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CHAPTER 1

INTRODUCTION

Ultrasound tomography holds promise in the area of medical
diagnosis, offering benefits over the use of x-rays. For
example, x-ray tomography, although helpful in many cases, poses
health risks due to the ionizing radiation. Ultrasound is a
non-ionizing form of energy and is safe at low ievels. X-ray
tomography images the distribution of density in the obiject.
Ultrasound 1is sensitive to different tissue characteristics,
such as changes in acoustic attenuation and speed, and therefore
provides information that cannot be gained wusing x-ray
absorption. Economic factors boost the value of ultrasound
tomography, since ultrasound equipment 1is generally less
expensive than x-ray equipment. These Dbenefits warrant
investigation into the utility of ultrasound tomography.

Although ultrasound tomography possesses many strengths, a
major hindrance has prevented its widespread use. Ultrasound
suffers from diffraction and refraction effects. In
inhomogeneous objects, these effects create alterations in the
ultrasound path that are difficult to represent geometrically.
X-rays travel in straight lines, allowing the projections to be
simple line integral functions. The ultrasound projection
information is considerably more complicated.

Several approaches have been developed to correct for the

effects of refraction and diffraction. Good introductions to



these approaches and to ultrasound diffraction tomography were
written by Greenleaf [1983] and Schueler et al. [1984]. Some of
these methods, such as the Born and Rytov approximations, make
assumptions about the size and refractive index of the object.
The Fourier Diffraction Theorem, similar to the Fourier Slice
Theorem used in x-ray tomography; assumes that the object is
weakly diffracting. Frequency domain interpolation is prone to
instability problems. The filtered backpropagation method,
inspired by the filtered backprojection method used in x-ray
tomography, possesses neither an efficient nor an accurate
algorithm, These approaches will be discussed briefly in
Chapter 2. A need exists to develoé an alternative approach
that may offer some situational advantages over the inadequate
methods.

The alternative approach that will be explored involves the
use of neural networks in the reconstruction of the obiject
function from the projection information. Neural networks,
discussed in more detail in Chapter 3, are highly parallel,
distributed processing systems. Inspired by the topology of the
human brain, neural networks can learn by example. This
application of neural networks developed from the observation
that the filtered backprojection method used in x-ray tomography
can be implemented with a linear, parallel, distributed
processing network. The theoretical development, tracing the
connection from the x-ray case to the ultrasound case, can be

found in Chapter 4.



Following the theoretical basis for the research, the
experimental analysis is presented, starting with Chapter 5 and
a discussion on the field equations needed to generate the
training data for the neural network. Chapter 6 describes the
‘results of tests that offer some insight into the performance of
neural networks. After some successful, preliminary
experiments, a neural network was trained based upon the
theoretical approach using the x-ray analogy . The issues and
results of this approach are discussed in Chapter 7. The use of
neural networks in tomography is new, so future directions of
research are envisioned in Chapter 8, along with a summary of

the results.



CHAPTER 2

METHODS OF ULTRASOUND DIFFRACTION TOMOGRAPHY

2.1 The First Born Approximation

The presence of diffraction effects in wultrasound
tomography prevents the use of straight ray models. Therefore,
no direct methods exist that specify the propagation of acoustic
waves. The first Born approximation is one method used to model

the scattering process. The inhomogeneous wave equation

representing the scattered field ug(r) is given by

us(x) = [ glz-xr') £(x') u(z') dr’ (2.1.1)

where u(r) represents the total field. The impulse response
g(r) and the object function f(r) also appear. The problem with
this equation is that the scattered field ug is given in terms
of the total field u = ug + us. The first Born approximation
considers the scattered field in the integral above to be

negligible compared to the incident field ug, and is given by

us(x) = up(z) = jg(L—L') f(x') up(r') dr'. (2.1.2)

Higher-order Born approximations produce better results, but

reconstruction algorithms do not exist. The first Born



approximation holds only when the scattered field ug is smaller
than the incident field ug. This condition limits the size of
the object, since large objects scatter more than small objects
if the other parameters are identical. This constraint can be

stated in terms of the phase change, ‘A$¢, between the incident

field and the field inside the object given by

Ad = 4m An% (2.1.3)

where An is the change in the refractive index and a is the

radius of the object cylinder. In other words, the first Born

approximation is no longer valid if the phase change is greater

than T.

2.2 The First Rytov Approximation

The Rytov approximation 1s an alternative to the Born
approximation. Instead of considering the size of the scattered
field, the Rytov approximation regards the total field as a

complex phase, u(r) = e¢(1)._ Inserting the phase terms into Eq.

(2.1.1), the inhomogeneous wave equation becomes

upds = jg(:—n') ugl (Vos)2 + £(x')] dx'. (2.2.1)

The Rytov approximation can be made if the term (V(bs)2 is small

in comparison to f(x), yielding



uods = [ glz-r") wo(z') £(z') dr'. (2.2.2)

This equation can be related to the Born approximation by

1

- up (r)
ug (x)

[ oz v @) ax' = FE- 2.2.3)

0s ()

In terms of the Born scattered field up, the Rytov approximation
gives

ug(r) = ugp(x) ln(l;—o% + 1), (2.2.4)

However, the Rytov approximation is wvalid under different

conditions than the Born approximation. Recall that (V¢s)2 must
be much smaller than f(r) to use the Rytov approximation. In

terms of the change in the refractive index, An, this condition

becomes

Vs ) 2

An >> 2 . (2.2.5)
.0

This condition differs from the Born approximation, since the
change in the phase of the scattered field over one wavelength

is important, and not the total phase change through the object.



2.3 Comparison of the Born and Rytov Approximations
Since both methods are approximations, they are not perfect

in every situation. However, these approaches can produce good

results, if certain requirements are met. The Born

approximation requires the phase shift through the object to be

less than T, even if the refractive index is large. The Rytov
approximation holds even for large objects on the order of 100A,
but the change in refractive index must not be larger than a few
percent [Kak and Slaney, 1988]. The Rytov approximation also
depends upon phase unwrapping algorithms when discrete values of
the field are used [Kaveh et al., 1984]. When the object and
the change in refractive index are small, the Born and Rytov

approximations become similar, both giving a good estimation of

U.B.

2.4 The Fourier Diffraction Theorem

The Fourier Diffraction Theorem is similar to the Fourier
Slice Theorem of x-ray tomography in that it relates the 2-D
Fourier transform of the object to the 1-D Fourier transform of
a projection. The difference is that in the Fouriler Slice
Theorem, the Fourier transform of the projection is mapped onto
a straight line in the Fourier domain of the object. Using the
Fourier Diffraction Theorem, the mapping is onto a semicircular
arc with a radius of kg = 2n/A. Both theorems are related. At
very small wavelengths, the Fourier Diffraction Theorem becomes
the Fourier Slice Theorem, since the radius of the arc

increases, causing the arc to straighten. A good discussion on



this topic can be found in Mueller, Kaveh, and Iverson [1980].
For good reconstruction, many projections are needed to fill up
the Fourier space. Then estimates of the object can be made up
to a frequency of deE [Kak and Slaney, 1988]. Unfortunately,
the Fourier Diffraction Theorem is limited to weakly scattering

objects.

