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Context: To date only single ultrasound parameters were regarded in statistical analyses to characterize
osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for
characterization remains unclear.
Objective: Therefore, the aim of this work was to utilize feature selection and classification of a Mankin
subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and
investigate both classification accuracy and the sensitivity towards different degeneration stages.
Design: 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz trans-
ducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters
were available. Logistic regression was performed with each unique US parameter pair as predictor and
different degeneration stages as response variables. The best ultrasound-based parameter pair for each
Mankin subset score value was assessed by highest classification accuracy and utilized in receiver
operating characteristics (ROC) analysis.
Results: The classifications discriminating between early degenerations yielded area under the ROC
curve (AUC) values of 0.94e0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher
Mankin subset scores resulted in lower AUC values: 0.75e0.91 (mean ± SD: 0.84 ± 0.08). Variable
sensitivities of the different ultrasound features were observed with respect to different degeneration
stages.
Conclusions: Our results strongly suggest that combinations of high-frequency ultrasound-based pa-
rameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline
cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent esti-
mation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the
present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency
transcutaneous ultrasound.

© 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Ultrasound biomicroscopy (UBM) is capable of visualizing
cartilage tissue at a high spatial resolution and gives access to a
variety of quantitative parameters. Besides thickness, the most
commonly derived quantitative parameters are surface reflection
amplitude and surface roughness as surrogates for alterations of
cartilage matrix stiffness and roughness, respectively. These pa-
rameters have been observed to significantly vary in the course of
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osteoarthrosis1e4. Moreover, the reflection intensity from the
interface between cartilage and subchondral bone has been sug-
gested to change due to a combination of increased sclerosis-related
bone density and acoustic attenuation of the cartilage matrix2.

Recently, we have shown that 3D-UBM not only enables
improved estimation of surface properties5, but also gives access to
US backscatter parameters of the cartilage matrix6, whose analyses
have been only sparsely carried out until now. Statistically signifi-
cant differences of individual surface and backscatter parameters
were found with respect to early structural and cellular de-
generations, as assessed by the histologically derived Mankin
subset score. However, group differences were mostly observed
between healthy samples (Mankin subset score 0) and all other
samples having varying degrees of degeneration. Furthermore, a
td. All rights reserved.
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clear separation between different degeneration stages could not
be obtained when using single parameters.

Therefore, the aim of this work was to combine the promising
diagnostic potential of previously established surface reflection and
matrix backscatter parameters by selecting relevant features with
respect to different degeneration stages and employing them in
classification and receiver operating characteristics (ROC) analyses.
We hypothesized that ultrasound readings exhibit variable sensi-
tivities with respect to different degeneration stages and that a
combination of ultrasound parameters obtained from the cartilage
surface and the sub-superficial tissuematrix will provide the ability
to separate classes of degeneration, particularly between the early
stages of cartilage degeneration.

Materials & methods

This work was based on the ex-vivo measurements, data eval-
uation and histological analysis of two previous studies5,6. The
following three sections briefly summarize these aspects.

Samples

One to three punch biopsies (diameter: 8 mm) of cartilage were
obtained from the femoral condyles of 19 patients during alloplastic
implant surgery (N ¼ 38). Two biopsies were excluded due to deep
fissures or complete loss of cartilage. Moreover, one to three punch
biopsies were obtained from the femoral joint of four human ca-
davers with no known degenerative joint disease (N ¼ 10). In total,
N ¼ 46 biopsies were incorporated into the classification analysis.

After storage at �32�C, the biopsy specimens were immersed in
Phosphate Buffered Saline (PBS) at 25�C and measured by UBM
with the scanning acoustic microscope SAM200Ex7,8. A spherically
focused 40-MHz transducer was used, providing a lateral and axial
resolution of 120 and 50 mm, respectively. Samples were scanned in
time-resolved C-scan mode, yielding one 3D dataset for every
sample. The lateral scan-increments in both scan directions were
20 mm. Representative cross-sectional 2D images, and 3D fly-
through videos are shown in the supplementary material.

