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Nonalcoholic fatty liver disease (NAFLD) is the most 
common chronic liver disease worldwide, affecting 

approximately 25% of the human population (1). NAFLD 
covers a spectrum of liver abnormalities ranging from 
simple steatosis to nonalcoholic steatohepatitis. Hepatic 
steatosis, characterized by the accumulation of fat droplets  
within hepatocytes, can progress to nonalcoholic steato-
hepatitis, fibrosis, cirrhosis, and even hepatocellular carci-
noma (1,2). Early detection and treatment may halt or 
reverse NAFLD progression (2). Liver biopsy remains the 
reference standard for diagnosing NALFD and grading 

hepatic steatosis. However, biopsy is costly, invasive, and 
inappropriate for screening.

There is a critical need to develop noninvasive imaging 
methods to assess hepatic steatosis. Several modalities have 
been investigated (3–8), among which MRI and conven-
tional (qualitative) US have the advantage of involving no 
ionizing radiation. Confounder-corrected chemical shift–
encoded MRI can measure the proton density fat fraction 
(PDFF), a leading method for noninvasive quantification 
of hepatic steatosis (4,5). However, chemical shift–encoded 
MRI is not routinely accessible. Conventional US is widely 
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Background: Radiofrequency ultrasound data from the liver contain rich information about liver microstructure and composition. 
Deep learning might exploit such information to assess nonalcoholic fatty liver disease (NAFLD).

Purpose: To develop and evaluate deep learning algorithms that use radiofrequency data for NAFLD assessment, with MRI-derived 
proton density fat fraction (PDFF) as the reference.

Materials and Methods: A HIPAA-compliant secondary analysis of a single-center prospective study was performed for adult partici-
pants with NAFLD and control participants without liver disease. Participants in the parent study were recruited between February 
2012 and March 2014 and underwent same-day US and MRI of the liver. Participants were randomly divided into an equal num-
ber of training and test groups. The training group was used to develop two algorithms via cross-validation: a classifier to diagnose 
NAFLD (MRI PDFF  5%) and a fat fraction estimator to predict MRI PDFF. Both algorithms used one-dimensional convolu-
tional neural networks. The test group was used to evaluate the classifier for sensitivity, specificity, positive predictive value, nega-
tive predictive value, and accuracy and to evaluate the estimator for correlation, bias, limits of agreements, and linearity between 
predicted fat fraction and MRI PDFF.

Results: A total of 204 participants were analyzed, 140 had NAFLD (mean age, 52 years 6 14 [standard deviation]; 82 wom-
en) and 64 were control participants  (mean age, 46 years 6 21; 42 women). In the test group, the classifier provided 96% 
(95% confidence interval [CI]: 90%, 99%) (98 of 102) accuracy for NAFLD diagnosis (sensitivity, 97% [95% CI: 90%, 
100%], 68 of 70; specificity, 94% [95% CI: 79%, 99%], 30 of 32; positive predictive value, 97% [95% CI: 90%, 99%], 68 
of 70; negative predictive value, 94% [95% CI: 79%, 98%], 30 of 32). The estimator-predicted fat fraction correlated with 
MRI PDFF (Pearson r = 0.85). The mean bias was 0.8% (P = .08), and 95% limits of agreement were -7.6% to 9.1%. The 
predicted fat fraction was linear with an MRI PDFF of 18% or less (r = 0.89, slope = 1.1, intercept = 1.3) and nonlinear with 
an MRI PDFF greater than 18%.

Conclusion: Deep learning algorithms using radiofrequency ultrasound data are accurate for diagnosis of nonalcoholic fatty liver dis-
ease and hepatic fat fraction quantification when other causes of steatosis are excluded.
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available for NALFD assessment but is limited by its qualitative 
nature, operator dependency, and modest accuracy (3).

