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ABSTRACT:
The ultrasonic attenuation coefficient (ACE) can be used to classify tissue state. Pulse-echo spectral-based attenua-

tion estimation techniques, such as the spectral-log-difference method (SLD), account for beam diffraction effects

using a reference phantom having a sound speed close to the sound speed of the sample. Methods like SLD assume

linear propagation of ultrasound and do not account for potential acoustic nonlinear distortion of the backscattered

power spectra in both sample and reference. In this study, the ACE of a sample was computed and compared using

the SLD with two independent references (high attenuating and low attenuating phantoms but with similar B/A val-

ues) and over several pressure levels. Both numerical and physical tissue-mimicking phantoms were used in the

study. The results indicated that the biases in ACE increased when using a reference having low attenuation, whereas

the high attenuating reference produced more consistent ACE. Furthermore, increments in ACE vs input pressure

were correlated to the log-ratio of Gol’dberg numbers between the sample and reference (R2 ¼ 0:979 in simulations

and R2 ¼ 0:734 in experiments). Therefore, the results suggest that to reduce bias in ACE using spectral-based meth-

ods, both the sound speed and the Gol’dberg number of the reference phantom should be matched to the sample.
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I. INTRODUCTION

The attenuation coefficient is an acoustical property of

tissues and has been used as a quantitative ultrasonic param-

eter for tissue characterization, including recent studies in

liver (Jeon et al., 2019), breast (Nasief et al., 2019), placenta

(Deeba et al., 2019), or indirectly in muscle (Weng et al.,
2019), among other biological tissues. Empirical results

from studies have found that the attenuation coefficient,

aðf Þ, for several soft tissues follows a power-law function vs

frequency f, i.e., aðf Þ ¼ a0f c, where a0 is an attenuation

coefficient factor and c is the frequency dependent exponent,

commonly c 2 ð1; 2Þ (Cobbold, 2017, p. 74). Hence, current

methods for estimating attenuation coefficients are per-

formed mainly in the frequency domain. Moreover,

spectral-based methods in pulse-echo mode for attenuation

estimation in vivo using backscattered signals assume that

the power spectrum of a region of interest is proportional to

the product of the system acquisition effects (scanner, trans-

ducer, and diffraction) along with effects derived from

intrinsic acoustic properties of the medium (cumulative

attenuation and backscatter coefficient) (Labyed and

Bigelow, 2011; Mamou and Oelze, 2013). Furthermore, as

found by Fatemi and Greenleaf (1996), in pulse-echo experi-

ments, the envelope of backscattered signals from a region

of interest is susceptible to changes in the input pressure lev-

els. For example, an increment of the peak pressure as low

as 9 dB could generate strong distortion of the echo enve-

lope measured from a wire target. Such distortions in the

echo envelope manifest as excess attenuation at the larger

input pressure levels, i.e., an estimated attenuation of the

medium can be dependent on the input pressure level. This

phenomenon occurs due to the inherent acoustic nonlinear

propagation in the propagation path between the transducer

and the targeted region. However, to the authors’ knowl-

edge, no study has been conducted to quantify how nonlin-

ear distortion affects the estimation of attenuation when

using pulse-echo spectral-based methods.

In a fluid nonlinear medium, the degree of nonlinearity

is typically characterized by its nonlinearity parameter B/A,

where A and B are the first and second order terms in the

isentropic power series expansion of the total pressure P
(equilibrium pressure P0 plus acoustic pressure p) as func-

tion of density q, namely, the adiabatic equation of state

P¼ P0þ
@P

@q

����
q¼q0

ðq� q0Þ þ
@2P

@q2

����
q¼q0

ðq� q0Þ2þ � � � ;

(1)

where q0 is the equilibrium density, A � ð@P=@qÞjq¼q0
and

B � ð@2P=@q2Þjq¼q0
. Whereas truncation of the Eq. (1) up

to the first order provides the linear acoustic wave equation,

truncation up to the second order term can later be combined

with the equation of momentum and equation of continuity

of fluids (also truncated up to the second order) to obtain

nonlinear expressions for the acoustic pressure (Pierce,a)Electronic mail: acoila@illinois.edu, ORCID: 0000-0002-2924-3888.
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1989, Chap. 11) of a propagating mono-frequency acoustic

plane wave. An important result of this treatment is that

sound speed has a dependence of the acoustic pressure and

distortion of the propagating wave further results in genera-

tion of the second, third, and higher order harmonics. These

harmonics require that energy be transferred out of the fun-

damental frequency. Moreover, other effects such as shock

waves and saturation can be observed. Hence, when using

ultrasound for imaging tasks, such as medical diagnostics, it

cannot be assumed that these nonlinear phenomena will be

absent. Because backscattering from soft tissues is small

compared to the incident field, in order to improve the sig-

nal-to-noise ratio for specific imaging tasks, larger input

pressure levels (excitation levels, energy levels, etc.) are

often used during data acquisition resulting in a higher like-

lihood of nonlinear distortion of the ultrasound.

