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Objectives—To develop and evaluate deep learning models devised for liver fat
assessment based on ultrasound (US) images acquired from four different liver
views: transverse plane (hepatic veins at the confluence with the inferior vena
cava, right portal vein, right posterior portal vein) and sagittal plane (liver/
kidney).

Methods—US images (four separate views) were acquired from 135 participants
with known or suspected nonalcoholic fatty liver disease. Proton density fat frac-
tion (PDFF) values derived from chemical shift-encoded magnetic resonance
imaging served as ground truth. Transfer learning with a deep convolutional neu-
ral network (CNN) was applied to develop models for diagnosis of fatty liver
(PDFF ≥ 5%), diagnosis of advanced steatosis (PDFF ≥ 10%), and PDFF quan-
tification for each liver view separately. In addition, an ensemble model based on
all four liver view models was investigated. Diagnostic performance was assessed
using the area under the receiver operating characteristics curve (AUC), and
quantification was assessed using the Spearman correlation coefficient (SCC).

Results—The most accurate single view was the right posterior portal vein, with
an SCC of 0.78 for quantifying PDFF and AUC values of 0.90 (PDFF ≥ 5%)
and 0.79 (PDFF ≥ 10%). The ensemble of models achieved an SCC of 0.81 and
AUCs of 0.91 (PDFF ≥ 5%) and 0.86 (PDFF ≥ 10%).

Conclusion—Deep learning-based analysis of US images from different liver
views can help assess liver fat.

Key Words—attention mechanism; convolutional neural networks; deep
learning; nonalcoholic fatty liver disease; proton density fat fraction; ultrasound
images

Nonalcoholic fatty liver disease (NAFLD) is the most
common chronic liver disease worldwide.1,2 Currently,
biopsy is considered the gold standard for liver fat

grading.3 Liver biopsy, however, is costly and may lead to
significant complications, including pain and bleeding. Fat grades
determined using biopsy may also be unreliable due to sampling
errors and subjective analysis of histology slides, which is usually
performed by a single pathologist.4 Confounder-corrected chemi-
cal shift-encoded magnetic resonance imaging (CSE-MRI) can be
used to determine proton density fat fraction (PDFF) and has
been shown to have excellent performance for assessing liver fat.5–8

While CSE-MRI methods are accurate and noninvasive, access to
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this imaging modality is costly and limited. Ultra-
sound (US) imaging may be a good alternative to
CSE-MRI because this imaging modality is noninva-
sive, portable, and more widely available and used,
making it a potentially attractive option for NAFLD
diagnosis and quantification.4

Various liver US image features, including vessel
obscuration, posterior beam attenuation, and elevated
liver-kidney contrast ratio, have been associated with
liver fat.9,10 Accumulation of fat modifies backscatter-
ing properties of liver tissue,11 making the liver
brighter in comparison to neighboring tissues, such as
the kidney.12,13 In addition, blood vessels within the
liver become blurred or obscured as liver fat increases
due to signal attenuation. To assist radiologists in
interpreting US images, various computer-aided diag-
nosis systems have been proposed.14,15 Currently,
deep learning methods based on convolutional neural
networks (CNNs) are gaining attention in medical
image analysis.16 In comparison to standard
approaches to image recognition, which require fea-
ture engineering, deep learning algorithms can auto-
matically process images to extract useful features for
classification. Commonly, the first convolutional
blocks of a deep network extract low-level features
related to image texture, while deeper layers utilize
features to determine high-level concepts related to
the appearance of the whole image. Moreover, several
methods have been proposed to help understand how
deep learning models conduct image recognition, so
neural networks are no longer perceived purely as a
“black box.”17 However, medical image datasets are
often inadequate to develop a well-performing deep
model from scratch.16,18 Consequently, transfer learn-
ing is applied with a deep model pretrained on a large
set of nonmedical images to adjust the model to the
medical problem of interest. Transfer learning with
pretrained CNNs was applied for liver fat assessment
in recent studies.19,20 For instance, deep features
extracted from a pretrained CNN were used to develop
regression models for PDFF quantification and fatty
liver diagnosis based on a single sagittal view depicting
both liver and kidney.19 Other authors fine-tuned a dif-
ferent CNN for fatty liver diagnosis.20 In another work,
small regions of interest (ROIs) collected from homo-
geneous portions of the liver were used to develop a
CNN from scratch for fatty liver diagnosis.21 Moreover,
in a recent study, radiofrequency US data extracted

from liver were utilized to train one-dimensional con-
volutional networks for the quantification of liver fat
and NAFLD diagnosis.22