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.joca.2014.06.019.

Histology

Histological analysis was performed on demineralized and
paraffin-embedded sections of the respective punch biopsies using
routine histology processing and staining. Serial transverse sections
(thickness: 5 mm) were cut through the central part of the biopsy.
Cartilage degeneration was graded using the individual scoring
categories (i.e., cartilage surface, cells, extracellular matrix proteins,
and subchondral bone integrity) of the 14-point modified Mankin
score9. The scoring was performed by two trained clinicians inde-
pendently. When the scores were different, the scoring was
revised5. Of particular interest in this study were the surface
structure and the scoring of cellular abnormalities, denoted as M1
and M2, respectively. In the following, the Mankin subset score
denotes the sum of M1 and M2. The Mankin subset scores of the 46
evaluated biopsies covered the following values: (0 [n ¼ 5]; 1
[n ¼ 3]; 2 [n ¼ 4]; 3 [n ¼ 9]; 4 [n ¼ 9]; 5 [n ¼ 9]; 6 [n ¼ 7]). The
excluded biopsies had the highest scores (M1 ¼ 6; M2 ¼ 3).

Parameter extraction

Ultrasound-based parameters were obtained from time gates
originating from the cartilage surface (hereafter denoted surface
parameters)5 and from the cartilage matrix (backscatter
parameters) at normal incidence regions6. In this work, nine ul-
trasound-based parameters were incorporated: At the surface, the
spatial variation and the median value of the integrated reflection
amplitude (IRC) yielded DIRC and IRC respectively and the temporal
variability of the surface positions determined the Ultrasonic
Roughness Index (URI)5. In six data sets, these parameters could not
be calculated due to one of the following reasons: (1) surface region
measured with small inclination (<5�) relative to the sound beam
axis too small, (2) region of interest outside of focus range, (3) de-
tached tissue fibers above cartilage surface. Depth-dependent
profiles of backscatter amplitude (apparent integrated back-
scatter, AIB) and spectral slope (apparent frequency dependence of
backscatter, AFB), were used to estimate the maximum values
AIBmax and AFBmax, the depth-dependent slope AIBslope and the
extrapolation of the integrated backscatter to the cartilage surface
AIB0. Furthermore, in the transitional zone, backscattered wave-
forms were analyzed with envelope statistics, yielding k as ratio of
coherent to incoherent signal energy and m as scatterer number
density per resolution cell6,10.

Classification, feature selection, and ROC

To study the predictability with respect to different degenera-
tion stages, the Mankin subset scores were divided into six binary
classifications to distinguish between scores <i and �i, with
i ¼ 1,2,3,4,5 and 6.

Quasi-least squares (QLS) regressions11 were used to account for
the potential intra-individual correlation of biopsies obtained from
the same donor. QLS were modeled using a Bernoulli-distributed
outcome variable (i.e., the Mankin subset score discrimination) un-
der the assumption of equicorrelated samples, i.e., all pairs of bi-
opsies from one donor are expected to have the same correlation.
Regressionanalyseswereapplied to all possible combinationsof two
ultrasound-based parameters as predictor variables and the six bi-
nary Mankin subset score discriminations as response variables. A
binary operator (threshold: 0.5) was applied to the model output to
facilitate binomial classifications. With leave-one-out cross-valida-
tion, the best ultrasound-based parameter pair for each Mankin
subset score was assessed by means of highest classification accu-
racy. The latter was determined by the number of successful classi-
ficationsdividedby the total numberof observations; a classification
accuracy of 1 therefore denotes a perfect separation between the
two classes. The classification scheme necessitates exclusion of
samples for which not all parameters could be derived, thus only 40
samples were included. Due to the finite number of observations,
several feature pairs could attain the highest classification accuracy.
Therefore, ROC analysis was performed using QLS regression of the
entire dataset without cross-validation and the area under the ROC
curve (AUC) was calculated for all candidate pairs. The positive class
labelwas assigned to the respective lowerMankin subset scores. The
95% confidence intervals were calculated by applying the bias cor-
rected and accelerated percentile method with the use of 1000
bootstrap samples per analysis. Finally, for all six classifications, the
ultrasound-based parameter pair with the highest AUC value was
determined to be the best pair. All analyses were performed using
custom-developed software based on the Statistics toolbox of Mat-
lab (Matlab R2011b; Mathworks, Natick, MA, USA). QLS regression
was performed using the GEEQBOX toolbox12. ROC analyses
including thederivationof theAUCvalueswere carriedout using the
“perfcurve” function from the Statistics Toolbox of Matlab.