A descriptive parameter for nonlinearity, called the

Gol’dberg number, provides a rule of thumb to predict the

degree of acoustic nonlinearity anticipated during the trans-

mission of a plane wave with frequency f0 in a lossy media.

The Gol’dberg number is computed as C ¼ bkM=aðf0Þ
(Kinsler et al., 2000), where k is the wave number,

b � 1þ ½ð1=2ÞB=A�, is the nonlinearity coefficient of the

medium, M is the Mach-number equal to the particle veloc-

ity amplitude at the source divided by the equilibrium sound

speed of the medium, and aðf0Þ is the attenuation coefficient

of the medium. C� 1 predicts the acoustic nonlinearity to

be negligible, whereas C� 1 predicts significant nonlinear-

itiy can be expected to develop. Moreover, a large

Gol’dberg number implies that a non-negligible generation

of harmonics (2f0, 3f0, etc.) and energy transferred out of the

fundamental frequency f0 occurs at short propagation distan-

ces. Similar behavior (generation of harmonics) could be

expected for a broadband pulse wave propagation where

there is a band of frequencies propagating rather than a

mono-frequency wave, in which case a second and third har-

monic bands are generated out of energy from the funda-

mental frequency band.

Most pulse-echo based attenuation estimation methods

use the power spectra of the fundamental frequency band. In

a previous study, we demonstrated that the presence of non-

linear distortion adversely affects estimates of the backscat-

ter coefficient changing both the slope and magnitude of the

backscatter coefficient spectrum (Coila and Oelze, 2019).

The slope of the backscatter coefficient is affected by non-

linearity because the strength of the nonlinear distortion is

higher with higher frequency. Therefore, we aim to quantify

how much the harmonic generation might also lead to inac-

curacies in attenuation coefficient estimation when using a

spectral-based estimation method, especially when large

acoustic pressures are used. In the present work we analyzed

a representative method for attenuation coefficient estima-

tion in the frequency domain, namely, the spectral log dif-

ference (SLD) method for estimating the attenuation

coefficient. In this paper, analysis of attenuation coefficient

estimation inaccuracy in the presence of nonlinear media

will first be performed in numerical simulations using the k-

Wave toolbox (Treeby et al., 2012) and then corroborated

with experiments in physical phantoms. The acoustic pres-

sure amplitudes used in this work were within the Food and

Drug Administration (FDA) regulated limits for diagnostic

ultrasound determined by the mechanical index

(MI � PNP=
ffiffiffiffi
f0
p

< 1:9), where PNP is the peak negative

pressure (after derating by a factor of 0.3 dB/cm/MHz when

measured in water).

II. METHODS

A. Spectral log difference

Assuming linear acoustic propagation, the power spec-

tra of two gated windows (proximal and distal relative to the

transducer surface) in a sample can be written as

Sðf ; zpÞ ¼ Pðf ÞDðf ; zpÞrðf ; zpÞe�4aSðf ÞðzpÞ;

Sðf ; zdÞ ¼ Pðf ÞDðf ; zdÞrðf ; zdÞe�4aSðf ÞðzdÞ;

where zp and zd stand for the depths of proximal window

and distal window, respectively. Dðf ; zpÞ and Dðf ; zdÞ cor-

rect for the beam diffraction at the locations of the gated

windows, P(f) includes the frequency-dependent effects of

the system acquisition and transducer, rðf ; zpÞ and rðf ; zdÞ
correspond to the backscatter coefficients of the gated win-

dows, and aSðf Þ is the attenuation coefficient of the sample.