Quantitative analysis of raw radiofrequency (RF) ultrasound 
signals shows potential for objective and accurate disease assess-
ment (9). This analysis is based on the premise that by altering 
tissue microstructures, disease processes can cause quantifiable 
RF signal changes. Of note, the RF signals contain more infor-
mation than do gray-scale B-mode images because information 
is lost or altered when B-mode images are generated from the 
raw data (9). Thus, when compared with B-mode images, the 
rich RF data may allow more comprehensive characterization 
of pathophysiologic conditions. By using a well-characterized 
phantom for system calibration, quantitative ultrasound tech-
niques analyze the fundamental RF signals to extract system-
independent parameters, such as the attenuation and backscatter 
coefficients, with minimal operator dependency (10–14). These 
coefficients are correlated with hepatic fat fraction (15–17).

To take further advantage of RF signals and to eliminate the 
dependency on a calibration phantom, we propose a phantom-
free deep-learning ultrasound approach for objective, accurate, 
and automated NAFLD diagnosis and liver fat quantification. 
Deep learning (18,19) based on convolutional neural networks 
(CNNs) can extract features from raw data and has been ap-
plied to ultrasound B-mode image analysis (20–25) but not RF 
analysis for steatosis assessment. The current study developed 
and evaluated one-dimensional CNNs for NAFLD diagnosis 
and liver fat quantification using contemporaneous MRI PDFF 
as the reference standard. MRI PDFF was used because it ac-
curately quantifies liver fat (4,5) and can be safely and ethically 
acquired in asymptomatic control participants.

Materials and Methods

Study Participants
This study was a secondary analysis of 204 prospectively en-
rolled adult research participants with NAFLD and control 

participants without liver disease. The parent study was re-
ported in a previous article (16) and used a different ultrasound 
analysis technique. For the current analysis, we developed and 
evaluated deep learning techniques in the same participants. 
The University of California, San Diego, approved this second-
ary analysis and the parent study, both of which complied with 
the Health Insurance Portability and Accountability Act. All 
participants provided written informed consent.

Participants were consecutively recruited by an expert hepa-
tologist (R.L., .10 years of experience) from the University of 
California, San Diego, NAFLD Research Center between Feb-
ruary 2012 and March 2014. Inclusion criteria were age of at 
least 18 years and willingness and ability to participate. Exclu-
sion criteria were clinical, laboratory, or histologic evidence of a 
liver disease other than NAFLD; excessive alcohol consumption 
(.30 g per day within the past 10 years or .10 g per day in 
the previous year); and steatogenic or hepatoxic medication use. 
NAFLD in study participants was defined as MRI PDFF of 5% 
or greater, with other causes of steatosis excluded (16). Control 
participants (MRI PDFF ,5%) had no liver disease based on 
comprehensive clinical and laboratory testing performed under 
the supervision of and interpreted by the hepatologist. All par-
ticipants underwent same-day US and chemical shift–encoded 
MRI of the liver.

Ultrasound Protocol
Nonenhanced US was performed by a research physician 
(E.H., 1 year of hands-on US training) using the 4C1 convex 
array (1–4 MHz) on a clinical ultrasound machine (Siemens 
S2000; Siemens, Issaquah, Wash) with an Ultrasound Research 
Interface option that allowed direct acquisition of RF data. Par-
ticipants were positioned in the dorsal decubitus position, with 
the right arm at maximum abduction. The right liver lobe was 
visualized via a right intercostal approach, and a representative 
region of the parenchyma was identified, thereby avoiding ma-
jor vasculature. The physician adjusted the transmit focal range 
and time gain compensation (TGC) (ie, a setting that reduces 
the effect of ultrasound attenuation on clinical images by in-
creasing the received signal intensity with time [depth] [26]) 
for each participant, while fixing other settings. Ten consecu-
tive RF frames were recorded at a rate of 10 frames per second 
when the participant was executing a breath hold in shallow 
expiration. Each frame had 560 lateral lines and was 10 cm 
deep. The machine automatically recorded the transmit focal 
range and the TGC settings (Appendix E1 [online]).