Results

The highest cross-validated classification accuracies for the six
classificationswere in the range between 0.78 and 0.92 (mean± SD:

http://dx.doi.org/10.1016/j.joca.2014.06.019


Table I
Occurrence of ultrasound-based parameters in feature pairs exhibiting the highest classification accuracy of all unique feature pairs. One occurrence is indicated by oneþ. The
feature pair with the highest AUC among all candidate feature pairs is indicated by gray cell background. The corresponding AUC values and 95% confidence intervals are listed
below

Mankin subset score discriminations

<1 j �1 <2 j �2 <3 j �3 <4 j �4 <5 j �5 <6 j �6

Surface IRC þ þ þ
URI þ þ þ
DIRC þ þ þ þ þ

Backscatter AIB0 þ þ
AIBslope
AIBmax þþþþ
AFBmax þþþþ þþþ þ þ

Envelope statistics k þ þ
m þ þ

Accuracy 0.925 0.925 0.900 0.775 0.825 0.875
AUC
(95% CI)

0.99
(0.92, 1.00)

0.99
(0.91, 1.00)

0.94
(0.82, 0.98)

0.75
(0.54, 0.89)

0.87
(0.70, 0.96)

0.91
(0.73, 0.98)
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0.87 ± 0.06) (Table I). 4, 4, 1, 1, 4 and 1 potential feature pairs were
found for the differentiation betweenMankin subset scores smaller
than 1, 2, 3, 4, 5, and 6, respectively. ROC analysis of the best feature
pairs resulted in AUC values between 0.75 and 0.99 (mean ± SD:
0.91 ± 0.09). Classification accuracy and AUC values were highest
and lowest for differentiating between Mankin subset scores up to
three and between Mankin subset scores three and four, respec-
tively. Among the individual ultrasound readings, the backscatter
frequency-dependence parameter AFBmax in combination with
surface and envelope statistics parameters were particularly pre-
dictive for differentiating between lowMankin subset scores (up to
3). In contrast, backscatter amplitude parameters AIBmax and AIB0
were predominantly predictive for classifications between higher
degeneration stages (>3). The surface and envelope statistics pa-
rameters were present in all Mankin subset score discrimination
models. AIBslope was not included in any pairwise combinationwith
high classification accuracy.

Since a generalization of the selected features with respect to all
degeneration stages is difficult, the classification accuracies of all
feature candidate pairs were pooled for all six classifications. The
highest average classification accuracy of 0.83 was achieved by the
ultrasound parameter pair AIBmax and AFBmax with a standard de-
viation of 0.08.

Fig. 1 provides an overview of the class plots with the best ul-
trasound-based parameter pairs depicting the highest AUC values
as well as the corresponding ROC curves for all six Mankin subset
score classifications. Particularly, in the classification of lowMankin
subset scores [Fig. 1(aec)], a good class separationwas observed. At
full sensitivity, the specificities were 0.97, 0.94, and 0.79 for the
separation of Mankin subset scores 0, smaller than 1, and smaller
than 2, respectively. In contrast, the class separation between
Mankin subset scores higher than 3 [Fig. 1(def)] was less apparent,
resulting in lower AUC values for later stage cartilage degeneration.