Following these promising results, we applied
transfer learning with a pretrained deep CNN to
assess liver fat using US images. Compared to the
previous studies, we assessed the usefulness of four
different US views of the liver for liver fat assessment.
The rationale was that different views contain addi-
tional tissue features, such as blood vessels or kidney,
which could potentially improve model performance.9

In addition, we explored whether the deep learning
model logic can be visually explained by employing
the class activation mapping (CAM) technique to
highlight regions in liver images weighted by the
models for fatty liver diagnosis.17

Materials and Methods

Study Design and Participants
This was an exploratory analysis in a prospectively
conducted study at the University of California, San
Diego (UCSD). An institutional review board
approved this study. All procedures performed in
studies involving human participants were in accor-
dance with the Ethical Standards of the University of
California, San Diego, USA and with the 1964 Hel-
sinki Declaration and its later amendments or compa-
rable ethical standards. Written informed consent was
obtained. Research participants were recruited pro-
spectively between 2016 and 2018 by a hepatologist.
Inclusion criteria were age ≥18 years, known or
suspected NAFLD, and willingness and ability to par-
ticipate. Exclusion criteria were clinical, laboratory, or
histology evidence of a liver disease other than
NAFLD, excessive alcohol consumption (≥ 14 (men)
or ≥7 (women) drinks/week), and steatogenic or
hepatoxic medication use. Demographic and anthro-
pometric data were recorded. Hepatic US and MRI
research examinations were performed on the same
day if possible or otherwise within 60 days.

US Protocol
A standardized US protocol was designed in consen-
sus by a fellowship-trained abdominal faculty radiolo-
gist, a US medical physicist, and two experienced
registered diagnostic medical sonographers. The
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protocol was electronically added to the scanner with
a preset sequence designed to efficiently and consis-
tently capture the required US views in the same
order. US was performed (Siemens S3000, 4C1 trans-
ducer, Siemens Healthineers, Germany) on each par-
ticipant by one of three experienced (>10 years)
registered diagnostic medical sonographers trained in
the protocol. Sonographers were free to adjust scan-
ner parameters to capture the best-quality images for
each view and participant, with participants
suspending breathing on shallow expiration. US
images from the following four views were included
in this study’s analysis for each participant:
• Three views in transverse plane: hepatic veins at
the confluence with the inferior vena cava, right
portal vein, and right posterior portal vein

• One view in sagittal plane: liver and kidney

These views were selected based on their favor-
able performance in previous papers.9,10 Importantly,
each view is routinely obtained during clinical US
exams of the liver.

MRI Protocol and PDFF Estimation
MRI was performed at 3T (Signa HD, GE
Healthcare, MN) with participants supine and an
8-channel torso phased-array coil centered over the
liver. PDFF was estimated with a gradient recalled
echo acquisition and magnitude-based reconstruction
technique. A low flip angle was used to minimize T1
bias, and six gradient-recalled echoes were acquired at
successive nominal out-of-phase and in-phase echo
times to separate fat and water signals while calculat-
ing and correcting for T2* signal decay.23 Using a
custom algorithm, the PDFF was computed pixel by
pixel to generate PDFF maps. Blinded to US results,
a trained analyst placed 1-cm radius ROIs in each of
the nine Couinaud segments. The PDFF values from
each ROI were averaged to yield composite per-
participant PDFF values.

Model Development and Evaluation
We developed two types of models. First, a regression
model was designed to quantify liver fat; the ground
truth was PDFF as a continuous variable. Second, we
designed two classifiers to diagnose fatty liver; the
PDFF values for classification were set to 5 and 10%,
respectively—5% is a common threshold for diagnos-
ing NAFLD, while 10% is a common threshold for

enrolling patients in clinical trials.24,25 All models
were developed by transfer learning with the ResNet-
50 CNN pretrained on the ImageNet dataset.26,27

Images were cropped to remove nonrelevant data,
such as dark borders and annotations. To generate
more data for the training and to promote learning
that would be insensitive to image perturbations
expected to occur in clinical practice, small image
shifts (up to 20 pixels) in the lateral direction were
applied before image cropping. In addition, liver
images were reflected horizontally.

