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ULTRASONIC ABSORPTION IN SOFT AND HARD FETAL TISSUES 

James Lewis Drewniak, Ph.D. 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign, 1991 
F. Dunn, Advisor 

Although the use of ultrasound as a diagnostic modality in obstetrics has become ubiq

uitous, concern that harmful effects may occur under special circumstances continues. A 

physical mechanism by which biological effects could occur is the deposition of heat in the 

tissue as a result of the energy absorbed from the acoustic wave. Because the teratogenicity 

of hyperthermia has been well-established and concerns of more subtle effects of elevated 

fetal temperature exist, there is currently a concerted effort to provide manufacturers of 

medical diagnostic ultrasound instrumentation and clinicians with guidelines for the use of 

ultrasound during pregnancy. The temperature elevation in fetal soft tissue is estimated 

analytically from simple heat transfer models and simple assumptions concerning the ultra

sound propagation and beam. Experimental animal studies exist to support the calculations. 

There is a need, however, to continue developing heat transfer models that better reflect the 

actual problem, such that more accurate estimates of the temperature elevation upon expo

sure to ultrasound can be made. Included in such models would be the absorption properties 

of fetal soft tissue and fetal bone as a function of gestational age. The absorption of ultra

sound in fetal tissues and the resulting temperature elevation are studied in this thesis. The 

temperature elevation in fetal mice exposed to 1 MHz ultrasound is measured, and the re

sults are compared with analytical values of the temperature increase that are calculated 

using a simple heat transfer model. The transient thermoelectric method for measuring the 

absorption coefficient of liquids and soft tissues is also analyzed. The results provide an 



IV 

experimental guide for more accurate measurements of the absorption coefficient in fetal soft 

tissue. Finally, the absorption in fetal bone as a function of gestational age is considered. 

The acoustic propagation properties in bone are as yet unknown. The velocity and absorp

tion are expected to be a function of the mode and direction of propagation because of the 

anisotropy of the bone. In the absence of specific knowledge regarding the acoustic proper

ties of fetal bone, from which the temperature increase might be caluclated, the temperature 

rise resulting from exposure to ultrasound can be measured. The temperature elevation in 

fetal bone exposed to 1 MHz ultrasound is measured for a range of gestational ages. An 

equivalent heat source obtained from the measurements, which might be used in numerical 

and analytical calculations, is given. 
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C H A P T E R 1 

I N T R O D U C T I O N 

Although the use of ultrasound as a diagnostic modality in obstetrics has become ubiqui

tous, concern that harmful effects may occur continues. Several studies have demonstrated 

that lesions can be produced in soft tissue upon exposure to ultrasound for some exposure 

conditions [65], [80], [82], [88], [115], [167], [175]. Two mechanisms, thermal and cavita-

tional, are considered to be of primary importance in the ultrasonic production of lesions 

in soft tissue [6]. The thermal mechanism is considered in the study reported herein. The 

deposition of acoustic energy converted to heat and the resulting temperature elevation in 

fetal tissues are currently of great concern to the ultrasound community, because of the well 

established teratogenicity of hyperthermia [71], [146] and the possibility of more subtle, as 

yet undetermined, effects associated with elevated fetal temperatures. The National Council 

on Radiation Protection and Measurements (NCRP) Committee 66 is currently preparing a 

document to provide information on thermal effects upon exposure to diagnostic ultrasound. 

The American Institute of Ultrasound in Medicine (AIUM) has convened a Thermal Index 

Working Group to determine ultrasound exposure conditions which would result in a tem

perature increase in the fetus of 1 °C (a normal diurnal variation in the body temperature of 

the mother). The study reported herein is concerned with the conversion of acoustic energy 

to heat, i.e., ultrasonic absorption, and the resulting temperature elevation in fetal tissues 

exposed to ultrasound. 

Estimations of the temperature elevation in tissue resulting from heat generation involve 

a correct description of the conductive and convective processes in the tissue as well as 



the source of the heat generation. The bioheat transfer equation introduced by Pennes 

[166] for modeling heat transport in perfused media has been used extensively in calculating 

the temperature increase resulting from exposure of biological specimens to ultrasound [1], 

[30], [38], [137], [138], [139], [151], [154], [155], [177]. An assessment by Eberhart et al. 

[68] concluded that the bioheat equation is "an adequate model for the prediction of the 

macroscopic temperature distribution in several biological tissues." The form of the bioheat 

equation commonly employed in the prediction of the temperature elevation in fetal tissue 

resulting from exposure to ultrasound is 

" M . ^ i j - i M + ia!! (u) 
£71 T pL>p 

where T is the temperature elevation, f is the spatial coordinate (where the overbar represents 

a vector quantity), K is the thermal diffusivity of the medium, T is the perfusion time constant, 

q„(r, i) is the rate of heat production per unit volume, p is the density, and Cp is the specific 

heat. A thermally isotropic medium has been assumed in writing Eq. (1.1). Other forms of 

the bioheat equation appear in the literature [151], [177], in which the blood flow is given 

by a blood perfusion rate to ( j ^ l j , which is related to the perfusion time constant by 

-d& <"> 
where #, is the density of blood and C& is the specific heat of blood. 

The solution to the bioheat equation depends upon the specific boundary conditions and 

initial values associated with a particular application and may be obtained by well-known 

analytical and numerical methods [113], [156], [184]. Numerical solutions to the bioheat equa

tion are commonly sought in hyperthermia applications [66], [67], [111], [147], [177]. Whereas 

the analytical solutions discussed below assume a homogeneous and isotropic medium with 



uniform perfusion, inhomogeneities, anisotropics and nonuniform perfusion are easily han

dled in numerical computations. Chan et al. [46] used a numerical method to calculate the 

temperature increase at a fat-muscle-bone interface. Reflections of the ultrasonic wave at 

interfaces were ignored, and the perfusion was chosen to provide a best fit to the available 

experimental data. Their calculated results were found to be in reasonable agreement, given 

the simplifying assumptions, with experimental results published by Lehman [131]. 