Assuming a region with uniformly distributed scatterers spa-

tially, rðf ; zpÞ / rðf ; zdÞ, then only the diffraction effects

need to be compensated for estimation of aSðf Þ. For this pur-

pose, additional backscattered signals are acquired from a

well-characterized reference phantom using the same acqui-

sition settings and transducer. The power spectra from two

gated windows in the reference phantom located at the same

axial positions as those used in the sample are

SRðf ; zpÞ ¼ Pðf ÞDRðf ; zpÞrRðf ; zpÞe�4aRðf ÞðzpÞ;

SRðf ; zdÞ ¼ Pðf ÞDRðf ; zdÞrRðf ; zdÞe�4aRðf ÞðzdÞ;

where the subscript R stands for the reference phantom. If

the speed of sound of the reference phantom matches the

speed of sound of the sample then Dðf ; zpÞ � DRðf ; zpÞ and

Dðf ; zdÞ � DRðf ; zdÞ. Therefore, the attenuation coefficient

can be computed as

aSðf Þ ¼ aRðf Þ þ
1

4ðzd � zpÞ
log

Sðf ; zpÞSRðf ; zdÞ
Sðf ; zdÞSRðf ; zpÞ

" #
: (2)

A parameter derived from aSðf Þ that is commonly used

is the attenuation coefficient slope, i.e., the slope of the lin-

ear fit of aSðf Þ with respect to f 2 ðfL; fHÞ, where fL and fH
correspond to the lower and upper frequencies of an analysis

frequency band around the center frequency of the trans-

ducer. This analysis band defines the band of frequencies of

the power spectra involved in Eq. (2). In the present study,

which used a source having a 5-MHz nominal center fre-

quency, the analysis band ranged from 3.2 to 6.6 MHz in the

numerical simulations and from 4.1 to 6.5 MHz in the
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physical phantom studies. The lower bandwidth was used in

the physical phantoms because of low signal-to-noise ratio

in the experimentally acquired signals.

B. Computer simulation

In the present study, we quantified bias and variance of

estimates of the attenuation coefficient due to the distortion

caused by nonlinear acoustic propagation. In experiments

with physical phantoms, the transducer behaves as a pass-

band filter of the backscattered signals. Therefore, observa-

tion of nonlinear distortion through second harmonic

generation in the backscattered signals is diminished

because it is filtered in the passband operation. However, it

is illustrative to use computer simulations with settings simi-

lar to those of the experiment to observe the second har-

monic band generated without the aforementioned filtering

effect. Nevertheless, computing the attenuation coefficient

by Eq. (2) required only the fundamental frequency band

around the excitation nominal frequency.

Computer simulated radio frequency (RF) data were

generated with the k-Wave toolbox (Treeby et al., 2012).

Three numerical phantoms were used in the studies: one

sample and two references (high and low attenuating),

labeled S0, RHA
0, and RLA

0 to resemble the names of the

physical phantoms (the prime superscript is used when

referring to numerical simulated data) having the same

attenuation and nonlinearity parameter as in Table I.

Random spatial variations in the density (2% standard devi-

ation) were defined generating media with spatially random

impedance values such that backscattered signals mimicking

those observed from physical phantoms could be generated.

The simulated focused transducer acted as both a source and

a receiver with a diameter of 0.5 in. and a 1 in. focal length

and was configured in a three-dimensional (3D) grid such

that a maximum frequency of 12.8 MHz was supported in

the three axes using a spatial grid increments of 0.06 mm

(this limitation of supported frequencies was set by the

available computational resources). Figure 1 depicts the

source/receiver used to simulate the data. k-Wave allowed

the attenuation coefficient to be set with a uniform power-

law attenuation coefficient across the medium with values

from Table I. Likewise, in k-Wave it is possible to set a non-

linearity parameter B/A to include nonlinear distortion and

generation of harmonics.

A limitation of k-Wave is that it cannot set arbitrarily

small grid sizes without rapidly exceeding the computa-

tional resources, especially when the simulation was in 3D.

To validate that our simulations were correctly capturing the

nonlinear distortion in the fundamental band we used the

Khokhlov�Zabolotskaya�Kuznetzov (KZK) model and its

solver by Lee and Hamilton (1995) as the gold standard

(because this software can generate several harmonics). We

compared KZK waveforms to the waveforms generated in

k-Wave. We simulated a forward broadband pulse propaga-

tion in a medium with square attenuation dependence on fre-

quency (assumed by KZK model) with lower attenuation

than the used phantoms, i.e., more likely to develop nonli-

nearities. The discrepancy between waveforms at the geo-

metrical focus was less than 3.3% of the peak-to-peak

pressure. Therefore, it was assumed that the k-Wave simula-

tions at the chosen grid size correctly predicted the nonlin-

ear behaviors in the phantoms.

A broadband pulse with a 5-MHz center frequency and

60% fractional bandwidth (–6 dB) was used as an input sig-

nal. The pulse was intended to mimic the waveform from

the physical transducer, which was experimentally measured

close to the transducer surface (4 mm from the surface)

using a needle hydrophone (Precision Acoustics Ltd.,

Dorchester, UK). The normalized pressure and frequency

components of this input signal are shown in Fig. 2. At

4 mm from the transducer surface, negligible nonlinear dis-

tortion of the pulse had occurred resulting in harmonics that

were more than 20 dB below the fundamental frequency.