2.5 Frequency Domain Interpolation

The Fourier Diffraction Theorem provides the necessary
data, but reconstruction methods using the scattered field
information still need to be mentioned. Frequency domain
interpolation is based on polynomial approximations of the
samples of the scattered field in the Fourier domain. Kak and
Slaney [1988] present a good introduction to this method.
Frequency domain interpolation gives a bilinear interpolation
that can be improved by increasing the sample density in the
resultant frequency domain. Pan and Kak [1983] present a
modification to this method by following the bilinear
interpolation by direct two-dimensional Fourier inversion.
Another method exists called unified frequency domain
interpolation ([Kaveh et al., 1984]. This approach considers the
spatial characteristics of the object. By considering the
object's spatial limit, the interpolation can be carried out by
convolving the Fourier transform of the object by a Bessel
function. If only the main lobe of the Bessel function is used
in the interpolation, the computation is reduced significantly.

Frequency domain interpolation 1s the most frequently



implemented method of reconstruction, due to its computational
efficiency. However, since it is based upon data acquired using
approximations and/or the Fourier Diffraction Theorem, the same
limitations apply to this method. Also with interpolation,

instabilities are possible.

2.6 Filtered Backpropagation

The filtered backpropagation method is an attempt to apply
the computationally efficient and accurate filtered
backprojection algorithm of x-ray tomography to diffraction
tomography. Because the method begins with the Fourier
Diffraction Theorem, the scattered field data 1lie on
semicircular arcs in the frequency domain [Devaney, 1982]. For
each projection, the data are filtered at different depths in
the image. The projection is being smeared back over the image
frame,’ Because this filtering is a discrete process, a pixel
may not necessarily be situated on a known depth line. The
nearest depth is then selected. This process 1s repeated for
every projection, adding up all contributions at a certain
pixel. Although this description is very brief, several
shortcomings of this method can be seen. First, as in frequency
domain interpolation, backpropagation is at the mercy of the
restrictions of the Fourier Diffraction Theorem. Second, this
method 1is not efficient. The implementation of the depth-
dependent filter is computationally intensive. Third, since the

depths are discrete, the algorithm is inexact for pixels not on
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depth lines. Interpolation may be necessary to improve the

results.
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CHAPTER 3

INTRODUCTION TO BACKPROPAGATION NEURAL NETWORKS

3.1 Introduction

The current state of ultrasound tomography is dependent
upon the Born and Rytov approximations and the Fourier
Diffraction Theorem, which are wvalid under certain conditions
only. A new approach is needed that is not restricted by weak
scattering assumptions. Neural networks have been used already
in many different areas. They have been used in optimization
and interpolation problems, as well as in image processing and
pattern recognition. For example, Winters [1988] discusses a
neural network that produces super-resolved images from
ultrasound propagating in air. Other applications in image
reconstruction include the neural network of Yoneyama et al.
[1988] that recognizes objects from ultrasound reflection data.
Neural networks have also Dbeen used to <classify sonar
backscatter from a metal cylinder and a stone [Gorman and
Sejnowski, 19887].

These interesting applications differ from the work
discussed here 1in several 1mportant aspects. First, the
approach taken in this paper uses a neural network to extract
quantitative information from the scattered field. We are not
simply classifying objects. Second, the other techniques deal
with acoustic reflection, instead of transmission tomography.

Third, this work is based upon some theoretical premise, instead
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of being based on a hope that the neural network can solve the
problem. - In this manner, some understanding of the neural
network's functions is gained. This theoretical foundation is
presented in Chapter 4. Even though, some applications may seem
similar to the one presented here, the above differences
illustrate that the application of neural networks to ultrasound

tomography is an original concept.

3.2 Fundamentals of Backpropagation Neural Networks
Many varieties of neural networks exist. A good
introduction to them can be found in Lippmann [1987]. Following
the lead presented in the theoretical development, Chapter 4,
this work focuses on backpropagation neural networks (not
derived from the filtered backpropagation algorithm in Chapter
2). Backpropagation networks are trained using a supervised
learning technique called the delta rule which distributes the
blame for the error back to all the elements in the network
[Rumelhart, Hinton, and Williams, 1985). The origin of the name
comes from this method of learning. Lapedes and Farber [1987]
have shown that backpropagation networks naturally implement the
least mean square rule, allowing solutions of nonlinear system
modelling problems to be discovered. They also predict the
behavior of pseudo-random time series.
Before training can begin, input data must propagate up
through the layers in the network to the output. The typical
network architecture used in this research is shown in Figure

3.1. The network used in this research consisted of three
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layers and a bias. The middle layer is often called the hidden
layer. The nodes are fully connected to the nodes in
neighboring layers. The connections between the nodes or
processing elements hold weights, wvalues multiplied by the
signal passing through the connection. When the weighted
signals reach the processing element, they are added together
internally before passing through a nonlinearity, typically a
sigmoid function, but hyperbolic tangents and sinusoids are also

possible. Figure 3.2 shows an individual processing element.

OUTPUT
(Object Function at (x,y))

HIDDEN

...........

BIAS
Sampled Projection (Real and Imaginary Pressures)

Figure 3.1. Backpropagation neural network.
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[s]
X

Figure 3.2. Processing element.
The process can be represented (using the notation from the

NeuralWorks Professional II manual written by NeuralWare

Incorporated) by

[s] D rIs]  [s-1] [s]
S0 o g Z[w % ) =f(I- ) (3.2.1)

J ji 7i J
i=0
and
[s] 1 . . .
f(Ij ) = [s] for a sigmoid function. (3.2.2)
1+exp(-Ij )

The layers are indexed by s, s-1, etc. The output of node j in

layer s is x3[8], and the connection weight from the ith node in

layer [s-1] to the jth node in layer s is wyil[sl.
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This process describes how data passes through the network.
Training the network is a different process. The weights in the
network are usually initialized to a random value. Training
involves altering the weights to a correct value that gives the
desired output. The training process begins by presenting an
input i to each of the elements in the input layer. These
values propagate through the network to the output layer
according to Egs. (3.2.1) and (3.2.2). At the output layer, the
local error ex is calculated by comparing the network output

with the desired output dg.

e, = dy Oy (3.2.3)

The output processing elements are indexed by k. The connection

weights are then altered according to

[s] _ [s] [s]
iji (t) =Cy e; + C, iji (t-1) . (3.2.4)
The previous weight change is AWji[s](t—l). C1 and Cy represent
learning coefficients. This weight change is calculated for

each connection starting at the output layer and propagated back
to the input. The first term on the right-hand side 1is
dependent upon the local error. The second term, dependent upon
the previous weight change, 1is known as the momentum term. The
purpose of momentum is to speed up the learning process while
preventing the convergence of the network into a local minimum.