An analytical solution for an infinite medium with isotropic and homogeneous thermal 

properties can be obtained easily by the method of Green's functions [156], [190]. The 

Green's function for the bioheat equation is given by the solution to 

art ft 
^ = KV2G-^ + 6(T)6(t) (1.3) 

Equation (1.3) can be solved using transform techniques [54]. By introducing a time and 

spatial shift in the delta function, i.e., S(f — f')S(t — 0), a shift in the Green's function is 

introduced, and the resulting solution to Eq. (1.3) is 

e T 4*(t-e) 

""-'•'-"-ii^jjr (M) 

Let the heat source be given by 

qv(f,t) qVof(v)F(t) 
= QoF(t)f(r) (1.5) 

PC, PC, 

where Qo (-7) is the magnitude of the rate of the temperature increase, qv0 is the volumet

ric rate of energy deposition, and / ( r ) , and F(t) are the spatial and temporal variations 

of qv(f,t) = qv0f(f)F(t), respectively. A solution to the bioheat equation in an infinite, 

isotropic, and homogeneous medium for the temperature elevation at position r and time t 

is then given by 

T(r, t) = Q0 f d6F{6) f df'f(r')G(r -v',t-6) (1.6) 
JO Jv 
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Equation (1.6) is also a representation for the solution to the heat equation in an infinite, 

isotropic, and homogeneous medium in the limit as r —> oo. Other analytical representations 

of the solution to the bioheat and heat equations and other boundary conditions have been 

considered by investigators in the ultrasound field, and are discussed below. 

The bioheat and heat equations have been used to predict the temperature elevation in 

soft tissue exposed to ultrasound. Typically the solutions assume an infinite, isotropic, and 

homogeneous medium with zero initial conditions and zero temperature elevation at infinity. 

It is common to assume plane wave propagation in the soft tissue. The equivalent heat 

source is then found to be qv0 = 2al, where a is the acoustic absorption coefficient and J 

is the acoustic intensity. The Green's function representation given by Eq. (1.6) is then 

employed to calculate T(r, t). 

Pond, in an attempt to discern the role of heat in the production of lesions in brain tissue 

in vivo, in the focal region of an ultrasonic transducer, calculated the temperature elevation 

using Eq. (1.6) with T —> oo [167], [168]. His experimental results compared favorably 

with his calculations. Robinson and Lele [175] in their investigation of lesion development 

in brain in vivo and polymethylmethacrylate also used the solution to the heat equation 

given by Eq. (1.6) to predict the temperature elevation resulting from exposure to high 

intensity ultrasound. Their experimental results compared favorably with the computed 

values; however, the authors noted that more accurate data for the ultrasonic and thermal 

properties of tissue are necessary for better estimations of the temperature elevation. Another 

early use of the heat equation to predict the temperature elevation in tissue was reported by 

Lerner et al. [135] in their assessment of the effect of temperature elevation on the frequency 

dependence of thresholds for ultrasonic production of thermal lesions in tissue. 
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The heat equation and the solution given by Eq. (1.6) have also been used in thermal 

modeling for the ultrasonic treatment of glaucoma and ultrasonic hyperthermia in opthalmic 

therapy [137], [138], [139]. The uniform acoustical and thermal properties of the eye lend 

themselves particularly well to the assumptions of a thermally homogeneous, infinite medium 

for the times of interest in these studies. Lesions were produced by elevating the temperature 

in the tissue with high intensity ultrasound and exposure durations of several seconds. The 

predicted temperature elevation and lesion size agreed well with the experimental results in 

the rabbit eye. 

The Green's function representation for the solution to the heat equation was used by 

Konopatskaya [120] to study the heating in soft tissue exposed to focused ultrasound. The 

equivalent heat source and source region for the focused ultrasound beam, in the focal 

region, were modeled as nested ellipsoids with uniform heat deposition proportional to the 

intensity over the particular ellipse. The product of the source and Green's function was then 

integrated over the source region. The temperature elevation in the rabbit brain exposed in 

vitro to focused ultrasound was found to agree well with the analytical results. 

Nyborg [155] has reported analytical results, neglecting perfusion, for the temperature 

elevation in soft tissue upon exposure to unfocused ultrasound. The equivalent heat source 

resulting from ultrasonic absorption was modeled as a uniform cylinder in the near-field 

region of the transducer and as an adjoining cone in the far-field region. The study reported 

the calculated temperature increase for a variety of diameters of the transducer. An extension 

of this work to include perfusion was given also by Nyborg [154]. The cited work by Nyborg 

[154], [155], is used in a current effort to provide information concerning the temperature 
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increase resulting from exposure to diagnostic ultrasound [150]. Analytical results that 

include perfusion are presented for uniformly heated spheres and discs as well as other cases. 

Wu and Du reported results for the steady state temperature increase generated by a 

focused Gaussian beam of ultrasound [202]. The study included perfusion, and the equivalent 

heat source resulting from ultrasonic absorption was derived from analytical expressions for 

acoustic propagation of a Gaussian beam in water. Their investigation included not only the 

zero boundary condition at infinity, but also Dirichlet and Neuman boundary conditions for 

a half-space, to illustrate the effects of a finite boundary on the temperature elevation. The 

complexity of the expression for the equivalent heat source of the focused Gaussian beam 

precluded analytical integration for the transient problem. 

The studies cited above have employed the representation given by Eq. (1.6) in com

puting the temperature elevation resulting from ultrasonic absorption. The equivalent heat 

source was approximated in various manners and then the product of the source and Green's 

function was integrated over the source region. Other mathematical methods exist for finding 

the solution to the heat and bioheat equations [156], [184]. For example an early study by 

Filipczinski [74], [75] utilized transform methods for computing the temperature elevation re

sulting from a uniform cylindrical heat source approximating a focused beam of ultrasound. 

Wu and Du also employed transform methods to determine the temperature elevation in 

tissues generated by finite-amplitude tone bursts of plane wave ultrasound [201]. 

These studies form the basis and support for current efforts aimed at calculating the 

temperature increase in soft and hard fetal tissues. Experimental studies have been reported 

on testing the applicability of the simple models of these studies for the equivalent heat 

source and source region resulting from ultrasonic exposure. An experimental animal study 
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by Sikov et al. [185] measured the temperature rise in fetal rats during the exposure of the 

exteriorized uterus. Temperature increases up to 21.5 °C and 17.5 °C for 0.8 and 2.4 MHz 

ultrasound at a spatial-average, temporal-average intensity of 10 ^ , for an exposure time of 

7.5 min were measured. The lower temperature elevation at 2.4 MHz can be attributed to a 

smaller beamwidth at the higher frequency. Calculations based on models given by Nyborg 

[152] showed reasonable agreement with the measurements; however, the authors pointed 

out that the number of assumptions involved in the calculations made the agreement seem 

somewhat surprising. A more recent study of the temperature elevation in the rat fetus 

exposed to ultrasound, with the uterus exteriorized, has been reported by Abraham et al. 