The source was excited using three different source peak

pressures: 340, 570, 870 kPa from the values used experi-

mentally; and additionally two source peak pressures used

solely in simulations: 1100 and 1330 kPa to assess the

effects of nonlinear distortion over a range of pressures that

might be encountered in practice. Echoes received at the

sensor were recorded for each of the six source pressures.

Fifteen independent RF lines for each random media were

generated. Power spectra estimated from the independent

realizations were ensemble averaged in order to smooth out

the power spectra for the SLD method using the full 15

power spectra for the reference power spectrum and groups

TABLE I. Speed of sound, attenuation coefficient, B/A, glass bead size

ranges and concentrations of glass beads in physical phantoms: S (sample),

RHA (high attenuating reference), and RLA (low attenuating reference).

Phm. S Phm. RHA Phm. RLA

Speed of sound (mm/ls) 	1.54 	1.54 	1.54

aðf Þ (dB/cm) 0:27f 1:32 0:7f 1:1 0:028f 1:75

B/A 6.8 6.9 6.0

Diameters (lm) 75� 90 9� 43 41 6 2

Concentration 5/mm3 800/mm3 No info.

FIG. 1. (Color online) Source/sensor in numerical simulations depicted as a

spherically focused geometry in discretized 3-D media. The focal length of

1 in. is smaller than the largest axial depth.
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of five for the sample power spectrum, which provided three

attenuation coefficient slope values per source pressure.

Similar to the attenuation estimation used in the physical

experiments, the attenuation coefficient of sample S0 was

determined using the SLD method in two scenarios: (1)

medium RHA
0 (more attenuating) as the reference phantom

and (2) medium RLA
0 (less attenuating) as the reference

phantom. The B/A values for the three simulated media

were set to 6.8, 6.9 and 6.0 for numerical phantoms S0, RHA
0

and RLA
0, respectively, to match the B/A estimated for the

corresponding physical phantoms. For calculation of the

power spectra from the backscattered scan lines, the length

of the gated windows were set at seven wavelengths, i.e.,

roughly two pulse lengths axially for both proximal and dis-

tal windows.

C. Experimental phantoms

For the physical phantom experiment, three agar-based

tissue-mimicking phantoms containing glass bead scatterers

were used and labeled S, RHA, or RLA. Physical phantoms of

these types are often used to assess image quality perfor-

mance of ultrasonic imaging techniques because the speckle

features can be controlled by the glass bead concentration

and attenuation by mixtures of bovine milk, agar, and

degassed water. Each phantom had cylindrical shape with 3

in. diameter and 1.5 in. height and an agar-based matrix.

The physical properties in Table I of the phantoms S and

RHA are described in Wear et al. (2005) as phantoms A and

B; whereas the properties of phantom RLA is described in

the second column of Table I in Anderson et al. (2010).

Sound speeds were calculated using Eq. (4) in Wear

et al. (2005), i.e., measuring arrival times of received broad-

band pulses with and without the sample in a water path.

Ground truth attenuation coefficients of Table I were esti-

mated using standard insertion loss methods (Kuc and

Schwartz, 1979), i.e., immersing the phantoms in a water

tank, accounting for mismatches between the speed of sound

for water and the phantoms (Xu and Kaufman, 1993) and

performing a least-square method to fit the attenuation coef-

ficient to a power-law with respect to frequency (Madsen

et al., 1978) over the range from 2 to 7 MHz. To reduce the

impact of nonlinear effects in determination of the ground

truth attenuation coefficients both sound speed and attenua-

tion were calculated with RF data acquired using a low

power level pulser/receiver (5800PR, Panametrics Olympus,

USA) in which the second harmonic signals recorded with a

needle hydrophone for the water-only path were below 20

dB. The nonlinearity parameter, B/A, was estimated using

the through-transmission method presented in Dong et al.
(1999). Using this method, the estimated values of B/A for

our phantoms (presented in Table I) were in agreement with

results for phantoms of the similar type found in Dong et al.
(1999). In order to compare attenuation coefficient slope

estimates using the SLD technique against the ground truth

estimates, it was necessary to estimate the slope values from

the ground truth values of attenuation coefficient in Table I

by fitting a straight line to the function over the analysis fre-

quency band of 4.1 to 6.5 MHz. The ground truth attenua-

tion coefficient slope values for phantoms S, RHA, and RLA

were 0.61, 0.91, and 0.17 dB/cm/MHz, respectively. For the

simulations, because the analysis frequency range spanned

from 3.2 to 6.6 MHz, the ground truth values were slightly

different at 0.59, 0.9, and 0.16 dB/cm/MHz for S0, RHA
0, and

RLA
0, respectively.