Ultrasound Data Preprocessing
A fixed region of interest with standard size and location 
(central 256 RF lines laterally; 1.8–9.7 cm axially) relative to 
the image frame was used for the one-dimensional CNN al-
gorithms, yielding 2560 RF signals per participant (256 RF 
signals per frame 3 10 frames per participant). The region of 
interest was intended to cover as much of the liver region be-
low the liver capsule as possible while generally avoiding tissues 
outside the liver. A fixed region of interest rather than a hand-
drawn one tailored to each participant’s liver anatomy was ap-
plied to minimize human intervention. No effort was made to 

Abbreviations
AUC = area under receiver operating characteristic curve, CI = confi-
dence interval, CNN = convolutional neural network, NAFLD = non-
alcoholic fatty liver disease, PDFF = proton density fat fraction, RF = 
radiofrequency, TGC = time gain compensation

Summary
When other causes of steatosis are excluded, de novo one-dimension-
al convolutional neural network algorithms can accurately identify 
nonalcoholic fatty liver disease and quantify hepatic fat fraction by 
using raw radiofrequency ultrasound data.

Key Results
 n Deep learning with raw ultrasound data provided hepatic fat frac-

tion estimates correlated to proton density fat fraction measured 
with confounder-corrected chemical shift–encoded MRI (Pearson 
r = 0.85).

 n The proposed deep learning approach can diagnose nonalcohol-
ic fatty liver disease (area under the receiver operating charac-
teristic curve, 0.98) and is robust to changes in system settings, 
including transmit focal range and time gain compensation.
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the 4C1 transducer (bandwidth, approximately 2–4 MHz). The 
downsampled signal containing 1024 sample points was input 
to the one-dimensional CNNs.

CNN Algorithm Development
Two one-dimensional CNN algorithms were developed: a bi-
nary classifier and a fat fraction estimator. For each RF signal 
input, the classifier output an NAFLD classification score be-
tween 0 and 1, and the fat fraction estimator output the pre-
dicted fat fraction as a percentage.

The participants were equally divided into training (n = 102) 
and test (n = 102) groups by using stratified randomization (16). 
The algorithms were developed by using the training group via 
cross-validation and were evaluated by using the test group. De-
tails are presented in Appendix E2 (online), and the code is avail-
able for research use at https://github.com/han51/nafld-1d-cnn.

completely exclude regions outside the liver, however, and the 
regions of interest contained variable amounts of extrahepatic 
tissue and structures.

Because TGC settings affect RF signals, quantitative analy-
ses were performed before and after removal of the machine-
recorded TGC settings.

The RF data of the last five frames were corrupted in two 
participants in the test group. The intact frames (frames 1–5) 
were duplicated for both participants to make 10 frames per par-
ticipant for convenience of algorithm testing.

To reduce data size, the signals were downsampled by deci-
mating the RF by four (ie, keeping every fourth sample) without 
filtering, to reduce the sampling frequency from 40 MHz to 10 
MHz. According to the Nyquist-Shannon sampling theorem, 
the 10-MHz sampling frequency was sufficient to preserve use-
ful information contained in the original signal acquired from 

Table 1: Demographic, Physical, Biochemical, and MRI Proton Density Fat Fraction Characteristics of Study Participants

Characteristic Training Group (n = 102) Test Group (n = 102) P Value
Men (%)† 40 38 .89
Age (y)* 51 6 17 49 6 17 .34
Height (cm)* 166 6 10 167 6 10 .38
Weight (kg)* 85 6 21 84 6 20 .81
BMI (kg/m2)* 31 6 6 30 6 6 .43
Ethnic origin (%)† .67
 White 47 48 …
 Hispanic 31 26 …
 Asian 14 16 …
 Black 4 4 …
 Other 4 6 …
Diabetes† 42 47 .57
Biochemical profile*
 Hemoglobin (g/dL) 14 6 2 14 6 2 .09
 Hematocrit (%) 40 6 4 42 6 4 .04
 Platelet count (3103/µL) 251 6 72 255 6 66 .68
 AST (U/L) 34 6 27 34 6 36 .95
 ALT (U/L) 42 6 37 44 6 55 .81
 Alkaline phosphatase (U/L) 76 6 28 74 6 23 .53
 GGT (U/L) 45 6 46 41 6 45 .60
 Total bilirubin (mg/dL) 0.5 6 0.4 0.5 6 0.3 .86
 Albumin (g/dL) 4.5 6 0.4 4.9 6 3.9 .32
 Glucose (mg/dL) 106 6 47 110 6 48 .52
 Triglycerides (mg/dL) 145 6 81 163 6 275 .54
 Total cholesterol (mg/dL) 183 6 41 180 6 46 .65
 HDL cholesterol (mg/dL) 55 6 21 54 6 16 .72
 LDL cholesterol (mg/dL) 101 6 32 97 6 30 .31
 INR 1.0 6 0.2 1.0 6 0.2 .57
Imaging*
 MRI PDFF 5–8 (%) 11 6 9 11 6 8 .54