To enable the CNN to extract features from the
US images, the images were resized using bicubic
interpolation to 224 × 224 pixels and preprocessed
following the settings originally designed for the pre-
trained CNN.26,27 Next, the images were input to the
network, and the neural features were extracted from
the CNN’s global average pooling block, which aver-
ages image representations generated by the preced-
ing convolutional blocks, producing 2048 features.
Based on the extracted features, a logistic regression
algorithm with L1 loss was used to develop diagnosis
models, and the Lasso regression method was used to
develop PDFF quantification models.19 Similarly, the
Lasso method due to L1 (absolute value of magni-
tude) regularization promotes the selection of sparse
and efficient feature sets for regression.5 In addition,
we used the CAM technique to highlight regions
weighted by the models for fatty liver diagnosis on
liver US images for each view separately for the classi-
fication cutoff of PDFF of 5% (Appendix 1).17

We initially developed the classification and
regression models for each of the four US views sepa-
rately. To leverage the combined information from
the four views, we applied a multiview learning
approach; the outputs of models trained separately
for each view were averaged to give the final estimate
(hereafter referred to as “averaged multiview
model”).

Participant-specific leave-one-out cross-validation
was applied to assess the performance of all models
(all four single-view diagnoses, all four single-view
quantifications, multiview diagnosis, multiview quanti-
fication). For each training round, the training set
comprised data from 134 participants, and the test
results were calculated using the data from the single
left-out participant. For each training round, we addi-
tionally applied a stratified 4-fold cross-validation, and
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the grid search method was used to select the better-
performing algorithm hyperparameters. Cost func-
tions for the classifiers were weighted inversely
proportional to the corresponding class frequency to
address class imbalance. For the Lasso regression, the
cost function was adjusted for each participant using
weights inversely proportional to the PDFF value
frequencies.

Statistical Analysis
To evaluate the performance of the model-based classi-
fiers, we performed receiver operating characteristic
(ROC) analyses and calculated areas under the curve
(AUC). Differences in mean AUC values calculated
using the bootstrap method were compared with the
Welch’s t-test with Bonferroni correction. In addition,
using the point on the ROC curve closest to the upper
left corner (0, 1) as a diagnostic cutoff, we calculated
accuracies, sensitivities, and specificities of the classi-
fiers.7 For each regression model, we calculated the
Spearman correlation coefficient (SCC) and Pearson’s
correlation coefficient (PCC) to assess the monotonic-
ity and linearity between the models’ outputs and
PDFF values, respectively. To compare the regression
results produced by different models, we used the
Meng test.6,28 In addition, Bland–Altman analysis was
applied to compare the performance of the multiview
learning model and the better-performing single-view

models. MATLAB 2019a (Mathworks, MA) and
Python 3.5.2 were used for calculations. The pretrained
network was implemented in Keras 2.2.4 with Ten-
sorflow backend.29

The class activation maps were reviewed retrospec-
tively and qualitatively by two authors (MB and MA)
in consensus without blinding to explore how the
highlighted areas relate to features known to be used by
radiologists in assessing steatosis subjectively.

Results

Participants Characteristics
A total of 135 adult participants (76 female, 59 male)
recruited in chronological order met the eligibility
criteria and were included in the analysis. Their mean
age and body mass index values were 52 � 13 years
and 31 � 5 kg/m2, respectively. The distribution of
the per-participant PDFF values in the study cohort
is presented in Figure 1. Seventeen participants had

Figure 1. The distribution of the magnetic resonance proton den-
sity fat fraction (PDFF) values in the dataset. A PDFF cutoff value of
≥5% was used as the reference standard for the diagnosis of fatty
liver disease.

Figure 2. Three sets of ultrasound images (four views)
corresponding to livers with different PDFF values of 7, 19, and
39%, respectively. Increasing fat accumulation causes blurring of
veins and can obscure the liver/kidney interface. PDFF, proton
density fat fraction. Blood vessels and kidney region were indi-
cated with white arrows.
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PDFF<5%, 51 had PDFF<10%, and 5 had
PDFF>30%. This distribution of PDFF is representa-
tive of the local clinical population with known or
suspected NAFLD. Figure 2 shows three sets of four

US images corresponding to livers with PDFF values
of 7, 19, and 39%, respectively. Significant vein blur-
ring and lower liver/kidney contrast can be observed
due to the increasing fat accumulation.