D. Ultrasonic scanning procedures

The attenuation coefficients were estimated from the

phantoms using the SLD method at different source pressure

levels to quantify the effects of the nonlinear distortion of

the ultrasonic wave propagation on the accuracy of the

attenuation coefficient estimates. Each phantom was

immersed in a tank filled with degassed water and scanned

using a single-element spherically focused transducer

(ISR054, NdtXducer LLC, USA) having a 0.5 in. diameter

and 1 in. focal length (see Fig. 3). The nominal frequency of

the transducer was 5 MHz and was excited with a high-

power pulsing apparatus (RAM-5000, Ritec, USA). The

input signal applied to the transducer was a one-cycle sinu-

soidal at 5-MHz. Backscattered RF data were acquired by

the same transducer for six excitation levels generated by

the pulsing apparatus. The six excitation levels resulted in

peak pressures of 340, 450, 570, 690, 780, and 870 kPa mea-

sured independently in water by a needle hydrophone at

4 mm from the transducer surface (see Fig. 2). The pressure

levels of the signals from the transducer at each excitation

level were also measured at the geometrical focus (see

Table II) providing a strong nonlinear distortion as observed

in Fig. 4.

Further power spectral smoothing occurred by averag-

ing power spectra from RF data acquired by moving the

transducer in a plane (grid of 14 mm 
 14 mm) parallel to

the surface of the transducer with 1 mm steps. This resulted

in a backscattered power spectrum estimate from an ensem-

ble average of 225 independent power spectra. The mean

and standard deviation were calculated for three estimate

values obtained at each excitation level by using a third (75

FIG. 2. Normalized pressure (top) and power spectrum (bottom) of the

input excitation source used in the simulations. The time-domain waveform

was chosen to mimic the waveform observed in the experiments when mea-

sured with a needle hydrophone at 4 mm from the surface of the transducer.
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averaging of the 225 power spectra) of the sample power

spectra. Nonlinear distortion of the ultrasound in the phan-

toms was expected to be less than in water because while

the B/A is slightly lower in water than in the phantoms (e.g.,

B/A of 5 vs 6), the attenuation of water is more than an order

of magnitude lower than the phantoms at 5 MHz.

Attenuation coefficient estimates were obtained for the

phantom S, which was used as the sample, whereas phan-

toms RHA and RLA were used independently as references

(high attenuating and low attenuating). In the estimation, the

distal window was placed just after the focus (centered

around 27 mm) and the proximal window 1 cm closer to the

transducer. Phantoms S, RHA, and RLA had similar B/A val-

ues but different attenuation coefficient values. Reference

phantom RHA had higher attenuation than phantom RLA sug-

gesting that nonlinear distortion in the reference was more

likely to develop in phantom RLA. Once aSðf Þ was obtained

following Eq. (2), a linear fit was performed to obtain the

attenuation coefficient slope (in dB/cm/MHz) and compared

with the corresponding ground truth value derived using the

aðf Þ from Table I. Finally the difference in the attenuation

FIG. 3. (Color online) (Top) Depiction of the experimental setup when measuring from the sample and (bottom) depiction of the experimental setup when

measuring from the reference phantom. Note that the experimental setup was the same between the sample and reference and only the sample was replaced

with the reference phantom.

TABLE II. Summary of peak positive pressure and peak negative pressure

values associated with the settings used in the experiments, measured using

a needle hydrophone at the geometrical focus F ¼ 1 in. of the transducer.

The mechanical index at the nominal frequency f0 ¼ 5 MHz was calculated

using MI ¼ PNP exp ð�0:0345f0FÞ=
ffiffiffiffi
f0
p

and found to be within the FDA

regulated limits for diagnostic ultrasound (MI < 1.9).