[1]. A temperature elevation in the range of 7 °C to 20 °C was measured in 15 to 20 day 

rat fetuses exposed to 1 MHz ultrasound for spatial-average, temporal-average intensities 

of 2, 4.2, and 7.9 ^ for exposure times of 10 min. The experimental data for live and 

dead fetuses were compared with the analytical model of Nyborg [152], and did not include 

perfusion. The magnitude of the volumetric rate of heating qv0 is commonly taken to be 

2al in soft tissue calculations. A best-fit analytical curve for the experimental data was 

drawn by Abraham et al. by choosing a appropriately. Since perfusion was neglected in the 

live fetuses, the resulting a was denoted as an effective absorption coefficient. The effective 

absorption coefficient, or absorption coefficient resulting from a best fit of the analytical 

model to the measurements, was greater than twice that of an adult soft tissue such as liver, 

for both the live and dead fetuses. 

Significant temperature increases at soft tissue-bone interfaces have been reported by 

Hynynen and DeYoung [112]. They reported the maximum temperature rise to be at the 

bone surface and decrease rapidly both in front of the bone and inside it. A maximum steady 



8 

state temperature elevation of approximately 5 °C was measured after 20 min of exposure to 

an ultrasound beam with an acoustic output power of 1.7 Wand a scan diameter of 20 mm. 

This degree of temperature elevation is of serious concern in fetal exposures. A study of the 

temperature elevation in bone upon exposure to ultrasound was conducted by Carstensen et 

al. [38]. The skull of a young mouse was the experimental animal model employed to simulate 

fetal bone. A temperature elevation of approximately 5 °C was measured in the adult mouse 

skull exposed to 3.6 MHz focused ultrasound at a spatial-peak, temporal-average intensity 

JSPTA, of 1.5 ^ j for 1.5 min. The temperature elevation calculated from the analytical 

model given by Nyborg that included perfusion was fitted to the experimental data. The 

absorbed energy (proportional to qvo) and T were chosen to yield the best fit. Reasonable 

arguments were given for the final values chosen, and the experimental data agreed well with 

the calculated results. 

Although few experimental studies of fetal tissues exposed to ultrasound have been re

ported, the results illustrate two important points. First, potentially harmful temperature 

elevations can be produced in soft and hard fetal tissues exposed to ultrasound under some 

exposure conditions. The diurnal variation in the body temperature of a human mother is 

approximately 1 °C. Thus, ultrasonic exposure conditions, in which the primary considera

tion for harmful effects to the fetus is heat deposition, are considered to be without risk if 

this temperature is not exceeded. It may, however, be possible to exceed a 1 °C temperature 

elevation in the fetus using some diagnostic devices. Although the typical 7SPTA of scanning 

mode fetal imaging devices are well below the intensities used in the cited animal studies, the 

JSPTA of some fetal Doppler devices presently in clinical use do exceed 1.0 ^ [4], [5]. In view 

of the available data from animal studies, there is concern that the temperature increase 
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in the fetus may, under special circumstances, exceed 1 °C in fetal Doppler exposures [38]. 

Second, insufficient knowledge of absorption in fetal tissues exists to determine accurately 

the volumetric rate of heat deposition, and there is insufficient knowledge of perfusion. Thus, 

models that more accurately reflect the complex heat transfer problem involved from which 

reasonable estimates of the temperature elevation might be obtained, cannot be constructed. 

It is the purpose of this study to provide information on the absorption of ultrasound in 

soft and hard fetal tissues and to determine resulting temperature elevations for conditions 

which approximate those of fetal Doppler devices. 

The ultrasound measurement system and the ultrasound and temperature measurement 

techniques employed herein are described in Chapter 2. A study of the temperature elevation 

in fetal mice exposed in utero to 1 MHz ultrasound is presented in Chapter 3. The gravid 

uterine environment is preserved in these measurements. The measured temperature increase 

is in the range of 1.5 °C to 4.5 °C for intensities from 0.5 to 10 ^ . Several exposure durations 

were used from 30 to 400 s. The temperature increase measured in this study is in the range 

of those measured by Sikov et al. [185] and Abraham et al. [1]. Analytical results with 

an equivalent heat source allowing for different absorption in the fetal tissue, as compared 

to those of the surrounding dam, are given. There is reasonable agreement between the 

analytical and experimental values of temperature increase. However, it is pointed out in 

Chapter 3 that the volumetric rate of heating g„o and the blood perfusion constant T can 

be chosen easily in retrospect to fit the data. Without specific knowledge of the absorption 

and perfusion, accurate estimates of the temperature increase for given exposure conditions 

are not possible. 
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Accurate measurement of the absorption coefficient in fetal tissues is particularly difficult 

because of the small size and low absorption of the tissue specimens. Heat conduction as a 

result of the small size can contribute a significant error to the measurement. In addition, a 

measurement artifact associated with the presence of the thermocouple temperature sensor 

can also introduce a significant error because of the low absorption of fetal soft tissue. 

The error resulting from heat conduction in the measurement of the ultrasonic absorption 

coefficient using the transient thermoelectric method is studied analytically in Chapter 4. 

An expression for the temperature increase in a tissue specimen in vitro, of finite dimensions, 

irradiated by a focused ultrasonic transducer, is given as a function of spatial coordinates, 

time, radial and axial beam dimensions, and absorption. An error is defined, and results 

are presented for various values of beamwidth, tissue dimensions, absorption, and time for 

the purpose of quantifying the experimental error due to heat conduction, and to provide 

guidance for minimizing this error in experimental procedures. For example, it is shown that 

the effect of heat conduction on the measured rate of temperature increase is less than 7% 

when using a transducer with a 5 mm half-power beamwidth at depths greater than 1.5 mm 

in the tissue. The analytical results given for the error as a function of the half-power 

beamwidth are shown to compare favorably with published experimental data. 

Finally, temperature increase measurements in human fetal femurs exposed in vitro to 

1 MHz ultrasound at 37 °C are presented in Chapter 5. The temperature is measured with 

a thermocouple probe and is given for several gestational ages. The temperature elevation 

measured in 59 and 108 day fetal femurs exposed at 1 ^ - j - for 20 s is found to be 0.10 °C 

and 2.9 °C, respectively. The initial rate of the temperature increase in the specimens is 

evaluated and compared to known values of absorption in soft tissue. For example, the initial 
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rate of temperature increase in the 108 day gestational age specimen resulting from exposure 

to ultrasound is 30 time greater in the fetal bone than that of soft tissue with an absorption 

coefficient of 0.05 cm'1. 