Table 1. Performance (Mean � Standard Deviation) of the Models Developed using Ultrasound Images Corresponding to Different Liver
Views and Both Multiview Methods

View or model AUC Accuracy Sensitivity Specificity

Hepatic veins 0.85 � 0.03 0.80 � 0.04 0.80 � 0.05 0.82 � 0.06
Right portal vein 0.83 � 0.04 0.68 � 0.09 0.66 � 0.11 0.82 � 0.09
Right posterior portal vein 0.90 � 0.03 0.81 � 0.03 0.79 � 0.04 0.94 � 0.05
Liver/kidney 0.76 � 0.04 0.81 � 0.06 0.83 � 0.07 0.65 � 0.08
Averaged multiview model 0.91 � 0.03 0.81 � 0.04 0.80 � 0.05 0.88 � 0.05

Model averaging corresponds to averaging all of the outputs of models developed for each view separately. Cutoff for training was set to fat
fraction of 5%. AUC—area under the receiver operating characteristic curve. Accuracy, sensitivity, and specificity were calculated using a
threshold defined as the point on the AUC curve closest to the left upper corner.

Figure 3. The receiver operating characteristic curves obtained using better performing single and multiview approaches to fatty liver diag-
nosis for the fat fraction cutoff set to (A) 5% and (B) 10%. The areas under the curves were equal to 0.90 (cutoff of 5%) and 0.83 (cutoff of
10%) for the posterior portal vein and hepatic veins views, respectively. The areas under the curves were equal to 0.91 (cutoff of 5%) and
0.86 (cutoff of 10%) for the averaged multiview model.

Table 2. Performance (Mean � Standard Deviation) of the Models Developed Using ultrasound Images Corresponding to Different Liver
Views and Both Multiview Methods

View or model AUC Accuracy Sensitivity Specificity

Hepatic veins 0.83 � 0.03 0.79 � 0.03 0.81 � 0.05 0.76 � 0.05
Right portal vein 0.77 � 0.03 0.75 � 0.03 0.70 � 0.04 0.82 � 0.05
Right posterior portal vein 0.79 � 0.03 0.73 � 0.03 0.73 � 0.05 0.75 � 0.05
Liver/kidney 0.77 � 0.03 0.72 � 0.03 0.69 � 0.05 0.76 � 0.05
Averaged multiview model 0.86 � 0.03 0.85 � 0.02 0.83 � 0.03 0.88 � 0.04

Model averaging corresponds to averaging all of the outputs of models developed for each view separately. Cutoff for training was set to fat
fraction of 10%. AUC – area under the receiver operating characteristic curve. Accuracy, sensitivity, and specificity were calculated using a
threshold defined as the point on the AUC curve closest to the left upper corner.
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Performance
Table 1 lists the performance results obtained for the
diagnosis models developed for each view separately
and by employing the multiview learning approaches.
In the case of the single liver views and the PDFF cut-
off of 5%, the largest AUC value of 0.90 was achieved
for the view of the right posterior portal vein in the
transverse plane. The lowest AUC value of 0.76 was
achieved for the view including the liver/kidney. The
highest AUC value of 0.91 was achieved by the
averaged multiview model but was not significantly
higher than for the right posterior portal vein view

Table 3. Fat Fraction Quantification Performance of the Models
Developed Using Ultrasound Images Corresponding to Different
Liver Views and Both Multiview Methods

View or model SCC PCC

Hepatic veins 0.75 0.72
Right portal vein 0.54 0.51
Right posterior portal vein 0.78 0.77
Liver/kidney 0.58 0.61
Averaged multiview model 0.81 0.78

Model averaging corresponds to averaging all of the outputs of
models developed for each view separately. All Spearman and
Pearson’s correlation coefficients (SCC and PCC, respectively)
were statistically significant (P-values <.01).

Figure 4. The relationships and Bland–Altman plots obtained in the case of the Lasso regression for (A) the averaged multiview model
(SCC = 0.81, PCC = 0.78) and (B) the composite multiview model (SCC = 0.73, PCC = 0.70). PDFF, proton density fat fraction, SCC, Spear-
man correlation coefficient, PCC, Pearson’s correlation coefficient.

Byra et al—Liver Fat Assessment in Sonography With Deep Learning

180 J Ultrasound Med 2022; 41:175–184



(P-value >.01). Results obtained for the classifiers
developed for the PDFF cutoff of 10% are presented
in Table 2. The highest AUC value, 0.83, was
obtained for the view of the hepatic veins, while for
the remaining views, AUC values ranged from 0.77 to
0.79. The averaged multiview model achieved an
AUC value of 0.86. ROC curves for the better-
performing methods are presented in Figure 3.

