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Abstract— For different applications such as imaging, drug
delivery, and tissue perfusion measurement, it is necessary to
know the inertial cavitation (IC) threshold of ultrasonic contrast
agent (UCA) microbubbles. Even though the influence of the
incident acoustical pressure, frequency and pulse duration (PD)
in the regime of the microbubble’s response is well established,
the investigation of the IC threshold is essential for the accuracy
of some measurement techniques and for ultrasound safety. The
goal of our work was to find the IC threshold for the FDA-
approved UCA Definity®. The dependency of the threshold on
the peak rarefactional pressure and PD of an incident tone-
burst was investigated. The experiments performed to estimate
IC thresholds yield a large amount of data to be classified in
the five following classes: Noise, Oscillation, Collapse, Multiple
Bubbles and Unknown. A reduction of the manually to classified
data was reduced by using a semiautomatic algorithm in order
to achieve a low variance in the IC estimates. Further more
significant features to distinguish between classes were found
and tested. The development of a heuristic algorithm to detect
events of thee class Collapse was not successful due to the fact
that the classes were overlapping and some signals could not be
classified to a single class. Therefore, a semiautomatic algorithm
using support vector machines was developed.

I. INTRODUCTION

Ultrasound contrast agents are small, stabilized microbub-
bles (diameter < 10 µm) that are used for several ultrasonic
therapy and imaging applications. There are three different
regimes (linear, nonlinear, and inertial cavitation (IC)) of mi-
crobubble responses to an incident ultrasound field. One of the
earliest applications, using the linear regime, was the contrast
enhancement of blood vessels in ultrasonic images due to the
good ultrasound scattering qualities of the microbubbles [1].
Later, several image techniques were developed to measure
blood perfusion, blood volume or blood velocity rates in tissue
[2]. These techniques require the UCA destruction threshold
to be known in order to avoid false measurements due to
unintentional modification of the UCA concentration. The
knowledge of UCA destruction threshold is also fundamental
for targeted drug and gene delivery as well for safety reasons.

Several techniques have been developed using noise emis-
sion from microbubble destruction measured by a passive cav-

itation detector (PCD) to estimate UCA destruction thresholds.
The use of high-speed cameras are currently the reference
method to determine UCA destruction thresholds [3], but the
expensive equipment limits its accessibility and is not usable
for in vivo studies. Thus, we report on a technique using post-
excitation broadband signals to identify microbubble destruc-
tion. These signals are linked to IC of bubbles released after
UCA shell rupture. This technique has the advantage that the
inertial collapse and rebound signals are not contaminated by
nonlinear spectral contents from other sources [4].

The PCD measurements could be classified in five different
classes (Noise, Oscillation, Collapse, Multiple Bubbles and
Unknown) with unique patterns. However, we are interested
in determining the relative number of collapses depending
on peak rarefactional pressure, frequency and PD based on
PCD measurements. Therefore large data sets need to be
inspected for collapse events in order to achieve a reasonable
low variance of the threshold estimate. In order to reduce the
number of samples to be manually inspected, Support Vector
Machine (SVM) classifiers were applied to pre-classify the
data. SVMs are binary classifier, trained on supervised data
and were successfully used for different pattern recognition
problems such as content based image retrieval [5] and facial
expression classification [6]. Furthermore, to distinguish be-
tween collapse and non collapse events, appropriate features
need to be identified. Receiver operator characteristic (ROC)
analysis was used to select the most significant features based
on their discrimination properties.

II. METHODS AND MATERIALS

A. Contrast Agent

For all experiments the FDA-approved contrast agent
Definity® was used. The UCA is a lipid shell microbubble that
contains Octafluoropropane (C3F8) gas. The manufacture’s
vials have a maximum concentration of 1.2 x 1010 microbub-
bles/mL. Before use, Definity® was activated using Vialmix™

[7]. The mean diameter of the microbubble distribution is
between 1.1 and 3.3 µm, the maximum diameter is less than
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20 µm and approximately 98% of the bubbles have a diameter
less than 10 µm.

