Two Approaches for Tomographic Density Imaging Using Inverse Scattering

Roberto J. Lavarello and Michael L. Oelze
Bioacoustics Research Laboratory
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801
Email: lavarell@illinois.edu

Abstract— Most acoustic tomography methods neglect density variations in order to obtain speed of sound and attenuation profiles. However, density may provide additional sources of image contrast. In this work, two approaches for density imaging using inverse scattering were explored through simulations in order to evaluate the feasibility of density imaging. The first method consisted of inverting the wave equation by solving for a single functional that depended on both speed of sound and density variations. Density profiles were separated by combining reconstructions at two frequencies (DF-DBIM approach). The second method consisted of solving for two functionals simultaneously: one that depended only on compressibility and one that depended on density variations. A T-matrix approach was used to relate these functionals to the scattered data. The DF-DBIM approach allowed separation of density and speed of sound profiles at low termination tolerance values and less than an order of magnitude between the largest and smallest frequencies used. However, the convergence of DF-DBIM was compromised when moderate (around 2%) termination tolerances were used. The T-matrix approach converged when multiple frequency data was used, but required a ka product smaller than one at the lowest frequency. The DF-DBIM requires a very high SNR to obtain reliable quantitative density reconstructions, while the T-matrix approach requires excessively large bandwidths when imaging large targets. These limitations will serve as reference points for further algorithmic improvements required for practical implementation of density imaging on ultrasound tomographic systems.

I. MOTIVATION

Ultrasonic computerized tomography (UCT) is an imaging modality used to reconstruct quantitative images of acoustic properties. Several approaches, including ray propagation algorithms [1], diffraction tomography [2], and inverse scattering methods [3] have been developed to reconstruct quantitative images of speed of sound and acoustic attenuation.

However, experimental evidence is available in the literature suggesting that relative density changes in tissues may be comparable in magnitude to relative sound speed changes [4]. The effects of variable density in the reconstruction of sound speed were observed to result in overshoots of sound speed estimates at the edges of objects where density underwent abrupt changes [5]. Even further, density may also provide additional sources of image contrast.

The number of UCT studies that consider variable density is limited. Variable density UCT was introduced in the context of single scattering formulations [6], [7]. However, the fact that these works are based on linearized scattering theory limits their applicability. Two classes of variable density inverse scattering algorithms have been identified, which consist of inverting the wave equation by 1) solving for a single functional that depended on both speed of sound and density variations, and using multiple frequency data to isolate density information [8], [9], and 2) solving for two functionals simultaneously: one that depended only on compressibility and one that depended only on density variations [10], [11]. In the present work the performance of the two classes of variable density inverse scattering algorithms, as quantified by the reconstruction root mean square error (RMSE), was analyzed through simulations. For all cases, analytic solutions were used to generate the synthetic scattered data.

II. THE DUAL FREQUENCY DBIM APPROACH (DF-DBIM)

The integral wave equation for a harmonic field at frequency ω can be written as [12]

$$p(\vec{r}) = e(\vec{r}) + \int_{\Omega} d\vec{r}' \cdot \mathcal{O}(\vec{r}', \vec{r}) p(\vec{r}')G_0(\vec{r}, \vec{r}') ,$$

(1)

where $e(\vec{r})$ is the incident field caused by a source located at s, $s = 0, 1, \ldots, N_s$ and $G_0(\vec{r}, \vec{r}')$ is the free space Green’s function. The object function $\mathcal{O}(\vec{r})$ is given by

$$\mathcal{O}(\vec{r}) = \left(\frac{\omega}{c(\vec{r})} \right)^2 - \left(\frac{\omega}{c_0} \right)^2 - \rho^{1/2}(\vec{r})\nabla^2 \rho^{-1/2}(\vec{r}).$$

(2)

where $\rho(\vec{r})$ and $c(\vec{r})$ are the density and sound speed profiles. Equation (1) can be discretized using the method of moments (MoM) and written in matrix form, both for the pressure field inside the computational domain \bar{p} and the scattered field outside the computational domain \bar{p}_{sc}, as

$$\bar{p} = (\bar{I} - \bar{C} \cdot \mathcal{D}(\mathcal{O}))^{-1} \cdot \bar{p}_{inc}$$