12 

C H A P T E R 2 

M E A S U R E M E N T A P P A R A T U S A N D T E C H N I Q U E S 

The system used for ultrasonic exposure of the tissue specimens and measurement of 

temperature is described in this chapter. The first of the two primary components of the 

apparatus to be discussed is the ultrasound irradiation system, which includes the ultrasound 

transducer, the RF signal driving and control circuitry, and the computer control for gating 

the RF and positioning the specimen relative to the acoustic beam. The means by which 

the transducers employed for the experimental measurements are characterized are discussed 

and the results presented. Finally the temperature measurement is discussed, including the 

temperature sensor, i.e., the thermocouple, and the amplifying and data acquisition of the 

thermal electromotive force (emf) output of the thermocouple. The error in the measured 

temperature is also discussed. 

2.1 The Ul t rasound I r radia t ion System 

The schematic of the ultrasound system used for irradiating tissue specimens and charac

terizing the transducers is shown in Figure 2.1. The RF source is a Hewlett Packard 8660A 

signal generator, with a 86601A RF plug-in, having a bandwidth of 0.01 MHz - 110 MHz. 

The output of the signal generator is fed to a matched RF attenuator for rough amplitude 

control of the transducer driving signal. The RF at the output of the attenuator is gated 

by a double-balanced mixer (Mini Circuits Laboratory, TAK-5) before being inputed to 

the power amplifier (Amplifier Research, Model 1000L). The amplified signal is then input 

to a driving/matching circuit that drives the transducer crystal. A signal is fed back from 
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the transducer driving/matching circuit to a stabilizing circuit, the output of which is the 

input to the AM modulation of the signal generator. By proper design of the feedback path 

from the transducer driving/matching circuit to the AM modulated input of the RF source, 

discussed below, a very stable voltage signal is applied to the transducer. 

All tissue and transducer characterization measurements are performed in a large tank of 

either distilled, degassed water, or degassed isotonic saline (mammalian Ringer's solution) at 

37 °C. The measurement tank is mounted on a mill base that can be moved manually, or by 

dc stepping motors in increments of 0.001 in. The transducer is mounted in a fixed position 

and the tank is moved relative to the transducer. The tissue specimens to be irradiated, 

or the acoustic field sensor employed in field measurements, are mounted fixed to the tank; 

hence, the tissue specimen or acoustic sensor is fixed relative to the bath coordinates. The 

position of the tank relative to the transducer is determined by an optical linear encoder 

(Dynamics Research Corporation, Model L-50) and displayed on a 3-axis digital readout 

(C-TEK Incorporated, Model LIN-103). 

The overall system, RF triggering, relative transducer positioning, applied transducer 

voltage, and data acquisition, can be controlled by an AST Premium 286 personal computer 

(PC). The computer is interfaced to the system by a controller/data acquisition card (Me-

trabyte DAS-20) that is mounted in one of the PC expansion slots. Only a minimal amount 

of external circuitry is then required for reading the mill base position, triggering the RF 

signal, positioning the bath relative to the transducer, and adjusting the driving voltage for 

the transducer. Each of these functions can also be performed manually. The Metrabyte 

DAS-20 card is also used for A/D conversion. 
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Voltage is applied to the transducer through the driving/matching circuit shown in Figure 

2.2. The parallel inductor, L, and capacitor, CM, serve to match the 50 ft output impedance 

of the power amplifier to the PZT-4 and PZT-5 transducer elements. The PZT composite 

materials are significantly lower Q elements than a material, such as X-cut quartz, and 

precise matching is not a critical issue for obtaining the acoustic powers required for the 

applications treated herein. The Amplifier Research Model 1000L power amplifier is rated 

for loads with standing wave ratios (SWR) to infinity at all levels of forward electrical power, 

and waves that are reflected at the load are absorbed by the source. As a result, it is not 

necessary that the transducer be matched to exactly 50 ft, rather, CM and L are adjusted 

such that up to 1 0 - ^ of acoustic power can be obtained at 1 and 3 MHz, and 3 ^ can 

be obtained at 5 and 7 MHz for voltages less than 30 V applied to the transducer. The 

inductance of the parallel inductor is adjusted by changing inductors. 

A stable voltage is maintained across the transducer by feedback of the signal VCa to the 

stabilizer circuit which has been described elsewhere [127]. The voltage signal across the 

capacitor C3 is half-wave rectified by the two diodes shown in Figure 2.2. The signal Va is 

then low pass filtered by the RG58 coaxial cable connecting the driving/matching circuit and 

the stabilizer circuit in series with the high input impedance of the stabilizer circuit. The 

stabilizer circuit then acts as a comparator to maintain a constant voltage of VJJ = —2.0 V. 

The output of the stabilizer circuit is fed to the AM modulation input of the signal generator 

to increase the driving voltage Vp when Vb falls below -2.0 V, or to decrease it if Vp increases 

above -2.0 V. If very low driving voltages are to be applied to the transducer, the rectified 

and filtered voltage from the diode network is amplified by a non-inverting amplifier with a 
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Figure 2.2: Driving/matching circuit for tuning and applying a stable voltage to the trans
ducer. 
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gain of 23. The voltage applied to the transducer is then adjusted by the capacitor divider 

and is given by 

Vr = %. ( ^ + l) (2.1) 

The range of the variable precision capacitor C, (General Radio model 1422N) is 100-1150 

pF. The capacitor CR is mounted in a plug-in unit that allows it to be changed such that 

a range of voltages from approximately 0.5 V to several hundred volts can be applied to a 

transducer. 

This method of driving the transducer does not require a knowledge of the incident 

and reflected power with the transducer connected, or accurate voltage measurements at 

the transducer when generating an ultrasound field. Accurate voltage measurements at 

the transducer Vp over a range of Ca can be performed once and related linearly to G,. A 

transducer can then be calibrated by an absolute method, e.g., with a sphere radiometer [63], 

[103], [105], and the intensity related to the value of C„. The ultrasound intensity /generated 

by the transducer at a given point in the field is found to be linear with Vj. Thus, using the 

linear relationships between I and Vf*, and Vp and Ga, the desired ultrasound intensity is set 

by adjusting the value of C,. Voltage measurements across the transducer as a function of C, 

and absolute calibrations of the transducer are checked frequently. This method of driving 

a transducer provides a simple and quick means of generating a well-known ultrasound field 

that is to be used frequently. 