Since the delta rule learning method is a gradient descent
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algorithm searching for the global minimum in weight space,
local minima are possible. The network may settle on a solution
that 1s inexact or even nonsensical. Local minima are problems
that the user should be aware of and should avoid. However,
local minima have not prevented many successful applications of
backpropagation neural networks. Chapter 6 discusses the lack
of a local minima problem in this research. After the network
converges to a correct solution, the weights are fixed. The

neural network is now ready to perform the desired task.
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CHAPTER 4

THEORETICAL DEVELOPMENTS

4.1 Statement of Problem

This chapter is devoted to the development of a theoretical
basis for the use of neural networks to solve .tomography
problems. Ultrasound diffraction tomography at wvery high
frequencies approaches the x-ray tomography case. Therefore,
the tomography problem will be stated in terms of x-rays.
Then, a transition to the ultrasound case will be made, bringing
in the concept of neural networks. A good introduction to

computerized tomography was written by Scudder [1978].
4,2 ¥-Ray Tomography

4.2.1 The Radon transform

Tomography, as considered in this work, is the cross-
sectional imaging of an object by illumination at many different
views and collecting projections using transmission information.
The Radon transform is fundamental to the reconstruction of the
image from the projections. The 2-D Radon transform,
corresponding to the term projection in tomography literature,

is given by

P, (t) = ”f(x,y) 8(x cosb® + y sinb - t) dx dy

0 (4.2.1.1)
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where - t = x cosO + y sin@ (4.2.1.2)

and & is the Dicac delta function. The Radon transform is the
collection of one—dimcnsional line integrals through the object.
The object function, the characteristic of interest, is
represented by £(x,y). The geometry used in this case is a
parallel projection. Fan beam geometries are also possible, so
the general equation for the projection or Radon transform is

Pe = J‘ f(x,y) ds

line (4.2.1.3)

where the integrals are measured along lines that form a fan.
The fan beam geometry will be used throughout the remainder of

this work (Figure 4.1).

AN A = _J.
AN S
N\ = a(x,y)
N :
B
N X
Y
- AL N6,
- -\ %

Figure 4.1. Fan beam geometry.
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The typical ultrasound tomography experiment uses the fan beam
geometry. The need to draw a direct comparison between the x-~
ray case and the ultrasound case led to the decision to use the
fan beam geometry, although the reconstruction algorithms are

more complex.

4.2.2 The Fourier Slice Theorem

The Radon transform gives a description of the projection.
Unfortunately, the projection information does not give a direct
reconstruction of this image. The Fourier Slice Theorem is an
important relation stating that the 1-D Fourier transform of a
projection maps to a line or slice in the 2-D Fourier transform

of the object. The Fourier Slice Theorem is given by

SO(W) = J J Pe(t) exp(-j2nwt) dt.
.7 (4.2.2.1)

If enough projections are gathered, the Fourier domain of the
object fills up with lines containing slices of the Fourier
transform of the object. By taking the inverse Fourier
transform, the original image can be reconstructed. One problem
arises, due to the higher concentration of information at the
center of the Fourier domain of the object. Since all of the
projections contribute slices through the origin, some high-
pass filtering is needed to smooth out the extra contributions
at the center. The filtered backprojection algorithm 1is

designed to remedy this problem.
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4.2.3 The filtered backprojection algorithm

X-ray tomography possesses a computationally efficient
inversion algorithm known as filtered backprojection. The
backprojection occurs by integrating the filtered backprojection

data over all the views, according to

2%
f(r,9) = J; Qﬁ(Y) dp (4.2.3.1)
L
0

where

L = L(r,0,B) = \j[D+rsin([3—¢)]2 + [rcos (B-0)]12 (4.2.3.2)

and

rcos (B-9)
D+rsin (B-0)

Y = tan-1 (4.2.3.3)

Qﬁ(y) is the filtered backprojection information at an angle of

incidence B [Kak and Slaney, 1988]. Qﬁ(y) can be found by two
distinct methods, both starting with projection data. Figure
4.2 shows these methods in chart form [Deans, 1983]. The

Fourier method was mentioned earlier. The second route involves

convolving the projection with a high-pass filter.
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R (Radon Transform)
f(x,y) P (psq))
A
B F
(Backprojection) Convolution | (1-D Fourier Transform)
Algorithms

Q(Sr¢) Ikl S S(qu))
£ *Id

Figure 4.2. Methods of filtered backprojection.

The convolution method was used for several reasons. The
purpose of this theoretical work is to design a network that can
perform the filtered backprojection algorithm. The Fourier
transform path requires substantial preprocessing, which is
unjustified in the ultrasound case. Instead of simply entering
the raw projection data, the Fourier transforms of the
projections are needed. Second, a network that implements
Fourier and inverse Fourier transforms must deal with complex
weights. The simple implementation of the convolution route is

not subject to these problems. The filtered backprojection data

Qg (Y) can now be written as a convolution,

Qa (M = Pa(y) @ g(¥)
p p , (4.2.3.4)

where g(Y) represents the high-pass filter. In order to

implement the filtered backprojection algorithm on a network
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containing discrete elements, Eq. (4.2.3.4) must be

discretized.

4.2.4 The discrete filteredi backprojection algorithm

A practical x-ray tomography experiment consists of
discrete transducers, and the projections are gathered at
discrete angles. A network with discrete elements requires the
input data to be sampled. Therefore, the filtered
backprojection algorithm must be discretized. Equation

(4.2.3.1) becomes

M
£lx,y) = = L On .« - (AQY) (4.2.4.1)
x,y) & — . (na) . .2.4.
M 12 (x,v,Br11) Pl
)

The filtered backprojection data Qp(y) become

N-1
= E no-ko) Pp... (ko). 4.2.4.2
=-(N-1)
Discretization poses a new problem, Equations (4.2.4.1) and

(4.2.4.2) assume that the location of interest (x,y) is situated
on one of the lines in the fan beam or, in other words, a line
between the transmitter and a receiver. Therefore, the angle of
incidence, Y, can be matched to nd, where O denotes the angle
increment between adjacent transducers. Interpolation is

necessary between points that do not lie upon one of these
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lines. The discretized equations will be used in a network

implementation of the filtered backprojection algorithm.
4.3 Network Implementations

4.3.1 Carzroll's dimplementation

Carroll and Dickinson [1989] describe how a neural network
can implement the filtered backprojection algorithm. This work
is interesting for several reasons. It shows theoretically that
an analogy can be derived between an algorithm and a neural
network. This exercise illuminates the constraints,
limitations, and practical bounds of‘the neural network, and
provides a method to parameterize a multidimensional function.
This approach allows the user to set the weights, so that
training is not necessary.

Carroll begins with the discretized backprojection equation
(4.2.4.2). Cybenko [1989] shows that any smooth function can be

represented by a linear combination of sigmoids (0O). Using

Cybenko's theorem, Eq. (4.2.4.2) can be replaced by

M

%ri1 T E aj4 Omyex + Dbyg) (4.3.1)

J=1

The convolved filter g(no-ka) and the projection data Pg(ka)

have been replaced by a sum of sigmoids. The remaining

information becomes a constant ajj. The bias is given by bjij.
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Equation (4.3.1) closely resembles the output of a neural

network (Eq. (3.2.1)) with one hidden layer, given by
QB[i] =S 0(x) = E a; O(u;ex + by). (4.3.2)

The network that results from Eg. (4.3.1) is shown in Figure

4.3.

11 a12

Figure 4.3. Carroll's neural network.
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The input to the network is the location information x.
The weights on the connections to the hidden layer contain the
angular information uj. Then the resultant signal, uj®*x + bji,
is passed through sigmoids that are scaled by the factor aj.
The sigmoidal scaling factor contains the projection
information. The hidden layer can be divided into groups of
elements. Each group contains the linear sigmoidal combination
for a particular irradiation view. The output of the network is
the object function at the point of interest.

Several practical problems exist with this method. One
problem is that the filtered backprojection information is
decomposed into a linear combination of sigmoids by the user.
This decomposition may prove very difficult, especially if the
function contains large derivatives. However, since Q is two-
dimensional, the sigmoidal decomposition can be determined using
splines and interpolation. Another problem is the universality
of this method. Only one image can be determined with this
network. However, any location can be entered into the network
and the object function is then computed at that location. The
direction of this work requires that one network can handle any

image. This implementation is discussed in Section 4.3.2.