Peak positive

pressure (MPa)

Peak negative

pressure (MPa) MI

Excitation level 1 7.57 2.76 0.80

Excitation level 2 8.87 3.33 0.96

Excitation level 3 9.76 3.77 1.09

Excitation level 4 10.53 4.14 1.19

Excitation level 5 11.53 4.42 1.27

Excitation level 6 12.04 4.63 1.34

FIG. 4. (Color online) Waveforms measured at the geometrical focus of the

transducer using a needle hydrophone when exciting the transducer with the

six excitation levels (ELs). The nonlinear distortion is observable from the

hydrophone measurements that were performed in water.
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slope estimates between the lowest and highest excitation

pressure levels was computed as

Dslope ¼ slope870kPa � slope340kPa: (3)

III. RESULTS

A. Computer simulation

Figure 5 shows the power spectra from the numerical

phantoms with proximal and distal windows for each excita-

tion level used. The five different excitation peak pressures

set in k-Wave at the source were 340 kPa (blue), 570 kPa

(orange), 870 kPa (yellow), 1100 kPa (purple), and 1330

kPa (green). The numerical phantoms were simulated with

nonlinearity parameters described in the Table I to mimic

the acoustic properties of the physical phantoms.

In Fig. 5 the second harmonic components, roughly

starting 8-MHz, can be observed because energy is

transferred from the fundamental band to higher harmonics.

From Fig. 5, the rate at which energy is transferred from the

fundamental to harmonics depends on the source pressure

level used and the acoustic properties of the phantoms such

as the value of B/A and attenuation coefficient. Figures 6

and 7 provide estimates of the attenuation coefficient slopes

for phantom S0 when using phantom RHA
0 [Fig. 6(a)] as a

reference and phantom RLA
0 [Fig. 7(a)] as a reference. For

example, when the more attenuating numerical phantom

RHA
0 was used as a reference, the attenuation coefficient

slope of the sample varied from 0.66 6 0.12 dB/cm/MHz

for the smaller source pressure to 0.86 6 0.13 dB/cm/MHz

for the largest source pressure. The increase in the estimate

of attenuation slope from the source pressure level 340 kPa

to the source pressure level 870 kPa was Dslope¼0.083 dB/

cm/MHz. On the other hand, when the less attenuating

numerical phantom RLA
0 was used as a reference, the attenu-

ation coefficient slope of the sample varied from 0.64

6 0.13 dB/cm/MHz for the smaller source pressure to 0.43

6 0.13 dB/cm/MHz for the largest source pressure. The

decrease in the estimate of the attenuation slope from the

source pressure level 340 kPa to the source pressure level

870 kPa was Dslope¼�0.118 dB/cm/MHz. Using either the

high or low attenuating phantoms, at the lowest source pressure

level the ground truth value 0.61 dB/cm/MHz remained within

one standard deviation of the estimated mean value but larger

bias is observed at the largest source pressure level.

The deviation in the estimates of the attenuation coefficient

slope with increasing pressure indicated that nonlinear distor-

tion could introduce changes in attenuation coefficient slope

estimates with increasing source pressure. Furthermore, due to

the attenuation of the different simulated phantoms, nonlinear

FIG. 5. (Color online) Power spectra from gated proximal and distal win-

dows using five increasing source pressures in the numerical phantoms S0

(top), RHA
0 (middle), and RLA

0 (bottom). The proximal window was located

before the geometrical focus and the distal window was located close to the

geometrical focus. In computer simulations, larger levels of second har-

monic are generated at the distal windows. Moreover, the low attenuating

reference phantom (RLA
0) power spectra had larger second harmonic gener-

ation for the larger acoustic pressures than S0 and RHA
0.

FIG. 6. (Color online) Mean (square markers) of attenuation coefficient

slope estimates of medium S for the numerical phantom (top) and physical

phantom (bottom) when the reference was the high attenuating reference

medium RHA. Shadowed area corresponds to the standard deviation (one

above and one below) of slope estimated mean values. The dashed red line

was the ground truth slope.
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distortion of power spectra from reference phantom RHA
0 was

slightly lower than for phantom S0 resulting in monotonically

increasing estimates of attenuation coefficient slope and vice

versa when using phantom RLA
0 as the reference.

B. Experimental phantoms

The power spectra from proximal and distal regions used

to estimate attenuation coefficient slope in the physical phan-

toms are presented in Fig. 8. In experiments, the second har-

monic was mostly filtered out by the transducer. Similar to the

power spectra in numerical phantoms, the fundamental band

shifted to lower frequency especially at the distal window

(closer to focus) with this shift more pronounced in the low

attenuating phantom RLA, Fig. 8(c), as pressure levels increased.

The attenuation coefficient slope values were estimated

for phantom S and are shown in Figs. 6(b) and 7(b) when

using phantoms RHA and RLA as references, respectively.

Experimentally, it was observed that more consistent attenu-

ation coefficient estimates were obtained when using refer-

ences with higher attenuation coefficients, i.e., phantoms

S and RHA, in which case Dslope¼�0.038 dB/cm/MHz;

whereas more inconsistency was observed when using phan-

tom RLA as the reference, i.e., Dslope¼�0.148 dB/cm/MHz.

