

Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, 405 North Mathews, Urbana, Illinois 61801

(Received 3 July 2003; accepted for publication 4 August 2003)

PACS numbers: 43.80.Vj, 43.80.Qf, 43.10.Vx [ADP] Pages: 2967–2968

The initial formulation of the problem in Ref. 1 did not separate out the coherent and incoherent scattering. While the form of the attenuation-compensation terms will not be affected, the error analysis was not complete. In reformulating the theory to separate out the coherent and incoherent scattering we start with revised Eqs. (10) and (11) from Ref. 1

\[r_{dx}(t) = s(t + 2d_1/c) + s(t + 2d_2/c) + s(t + 2d_3/c) + \ldots \]

and

\[|R_{dx}(f)| = |S(f)| \times \left| e^{-i2\pi f(2d_1/c)} + e^{-i2\pi f(2d_2/c)} + e^{-i2\pi f(2d_3/c)} + \ldots \right|. \]

The second term on the right hand side of Eq. (11) simplifies as

\[e^{-i2\pi f(2d_1/c)} + e^{-i2\pi f(2d_2/c)} + e^{-i2\pi f(2d_3/c)} + \ldots \]

\[= \bar{n} \sum_{i \neq j} ^n 1 + \bar{n} \sum_{i \neq j} ^n e^{-i2\pi f(2d_i/c - 2d_j/c)}, \]

where the first term on the right hand side is the incoherent scattering term and the second term is the coherent scattering term, and \(\bar{n} \) is the number of scatterers in a unit length, \(dx^2 \). Simplifying Eq. (11b) yields,

\[e^{-i2\pi f(2d_1/c)} + e^{-i2\pi f(2d_2/c)} + e^{-i2\pi f(2d_3/c)} + \ldots \]

\[= \bar{n} + \Phi_{coh}. \]

Relating Eq. (11c) to (11) gives

\[|R_{dx}(f)| = |S(f)| \bar{n}^{1/2} \left(1 + \frac{\Phi_{coh}}{n} \right)^{1/2}. \]

The term under the radical can be expanded as

\[\left(1 + \frac{\Phi_{coh}}{n} \right)^{1/2} = 1 + \frac{\Phi_{coh}}{2} \bar{n} - \frac{1}{8} \left(\frac{\Phi_{coh}}{n} \right)^2 + \ldots = 1 + \Phi'_{coh}, \]

where \(\Phi'_{coh} < \Phi_{coh} \) for \(\bar{n} \gg 1 \). As \(\bar{n} \) (number density) becomes large, \(\Phi'_{coh} \approx \Phi_{coh} \). Multiplying by the round trip propagation loss gives a revised Eq. (12) as

\[|R_{dx}(f)| = |S(f)| \bar{n}^{1/2} \left(1 + \Phi'_{coh} \right) e^{-2\alpha f/x}. \]

Integrating Eq. (12) over the length of the gate, \(L \), gives

\[|L(f)| = |S(f)| \bar{n}^{1/2} \frac{1}{L} \int_0^L (1 + \Phi'_{coh}) e^{-2\alpha f/x} dx. \]

Equations (17)–(19) would then be rewritten as

\[|R_{dx}(f)|^2 = |S(f)|^2 \bar{n}(1 + \Phi_{coh}), \]

\[|R_{dx}(f)|^2 = |S(f)|^2 \bar{n}(1 + \Phi_{coh}) e^{-4\alpha f/x}, \]

\[|L(f)|^2 = |S(f)|^2 \bar{n} \frac{1}{L} \int_0^L (1 + \Phi_{coh}) e^{-4\alpha f/x} dx. \]

Omit (20). Equations (24)–(27) would then become

\[W_{oo}(f) = \frac{|P(f)|^2 |S(f)|^2}{L^2} \bar{n} \left[\int_0^L (1 + \Phi'_{coh}) e^{-2\alpha f/x} dx \right]^2. \]

\[\epsilon_{oo}(f) = \frac{|P(f)|^2 |S(f)|^2}{L} \bar{n} \left(\frac{2}{A_{oo}} \int_0^L \Phi'_{coh} e^{-2\alpha f/x} dx \right)^2 + \frac{1}{L} \int_0^L (1 + \Phi'_{coh}) e^{-2\alpha f/x} dx. \]
\[
\epsilon_{OO}(f) = \frac{|P(f)|^2 |S(f)|^2}{L} \tilde{n} \left(2 \int_0^L \Phi_{\text{coh}} e^{-2\alpha(f)x} dx + \frac{1}{L} \left(\int_0^L \Phi'_{\text{coh}} e^{-2\alpha(f)x} dx \right)^2 \right),
\]

(26)

\[
\epsilon_{OM}(f) = \frac{|P(f)|^2 |S(f)|^2}{L} \tilde{n} \int_0^L \Phi_{\text{coh}} e^{-4\alpha(f)x} dx.
\]

(27)

As the number of scatterers, \(\tilde{n} \), increases the \(\Phi'_{\text{coh}} \) term falls off much more rapidly than the \(\Phi_{\text{coh}} \) term. Consequently, the error term for the Oelze and O’Brien compensation becomes smaller relative to the error term from Eq. (27) for increasing \(\tilde{n} \).

We are grateful to Anthony Gerig and James Zagzebski at the University of Wisconsin-Madison for bringing this error to our attention. This work is supported by NIH F32 CA96419 to MLO.