4.3.2 Linear network implementation

The long-term goal of this research is to construct a
neural network that can image objects, such as tumors, from the
projection information. Therefore, one network must handle any

image presented. The input to this network should be the
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projection information, and the output should be the object
function at the pixel of interest. This network differs from
Carroll's network. The input to that network is the location of
interest.

The following discussion details the implementation of a
linear network, instead of a neural network, that performs the
filtered backprojection algorithm. This linear network will act
as the base from which the extension to ultrasound tomography
will be made. The linear network shown in Figure 4.4 implements

Egs. (4.2.4.1) and (4.2.4.2) in the following way:

1) Select an appropriate point of interest
within the obiject (x,y).

2) Irradiate the object at M equally
spaced angles B{i], i = 1 to M.

3) Gather projection information Pgrij (V).

4) Sample the projection at discrete angle

intervals O to obtain PB(na).

5) Convolve the projection with the high-

pass filter g{(na) where

— n=0

< 0 n even e

g (no)
2

- o«

nasin(na)) n odd

TN

\. (4.3.2.1)
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The sampled projection serves as the input to the netwdrk. The
connection weights contain the high-pass filter information,
shifted to perform the convolution. The network multiplies the
input by the value of the connection weight, and the weighted
signal is then passed on to the summation function. This
process is repeated in the next layer. Therefore, the linear
network (Figure 4.4) realizes the object function at a point

(x,v) for any object.

£(x,y)
(assuming no=1)

_2mo _2mo.
L? M L% M
1 1

_/

M ANGLES g

[ X N N N X ] [ N N N N W ]
g (ng-ko
g (no-ka) g (no~-ko) g (no—-ka)
O Op . (ka)O O O Op, (kay O O
k = -N+1 Bril T k = N-1 K = -N+1 * Bri] Ak = N-1
k=-N+2 k= N-2 k =-N+2 k=N-2

Figure 4.4. Linear network implementation of the
filtered backprojection algorithm.
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If other points of interest are desired, two methods are
possible. Networks with weights set for particular pixels can
be connected together to handle an entire image. This modular
principle of neural networks was demonstrated by Waibel [1989].
Of course, this principle still needs to be evaluated for the
ultrasound networks. Another approach uses only one network.
This network can handle an entire image on a pixel by pixel
basis, using a look-up table. The set of weights does not
change, but they lie upon different connections, depending upon

the view and the location of interest.

4.4 Extension to Ultrasound Tomography

4.4.1 Introduction

The network realization of the filtered backprojection
algorithm can be extended to the ultrasound case. As stated in
Chapter 1, the ultrasound case is considerably more complicated.
Diffraction effects <caused by acoustic attenuation and
refraction effects caused by changes in the speed of sound
result in waves that do not propagate in a straight line.
However, in the 1limit of very high frequencies and in the
absence of refraction, the acoustic and x-ray cases become

analogous, with acoustic attenuation replacing density.
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4.4.2 Consideration of diffraction effects

In the limit of very high frequencies, ultrasound that
insonates a non-refracting, attenuating object produces shadows
with well-defined edges, similar to x-rays. Therefore, starting
with the linear network (Figure 4.4) at a very high frequency, a
smooth transition can be made to the ultrasound diffraction case
by gradually lowering the frequency and introducing a
nonlinearity following all of the network's summation functions.
This nonlinearity transforms the linear summation function into
a neural network processing element (Figure 3.2). The purpose
of a nonlinearity is to endow the network with the ability to
map nonlinear functions. Applied to the ultrasound case, the
neural network can map projection information to a
characteristic that has a nonlinear effect on the scattered
field, such as attenuation or size. This nonlinearity broadens
the range of functions the neural network can learn. In this
case, the most practical nonlinearity is the hyperbolic tangent
function. This choice is made because the projection
information can have negative values, The sigmoid function
extends from O to 1, but the hyperbolic tangent ranges from -1
to +1. Of course, 1if the magnitude of the projection
information is greater than 1, the input-output pairs presented
to the network during training need to be scaled to within -1
and +1.

Every time the network is used to generalize to other
values, the projection data need to be scaled in the same

manner. In order to keep the analogy to the x-ray case valid,
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the input-output pairs should be linearly scaled, so that the
initial connection weight values are not changed from the x-ray
case values. After slightly reducing the frequency and adding a
gentle nonlinearity, the network is trained using input-output
pairs of data generated at the high frequency. The training
will slightly alter the weights, compensating for the added
small effect due to diffraction. This process is repeated until
the network is trained at a suitable ultrasound frequency. As
well as compensating for diffraction effects, the network avoids
local minima in weight space. This desirable quality occurs
since the network has been partially trained by the use of
initial weights from the x-ray case. The network converges
faster and along a gradient that offers the best solution, not
along a random gradient.

Sometimes a neural network is not necessary to perform the
inversion of tomography data. If the following three conditions
hold, then a linear network can be used. First, the geometry
must be known. Second, the geometry must be simple. Third, the
object function must have a linear effect on the scattered
field. 1If the first two conditions hold, the user can calculate
the effects of diffraction and alter the connection weights
accordingly. If the third condition does not hold, a neural
network is needed to map the nonlinear relation. If any one of

those conditions 1s not wvalid, then the neural network is

necessary.
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4.4.3 Consideration of zrefraction and diffraction
effects

The previous theoretical discussion can be extended to
acoustic speed reconstruction, by incorporating phase
information. In this case, refraction, as well as diffraction,
effects are now present. Again, starting from the x-ray case,
assume that the phase information can be collected. The object
function is now complex, i1f acoustic attenuation and change in
acoustic speed are regarded. The real and imaginary parts of
the object function can be calculated separately using two
distinct linear networks. The ultrasound case requires that the
networks for the real and imaginary parts be interconnected
(Figure 4.5). The connections between the networks for the real

and imaginary parts are necessary since both refraction and

f(x,y)

Network for the Network for the
Real Part of the Imaginary Part of
Object Function the Object Function

Real Part Imaginary Part
of Projection of Projection

Figure 4.5. Interconnection scheme to handle
refraction and diffraction effects.



32

diffraction effects contribute to the scattered field in such a
manner that their individual effects cannot be separated. The
initial weights in the interconnections must be set to small
random values, since they have no relation to the x¥ray case.
The weights within each discrete network can be set initially to
the x-ray case. Knowledge of these weights a priori can still
decrease the training time and prevent against falling'into
local minima. The network must be trained more than in the case
when only diffraction is present, due to the added inter-
connections. The interconnected scheme with these initial
weights can be trained as in the case with only diffraction
present. The resulting network can accurately invert projection

data from refracting and diffracting objects.
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CHAPTER 5

EXPERIMENTAL SYSTEM

5.1 Introduction

The theoretical development presented in Chapter 4
concluded that a neural network is naturally suited to perform
the inversion of ultrasound tomography data. This idea now
needs to be tested. This chapter details the experimental
geometry and the data generation used in the neural network
analysis. Questions that need to be answered include the
positioning of the transducers, the kind of source, the kind of

scatterer, and the generation of training data for the network.