B. Experimental Setup

The PCD system described by Ammi et.al. [4] [8], consisted
of two focused transducers (2.8 MHz driving and 13 MHz
receiving transducers), was used to expose the UCA microbub-
bles and to record their scattered signals. The schematic layout
of the experiment is shown in Fig. 1. In the tank was a
weak solution of UCA that resulted in one microbubble in the
confocal volume on average. The microbubbles were excited
with the 2.8 MHz and the scattered signal was received by the
13 MHz transducer, amplified (44 dB), digitized (12-bit, 200
MS/s, Strategic Test digitizing board UF 3025, Cambridge,
MA) and saved to a PC using Matlab® (The Math Works,
Inc., MA) for off-line processing. For each PD (3, 5 or 7
cycle) one hundred PCD waveforms were acquired from each
of thirteen peak rarefactional pressure levels (ranging from 1.7
to 3.6 MPa).

Fig. 1. Experimental setup of the passive cavitation detector.

C. Data Processing and Classification

The prototype data set was manually classified to train the
SVM and test the accuracy of the algorithm. Deeper analysis
of the measurements showed that the class boundaries were
overlapping and some signals could not be subscribed to a
single class. Therefore a fuzzy classification was used whereas
every signal was weighted to all of the five classes introduced
in Section I. These classes are described below:
1) Noise: Data acquired with no UCAs in the tank showed the
presence of radiofrequency interference signals that could be
incorrectly interpreted as generated by the contrast agents. Fig.
2 is a representative example for such a waveform. The signal
content between 45 and 51 µs could possibly be interpreted as
multiple, nonlinear oscillating microbubbles with fundamental
and first harmonic modes.
2) Oscillation: Fig. 3 shows a representative PCD waveform
from a single microbubble that was classified as Oscillation.
The content of the waveform between approximately 43 and 46
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Fig. 2. An example of a waveform of the class Noise with signal artifacts.
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Fig. 3. An example of a waveform of the class Oscillation. A 2.8-MHz
3-cycle 2.9-MPa peak rarefactional pressure tone burst was used to excite the
bubble.

µs corresponds to the PCD response of the microbubble echo.
In the spectrogram, the fundamental mode, at approximately
3 MHz, and the harmonic modes, at 6, 9, 12 and 15 MHz, are
visible. The harmonic modes may have been generated both by
nonlinear bubble dynamics and nonlinear propagation of the
exciting pulse and echo [4]. There was no acoustic emission
after the end of the driving pulse.
3) Collapse: Fig. 4 shows a representative PCD waveform from
a single microbubble that was classified as Collapse. The prin-
cipal response of the microbubble between 42 and 45 µs looks
similar to the waveforms of the class Oscillation. Frequency
bands corresponding to the fundamental and harmonic modes
are present in the spectrogram. Broadband signals (rebounds)
with a frequency band between approximately 3 and 22 MHz
appear after the principal response at 46 µs and 48 µs. This
post-principal response feature indicates that inertial cavitation
occurred [4].
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Fig. 4. A representative waveforms of the class Collapse. A 2.8-MHz 3-cycle
2.75-MPa peak rarefactional pressure sinusoidal tone burst was used to excite
the bubble.
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Fig. 5. An example of a waveform with two microbubbles of the class
Oscillation. One of the responses is between 42 and 44 µs and the other
between 44.8 and 45.8 µs. A 2.8-MHz 3-cycle 2.68-MPa peak rarefactional
pressure sinusoidal tone burst was used to excite the bubbles.

4) Multiple Bubbles: Waveforms of the class Multiple Bubbles
show characteristics of both Oscillation and Collapse classes,
but the PCD response contains signals of multiple microbubble
responses. In Fig. 5 there are two microbubble responses, one
between 42 and 44 µs and the other between 44.8 and 45.8
µs, each with features of the class Oscillation.
5) Unknown: All waveforms that could not be classified as
Noise, Oscillation, Collapse or Multiple Bubble were marked
as Unknown.