2.2 Transducer Character iza t ion 

The ultrasound irradiation system described in the previous section is used to character

ize the transducers employed in the experiments described herein. The acoustic radiation 
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pattern generated by a given transducer is determined, the intensity calibrations are per

formed, the amplitudes of the harmonic components of the acoustic field are measured, and 

the linearity of the device is tested for the transducers employed in the experimental pro

cedures. The acoustic radiation pattern is plotted using a PVDF needle hydrophone probe 

(NTR Systems, Inc., Model NP-1000) with an active element of 0.5 mm diameter. The hy

drophone output is fed to a high input impedance preamplifier (NTR Systems, Inc., Model 

HP-2130) with a gain of 30 dB. The output of the preamplifier drives an RMS voltmeter 

(Fluke, Model 8920A) which has a single digital output line. The digitized output of the 

RMS voltmeter is read by the Metrabyte data acquisition and controller card. The radia

tion pattern transverse to the acoustic axis of propagation is plotted by measuring the RMS 

voltage response of the PVDF element to a 200 msec ultrasound pulse at 0.5 mm intervals 

across the beam. 

The acoustic beams employed in this study have half-power beamwidths (HPBW) greater 

than 4.5 mm in the far field so that the 0.5 mm diameter of the sensing element of the 

hydrophone causes no averaging of the important features of the radiation pattern. The 

radiation patterns were also measured with a thermocouple probe and found to agree well 

with those measured with a hydrophone. The hydrophone is fixed to the tank mounted on 

the mill base, which is moved with respect to the transducer to plot the beam profile. The 

beam plotting is computer controlled. One feature of the plotting program allows the beam 

to be centered on the sensing element by fitting a second- or fourth-order polynomial to 

the beam shape and positioning the acoustic axis of propagation on the maximum of the 

polynomial fit. The transducers employed in this study are axisymmetric. Beam profiles 

in two orthogonal directions that are perpendicular to the acoustic axis of propagation are 
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Figure 2.3: Relative intensity profile transverse to the acoustic axis of propagation at the 
focus of a 1 MHz, focused transducer measured with a PVDF needle hydrophone probe. 

plotted to ensure that the transducer field is axisymmetric. A typical measurement of the 

beam of a focused, 1 MHz transducer with a 5.0 cm aperture and 15 cm focal length is shown 

in Figure 2.3. 

The primary calibrations of acoustic intensity at the field points of interest are performed 

utilizing an elastic sphere radiometer [63]. The spatial peak, temporal average (SPTA) 

intensity is calculated from 

FTco 
SPTA — (2.2) 

iratYpAcr 

where FT is the acoustic radiation force, CQ is the speed of ultrasound in the fluid medium, a 

is the radius of the sphere, AQV is an area correction factor to account for the deviation of the 

cross-sectional beam profile from a uniform plane wave [84], and the dimensionless constant 
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Yp is the radiation force per unit cross section per unit energy density, and can be calculated 

or found in the literature [104], [105]. The radiation force FT is determined from deflection 

measurements of a grade 10 440C stainless steel sphere in the ultrasound field, the mass of 

the sphere, and the length of the suspension of the sphere. The sphere deflection is measured 

at points across the beam transverse to the acoustic axis of propagation, the beam profile is 

plotted, and the sphere is positioned at the maximum. The deflection of the steel sphere is 

related to the average intensity across the sphere cross-section. The intensity of the beam 

decreases across the diameter of the sphere for the beams employed in this study; hence, it is 

necessary to correct for this with the factor Acv- Letting JSATA denote the temporal-average 

intensity that is spatially averaged over the radius of the ball, the area correction factor is 

given by 

, ISATA ft d9 J° rdrfjr) 
* * - 7 , P , A - T ^ r d r ^ 

where f(r) is the axisymmetric intensity profile with the peak normalized to unity. In 

practice, the transverse beam profile is measured with a hydrophone over a width of 11 — 

2 times the diameter of the largest sphere to be used in the procedure, a second-order 

polynomial is fitted to the beam and the area correction factor determined. Acoustic windows 

constructed from 26 \im Mylar are placed on each side of the sphere to prevent acoustic 

streaming and to minimize convective currents in the water bath. The windows are spaced 

2.0 cm apart to allow a maximum deflection of the sphere of 1.5 cm for sphere suspension 

lengths of 10-11 cm [40]. The intensity as a function of the square of the voltage applied 

to the transducer, for a 4.2 mm HPBW at 7 MHz, is shown in Figure 2.4. The three 

sphere sizes used have radii of 0.099, 0.119, and 0.159 cm. The area correction factors for 

the described beam and 0.099, 0.119, and 0.159 cm spheres are 0.957, 0.936, and 0.887, 
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Figure 2.4: Intensity versus the square of the voltage applied to transducer 201B (see Ap
pendix B) at 7 MHz as determined by steel sphere radiometry for 0.099, 0.119, and 0.159 
cm sphere radii. 

respectively. The correlation coefficient of the data for each sphere is greater than 0.99. 

The slopes of the three lines are then averaged to obtain the calibration number for the 

intensity as a function of the square of the voltage applied to the transducer. The coefficient 

of variation (standard deviation as a percentage of the mean) for the calibrations is typically 

3-7%. 

An error analysis of Eq. (2.2) yields 

* W = (4 + 4, + 4 . + 4e' + 4 ' (2-4) 

where e; is the relative error contributed to the total relative error e/SPTA by the i "• factor. 

The speed of sound in water c0 as a function of temperature and salinity is well-known 

[55], and the radius of the sphere can be measured accurately such that the contribution 
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of these two factors to the overall error e/SP1,A is negligible. The errors in determining the 

radiation force using a mass deflection technique have been previously reported [198]. The 

radiation force can be measured to an accuracy of ± 3 % if the deflection of the sphere in the 

ultrasound field is sufficiently small. For suspension lengths of 10 to 11 cm, greater accuracy 

can be achieved by limiting the deflection to less than 1.5 cm [40]. The largest error in the 

calibration is usually contributed by the eyp term resulting from a sphere radius and frequency 

such that ka (k = —-M is near one of the minima of the radiation force function Yp. A plot 

of Yv as a function of ka values to 50 for a grade 10 440 C stainless steel sphere in water is 

shown in Figure 2.5. [The jaggedness of the lines in the Yp curve shown in Figure 2.5 is an 

artifact of the plotting routine Cricket Graph and has no connection with the Yp function.] 

A small error in ka can result in a significant error in Yp for ka values near minima. An 

experimentally verified alternative to stainless steel spheres is the use of fused silica spheres 

in the calibration [105]. Whereas the Yp function for stainless steel spheres varies rapidly as 

a function of ka with sharp minima, the Yp function for fused silica spheres varies slowly for 

ka < 20 with less pronounced minima and maxima, and is nearly flat for ka > 20. The use 

of absorbing spheres of polyethylene for ultrasonic intensity measurements has been studied 

analytically, though not experimentally verified [103]. An advantage of absorbing spheres 

for intensity measurements is that the Yp function is virtually flat for ka > 15, which is 

often the case at medical ultrasound frequencies. The slow variation in the Yp function is 

also important for intensity measurements in a nonlinear ultrasound field. Different spectral 

components of the ultrasound field have a different ka value, hence, a different value of Yp for 

each spectral component. The error introduced by harmonic components in the nonlinear 

acoustic field for stainless steel spheres is negligible for most purposes for ka > 15 because 
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Figure 2.5: Yp as a function of ka for grade 10 440 C stainless steel spheres. 

the Yp function does not vary by more than 15% of its maximum value. In addition, the 

limiting case for a nonlinear acoustic field, i.e., a sawtooth wave, has the second harmonic 

component 6 dB below the fundamental. 