5.2 Location of the Transducers

Several options exist for the placement of the transducers.
The first situation resembles the typical tomography experiment.
The transmitter is located on a ring of transducers surrounding
the object. This geometry was used in preliminary experiments
that tested the basic capabilities of neural networks. The
second geometry, commoh in x~ray tomography, is called parallel
beam. This method involves scanning the obiject along a line
perpendicular to the direction of propagation. Then the entire
set of transducers is rotated around the object. This technique
ls perhaps the simplest to express mathematically. The third
method, called the fan beam, resembles the first method except

that the transmitter is located in the center of the ring of
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receivers, instead of on the ring. The projection information
can be gathered simultaneously without moving the transmitter,
as in the parallel beam case. Although the fan beam geometry 1is
faster in practice, it 1is also slightly more complicated
mathematically. The fan beam geometry was used in the
theoretical development with the x-ray analogy. Therefore, this
geometry should be used when making the transition from the x-

ray case to the ultrasound case.

5.3 Programming Considerations for the Geometry

Two programs were written to generate the transducer
locations, one for each of the two different fan beam
geometries. The first program, called points.for, deals with
the geometry with the transmitter on the ring of transducers.
The second program, called fan.for, generates transducer
locations for the geometry with the transmitter in the center of
the transducer ring. These programs were written in Microsoft
Fortran. The computer used was a Tandy 4000 with 640 kbytes of

memory.

5.4 The Source Type

Several kinds of sources are possible. The intention is to
use one that is closest to the x-ray case as possible. One
problem is that sound does not propagate in the same manner as
x-rays. Because x-rays travel in straight lines, geometric ray
tracing techniques can be used. One possible source would be a

plane wave. This source is similar to the x-ray source, and is
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desirable. Another possibility, also well-suited for the fan
beam geometry, is the line source. Unfortunately, this source
does not replicate the x-ray case. However at high frequencies,
rays perpendicular to the outgoing c¢ylindrical wave can
approximate the x-ray case. However, the density of the rays
decreases as the energy spreads out over a larger area, causing
the intensity to decrease as 1/r. The ray density iésue does
not cause a problem with the projection information. The
projection contains a ratio of the total field over the incident
field. 1In this situation, the 1/r term is cancelled out. The
attenuation due to the scatterer is much larger than the
decrease due to ray spreading. The projection information from
the plane wave source was compared to the line source, and found
to be identical. Therefore, the line source was used in the

experiments.

5.5 Experimental Target

The object or target must possess several characteristics.
The target should be a simple shape for the initial experiments.
A benefit of using a simple shape is that the exact scattered
field can be calculated for any location. These field equations
are discussed in Section 5.8. If the object is a simple shape
determined by the experimenter, then the first two conditions
discussed in Section 4.4.2 are valid. An interesting experiment
can be performed (Section 6.6.2) to test the appropriateness of
a neural network by varying object functions that have a linear

effect and those that have a nonlinear effect on the scattered
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field. For these reasons, an infinite, c¢ircular cylinder was
chosen as the target.‘ An additional benefit of the cylinder is
derived by exploiting symmetry (Section 5.6). The cylinder will
be used throughout the remainder of this work. Many
characteristics can be varied, such as the radius, the acoustic
speed, the attenuation, and the location. The neural network
can be tested on its effectiveness at quantifying these
parameters. Other targets can be used, including complicated
shapes with many inhomogeneities. In this case, other methods
are needed to generate the neural network training and test
data.

Finite element methods can be used to generate training
data when the target is highly heterogeneous or irregular. The
finite element method, along with variants such as the finite
difference method, provides a powerful tool for approximating
solutions to differential equations [Zienkiewicz and Morgan,
1983]. The finite element method begins by dividing up the
field into sections, such as triangles or hexagons, in order to
generate a grid or mesh. The vertices of adjacent sections form
nodes. The object function at the nodes of the grid yields a

large set of simultaneous equations that solve the differential

field equations. These equations can construct a very sparse
matrix. The sparsity arises since each node belongs to only
several bordering sections or elements. Exploiting the

sparsity, the matrix can be inverted, providing a solution at

the nodes. If the grid is constructed with the nodes at the
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transducer locations, then the field can be known to a high
degree of accuracy.

The computational requirements of the finite element method
prevent its use in this work. For good approximations, 10
elements are needed in each wavelength. For instance, the
division of the area of a transducer ring with a radius of 75 mm
requires on the order of 10!2 elements when the frequency is
2 MHz. This wvery large matrix 1is difficult to invert.
Therefore, hardware restrictions kept this work from using the
finite element method to find the field surrounding the obiject.
The area of the target is very small in comparison to the area
of the transducer ring, so that changes in the field are small
outside of the target. The finite element method becomes very
wasteful in the semi-infinite area beyond the target. A method
by Winkler [1986] uses infinite elements based upon a Green's
function in that area.

When very complicated targets are needed, perhaps for
medical diagnosis, the training data <c¢an be obtained
experimentally. In some situations, however, acquiring large

sets of data may be difficult.

5.6 Symmetry Considerations with Cylindrical Object
Perhaps, the best reason to use an infinite, circular
cylinder is to take advantage of its circular symmetry. This
symmetry allows the user to make initial experiments with a
small neural network. In order to reconstruct any object, many

views around the target are needed. If 1000 transducers
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surround the object, the projection is being sampled 1000
times. Then the transmitter is rotated around the object at
1000 locations, resulting in 1000 views. Using the x-ray
approach, each view has 1its own set of input processing
elements, so the resulting input layer contains 106 input
elements. This neural network is too large for the current
capabilities of the computer and software used. (Section 6.1
discusses the hardware and the neural network software.) In
order to test the neural network, a different approach needs to
be taken. If the point of interest is located at the origin and
the homogeneous cylinder is centered at the origin, only one
view is necessary with the fan beam geometry. This concept can
be explained by considering the linear network (Figure 4.4).
The projections are identical for each view around the object.
The weights from the input to the hidden layer and those from
the hidden layer to the output are the same for each view.
Therefore, the signal leaving the hidden layer, Q, is the same
for each view. Therefore, if there are M views, the output of
the hidden layer would be M Q. Fortunately, the weights from
the hidden layer to the output depend upon the reciprocal of M.
This factor divides the output of the hidden layer by the number
of views, causing the output of the network to be independent of
the number of views. Only one view is needed to describe the
object function at the origin, since there are, in essence, an
infinite number of views, If the point of interest is not at
the origin, the projection information is still the same due to

the symmetry of the object. However, the weights containing the
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filter information vary for each view. The term (no-ko)

changes, because n varies with the view.

Another advantage of using the origin as the point of
interest is that the lines of the fan beam intersect there for
every view, Interpolation is not necessary to determine
contributions from views where a line from the source to the

transducer does not pass through the point of interest.

5.7 Experimental Geometry

Using the fan beam geometry, the line source, and the
cylindrical target, the geometry approximates the x-ray, fan
beam geometry. Figure 5.1 shows the geometry with the source on
the transducer ring, and Figure 5.2 has the transmitter at the
center of the ring. In both figures, the source is the open

circle, and the cylinder is at the origin.

Figure 5.1. Fan beam with source on
transducer ring.
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transducer n

Figure 5.2. Fan beam with source at the
center of the transducer ring.

5.8 Exact Field Equations

This section presents the exact field equations associated
with the acoustic scattering of an incident cylindrical wave by
an infinite circular cylinder. This situation is not commonly
found in the literature. A similar problem is discussed in
Morse and Ingard [1968], using a plane wave source instead. A
cylindrical wave i1s used in a derivation by Shenderov [1962],
but the c¢ylinder is rigid. However, Cavicchi {1988] provides
exact field equations for this situation.