Note.—Unless otherwise noted, data are mean 6 standard deviation. ALT = alanine aminotransferase, AST = aspartate aminotransferase, 
BMI = body mass index, GGT = g-glutamyl transpeptidase, HDL = high-density lipoprotein, INR = international normalized ratio, LDL =  
low-density lipoprotein, PDFF = proton density fat fraction (mean calculated from segments 5–8). Table 1 is adapted and reprinted, with 
permission, from reference 16.
* Mean value provided with standard deviations and P values (t test). All laboratory results were obtained while patients were fasting.
† The x2 test P values are presented; note that the x2 test for comparing ethnic proportions in the two groups were conducted for white 
patients versus Hispanic patients versus Asian patients, black patients, and those with some other ethnicity.
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Men made up 40% (41 of 102) of the training group and 38% 
(39 of 102) of the test group. The mean body mass index was 
31 kg/m2 6 6 in the training group and 30 kg/m2 6 6 in the 
test group. The mean MRI PDFF (segments 5–8) was 11% 6 
9 and 11% 6 8 in the training and test groups, respectively. 
In each group, MRI PDFF ranged from 1% to 35%, and 70 
of 102 participants (69%) had NAFLD (MRI PDFF 5%).

RF Signals and B-Mode Images
Representative B-mode images (with TGC) and RF signals 
are shown for two participants, referred to as participants A 
(MRI PDFF, 1%) (Fig 2) and B (MRI PDFF, 28%) (Fig 3). 
Figure 2a is a B-mode image reconstructed from frame 1 of 
the raw RF data (with TGC) acquired in participant A. The 
fixed region of interest is outlined by the superimposed yel-
low box. The blue dashed line is one of the 256 lines covered 
by the region of interest. The RF signals without and with 
TGC corresponding to the blue line in Figure 2a are shown 
in Figure 2b. Ultrasound attenuation with time (depth) was 
modest in the RF signal without TGC (Fig 2b), correspond-
ing to the lower fat fraction. The TGC caused the deeper and 
weaker signals to be artificially more pronounced than the 
more superficial signals.

The reconstructed B-mode images were visually similar be-
tween adjacent frames (Fig 2a, 2c), although careful examina-
tion revealed differences that were likely due to slight motion 
between frames. In contrast, the RF signals along the same scan 
line (Fig 2d) were noticeably different between adjacent frames 
(eg, different intensities around 40, 70, and 95 µsec), both with-
out and with TGC, as might be expected due to random and 
structured effects, which contributed to speckle and noise.

The reconstructed B-mode image and RF signals from par-
ticipant B (Fig 3) visually differed from those from participant 
A (Fig 2a, 2b). The B-mode image was more homogeneous for 
participant B than for participant A. Blood vessels were visible 
on the B-mode image for participant A but were obscured for 
participant B. For the RF signals from participant B, increased 
attenuation with time (depth) was evident without TGC, cor-
responding to the higher fat fraction. The TGC compensated 
for this attenuation by increasing signal amplification with 
time.

Classification
In the test group, the composite NAFLD classification score 
provided a high degree of discrimination between control par-
ticipants without liver disease and participants with NALFD, 
as demonstrated by the receiver operating characteristic curves 
obtained by using RF signals without and with TGC (Fig 4). 
The AUCs were 0.98 (95% CI: 0.94, 1.00) and 0.95 (95% CI: 
0.91, 0.99) for scores obtained by using RF signals without 
and with TGC, respectively. The two AUC estimates did not 
differ (P = .23).