The harmonics of the nonlinear ultrasonic field radiated by transducers employed in this 

study were measured as a function of the voltage applied to the transducer and the intensity 

at the observation point. The transducer was driven with the system shown in Figure 2.1. 

The beam is plotted transversely for each transducer to determine the maximum of the main 

beam and the hydrophone positioned at the spatial peak. To prevent an undesired stand

ing wave component between the transducer and membrane hydrophone, the membrane 

hydrophone is rotated such that the vector normal to the membrane is at an angle of ap

proximately 15 — 20° with respect to the acoustic axis of propagation of the transducer. The 



Figure 2.6: Schematic representation of the system employed to measure the nonlinearity of 
the ultrasound field. 

hydrophone response resulting from its own directivity is not significantly decreased for small 

angles of rotation [11], [172], [181]. The measurement of the harmonics is then performed 

with the system shown schematically in Figure 2.6. The hydrophone is a PVDF bilaminar 

shielded membrane hydrophone (Marconi Research Center, Type Y-34-3598) with an active 

element of 0.5 mm diameter. The calibration technique and an accuracy assessment used by 

the National Physical Laboratory in calibrating the membrane hydrophones are described 

in a recent report [187]. The end-of-cable, open-circuit sensitivity of the hydrophone is 

shown in Figure 2.7. Measurements of the second harmonic at fundamental frequencies 

higher than 4-5 MHz will be affected by the hydrophone frequency response. The rolloff 

in the hydrophone amplifier response beyond 8-10 MHz, however, does compensate for the 

increased hydrophone sensitivity by approximately 1.5-2 dB at 15 MHz [101]. The output 
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Figure 2.7: End-of-cable, open-circuit sensitivity M^ of the membrane hydrophone used in 
the measurement of non-linearities in the ultrasound field. 

signal of the hydrophone is amplified by a General Electric Company, Model Y-33-9724 

amplifier. The input impedance of the amplifier is 50 k£l, in parallel with a capacitance of 

4.8 pF, and an amplifier with a nominal gain of 17 dB from 0.5 - 10 MHz. The output of the 

hydrophone amplifier is the input to the digitizing oscilloscope (Tektronix, Model 2430A) 

which digitizes and stores a trace. An external source (Berkley Nucleonics, Model 7010) is 

used to trigger the oscilliscope at a rate of 2 kHz. A 10 (is trace is read by the AT&T 6300 

personal computer and a spectral analysis is performed using an FFT. 

The linearity of the transducer, signal generator, and power amplifier as a function of 

the drive applied to the transducer is verified for the devices employed in this study by 

placing a calibrated needle hydrophone probe in the near field of the transducer, displaced 

laterally from the acoustic axis of propagation [163], [173]. The results of the transducer 
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characterization described in this section for the devices used in this study are detailed in 

Appendix B. 

2.3 T e m p e r a t u r e Measurement Techniques 

The temperature increase measurements presented herein are conducted in a water or 

saline bath maintained at 37 °C by external temperature control (Yellow Springs Instrument 

Co., Model 72). The increase in the thermal emf at the thermocouple junction resulting 

from ultrasound absorbed in the tissue is amplified with a dc amplifier, sampled with the 

Metrabyte DAS-20 data acquisition/controller card, and stored on the PC. To establish the 

reference, a baseline thermal emf is sampled prior to exposing the tissue to ultrasound. The 

thermal emf is then multiplied by the Seebeck coefficient to determine the temperature. 

The temperature increase in tissue, upon exposure to ultrasound, that is reported in 

later chapters is measured with type E (chromel- const ant an) thermocouples of small diam

eter [169]. Type E thermocouples are used because of the larger Seebeck coefficient than 

for other types. For example, the Seebeck coefficient for type J (iron-copper) thermocouples 

is 52.298 % as opposed to 62.025 ^% for type E [171]. Typically the thermocouples are 

constructed from 3 mil (76 fim) diameter, teflon-coated constantan and chromel thermo

couple wire. The teflon is stripped from the length of the wires over which the junction is 

to be formed and the wires are etched in acid to a diameter of 15-25 fim. For temperature 

and absorption coefficient measurements in soft tissues of low absorption, smaller diameter 

thermocouple junctions are required [91]. The etched ends of the thermocouple wires are 

then soldered with an overlap of 200-400 jum. 
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The acoustic half-power beamwidths (HPBW) for transducers used in the measurements 

to be presented are greater than 4 mm. As a result, the acoustic intensity and, hence, the 

temperature profile, does not vary in the soft tissue by more than 1% over the thermocouple 

junction. Since the temperature does not vary significantly over the inhomogeneous region 

of the thermocouple junction formed by soldering the two wires together, no appreciable 

error in the measurement of the temperature due to the construction of the junction results 

[14]. Temperature increase measurements on ultrasonic absorbing fetal femur specimens 

with dimensions of 0.5 mm are given in Chapter 5. In such cases, where the tempera

ture is expected to vary on a scale comparable to the dimensions of the overlap region of 

the thermocouple junction, significant temperature averaging results. The technique, to be 

described in Chapter 5, for placing small diameter thermocouples in the tissue precludes 

constructing the junction with an overlap smaller than approximately 200 fim because of 

the fragility of the junction. In the above-mentioned case, other errors in the temperature 

increase measurement are more significant than the averaging effect (see Section 5.3). The 

error introduced in the temperature measurement by the conduction of heat along the sensor 

leads has been studied analytically by other investigators [69], [86], [178], [186], and is shown 

to be less than 0.5% for the small diameter thermocouple wires typically employed in the 

measurements reported herein. 