The equations for the incident and scattered fields are
basically combinations of Bessel and Hankel functions. Im(2)
represents a Bessel function of the mth order with an argument

z. Hp(2)(z) represents a Hankel function of the second kind
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with mth order and an argument z. A Hankel function of the
second kind and mth order is related to a Bessel function by
Hn(2) (z) = Im(2) - 3¥m(z).

Using the same notation used in Figures 5.1 and 5.2, the

incident cylindrical wave is given by
£inc(r,¢) = Jo(kor) Ho(2) (koR)

+ 2 Y Jn(kor) Hp'® (koR)cos(md).  (5.8.1)
m=1

Equation (5.8.1) represents an expansion of the incident field

equation. If the source is centered at the origin, then finc =
Ho(2) (kgrs) . Since the source is not at the origin, the
expansion must be used. Several equations are needed to fully

specify the scattered field, given by

OO
£SC(r,d) = E Sy Hm(?) (kor) cos(m$p) (r2a). (5.8.2)
m=0
The symbol, a, denotes the radius of the cylinder. The

scattered field weighting coefficients, Spn, need to be
specified. First consider m = 0. The welghting coefficient Sy

is

So = (-1/Ag) [J1(koa) Jg(kia) -
Jo (koa) Ji(kia) 2Zr] Ho(2) (koR) (5.8.3)

where
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Ao = H1(2) (kga) Jg(kia) - Ho(2) (koa) Ji(kia) Zr. (5.8.4)

Now consider the case where m > 0. Sy is given by

Sm = (-2/Ap) Hp'?) (kgR) {JIm(kia) [Jm+1(koa) - Jm-1(koa)]

= JIm(koa) [Jm+1(kia) = JIm-1(kia)] Zr} (5.8.5)
where
Ap = Jp(kia) [Hpt1(?) (kga) - Hp-1(2) (kga)]
- Hp(?) (koa) [Jm+1(kia) = Jm-1(kia)] Zr. (5.8.96)

The complex impedance is given by

Po o Qg C¢q

fi

Zr (5.8.7)

P1 ¢ @

where o1 is the attenuation in (Np/mm), and ® is the frequency

in M radians s~1. The acoustic speed in (km/s) and density of
the cylinder are given by c¢1 and p1. The symbol kg denotes the
wave constant of the surrounding medium. Then the total field
is simply denoted by £ = f£sc 4 fginc [Cavicchi, 1988]. These
equations are used to generate neural network training and test

data.
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5.9 Programming Considerations for the Field Equations

The program origcyl.for generates the exact field at the
transducer locations specified by points.for or fan.for.
Figure 5.3 shows a block diagram explaining the various sections
of origcyl.for.

When generating training and test data for the neural
network, origcyl, points, and fan act as subroutines. Various
master programs using these subroutines can provide large sets
of data with varying parameters of the cylinder. These master
programs, such as alearn and atest, control whether the object
function is variéd incrementally or randomly.

The program origcyl.for has restrictions on its use, due
to the Bessel function library, hankel.lib. This library was
written by Donald Amos of Sandia National Laboratories [1986].
Bessel_and Hankel functions can be calculated easily when the
frequency is on the order of 1 MHz. However, the issue of the
Bessel function calculations needs to be considered whenever the
acoustic frequency is on the order of x-ray frequencies. The
Bessel function routines by Amos consider many different kinds
of functions at large and small arguments and orders. The
program also offers error flags. However, all calculations of
Bessel and Hankel functions with 1large arguments must be

verified.
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CHAPTER 6

PRELIMINARY EXPERIMENTS

6.1 Motivation

Several experiments were conducted to determine basic
performance characteristics of neural networks on tomography
data. These investigations were kept simple in order to avoid
introducing extraneous parameters. The neural networks were
simulated on a serial computer, the Tandy 4000, wusing the
NeuralWorks Professional II package by NeuralWorks Incorporated.
All of these preliminary experiments used the fan beam geometry
with the source on the ring of transducers surrounding a

circular cylindrical target.

6.2 The Effect of Learning Rates on Convergence

In order to keep the tests very simple, these first
experiments used the acoustic speed in the cylinder as the
object function. As stated in Section 4.4.2, a neural network
is not necessary in this case. For this experiment, a problem
is selected that the neural network can definitely solve. The
first experiment involved varying the learning rate and the
momentum term. The simple backpropagation neural network had 32
input elements that accepted the real and imaginary pressures,
scaled between 0 and 1, from each of the 16 transducers
surrounding the object. Due to the symmetry of the geometry,

only 9 of the 16 transducers were necessary. However, all 16



47

were used at this time, 1in order to avoid unnecessary
considerations. The hidden layer contained 8 elements. This
selection was random. The issue of hidden layer size will be
addressed in Section 6.6. The output layer contained 3
elements. This binary output classified the acoustic speed in
the object into three ranges. Each test began by randomizing
the ‘connection weights, A convergence criterion caused the
training process to end when the RMS error in one of the output
elements fell below 0.002. This choice was not important, since
the relative changes were of interest. The learning coefficient
Ci1 was held constant at 0.4, and the momentum term Cp was varied
between 0.0 and 0.9. Figure 6.1 shows the effect of changing
the momentum term on the number of presentations of input-output
training pairs needed to meet the convergence criterion. In
general, when the momentum coefficient is made larger, the
neural network needs fewer presentations to converge. The
deviations shown in Figure 6.1 could be due to the different
initial weights used in each test. When Cz i1s equal to 0.9, the
network falls into a local minimum. This occurrence can be seen
from the graph. The network converged with very few
presentations relative to the other tests. However, after
testing, the network was found to have converged incorrectly.
For the next set of tests, the momentum term was fixed at
0.3, and the learning coefficient was varied between 0.1 and
0.9. Figure 6.2 shows the effect of varying C; on the

convergence rate. This test was repeated with C2 equal to 0.6,
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and again with 0.9. Cz is equal to 0.3 and 0.6 for the top and

bottom curves, respectively, in Figure 6.2.

Effect of Momentum on Convergence Rate
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Figure 6.1. The effect of the momentum coefficient on the
number of presentations needed for convergence.
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The conclusion of these tests is that whenever C1 or Cz is
increased, the neural network needs fewer presentations to
learn. However, when both of the coefficients are increased to
a certain degree, the network converged quickly into a 1local

minimum.