In the latter case, the ground truth value was outside of one

standard deviation of the estimated slopes when using the

largest source pressure level. However, unlike in the com-

puter simulated phantoms, the values of the attenuation

slopes did not change monotonically vs excitation level and

the standard deviation were more variable across the excita-

tion levels, which might be explained by lower signal-to-

noise ratio of experimental backscattered data.

IV. DISCUSSION

In the present study, we evaluated the SLD method for

attenuation coefficient estimation when using increasingly

higher acoustic pressures to assess if nonlinear distortion of

ultrasound due to the nonlinearity of the medium would

introduce biases in the attenuation coefficient estimates. We

confirmed in numerical simulations, that second harmonic

generation was likely to occur depending on several factors.

The cases associated with the highest second harmonic gen-

eration included when larger input acoustic pressures at the

source were applied, when the location of the gated window

was closer to the geometrical focus, i.e., where larger pres-

sures are expected due to focusing, and when less attenuat-

ing media were used that led to more rapid develop of

nonlinear distortion.

The presence of nonlinear distortion can be quantified

through the Gol’dberg number, which is proportional to the

ratio of the nonlinearity coefficient and attenuation coeffi-

cient. In computer simulations we confirmed that both the

FIG. 7. (Color online) Mean (square markers) of attenuation coefficient

slope estimates of medium S for the numerical phantom (top) and physical

phantom (bottom) when the reference was the low attenuating reference

medium RLA. Shadowed area corresponds to the standard deviation (one

above and one below) of slope estimated mean values. The dashed red line

was the ground truth slope.

FIG. 8. (Color online) Power spectra from gated proximal and distal win-

dows using six increasing source pressures in the physical phantoms S

(top), RHA (middle), and RLA (bottom). The proximal window was located

1 cm before the geometrical focus and the distal window was located just

after the geometrical focus. No second harmonic was clearly observable

unlike the numerical simulations (Fig. 5) due to the filtering effect of the

transducer.
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nonlinearity parameter and the acoustic attenuation of the

medium affect the generation of the second harmonic.

Moreover, the power spectra generated in the numerical

simulations were consistent with the definition of Gol’dberg

number. Therefore, acoustic nonlinearities result in energy

in the fundamental band being transferred to higher harmon-

ics (second harmonic presented in the numerical simula-

tion). Thus, spectral methods for attenuation coefficient

slope estimation that use the fundamental band produce

biased attenuation coefficient estimates when non-negligible

energy is transferred out of the fundamental band.

From the numerical simulations and experiments with

physical phantoms we observed that attenuation coefficient

estimates varied with different source pressures. These

changes are associated with the nonlinear distortion of ultra-

sound in the sample and reference, which is observed in the

power spectra at the fundamental band. Typically, distor-

tions were observed to change more in the higher frequen-

cies of the fundamental band than in the lower frequencies.

This can be explained by the discontinuity distance descrip-

tor l ¼ 1=bkM that suggests that generation of harmonics

will occur over a shorter distance for higher frequencies

components. In other words, higher frequencies are more

rapidly transferred to higher harmonics resulting in a change

in the slope over distance in the fundamental band of the

backscattered power spectra in all cases. This distortion of

the fundamental band is further enhanced in less attenuating

media where the energy in the higher harmonics is not atten-

uated out as quickly resulting in more nonlinear distortion

of the propagating pulse.

Although the Gol’dberg number is commonly defined

for mono-frequency plane wave rather than a focused trans-

ducer, we utilized the Gol’dberg number to predict the pres-

ence of nonlinear distortion of the ultrasound. For the

transducer geometry used in this study the Focal gain was G

¼pa2=kF � 16:2 (a is the radius of the source, F ¼ 1 in.

and k the wavelength corresponding to the nominal fre-

quency 5 MHz); therefore, the maximum Gol’dberg num-

bers, considering linear gain peak pressures at the focus,

were between CS 2 ½8; 20:5�; CRHA
2 ½4:5; 11:4�, and

CRLA
2 ½35:2; 90�, over the source pressures range from 340

to 870 kPa. Therefore, a stronger second harmonic develop-

ment in the lower attenuating numerical phantom RLA was

expected from the Gol’dberg number calculation and larger

nonlinear distortion effects were predicted when using this

phantom. It should be noted that because of nonlinear propa-

gation effects, the actual linear focal gains, G, were not

attained, i.e., positive peak pressure gains were larger than

G whereas negative peak pressure gains were smaller than G

(Bessonova et al., 2009).