The thermal emf produced at the thermocouple junction is amplified, filtered, and con

verted to temperature. Precise measurements of temperatures and absorption coefficients 

therefore depend on a good amplifier design, as well as the superior construction of the ther

mocouple, particularly for low absorbing tissues. Low cost, precision amplifiers are readily 

available and a Fourier analysis of the type of signals to be measured will determine the cut-
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off frequency of the necessary low-pass filter. Analytical approximations to the temperature 

increase with time typically measured in soft tissues exposed to ultrasound were constructed 

using the infinite, homogeneous, and isotropic Green's function and a Gaussian-shaped heat 

source to approximate absorptive heating [57]. A cylindrical heat source with a Gaussian 

taper, to allow for the decrease in the ultrasound field along the wire, was also added to ap

proximate the viscous heating that results from the presence of the thermocouple wire. The 

resulting analytical approximation to the temperature increase over the first two seconds is 

shown in Figure 2.8. Curve a approximates a typical trace that would be observed for a soft 

tissue specimen with an absorption coefficient of 0.03 cm'1 at 1 MHz with a thermocouple 

of diameter 20-30 fim. Curve b represents the approximation of only the absorptive heating 

in the tissue, and curve c is the time derivative of curve b. The results of taking the FFT 

of all three curves are shown in Figures 2.9 (a), and 2.9 (b). An analysis of the the signals 

shows that 95% of the energy is contained in the frequencies less than 10 Hz, and virtually 

all of the energy is contained in frequencies less than 30 Hz. 

The measured temperature increase in mouse liver exposed to 1 MHz ultrasound at 3 ^ 

at 1 MHz and potted in 3% agar is shown in Figure 2.10 [56]. Curve a is the amplified signal 

after being low-pass filtered with a 30 Hz cutoff frequency. Curve b is the amplified signal 

filtered with a 10 Hz cutoff frequency. The rise time is slower for curve b as expected. The 

difference in the curves is primarily a result of the difference in the rise time. The two traces 

are two different exposures and a portion of the difference may be the result of deviations 

between exposures, as well as temperature nonuniformities in the experimental environment. 

The amplified signal filtered with a 100 Hz cutoff frequency is shown in Figure 2.10 (b), 

where it is observed that there is a significant amount of high frequency noise (relative to 
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Figure 2.8: Analytical approximations of the temperature increase in tissue; curve a: absorp
tive heating plus viscous heating from the presence of the thermocouple; curve b: absorptive 
heating only; curve c: derivative of curve b ( ^ ) . 
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Figure 2.9: The FFT of curves in Figure 2.8 (a) curves a and b, (b) curve c. 
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Figure 2.10: The measured temperature increase with time in mouse liver potted in 3% agar 
(a) Thermal emf signal amplified and low-pass filtered with 30 Hz (curve a) and 10 Hz 
(curve b) and (b) 100 Hz cutoff frequencies. 
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the expected signal). The 30 Hz low-pass filtered signal is also shown. If the noise is zero 

mean, and a sufficient number of measurements are taken, the temperature increase and 

absorption coefficient (proportional to |j£) can be determined accurately despite the noise 

[158]. However, it is typically desired to minimize the number of measurements necessary to 

determine the temperature increase or its derivative, while achieving an acceptable precision. 

Low-pass filtering the signal allows the experimenter to judge qualitatively the "goodness" 

of the measurement and discard the data for which it is clear that some source of noise has 

introduced a bias. The time derivative at 0.5 s of the least squares quadratic fit to the 

temperature data between 0.25 s and 0.75 s yields the same result for the data in curves a 

and b of Figure 2.10 (a) [19]. 

An amplifier was designed and constructed for making accurate temperature increase 

measurements. A schematic of the design is shown in Figure 2.11. The first stage is a low 

noise, precision instrumentation amplifier (Precision Monolithics, AMP-01AX) providing a 

specified gain of 103 or 104, which is set by three 1% metal film resistors and a switch. The 

second stage of gain is provided by another low noise, precision instrumentation amplifier 

(Analog Devices, AD522BD) with the gain set by external resistors R3 — Ri2- A multiple 

position switch and ten 1% metal film resistors are used to achieve gain settings from 1.5-

1000. A low-noise, precision 741 operational amplifier (Precision Monolithics, OP-02EZ), 

precision reference voltage (Precision Monolithics, REF-02AZ) and a potentiometer provide 

a low noise variable reference voltage that is input to the noninverting terminal of the second 

stage, and is used to ensure that the temperature reference signal is within the —10 V to 

10 V range of the Metrabyte A/D converter. The thermal emf signal from the thermocouple 

is transmitted from the measurement tank to the input of the amplifier by a shielded, twisted 
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pair of leads. The amplifier has low noise and low drift properties and provides high gain. The 

output signal of the dc amplifier is filtered by a 30 Hz cutoff frequency, 10-pole, Butterworth 

low-pass filter (TTE Inc., ALB10-30). The gain accuracy of the amplifier is better than 3%. 

It is seen from Figure 2.10 (a) that temperature increases of 50 m°C can be measured with 

a signal-to-noise ratio close to 20 dB. Measurements of the amplifier gain using a signal 

generator operating at 30 Hz as the input and reading the voltage at the output of the 

second stage agreed to within less than 1% of the gain calculated from the manufacturer's 

gain formula and the measured values of the resistors. 
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C H A P T E R 3 

IN UTERO M E A S U R E M E N T O F T H E T E M P E R A T U R E ELEVATION IN 
FETAL M I C E E X P O S E D T O 1 M E G A H E R T Z U L T R A S O U N D 

The teratogenicity of hyperthermia has been documented for a number of mammalian 

species, including humans [32], [71], [146], [188]. The manifestations of the teratologies are 

dependent upon the stage of development during which heating occurs and generally results 

in the production of brain, skeletal, or muscular defects. Heating during the early part of 

gestation, i.e., during organogenesis, has been shown to result in severe consequences [71], 

[90], [134], [197]. The possibility of more subtle, as yet undetermined, biological consequences 

of elevated fetal temperatures is also of concern. The deposition of heat and the resulting 

temperature increase upon exposure of the fetus to ultrasound are thus of concern in the 

medical ultrasound community. Although studies of the temperature increase in fetal mice 

and rats upon exposure to ultrasound have been reported [1], [70], [133], [185], [195], the 

uterine environment was not preserved, and, in some of them, comparison between the 

temperature elevation measurements and model calculations was not made. 

The study reported in this chapter was undertaken with two factors, considered of greatest 

importance, for an accurate determination of fetal temperature elevation due to exposure to 

ultrasound, viz., (1) the preservation of the gravid uterine environment, and (2) the ability 

to compare temperature elevation measurements with computations based on an improved 

bioheat transfer model. In vivo temperature measurements were made during ultrasound 

exposure at three different gestational ages. The analytical model comprises a pair of nested 

rectangular parallelepipeds for which the inner cube increases in dimension and possesses a 
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different acoustic absorption coefficient for each of the different gestational ages, while the 

outer cube remains unchanged. Uniform perfusion is assumed throughout the entire region. 