(3)

$$\bar{p}_{sc} = \bar{D} \cdot \mathcal{D}(\mathcal{O}) \cdot \bar{p},$$

(4)

where \bar{D} is a matrix with the Green’s coefficients from each pixel to the receivers, \bar{C} is a matrix with the Green’s coefficients among all the pixels, and \mathcal{D} is an operator that transforms a vector into a diagonal matrix.
The distorted Born iterative method [3] consists of inverting the wave equation using a Newton-type iteration. A trial \(\mathcal{O}_0 \) is chosen for which the corresponding scattered field is calculated. Next, the object function is updated as \(\mathcal{O}_{(n+1)} = \mathcal{O}_{(n)} + \Delta \mathcal{O}_{(n)} \). The update \(\Delta \mathcal{O}_{(n)} \) is given by

\[
\Delta \mathcal{O}_{(n)} = \arg \min_{\Delta \mathcal{O}} \left| \Delta \rho^{sc} - \tilde{F}_n \cdot \Delta \mathcal{O} \right|^2 + \gamma \left| \Delta \mathcal{O} \right|^2, \tag{5}
\]

where \(\Delta \rho^{sc} \) contains the difference between the predicted and measured scattered fields and \(\gamma \) is the regularization parameter. The Frechet derivative matrix \(\tilde{F}_n \) is composed of \(N_s \) stacked matrices \(\tilde{F}_s \) of the form

\[
\tilde{F}_s = D \cdot \{ \tilde{I} - D(\mathcal{O}) \cdot \tilde{C} \}^{-1} \cdot D(\tilde{p}_s), \tag{6}
\]

The iterative process is repeated until the residual error (RRE), given by \(\text{RRE} = ||\Delta \rho^{sc}||_2 / ||\rho^{sc}||_2 \), falls within a desired termination tolerance. A linear combination of the \(\Delta \mathcal{O} \) is calculated. Next, the object function is updated as

\[
\mathcal{O}_{(n+1)} = \mathcal{O}_{(n)} + \Delta \mathcal{O}_{(n)},
\]

where \(\Delta \mathcal{O}_{(n)} \) is the separation of \(\mathcal{O} \) at frequencies \(\omega_i, i = 1, 2, ..., N_f \) allows the separation of \(c(\vec{r}) \) and \(\rho(\vec{r}) \) contributions. Specifically,

\[
\mathcal{F}_\rho(\vec{r}) = \left(\sum_{i=1}^{N_f} \omega_i^2 \right) \mathcal{F}_\rho(\vec{r}) - \left(\sum_{i=1}^{N_f} \omega_i^2 \right) \mathcal{O}_i(\vec{r}) \nabla^2 \mathcal{F}_\rho(\vec{r}) = \frac{\rho^{1/2}(\vec{r}) \nabla^2 \rho^{1/2}(\vec{r})}{2}, \tag{7}
\]

has to be solved, where \(u(\vec{r}) = \left(\rho^{1/2}(\vec{r}) - 1 \right) \). Equation (8) was solved by converting it to a matrix equation, with \(\nabla^2 \) implemented using a finite difference template.

The effect of some parameters in the quality of \(\rho \) reconstructions are shown in Fig. 1. The minimum frequency \(f_{\text{min}} \) was varied between 0.9\(f_0 \) and 0.1\(f_0 \) and the DBIM termination tolerance was set to 0.1%. Cylinders with radii of \(\lambda_0, 2\lambda_0 \) and \(4\lambda_0 \) were reconstructed, where \(\lambda_0 = c_0 / f_0 \). Both the dependence on the value of the relative density \(\rho_r \) compared to the relative speed of sound \(c_r \) (fixed \(\Delta \phi = 0.9\pi \) and \(\rho_r \) values of \(1/c_r, 1/c_r^2 \) and \(1/c_r^4 \), where \(\Delta \phi = 2k_0a(c_r^{-1} - 1) \) is the maximum excess phase accumulated by the acoustic wave when passing through the cylinder) and \(\Delta \phi \) (fixed \(\rho_r = 1/c_r \) and \(\Delta \phi \) values of \(-0.9\pi, 0.45\pi \), and \(-0.45\pi \)) were studied. Larger density changes required the use of lower \(f_{\text{min}} \) values for optimum accuracy at the cost of reduced spatial resolution. In general, larger cylinder radii resulted in more unstable reconstructions when \(f_0 \) and \(f_{\text{min}} \) were relatively close. Therefore, the optimum \(f_{\text{min}} \) value depends on the actual imaging target, but results suggest that reliable results can only be obtained when \(f_{\text{min}} \) is small compared to \(f_0 \).