6.3 The Effect of Small Data Sets

The next set of experiments examined the effect of small
training sets on the learning process. This experiment used
neither the tomography data nor the fan beam geometry, because
the neural network needed a very difficult problem this time.
If the problem were too easy, the network may solve the problem
so the relative difficulty of using small training sets may not
be discernible. The input layer, consisting of 9 processing
elements, received various tissue parameters, including the
attenuation of sound at various frequencies in rat liver, the
absorption, the mean speed 1in the 1liver, and the mean
heterogeneity index. The output layer consisted of four units
that gave the continuous-valued water, protein, lipid, and
collagen information. Each input-output pair required the
sacrifice of an animal, so the size of the training set was very
restricted, on the order of 20 pairs, as opposed to 80 pairs
used 1in the previous set of experiments. This backpropagation
network started with two hidden layers each with 30 processing
elements. Because the neural network was unable to learn with
this morphology, the size of the hidden layers was reduced to 8

elements. One reason for the failure of this morphology was
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that the error, or blame, was spread among too many elements.
Instead of trying to obtain four output functions
simultaneously, the output layer was reduced to one element for
the water content. With C; set at 0.2 and Cz set at 0.05, the
neural network converged after 184,500 bresentations. The
network recalled the training data perfectly, but it failed to
generalize to parameters other than those used during training.
Several other attempts were made by varying the learning rate
and the size of the hidden layer. These details will not be
mentioned since the network failed to generalize in every case.
Another simplification was attempted. Again, the water
content was the function of interest, but five binary units were
used to classify the output into ranges, instead of the one
continuous-valued output. The network received 820,494 training
presentations. Again, the result was the same. When the
training set contained too few input-output pairs, the neural
network could recall the same information used during training,
but the network failed to generalize to parameters previously

unseen.

6.4 The Use of Continuous-Valued Outputs

The previous experiments, except for those using the small
training set, dealt with binary outputs. Continuous=-valued
outputs are more challenging for the neural network. In the
binary case, the network classifies the object function into
ranges of values. If one of the outputs is close to 1, above

0.8 for example, and the others are close to 0, below 0.2, then
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the output is conclusive. Continuous-valued outputs will give
an approximation to the actual value. Therefore, the output
needs to be more precise. The next set of experiments was

identical to the first involving acoustic speed as the object
function, but the output was analog. The network was trained
until convergence. When presented with a recall set of data
different from the training set, the network generalized

correctly.

6.5 The Effect of Scaling

Scaling is the usually nonlinear transformation of the
input or output data to within 0 and 1. The purpose of scaling
is to move some or all input-output pairs to within the range of
the sigmoidal nonlinearity. By scaling in a certain manner,
selective pairs can be emphasized. This technique can be useful
to determine the information that the neural network correlates.
Scaling is not presented in much detail in this work, but
further directions are 1likely to pursue this issue. The
previous experiment, wusing continuous-valued outputs and
acoustic speed as the object function, was repeated using
scaling. The output data were scaled evenly between 0 and 1.
This kind of scaling was needed to separate closely spaced
output values. if the analog outputs are too close to each
other, the neural network may not be able to distinguish them.
The network was able to generalize better with scaling than

without, confirming the theory.
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6.6 Network Morphology

6.6.1 Methods of morphological determination

Morphological issues include the number of hidden layers
and the number of processing elements in each hidden layer for
optimal performance of the neural network. Cybenko [1989]
proved that one hidden layer is theoretically sufficient to map
any function, but more hidden layers may be more efficient in
practice. However, the size of the hidden layer still needs to
be discussed. If the hidden layer has too few elements, the
network will not be able to learn the function. TIf the hidden
layer has too many elements, the weight space becomes more
complicated, and the possibility of the network converging into
a local minimum increases. The training time increases when
extra hidden layer elements are added. The theoretical approach
of Chapter 4 gives an indication as to the network morphology,
but the situation needs to be examined experimentally.

Several approaches have been suggested to discover the
optimal hidden layer size. Sietsma and Dow [1988] offer a
method called pruning. An estimate is made as to a hidden layer
size that is larger than necessary for learning to occur. The
output of each hidden layer 1s examined after presenting each
input-output pair. The elements with outputs that do not change
and the elements that function identically to another element
are not considered to contribute to the solution. Then these
extra units are deleted or pruned one by one. Then the weights

are fine-tuned by presenting the input-output pairs several more
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times. This method offers good results. Unfortunately, pruning
is not practical with the tomography problem. For example, if
the initial hidden layer contains 10 elements and the training
set contains 100 input-output pairs, then the user needs to
compare 100 outputs from these 10 elements. This task is very
difficult. Also, this method still requires guesswofk when
considering the initial hidden layer size. |

A different approach called dynamic node creation 1is
presented by Ash [1989]. This method starts out with a hidden
layer that is too small for learning. When the output error is

unchanged over many presentations of training data, the network

is not able to converge to a solution. Then another hidden
layer element is added. This process is repeated until the
network converges. One issue with this method is the training

time compared to the guesswork and to starting with an overly
large hidden layer. Ash presents some experimental results
suggesting that node creation 1s computationally efficient.
However, this method creates many new issues. For example, the
number of presentations needed before another element is added
and the error criterion needs to be examined. This method is
feasible with the tomography problem, but implementation of this
algorithm is difficult.

A different method called weight analysis was created in

the course of this work. This technique graphically displays
the dynamics of the connection weights. Figure 6.3 shows the
typical weight analysis diagram. Each bar, representing a

connection weight, is made up of a series of thin bars that
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represent that the value of the weight after a certain number of
training presentations. If the end of the bar is flat, then the
weighg did not change (element 8 in Figure 6.3). This constant
weight signifies that either the connection is not contributing
to the solution or that the initial, random weight was close to

the correct value.
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Figure 6.3. Weight analysis diagram.
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In order to determine the significance of the unchanging
weight, that weight should be randomized to a different value.
After more training, if the weight still remains constant, then
that connection can be deleted. This method offers a morphology
that is more fine~tuned than the other methods, because the
deletions are made connection by connection, instead of removing
an entire element at one time. Of course, if all of the
connections leading into an element are deleted, that element
can be deleted. A negative aspect of this method is that the
initial size of the hidden layer is still determined by
guesswork. This analysis is an interesting direction to be
pursued in the future.

Ideally, a mathematical analysis can be developed, allowing
the prediction of a good network morphology for a given problem.
This method would allow an optimal network to be created
directly after specifying the problem and would eliminate the

time-consuming guesswork.

6.6.2 Experimental determination of morphology

The optimal hidden layer size for the ultrasound tomography
problem was found in several experiments. The experimental
model of tissue was a circular cylinder insonated by a 2 MHz
line source. A ring of 16 transducers, with one acting as the
transmitter, surrounded the c¢ylinder. The radius of the
transducer ring was 75 mm. The medium surrounding the cylinder

had the acoustic properties of water.
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The first experiment used a non-attenuating cylinder with a
radius of 0.5625 mm. The network was trained with acoustic
speeds varying from 1526 ms~l to 1625 ms~l. Although a neural
network was not necessary for this simple problem, a network
with just one hidden layer element learned with the greatest
accuracy, confirming the simplicity of this problem.

The second experiment involved varying the radius from
0.454 mm to 0.754 mm, while keeping the speed constant at
1576 ms~1l. The neural network was necessary for this kind of
problem, since the radius has a nonlinear effect on the
scattered field. The networks were trained with different
numbers of elements in the hidden layer, using a training set of
80 input-output pairs. The entire training set was presented
20,000 times to each network. After training, the weights were
fixed, and a test set was presented. The test set consisted of
80 pairs, using random radii within the training range that the
network had not seen before. The input was the real and
imaginary scattered field pressure information from the
transducers. The output was the radius. The neural network
with 13 hidden layer elements learned with the greatest accuracy
with an RMS error of 0.00829. Figure 6.4 shows a plot of the

results.
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RMS ERROR VS. NUMBER OF HIDDEN LAYER UNITS
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Figure 6.4. Results of experiments with radius object function.