Most parameters consistently separated early and advanced
stages of degeneration as expected. Lower stages of degeneration
were associated with high spectral slope values (AFBmax), small
roughness values (URI), and low variations of the surface reflection
values (DIRC), whereas in advanced degeneration stages, higher
backscatter amplitude values (AIBmax) were observed. However, in
the classification of Mankin subset scores smaller than 2, the class
boundary suggests that lower IRC values are associated with earlier
degenerations [Fig. 1(b)]. This observation can be attributed to two
outliers at�30.7dBand�30.6 dBwith relatively highMankin subset
scores of 2 and 3, respectively. Moreover, the association of high URI
values with earlier degenerations in the classification of Mankin
subset scores smaller than6 [Fig.1(f)] is presumablyanartifactdue to
the high class imbalance. Finally, because AFBmax alone yields a
reasonable separation of Mankin subset score 0 from all other sam-
ples [Fig.1(a)], the choice of scatterer number density per resolution
cell m as a second parameter should be interpreted with caution.

Discussion

This study follows up on the results of two previous studies and
demonstrates that sophisticated ultrasound data analysis not only
provides statistically significant differences of the derived param-
eters with respect to a histologically derived Mankin subset score,
but elucidates the potential to use combinations of ultrasound-
based parameters for the classification of progressive stages of
degeneration.

Onemajor challenge of this study was the relatively high ratio of
feature number to number of observations, which can cause over-
fitting of the data13. Therefore, we decided to employ only feature
pairs and select the best pair based on classification accuracy.
Cross-validation was used to ascertain a selection of meaningful
parameters. This feature selection yielded a description of sensi-
tivity of the evaluated ultrasound parameters with respect to
different stages of degeneration.

We observed that surface parameters and envelope statistics
parameters are feature candidates throughout all degeneration
stages, whereas backscatter amplitude and frequency dependence
appear as good predictors for advanced and early stages of
degeneration, respectively. Cell number density and backscatter
amplitude are moderately correlated, suggesting that chondrocytes
are an important scattering source in cartilage6. The feature se-
lections strongly suggest that the frequency dependence of back-
scatter is sensitive to early cellular degenerative changes, e.g.,
chondron swelling, whereas backscatter amplitude decrease can be
associated with hypocellularity. Interestingly, AIBslope was not
selected in any top pairwise combination although it has been
found to be a highly predictive parameter for cartilage tissue repair,
presumably due to its sensitivity to collagen packing density8. In
line with previous studies1e4,14, the classifications predicted higher
URI and lower IRC values for advanced degeneration stages.
Although no statistical difference with respect to different degen-
eration stages was present5,6, surface parameters were selected as
feature candidates throughout all degeneration stages, strength-
ening the observation that URI and IRC are subject to gradual
changes in the progression of osteoarthrosis2,3. Feature pairs that
were found most suitable for all Mankin subset score discrimina-
tions were backscatter amplitude in combination with spectral
slope and surface roughness. This observation further highlights



Fig. 1. Class plots (left panels) with the best performing ultrasound-based parameter pairs and the corresponding ROC curves (right panels) for all six Mankin subset score
classifications. The positive (red data points) and negative (blue) class labels represent lower and higher Mankin scores, respectively. Classification output is highlighted by circles in
blue and red, the class boundaries are indicated by black dashed lines. The right panels display the ROC curves in blue. The curves with no predictive value are illustrated by dotted
lines.
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the diagnostic value of ultrasound backscatter parameters com-
bined with well-established surface parameters.