Table 3 lists the performance results obtained for
the PDFF quantification models developed for each
view separately and by employing the multiview
learning approach. Correlation coefficients, SCC and
PCC, calculated for all regression models were statis-
tically significant (P-values <.01). Among the four
individual views, the highest SCC of 0.78 and PCC of
0.77 were achieved by the view that included the right
posterior portal vein. The averaged multiview model

achieved SCC and PCC values equal to 0.81 and
0.78, respectively. However, the differences between
the multiview quantification model and the model uti-
lizing the right posterior portal vein view were not
significant (P-value >.01). The relationships and
Bland–Altman plots of MRI-PDFF and those using
machine learning approaches are shown in Figure 4.
The models underestimated PDFF values when the
MRI-PDFF exceeded 30%, resulting in bias values of
approximately 15% for the higher PDFF values as
presented in Bland–Altman plots in Figure 4.

Figure 5 shows representative class activation
maps generated using individual-view deep learning
models on a patient with an average PDFF of 17%.
This case was correctly assessed by all four classifiers.
Regions highlighted with red and blue correspond to
positive and negative weights, respectively, on the
attention maps. As depicted, blood vessel-liver and

Figure 5. Activations maps generated for different views of a cor-
rectly classified case with proton density fat fraction of 17% using
classifiers trained for each view separately. Blood vessels and kid-
ney region were indicated with white arrows. Red color is related
to positive weights in the class activation mapping method, while
blue regions correspond to negative weights. The models assign
strongly positive weights to upper parts of images and assign
strongly negative weights to portions of the liver with characteristic
image features (eg, blood vessels or liver/kidney regions). Notice
rib shadows in the posterior portal vein and liver/kidney views.
CAM stands for the class activation map.

Figure 6. Activations maps generated for different views of mis-
classified cases using classifiers trained for each view separately.
Blood vessels and kidney are indicated with white arrows. In com-
parison to the maps obtained for a correctly classified case from
Figure 5, these maps show lower performance at highlighting char-
acteristic image features (eg, blood vessels or liver/kidney
regions), which could be explained by the presence of a con-
founder, such as the posterior shadowing of the gallbladder in por-
tal vein and posterior portal vein views. CAM stands for the class
activation map.
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liver-kidney regions are highlighted in blue, whereas
superficial portions of the liver are highlighted in red.
In comparison, Figure 6 shows activation maps
obtained for misclassified cases, where the CAM tech-
nique performed worse at highlighting important
image features.

Discussion

Our study illustrates the feasibility of deep learning
methods for assessing liver fat with four US views of
the liver routinely obtained for clinical care, using
contemporaneous MRI-PDFF as the reference stan-
dard. By using transfer learning with a pretrained
CNN, we developed well-performing models for fatty
liver diagnosis and liver fat quantification. Our study
shows that all four liver views can yield good individ-
ual diagnostic performance. Thus, each view provides
useful image features for liver fat assessment, and
those features can be extracted by deep learning.
Moreover, combining outputs from the individual-
view models may improve the diagnostic performance
as illustrated by the slightly better performance scores
obtained by the multiview approach in comparison to
the single-view methods. This may also result from
the fact that different views were acquired from differ-
ent parts of the liver; therefore, the overall estimates
might be closer to those obtained using MRI, which
reflects whole-liver PDFF by averaging PDFF values
from each anatomic liver segment.

In a previous study of qualitative US image fea-
tures for hepatic steatosis assessed by experienced
radiologists, vein blurring was among the most impor-
tant individual liver features.9 Our study confirmed
that that the vein-blurring liver feature is important
for liver fat assessment. However, our result was
obtained by using an automated algorithm rather than
image interpretation by radiologists. Moreover, the
model based on views presenting veins achieved
higher performance than the liver/kidney view.