The effect of the DBIM termination tolerance was also studied. Figure 2 shows the RMSE curves when reconstructing a \(\Delta = 2\lambda_0, \rho_r = 1/c_r, \Delta \phi = 0.9\pi \) cylinder using tolerances of 0.1%, 1%, and 2%. The RMSE curves behaved smoothly when the DBIM tolerance was low (0.1%), but degraded significantly as the tolerance increased unless \(f_{\text{min}} \approx f_0 \). This effect has a direct impact on practical implementations, where the termination tolerance has to be larger than the noise floor in order to avoid divergence.

Fig. 1. RMSEs in density reconstructions using the DF-DBIM approach. The corresponding properties of the cylinders are (a) \(\rho_r = 1/c_r, \Delta \phi = 0.9\pi \), (b) \(\rho_r = 1/c_r^2, \Delta \phi = 0.9\pi \), (c) \(\rho_r = 1/c_r, \Delta \phi = 0.9\pi \), (d) \(\rho_r = 1/c_r, \Delta \phi = -0.9\pi \), (e) \(\rho_r = 1/c_r, \Delta \phi = 0.45\pi \), and (f) \(\rho_r = 1/c_r, \Delta \phi = -0.45\pi \). The DBIM termination tolerance was set to 0.1%.

Fig. 2. Effect of the DBIM termination tolerance when reconstructing a cylinder with radius \(2\lambda_0, \rho_r = 1/c_r \) and \(\Delta \phi = 0.9\pi \) using termination tolerances of 0.1%, 1%, and 2%.
III. The T-matrix approach

The total acoustic field produced at some point \(\vec{r}_p \) in space can be expressed as [10]

\[
p(\vec{r}_p) = \psi^s(\vec{r}_p - \vec{r}_s) \cdot \vec{f}_s + \sum_{m=1}^{N} \psi^s(\vec{r}_p - \vec{r}_m) \cdot \vec{a}_m
\]

(9)

where \(\vec{r}_s \) is the location of the source, \(\vec{r}_m \) is the location of the \(m \)-th subscatterer, \(\psi^s(\vec{r}) \) is a vector of cylindrical harmonics, and \(\vec{f}_s \) and \(\vec{a}_m \) are vectors containing the amplitudes of the cylindrical harmonic fields generated by the source and the \(m \)-th subscatterer, respectively. Equation (9) can be rewritten using the \(j \)-th subscatterer as the origin for all the cylindrical harmonics using the addition theorem of Bessel functions as

\[
p(\vec{r}_p) = \psi^s(\vec{r}_{pj}) \cdot \vec{a}_j + \psi^s(\vec{r}_{pj}) \cdot \left(\sum_{m \neq j} \alpha_{jm} \cdot \vec{a}_m + \vec{e}_{js} \right)
\]

(10)

where \(\psi(\vec{r}) \) = \(J_k(k_0r)e^{il\theta} \) and, for line sources, \([\vec{e}_{js}]_k = H_k^{(1)}(k_0|\vec{r}_{sj}|)e^{-il\theta} \). If \(h \ll \lambda \), the harmonics \(l = 0, 1, -1 \) are sufficient to characterize the scattering process. The vector of equivalent induced sources \(\vec{a}_s \) when the transmitter is at the position \(\vec{r}_s \) is approximated as

\[
\{I - D(\vec{R}) \cdot \vec{A}\} \cdot \vec{a}_s = D(\vec{R}) \cdot \vec{e}_s
\]