Applying the predetermined threshold of 0.5 on the com-
posite NAFLD classification score for NAFLD diagnosis in 
the test group yielded 68 true-positive results, two false-posi-
tive results, two false-negative results, and 30 true-negative re-
sults when RF signals without TGC were used and yielded 64 

Statistical Analysis
Algorithms were evaluated at the participant level. Because 
each algorithm generated one output per RF signal input and 
because there were 2560 signal inputs per participant, the clas-
sifier and fat fraction estimator generated 2560 NAFLD clas-
sification scores and 2560 fat fraction estimates per participant, 
respectively. The 2560 outputs were averaged for each algo-
rithm to yield composite per-participant scores and estimates. 
A cutoff of 0.5 for the composite score was set a priori for the 
NAFLD classifier.

To evaluate classifier performance, we calculated sensitivity, 
specificity, positive predictive value, negative predictive value, 
and overall accuracy for NAFLD identification in the test group. 
We also generated the receiver operating characteristic curve of 
the composite NAFLD classification score for the test group and 
calculated the area under the receiver operating characteristic 
curve (AUC) and the 95% confidence interval (CI). The De-
Long test (27) was performed to compare the AUCs obtained by 
using signals without and with TGC.

To evaluate the fat fraction estimator performance, we cal-
culated the correlation (Pearson r), bias, limits of agreement, 
and linearity between predicted fat fraction and MRI PDFF. 
Linearity was assessed by using sequential tests of polynomial 
fits to the plot of estimated fat fraction versus MRI PDFF (28). 
Linear range was identified if the linearity test over the entire 
MRI PDFF range failed. Linear regression slope, intercept, and 
R2 were evaluated. Analyses were performed by using MATLAB 
R2016a (Mathworks, Natick, Mass) and RStudio 1.2 (RStudio, 
Boston, Mass) software. A P value less than .05 indicated statisti-
cal significance.

Results

Participant Characteristics
Participant characteristics are reported in Table 1. A total of 204 
participants (Fig 1), 140 with NAFLD (mean age, 52 years 6  
14 [standard deviation]; 82 women) and 64 control partici-
pants (mean age, 46 years 6 21; 42 women), were analyzed. 

Figure 1: Flowchart of study participants included and excluded in the study, 
adapted from reference 16. PDFF = proton density fat fraction.
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fat fraction against MRI PDFF within the linear range (MRI 
PDFF  18%) yielded a slope of 1.1, an intercept of 1.3, 
and R2 of 0.79 (Pearson r = 0.89) when signals without TGC 
were used and a slope of 0.9, an intercept of 3.1, and R2 of 
0.59 (Pearson r = 0.77) when signals with TGC were used. 
The fat fraction estimator underestimated the fat fraction for 
MRI PDFF greater than 18%, suggesting a saturation effect 
outside the linear range. Linear regression of the predicted fat 
fraction against MRI PDFF over the entire MRI PDFF range 
(MRI PDFF , 35%) yielded a slope of 0.7, an intercept of 
3.8, and R2 of 0.73 (Pearson r = 0.85) when signals without 
TGC were used and a slope of 0.6, an intercept of 4.8, and R2 
of 0.64 (Pearson r = 0.80) when signals with TGC were used; 
the R2 values were equal to the squared values of the Pearson 
correlation coefficients, as expected.

The mean bias of the predicted fat fraction over the entire 
MRI PDFF range was 0.8% (P = .08), and 95% limits of agree-
ment were -7.6% to 9.1% when signals without TGC were used 
(Fig 6). When signals with TGC were used, the mean bias be-
came 0.34% (P = .49), and the 95% limits of agreement were 
-9.4% to 10.0%.

true-positive results, four false-positive results, six false-negative  
results, and 28 true-negative results when RF signals with TGC 
were used. These diagnostic results yielded a classification accuracy 
of 96% in the test group using RF signals without TGC, with 
97% sensitivity, 94% specificity, 97% positive predictive value, 
and 94% negative predictive value (Table 2). They yielded a clas-
sification accuracy of 90% in the test group using RF signals with 
TGC, with 91% sensitivity, 88% specificity, 94% positive predic-
tive value, and 82% negative predictive value (Table 2).