Networks with more than 16 hidden layer elements failed to
learn after 20,000 presentations, suggesting that larger
networks require many more presentations to learn, or have a
greater likelihood of falling into local minima in weight space.
Neural networks can learn to calculate a difficult object
function, such as the radius of a cylinder, from its scattered
field data. The network could possibly achieve still greater
accuracy by adjusting parameters, such as the learning rate,
initial weight values, and scaling of the data, as well as the

size of the hidden layer.
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CHAPTER 7

EXPERIMENTS BASED UPON THEORETICAL DEVELOPMENT

7.1 Statement of Purpose

Chapter 4 shows theoretically that neural networks are
naturally suited to perform the inversion of ultrasound
tomography data. Chapter 6 shows that neural networks can
indeed find solutions, using such object functions as acoustic
speed gnd radius of the cylinder. However, an interesting
process would be to confirm experimentally the theoretical
conclusions of Chapter 4. This experiment involves starting
with a network that performs the filtered backprojection
algorithm for the x-ray case. Then this network is trained to
compensate for diffraction effects introduced as the wavelength
increases. Only diffraction effects will be considered in this
chapter. Several issues must be addressed before performing
this experiment, including the representation of the projection
information and the experimental geometry at the x-ray

frequency.

7.2 Representation of the Projection Information

At very high frequencies, the ultrasound case approaches
the =x-ray case, with acoustic attenuation replacing density.
Therefore, the x-ray projection can easily be transformed to the

ultrasound projection. For the x-ray case
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ray

I = Ig exp (— I R(x,¥) dsJ (7.2.1)

where I is the received intensity, Ig is the source intensity,

and UL is the density. For the ultrasound case, Eq. (7.2.1) can

be rewritten as

I = Ip exp |- I o(x,y) ds) (7.2.2)
ray
where o 1is the acoustic attenuation. Since the ultrasound

propagates along a straight ray at high frequencies,

_f o(x,y) ds = o X (7.2.3)

ray

where X 1is the distance the wave travels through the object.

Then evaluating the line integral gives

o X = -1n (j%) . (7.2.4)

In terms of the pressure field, £,

lfinc +fsc|2

o X = lfinc|2 . (7.2.5)
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This information will serve as the input to the neural network

conceived in Chapter 4.

7.3 Very High Frequency Experiment

In order to confirm the linear network conceived in Section
4.3.2, an experiment was conducted at a wvery high frequency.
The actual frequency was not important. The relevant issue was
that the ultrasound should propagate 1like x-rays. The
transducers behind the object in relation to the source register
a decrease in the intensity relative to the intensity at that
location if no object was present. The transducers record the
incident field magnitude. In terms of the projection, the
samples are mostly =zero, except behind the object where the
projection is a positive value.

This experiment uses the fan beam geometry with the source
at the center of the transducer ring with a radius of 75 mm
(Figure 5.2). The object with a radius of 1 mm is located at
the origin, causing the distance from the center of the object
to the source to be 37.5 mm. In order to get fair
reconstruction, 1001 transducers surround the object, but only
the 17 transducers located in the shadow behind the object have
non-zero projection values. Since the point of interest was the
origin, only one view was needed (Section 5.6). Therefore, just
17 projection samples served as the input to the linear network.
The network multiplied the filter value (Egq. (4.3.2.1)) to each
of the input values. When n-k is an even number, the filter is

equal to 0, eliminating some of the inputs. The remaining 9
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filtered samples were then added together. Then, the resulting

signal was weighted by & L2, where L was equal to 37.5 mm. The
final weight modification was 2% M, where M was equal to 1 for a
single view,

The first experiment used a target with an attenuation of
0.4 Np mm~l, The output of the network was 0.40569, an error of
1.42%,. Of course, the error could be improved if more samples
were used. The second test had an attenuation of 0.1 Np mm-1,
The network result was 0.10142, again an error of 1.42%. The
error was identical in both situations since the network is
linear.

The next experiment investigated the error when the
location of interest was not on the axis connecting the source
and the center of the object. Using an angle of 0.01883 radian
from the axis and an attenuation of 0.4 Np mm~l, the network
gave an output of 0.37853, an error of 5.37%. This increase in
error 1s not surprising, because more views are required for
spatial resolution when the point of interest is off-axis. The
point on the axis giving the exact value of 0.4 was located
36.48 mm from the source, a discretization error of -1.02 mm.

These experiments confirm the linear network developed from
“the theory. In combination with the experiments of Chapter 6,
the successful groundwork has been laid for ultrasound

tomography using neural networks.
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CHAPTER 8

CONCLUSIONS

8.1 .Summary

Ultrasound tomography 1is a safe, inexpensive diagnostic
tool. Unfortunately, the inadequacies of current reconstrﬁction
algorithms hinder its effective implementation. This work
summarized these current algorithms and their faults. A
theoretical conception c¢oncluded that neural networks are
naturally suited to perform the reconstruction. This idea was
created by showing that a linear, parallel distributed
processing (PDP) network can implement the filtered
backprojection algorithm for the x-ray case. Then this theory
was extended to the ultrasound case by realizing that x-rays and

ultrasound at x-ray frequencies propagate in an analogous

manner. Then a neural network was conceived by introducing
nonlinear elements into the network. This neural network can
then be trained to compensate for diffraction effects. The

theory was extended to include refraction as well as diffraction
effects by combining two neural networks in a modular fashion.
Then several preliminary experiments were conducted, proving
that neural networks are capable of solving tomographic
reconstructions from projection information. These experiments
also looked into several important areas, such as learning
rates, training data generation, data representation, local

minima, and morphological issues. These experiments introduced
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several important considerations, and provided the support
needed to begin the next task: training a neural network based
upon the theory. The linear network conceived theoretically was
tested at very high frequencies. The success of this network at
high frequencies lends credence to the success of the neural

network at lower frequencies.

8.2 Future Directions

The ultimate goal of this work is to reconstruct high
quality, ultrasound tomographic images using a neural network.
The next stage of this research is to confirm the theory, using
the linear network tested successfully in Section 7.3, lowering
the frequency and training for diffraction effects. The
importance of using the theoretical network is that a morphology
and initial weights are known a priori. Starting with the
weights from the x-ray analogy, instead of random weights, can
decrease the training time and the possibility of convergence
into a local minimum. Then the refraction effects need to
accounted for by training the network conceived in Section
4,4.3. After confirming the theory, basic research is required,
since the behavior of neural networks is not well understood.
Several areas need to be explored such as the training, data
representation, and morphological issues introduced in previous
chapters.

After this work is completed, the scale of the problem
should be increased to handle an entire image with

inhomogeneities. A neural network to reconstruct a 100 x 100
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pixel image requires 10,000 interconnected smaller networks that
can input both real and imaginary pressures. Assuming that 100
samples are taken from every one of 100 projections, the input
layer of each component network contains 10,000 processing
elements. The entire input layer contains on the order of 106
elements, and the output layer contains 10,000 elements.
Although this network is very large, neural network hardware,
using optical or VLSI implementations, will be able to handle a
problem of this magnitude.

Other advantages of neural networks include the possibility
of greater accuracy than current reconstruction algorithms,
because the neural network does not make any weak scattering
assumptions. Neural networks are limited only by the accuracy
of the training data and the effectiveness of the training,
making the understanding of training and morphological issues
very important. Another benefit is that neural networks can be
fine-tuned, according to machine-dependent variables.

Although much research in this area is still needed, the
foundation has now been built to perform accurate reconstruction
using ultrasound. Neural networks can learn characteristics

about a scanned object from its projection data.
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