(11)

where \(\vec{A} \) is a matrix containing the \([\alpha_{jm}]_{kj}\) coefficients, \(\vec{R} \) are the scattering coefficients at the surface of the pixels for the harmonics \(k = 0, 1, -1 \), and \(\vec{e}_s \) is a vector whose elements are given by \(\vec{e}_{js} \). If the total pressure \(\vec{e}_{ts} \) at the scatterer is defined such that \(\vec{a}_s = D(\vec{R}) \cdot \vec{e}_{ts} \), then from Eq. (11),

\[
\vec{e}_{ts} = \left[I - D(\vec{R}) \cdot \vec{A}\right]^{-1} \cdot \vec{e}_s,
\]

(12)

The T-matrix formulation can be inverted using the same iterative process used in the DBIM. The object function vector is here defined as \(\mathcal{O} = \{R_k\}_{k=0}^{\infty}; \{R_k\}_{k=1}^{\infty} \) because \(R_1(\kappa, \rho) = R_1(-\kappa, \rho) \). Even further, if \(h \ll \lambda \) then \(\{R_k\}_{k=0}^{\infty} \) and \(\{R_k\}_{k=1}^{\infty} \) depend only on compressibility and density, respectively. By analogy with Eq. (6), the Frechet derivative matrix blocks \(\mathcal{F}_s \) are given by

\[
\vec{F}_s = \vec{\psi} \cdot \{I - D(\vec{R}) \cdot \vec{A}\}^{-1} \cdot \mathcal{M} (\vec{e}_{ts})
\]

(13)

\[
\mathcal{M}(\vec{e}_{ts}) = \begin{bmatrix} D(\vec{e}_{ts})_{k=0} & \ldots & 0 \\ 0 & \ldots & D(\vec{e}_{ts})_{k=+1} \\ 0 & \ldots & D(\vec{e}_{ts})_{k=-1} \end{bmatrix}
\]

(14)

The performance of the T-matrix approach was studied using the same simulation sets as in Section II, with a termination tolerance of 2%. Data at \(N_f \) logarithmically spaced frequencies between \(f_{min} = 2^{-N_f+1}f_0 \) and \(f_0 \) were sequentially processed. The results are presented in Fig. 3. For all cases, the scatterer size was the main factor that affected the reconstruction quality. A minimum frequency \(f_{min} \) such that \(k\alpha \approx 1 \) was required in order to obtain convergence for the density reconstructions.

IV. Further developments

Even though both the DF-DBIM and T-matrix approaches suffer from limitations that prevent their practical use in experimental systems, the results presented here can serve as reference points for further algorithmic developments. An alternative data processing scheme, termed here the multiple frequency DBIM approach (MF-DBIM), uses (7) with several frequencies between \(f_{min} \) and \(f_0 \). A comparison of the DF-DBIM and MF-DBIM performance when reconstructing a circular cylinder with \(\Delta = 0.9\pi, \rho_2 = 1/c_2, \Delta = 0.9\pi \). (d) \(\rho_3 = 1/c_3, \Delta = -0.9\pi \), (e) \(\rho_2 = 1/c_2, \Delta = 0.45\pi \), and (f) \(\rho_3 = 1/c_3, \Delta = -0.45\pi \). The T-matrix termination tolerance was set to 2% for all simulations.

Fig. 3. RMSEs in density reconstructions using frequency hopping and the T-matrix approach. The corresponding properties of the cylinders are (a) \(\rho_2 = 1/c_2, \Delta = 0.9\pi \), (b) \(\rho_3 = 1/c_3, \Delta = 0.9\pi \), (c) \(\rho_2 = 1/c_2, \Delta = -0.9\pi \), (d) \(\rho_3 = 1/c_3, \Delta = 0.45\pi \), and (e) \(\rho_2 = 1/c_2, \Delta = -0.45\pi \). The T-matrix termination tolerance was set to 2% for all simulations.
The authors would like to thank Dr. Stephen Bond for discussions on the DF-DBIM algorithm. This work was supported in part by a grant from the 3M corporation.

REFERENCES