Similar results were observed when quantifying nonlin-

ear distortion of ultrasound on the estimate of the backscat-

ter coefficient (Coila and Oelze, 2019). In that study, the

backscatter coefficient estimation process was analyzed

using the reference phantom method and the traditional pla-

nar reflector technique in a water medium. The study found

that a spectral-based method that used a nonlinear medium

with low attenuation (i.e., water) produced large biases in

the backscatter coefficient estimates. In that paper, the non-

linear distortion of ultrasound resulted in changes in the

magnitude and slope of the backscatter coefficient because

the references had different levels of nonlinear distortion.

Specifically, using the water path for the reference resulted

in much larger nonlinear distortion at high pressures when

compared to using an attenuating reference phantom.

Similar to attenuation coefficient estimation with the SLD,

in the backscatter coefficient estimation, the sample and ref-

erence power spectra are used.

However, in the current work, the analysis was more

complex, because up to four power spectra [see Eq. (2)] are

involved in the estimation of the attenuation coefficient.

One of the reasons for locating the distal window closer to

the geometrical focus was to make the nonlinear distortion

as large as possible whereas the nonlinear distortion in the

proximal window located out of the focal region was not as

strong. Therefore, the attenuation coefficient estimates

depend mainly on Sðf ; zdÞ and SRðf ; zdÞ. If the attenuation

values of the sample and reference are known, we can pre-

dict whether the fundamental band will be distorted more in

the sample or reference and predict a positive or negative

bias in the attenuation coefficient estimates. For example,

when the reference had lower attenuation than the sample,

an apparent decrease in attenuation coefficients was

observed. The opposite (increasing attenuation coefficients

at higher excitation levels) occurred when the reference

phantom had higher attenuation than the sample.

From the results in the numerical phantoms, the attenuation

coefficient slope values obtained using the smallest pressure

level and the largest pressure level had a mismatch that changed

depending on the reference phantom used. This mismatch,

Dslope, computed as in Eq. (3) can be correlated to the Gol’dberg

number of the phantoms involved in the estimation (sample and

reference) by comparing the results to the ratio of Gol’dberg

number: CSample=CReference. From the acoustic properties of the

phantoms described in Table I, at f0 ¼ 5 MHz, Gol’dberg num-

ber ratios for the different phantoms were ðCS0=CRLA
0 Þ ¼0.23

and CRHA
0=CS0 ¼ 0:56. In addition, we calculated the attenua-

tion coefficient slope of phantom RHA
0 using the reference RLA

0

resulting in an attenuation slope mismatch of Dslope ¼ �0:20

dB/cm/MHz with a Gol’dberg ratio of CRHA0=CRLA
0 ¼ 0:127.

Figure 9 shows the attenuation coefficient slope values at differ-

ent pressure levels using the aforementioned pairs of samples/

references where the increase or decrease of the Dslope depended

on the ratio of Gol’dberg numbers.

Figure 10(a) shows a plot of values of Dslope vs

Gol’dberg number while Fig. 10(b) shows a plot of the

Dslope values vs the log of the Gol’dberg number ratios.

Computing the coefficient of determination between Dslope

vs log10ðCSample=CReferenceÞ results in R2 ¼ 0:979. Similar

calculation with the physical phantoms resulted in

R2 ¼ 0:734. Empirically, one can observe that the mismatch

of attenuation coefficient slope estimates from the different

excitation levels due to acoustic nonlinearity is highly corre-

lated to log10ðCSample=CReferenceÞ.
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V. CONCLUSION

In conclusion, the study findings suggest that attenua-

tion coefficient estimation in pulse-echo mode using estab-

lished methods, such as the SLD, can be biased due to the

inherent acoustic properties of the sample medium and ref-

erence. The mismatch between the attenuation slope values

from the true value during the ultrasonic acquisition of

backscattered signals will increase when larger pressure lev-

els are used. Moreover, the observed biases of attenuation

coefficient slope estimates in both simulation and physical

nonlinear media are more likely to occur in low attenuating

media. Therefore, tradeoffs between the attenuation of the

reference material, B/A, and need for strong signal-to-noise

ratio should be considered when using methods like the

SLD to estimate attenuation coefficients. After observing

the pattern of increasing or decreasing attenuation coeffi-

cient slope estimates when using larger pressure levels, it

was concluded that the attenuation values of the sample and

reference should be close in order to reduce the effects of

nonlinearity on the estimates and, therefore, the Gol’dberg

number ratio between the sample and reference should be

close to unity to mitigate nonlinear effects on attenuation

slope estimation.
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