D. Support Vector Machines

In this work the program SVMlight was used to perform
all pre-classification [9]. A SVM is a binary maximal margin
classifier which was proposed by Vapnik et.al. [10]. To over-
come problems of noise and non-separability a soft margin

Fig. 6. Algorithm for estimation of the optimal feature and SVM parameter
(σ and C) combination.

SVM using slack variables was introduced [11]. The scalar
inner products were calculated using a nonlinear Gaussian
Radial Basis kernel functions. The SVM classifiers required
the selection of two independent parameters whose optimal
values were obtained using a grid search method.

E. Feature Selection and SVM Training

For the SVM training and classification features with good
discrimination properties needed to be found. From the proto-
type data set, signal that belonged to at least 70 % to the class
Collapse were used as positive objects for the SVM training.
An equal number of negative objects were randomly chosen
from signals that did not belong to 70 % of the class Collapse.
The prototype data set was equally divided into training and
test data. The test set was used to test the classification
performance of the algorithm and the training set was used to
develop it. A total of 99 different features were automatically
selected from the measured data belonging to the training set
and tested for discrimination significance using the area under
the ROC curve criterion. The classification performance of the
SVM can be improved by using a larger number of features,
but the performance of the classifier degrades when using too
many features with bad discrimination properties. To find the
optimal combination of good features and SVM Parameters
(σ and C) the procedure shown in Fig. 6 was performed.
First, the feature with the best discrimination property was
used and the optimal SVM parameters were found using cross
validation and grid search. Then, the two best features were
used and the classification performance was tested. More and
more features were added to the input vector of the SVM until
the classification performance dropped.

F. Semi-Automatic Algorithm

After the SVM was trained data sets could be classified.
Fig. 7 shows the layout of the algorithm. First, features were
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Fig. 7. Block diagram semi-automatic Algorithm for Collapse detection.
Features were extracted from the raw data and followed by a pre-classification
performed by a SVM. A manually post-classification was performed to
increase the overall accuracy.
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Fig. 8. Relative IC thresholds of Definity® for the 2.8 MHz, 3 cycle PD
data set vs peak rarefactional pressure. The blue squares represent the results
of the semi-automatic algorithm the red dots correspond to the results of the
manually classified test data set.

extracted from the raw data and a trained SVM performed a
pre-classification. The output margin of the SVM was as a
confidence criteria used and signals with a low confidence
were manually post-classified in order to achieve a better
overall performance.

III. RESULTS AND DISCUSSION

The relative IC threshold was estimated for the 2.8 MHz
prototype dataset. In Fig 8 the threshold vs. peak rarefactional
pressure is shown for 3 cycle PD. The relative error between
algorithm and manual classification was around 3 %.

The estimated number of Collapses was divided by the
number of events that had higher RMS amplitude (>10
mV) in the window corresponding to the time of flight for
every pressure level. This canceled out every dependency on
concentration fluctuations of UCA in the tank. With the SVM
algorithm a true positive rate of at least 80 % was achieved
whereas a false positive rate was no higher than 8 %. The
amount of data to be manually classified was reduced by 80%.
The ratio of IC events to non-IC events ranged from 30% to
5%.

The ROC analysis showed that in general the amplitude of
five following peaks after the maximum of the radiofrequency
signal had the best discrimination properties for the class
Collapse. A cluster analysis may help to identify redundancies
and distributions of the different features.

IV. CONCLUSION

The relatively simple technique of the PCD was applied to
the lipid shelled UCA Definity®. A semi-automatic algorithm
with significant classification accuracy between IC and non-
IC events was developed. Through the supervised trained
SVM a post-classification was performed which led to a
reduction of data that needed to be classified manually, thus
providing the possibility to inspect large data sets for threshold
estimations.The IC threshold for Definity®, using the post-
excitation signal rebound as a criteria [4], was determined at
2.8 MHz.
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