The results presented here confirm the usefulness
of deep learning methods for fatty liver assessment
presented in two previous papers19,20 in which trans-
fer learning with a CNN was applied to classify fatty
liver images. The first paper reported a high AUC
value of 0.977.19 The deep learning model was devel-
oped using a set of 55 participants with histology

analysis of liver biopsies as the ground truth. The sec-
ond paper reported a high AUC value of 0.96 with a
deep learning method using a set of 157 liver
images20 for which the radiologist’s qualitative score
was used as the ground truth. Due to different
datasets, enrollment criteria, and reference standards,
it is difficult to directly compare the results reported
in previous papers with the presented study. In our
study, PDFF values derived from CSE-MRI served as
the ground truth. The advantage of our approach is
that PDFF is quantitative, objective, noninvasive,
accurate, reproducible, and representative of the
whole liver.30 In comparison, histological analysis of
liver biopsy specimens is subjective and prone to spa-
tial sampling variability.3 The present study’s deep
learning fat fraction estimates are limited by the accu-
racy of the MRI PDFF values.

To our knowledge, this is the first study assessing
attention maps for CNN-based liver assessment. The
CAM technique can be potentially useful for identify-
ing the regions on liver images more important for
the deep learning models. In the case of the three
transverse liver views (Figure 5), the model
highlighted the superficial part of the liver (red, posi-
tive weights) and hepatic-vessel interface veins (blue,
negative weights). Similarly, in the case of the fourth
view, the liver area and the liver-kidney area were
highlighted. Our observations suggest that the models
may have focused on image features known to be rel-
evant for qualitative liver fat assessment by radiolo-
gists.9,10 On the other hand, the activation maps
obtained for the misclassified cases (Figure 6) were
more difficult to assess. For these maps, the impor-
tant regions were not highlighted as clearly as in the
case of the correctly classified images. Our qualitative
results show that the CAM technique may help assess
the performance of the classifier. However, an in-
depth systematic study of the attention maps may be
warranted to better understand their usefulness in
liver image analysis. It has to be stated that, for our
study, we collected only the images corresponding to
the views that were reported to be useful in the previ-
ous papers.9,10 As the models need to average the
attention maps to assess liver fat (see Appendix E1),
the decisions taken by the models are based on the
presence of particular US image features, such as
veins, and the appearance of the liver. The presence
of these image features is responsible for the specific
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activations of the deep learning models and the
appearance of the generated attention maps. There-
fore, in the future, it would be interesting to include
images from other liver regions and investigate
whether those can further improve liver fat assess-
ment and what portions of those images are
highlighted by the CAM.

The main limitation related to our study is the
relatively small number of cases in the dataset, so it
cannot be robustly divided into separate training, vali-
dation, and test sets. In addition, the dataset was rec-
ruited from a clinical population taken in
chronological order and thus is a representative sam-
ple for diagnostic purposes but probably not for
screening. Not surprisingly, there is a reduced num-
ber of participants with low fat content <5% and very
high fat content >30%. However, for deep learning
training methods, it is unbalanced with respect to
liver fat content. We used transfer learning with a sin-
gle pretrained deep CNN that served as a fixed fea-
ture extractor, and it would be interesting to assess
the usefulness of different pretrained networks. More-
over, we did not assess the impact of possible con-
founders, such as gallbladder, rib shadows, and
gallstone shadows, on the performance of the deep
learning models. Such confounders can be difficult to
avoid in some patients, making the models less robust
in practice.

Future work may benefit from a larger study pop-
ulation that may even allow training a deep learning
model from scratch. This might also result in more
suitable and precise CAMs.31,32 For example, the so-
called interpretable CNNs automatically relate con-
volutional filters in deep layers with image objects
during training, giving more precise activation maps
than the traditional CNN models (30). Furthermore,
studies of repeatability and reproducibility, including
comparisons of different scanners and operators, are
needed to address the generalizability of the methods
presented here. Variability in the acquisition of the
image views and contributions of artifacts also need
to be studied. Deep learning models developed using
images from a particular liver view may overfit to
image features that are unique to this particular view,
such as the presence of veins. Given the spatial vari-
ability of liver structure and its adjacent tissues, for
the model to work in a clinical setting, it would likely
require a precisely controlled acquisition protocol

such as that employed in this study to collect the 2D
US data in comparable planes. The scanner operator
would need to be trained to acquire the same views
that were used to develop the computer-aided diag-
nosis system and to minimize artifacts. Thus, the per-
formance of the 2D liver fat assessment deep learning
method might be operator- or protocol-dependent.

Conclusion

In this study, we applied deep learning to develop
efficient regression and classification models for fatty
liver assessment based on US images collected from
different liver views. CAMs depicted that the deci-
sions taken by the deep models can be interpreted,
and it preliminarily appears that they can be approxi-
mately related to the image features usually taken into
account by radiologists.
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