Fat Fraction Estimation
The predicted fat fraction values correlated with the MRI 
PDFF in the test group for RF signals without and those with 
TGC (Fig 5). The Pearson correlation coefficient was 0.85 
(P , .001) and 0.80 (P , .001) for use of RF signals without 
and with TGC, respectively.

Graphically, the predicted fat fraction versus MRI PDFF 
scatterplots (Fig 5) track the identity line. A linearity test 
(28) showed no nonlinearity between predicted fat fraction 
and MRI PDFF for MRI PDFF of 18% or less, regardless of 
whether TGC was removed. Linear regression of the predicted 

Figure 2: Data from 22-year-old woman with low proton density fat fraction (1%) (control participant, denoted participant A). Computer-
reconstructed nonenhanced ultrasound B-mode images (sagittal plane with time gain compensation) and the underlying radiofrequency sig-
nals. (a) B-mode image frame 1 (with time gain compensation), with yellow outline superimposed to indicate the region of interest for deep 
learning analysis. (b) Radiofrequency signals corresponding to the blue line in a, without and with time gain compensation. (c) B-mode 
image frame 2 (with time gain compensation). (d) Radiofrequency signals corresponding to same location as indicated by the blue line in c 
but different frames (blue = frame 1, black = frame 2) without and with time gain compensation. Fixed region of interest includes signals from 
outside the liver.
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Discussion
We developed one-dimensional convolutional 
neural network (CNN) algorithms for nonalco-
holic fatty liver disease (NAFLD) diagnosis and 
fat fraction estimation using ultrasound radio-
frequency (RF) signals as the input and MRI 
proton density fat fraction (PDFF) as the refer-
ence standard. The algorithms showed promising 
performance in a test group of 102 participants. 
The classifier yielded high classification accuracy 
(96%) and an area under the receiver operating 
characteristic curve of 0.98. The fat fraction esti-
mator predicted fat fraction values that correlated 
with MRI PDFF (r = 0.85; P , .001) and that 
were linear with MRI PDFF over a broad range of 
clinically relevant MRI PDFF values. However, we 
also observed a possible saturation effect at MRI 

PDFF greater than 18%, the exact cause of which is not yet 
well understood. A potential explanation was insufficient train-
ing data for MRI PDFF greater than 18%. Another potential 
explanation was that ultrasonic signals could be insensitive to 
fat fraction changes at high MRI PDFF values. We also dem-
onstrated the feasibility to develop and train one-dimensional 
CNNs de novo using RF signals, without using techniques, 
such as transfer learning (ie, reuse of a model pretrained on 
a different problem) and data augmentation (ie, artificial ex-
pansion of the input data through various transformations). 
We showed algorithm robustness under varying transmit focal 
range and time gain compensation (TGC) settings, although 
better performance was achieved by using signals without 
TGC. Other settings (eg, transmit frequency, line density) 
potentially critical to the algorithm performance were fixed. 
However, the model robustness with focal range and TGC sug-
gested the one-dimensional CNN algorithms could be robust 
to more settings, possibly providing a phantom-free approach 
for ultrasound diagnosis using RF signals.

Figure 3: Data from 50-year-old man with high proton density fat fraction (28%) (participant with nonalcoholic fatty liver disease, denoted 
participant B). Computer-reconstructed nonenhanced ultrasound B-mode image (transverse plane with time gain compensation) and underlying 
radiofrequency signals. (a) B-mode image frame 1 for participant B, with yellow outline superimposed to indicate region of interest for 
deep learning analysis. (b) Radiofrequency signals corresponding to blue dashed line shown in a, without and with time gain compensation. 
Boundaries of the liver are not well delineated, and it is unclear whether the fixed region of interest includes signals from outside the liver.

Figure 4: Receiver operating characteristic curves with 95% confidence bands of the composite 
nonalcoholic fatty liver disease classification scores yielded by the classifier for the test group using 
radiofrequency ultrasound signals (a) without and (b) with time gain compensation as the inputs. 
AUC = area under receiver operating characteristic curve.

