagation reflection is higher than with counterpropagation. 

2.1 Counterpropagation 

A mathematical expression is derived for the instantaneous phase shift in a 

sinusoidal probe (Cain, 1986). This instantaneous phase shift is proportional to the 

convolution of the pump with the spatial distribution of the nonlinear parameter B/A. 

Determining the ratio B/A, from Equations (1.5) and (1.4), gives 

B / A J p § ( 8 2 p / 8 p 2 ) g , p = p J = 2 ( p o C o ) / ^ . (2.1) 

This definition of B/A forms the analytical basis of the time-delay formulation of the B/A 

imaging system. 

The reflection mode imaging system is shown in Figure 2.1.a. An acoustic 

waveform, composed of a high-frequency sinusoidal probe, s(x,y), is followed by a pump, 

p(t,y). The probe is reflected from a plane at y=L. A probe of duration T<p2L/c0 must be 

used to image the entire line along the propagation path from y=0 to y=L. In this case, the 

probe duration is equal to twice the signal transit time between the transmitter/receiver and 
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the reflector plane. Figure 2.1.a. shows the situation at T<i after beginning the signal 

transmission. Thus, the pump, p(r,y), interacts with the reflected probe, s(r,y), over the 

image line from y=0 to y=L. If B/A varies over this space, the probe waveform, s(r,y), 

will undergo a phase variation over its entire duration, Td=2L/Co. The situation at 3L/c0 is 

shown in Figure 2.1 .b. Note that the time between the beginning of the probe transmission 

and the reception of the trailing edge of the probe is 4L/Co = 2T& 

A relationship between an arbitrary pump, pfr,y), and an arbitrary distribution of 

B/A(y) is now developed. It is useful to begin by noting that a sinusoidal signal, 

propagating over a path of length L with a speed c0, undergoes a phase shift, 

<|) = 27rfL/Co . (2.2) 

Consider the step response of the system in Figure 2.2, in which a unit step of pressure, 

u(r,y), is propagated to the right over the image line from y=0 to y=L, and a sinusoidal 

probe propagates in the opposite direction. The step response of the system, that is, an 

expression for the instantaneous phase shift at any point along the received probe, S(T), can 

be derived. It is important to observe that while the step discontinuity of pressure 

propagates over the length L in time L/c0, it interacts with the probe over a duration of 

2L/c0. Thus, the received signal, s(t), will carry information in the form of instantaneous 

phase changes over the interval from T=0 to T=2L/CO , where T=0 is the instant when the 

pump discontinuity begins moving to the right and the leading edge of the probe is received 

aty=0. 

Making use of Equations (2.1) and (2.2), the instantaneous phase, <J)+(T), of the 

probe, S(T), after interacting with the step pump, u(r,y), has the form 
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