Note that due to the unbalanced class distribution for very early
and advanced degeneration stages, these classification accuracies
are possibly biased and should be interpreted with caution. How-
ever, ROC analysis is known to provide valid results also in the
presence of unbalanced classes15. A further limitation was that 2D
histology sections used for the histological grading represented only
a sub-region of the 3D volumes evaluated by ultrasound. Since local
changes are likely, particularly in degenerated tissue, the histologi-
cal scores cannot be expected to be fully comparable to the ultra-
sound-based parameters. The samples from two donors with the
highest scores could not be included in the ultrasound-based anal-
ysis due to the pronounced loss of cartilagematrix. In these samples,
the high degree of degeneration was clearly visible in the acoustic
images (not shown). For the other six excluded data sets, the surface
parameters could not be calculated, either because the measured
sample volume did not contain a sufficiently large region with a
sufficiently small surface tilt and the required distance transducer
and sample, or because detached tissue fibers prevented the correct
surface reconstruction using our custom-developed algorithms5.
While the former limitations can be overcome by using ultrasound
array transducers, allowing multi-angle and multi-focus acquisi-
tions, the latter requires further development of the surface recon-
struction algorithms in the presence of detached fibers.
Nevertheless, despite these limitations, we have shown for the first
time that a combination of ultrasound-based parameters exhibit
potential to characterize different, particularly the earliest, degen-
eration stages of humanhyaline cartilagewithAUCvaluesup to 0.99.

In-vivo application of high-frequency ultrasound for OA
assessment can be achieved in various ways. Transcutaneous ul-
trasound with high frequencies can access reasonably large carti-
lage areas at the femur condyles16. Moreover, minimally invasive
arthroscopic ultrasound has been proposed as an alternative to an
intra-operative application and ultrasound backscatter amplitude
and surface parameters were successfully derived14. An extension
to envelope statistics and spectral slope parameters is straightfor-
ward; however, accuracies and robustness must be elaborated for
the respective ultrasonic transducers.

The most advanced technology for in-vivo grading of osteoar-
thritis in cartilage is magnetic resonance imaging (MRI). The
whole-organMRI score (WORMS) has been established to score the
structural integrity of the entire joint including articular cartilage
integrity17. With respect to the cartilage tissue, this and other
morphological scoring systems focus on the reduction of cartilage
thickness and the occurrence and extend of focal defects, which
are also clearly visible in high-frequency ultrasound images
(see Supplementary Figure). Special MRI sequences have been
proposed to grade OA related biochemical changes. Delayed
gadolinium-enhanced (dGEMRIC) T1 imaging has been shown to be
sensitive to changes of the proteoglycan (PG) content in several
studies18,19. Other relaxation times, e.g., T1r and T2 have also been
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proposed as good overall indicators of cartilage health, as described
by the Mankin score20. Although significant correlations between
T2* values with total Mankin score (R ¼ �0.362) and the cartilage
surface morphology subscore (R ¼ �0.367) have been observed in
21 human femoral head specimens with varying severities of OA by
Bittersohl et al.21, the specific contrast mechanisms and their sen-
sitivities with respect to specific tissue alterations other than
changes of the PG content have yet to be established.

In conclusion, the combination of ultrasound-based parameters
derived from surface reflections and signals backscattered from the
cartilage matrix provides a promising capability to distinguish be-
tween different cartilage degeneration stages, particularly between
the earliest stages. The surface parameters used in this study are
related to cartilage softening and surface fibrillation5,8,22, while the
backscatter parameters have been shown to be associated with
changes in cell morphology, i.e., cell density and clustering6. Such
changes usually occur prior to a destruction of the cartilage matrix.

However, ultrasound-based parameters have variable sensitiv-
ities towards different degeneration stages, suggesting that a con-
current estimation is diagnostically valuable. Future work will also
need to unravel the structural constituents that contribute to ul-
trasound backscatter, as a better understanding of the backscatter
mechanisms is anticipated to further improve the ultrasound-
based classification of OA. Moreover, a direct comparison be-
tween ultrasound and MRI based scores is needed to elucidate the
diagnostic value and potential limitations of the US-based classi-
fication approach.
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