Table 2: Performance Metrics for Nonalcoholic Fatty Liver 
Disease Diagnosis in Test Group

Performance 
Metrics Input: RF without TGC Input: RF with TGC
Sensitivity 97 (90, 100) [68/70] 91 (82, 97) [64/70]
Specificity 94 (79, 99) [30/32] 88 (71, 96) [28/32]
PPV 97 (90, 99) [68/70] 94 (86, 98) [64/68]
NPV 94 (79, 98) [30/32] 82 (68, 91) [28/34]
Accuracy 96 (90, 99) [98/102] 90 (83, 95) [92/102]

Note.—Metrics were obtained by applying the predetermined 
threshold of 0.5 on the composite nonalcoholic fatty liver disease 
classification scores generated by the binary classifier. Values 
are expressed as percentages, with 95% confidence intervals in 
parentheses and fractions in square brackets. NPV = negative 
predictive value, PPV = positive predictive value, RF = radiofre-
quency, TGC = time gain compensation.
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0.57 Spearman correlation coefficient between the controlled 
attenuation parameter and MRI PDFF.

Use of RF signals has several potential advantages. Not 
only do RF signals contain more information than B-mode 
images (9) or the envelope data (Appendix E3 [online]), they 
are also less dependent on system settings and postprocessing 
operations or can be corrected for these, which can reduce 
variability. For instance, RF signals are not influenced by 
the dynamic range setting and filtering operations that affect 
the appearance of B-mode images. Additionally, diagnostic 
techniques based on RF signals are potentially more suitable 
for devices that do not easily produce B-mode images (eg, 
emerging wearable ultrasound devices [31]). Although train-
ing the one-dimensional CNN algorithms takes a consider-
able amount of time, the trained algorithms can be run in real 
time to analyze new data.

Our study had several limitations. First, the ultrasound data 
were acquired from a single scanner platform by one physi-
cian. The cross-platform and cross-operator generalizability of 
the algorithms remains to be tested. Second, the RF data are 
not yet readily available on all commercial ultrasound systems. 
However, more manufacturers are starting to provide RF capa-
bilities. Third, this study did not address whether deep learning 

Several studies have used deep learning with B-mode images 
for steatosis classification (Table 3). Byra et al (24) proposed a 
transfer learning approach to diagnose fatty liver disease us-
ing ultrasound B-mode images with a deep CNN pretrained 
with nonmedical images. They evaluated the approach in 55 
patients with severe obesity, 38 of whom had fatty liver (with 
biopsy used as the reference standard), yielding 100% sensi-
tivity, 88% specificity, 96% overall accuracy, and an AUC of 
0.98. Reddy et al (25) used a similar transfer learning approach 
to diagnose fatty liver disease on 157 ultrasound liver images, 
with radiologists’ qualitative score used as the ground truth, 
yielding 95% sensitivity, 85% specificity, 91% accuracy, and an 
AUC of 0.96. Although our classifier achieved performances 
nominally similar to those of Byra et al (24) and better than 
those of Reddy et al (25), it is difficult to directly compare 
the various studies because of differences in the reference and 
participant samples.

Several studies quantified liver steatosis by using MRI 
PDFF or liver biopsy as the reference standard (Table 3). For 
example, a study of 153 patients (29) showed that controlled 
attenuation parameter was correlated with the percentage of 
steatosis (Spearman r = 0.47), with biopsy used as the refer-
ence standard, and a study (30) in 107 participants showed a 

Figure 5: Predicted fat fraction versus MRI-derived proton density fat fraction obtained by using radiofrequency signals (a) without and 
(b) with time gain compensation. Blue lines represent the linear range. Gray line represents the identity line.

Figure 6: Difference between predicted fat fraction (FF) and MRI-derived proton density fat fraction (PDFF) versus the MRI-derived PDFF 
plots obtained by using radiofrequency signals (a) without and (b) with time gain compensation. SD = standard deviation.
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Table 3: Summary of Ultrasound-based Studies on Fatty Liver Disease Diagnosis That Used Deep Learning and on Steatosis  
Quantification with Controlled Attenuation Parameter
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tween CAP and MRI 
PDFF

Note.—AUC = area under receiver operating characteristic curve, CAP = controlled attenuation parameter, PDFF = proton density fat 
fraction.
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