3.1 M e t h o d s 

All animals used in this study are housed in the same quarters. They are maintained on 

a 14:10 hour light-dark schedule with food (Purina Rat Chow) and water dispensed ad lib. 

Males are housed in close proximity to the females in order to ensure regular 4-5 day estrous 

cycles [199]. Female HSD:ICR (Harlan Sprague-Dawley, Indianapolis, IN) mice 70-100 days 

of age in proestrus or estrus, as determined by vaginal smears, are mated to proven males in 

the afternoon at a ratio of three females to one male. The following morning the males are 

removed, and pregnancy is determined by the presence of a vaginal plug or a sperm positive 

vaginal smear. Pregnant females are kept three to a cage until the day of the temperature 

elevation measurements. 

The temperature sensors are chromel-constantan thermocouples having lap soldered junc

tions 30-40 fim in diameter and axial dimensions of 300-400 fim. The ends of the chromel 

and constantan wires are stripped of the Teflon coating and etched with acid to taper the 

original 75 \im diameter to approximately 15-20 pm at the tip, cleansed with alcohol, and 

tinned. The individual wires are then retained in a holding device designed for this purpose, 

the two ends overlapped approximately 300 fim, set in contact, and soldered. The procedure 

is carried out with the aid of a dissecting microscope. The junction area is then sprayed with 

a protective coating (Krylon Crystal Clear, Borden, Inc.), designed for electronic equipment, 

to waterproof the junction and to prevent oxidation. 
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On the day of the measurement, days 9, 12, or 15 of gestation, the dam is anesthetized 

by inhalation of methoxyflurane (Metofane, Pittman-Moore). The abdominal area is then 

shaved and the animal placed in a specially designed holder. A circulator is mounted on the 

holder to maintain anesthesia during the entire measurement procedure. A midline incision 

is made through the skin over the abdomen and the skin carefully dissected away leaving 

the underlying peritoneal tissue intact. This procedure allows visualization of the fetuses 

without disruption of the gravid uterine environment. The thermocouple probes described 

above are inserted into three to four randomly selected fetuses with the aid of a 30 gauge 

hypodermic needle, which is removed after insertion of the thermocouple. The thermocouple 

wires are then attached with waterproofed set screws to a harness which fits over the animal 

holder. A photograph of the preparation is shown in Figure 3.1. 

The animal holder is placed in the Plexiglas exposure tank with the dam's abdomen 

facing the transducer, and the muzzle extended out of the medium into the nose cone of the 

anesthesia circulator. The tank contains degassed mammalian Ringer's solution, maintained 

at 37 °G, and is lined with sound absorbing material to prevent generation of standing waves. 

The thermocouple wire ends are attached to bus wires leading to the amplifier. 

The measurements are carried out in the far field, 25 cm from the face of the transducer. 

The ultrasound source is a 1 in diameter, 1 MHz, PZT-4, unfocused ceramic transducer 

with a 95 % power beam width of 1 cm, and a 3 dB beamwidth of 2.0 cm. A hydrophone 

probe is used to determine the ultrasound beam pattern. A plot of the beam pattern is 

shown in Appendix B. The exposure intensities were determined in the free field in degassed 

mammalian Ringer's solution with a thermoelectric probe as a secondary standard that had 

been calibrated with a steel sphere radiometer primary standard [63]. 
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Figure 3.1: Experimental animal preparation showing three thermocouple sensors (a, b, and 
c), and the nose cone (d) for the anesthesia circulator (e). 
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The harmonics in the ultrasound beam at a distance of 25 cm from the transducer, 

generated by nonlinear propagation, are measured with a needle hydrophone probe over the 

range of spatial-peak, temporal-average (SPTA) exposure intensities 0.5-"10" ^ . (The 

quotation marks around the 10 - ^ value indicates that the linear relation established by the 

calibration procedure, at low acoustic intensities, between the square of the voltage applied to 

the transducer and the field intensity, was extrapolated to voltages corresponding to 10 ~~^-) 

Although the SPTA intensity may deviate from the linear relation by 15% or less, at a 

distance of 25 cm from the transducer [40], the increased heating due to harmonic absorption 

can be significant [12], [41], [53] [84], [96]. The harmonics in the acoustic field, at the field 

position selected, were measured with a needle hydrophone probe (NTR Systems, Inc.). The 

second harmonic was found to be approximately 17 and 14 dB below the fundamental at 0.5 

and 1 ~j, respectively, and approximately 8 dB below the fundamental in the 5 — 10 ^ 

range. The variation in the sensitivity of the needle hydrophone probe with frequency is 

unknown. Calibrated needle hydrophones received in the Bioacoustics Laboratory from 

NTR Systems, Inc. have shown deviations from a flat frequency response by as much as 

2 — 3 dB in the frequency range 1-5 MHz. Measurements of the amplitude of the second 

harmonic relative to the fundamental in the 5-10 ^ intensity range showed only a slight 

increase, indicating well-developed harmonics [27], [99], [149]. 

The absorption coefficient was measured in mouse liver over the range of SPTA intensities 

1-10 —^ to assess the increase in the heating due to nonlinear absorption. The absorption 

coefficient at 10 ^ was found to be 2.3 times greater than that at 1 - ^ j . This is consistent 

with other such reported measurements [12], [39], [53]. Because the volumetric rate of energy 

deposition in the soft tissue is proportional to the product al, the intensities were scaled for 
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the 5 and 10 - ^ irradiations such that al corresponded to the linear values. For example, 

measurements of the linear absorption coefficient in mouse liver given in Chapter 4, and 

reported elsewhere in the literature [141], yield a value of a = 0.033 cm'1 ± 10%; hence, 

al = 0.33^?, for J = 10%&. Then, to obtain the same value of al for a measured value of 
cm" ' cm* ' 

a = 0.059 cmT1 in a nonlinear acoustic field, / = 5 . 6 ^ . 

The temperature elevation in the fetus due to ultrasound exposure is estimated by first 

establishing a thermal emf reference signal over 10 s during which no RF voltage is applied 

to the transducer, as shown in Figures 3.2(a) and (b). The sound is turned on by applying 

a predetermined voltage to the transducer after the reference period, for the prescribed 

exposure time. A 10 s decay period is sampled after the sound exposure is terminated. 

The thermal emf is amplified by the dc amplifier described in Chapter 2 and digitized by 

the Metrabyte A/D converter. The temperature elevation is estimated by subtracting the 

reference voltage from the peak voltage and multiplying the result by the Seebeck coefficient 

[171]. The exposure system and data acquisition are controlled by an AST Premium 286 

personal computer. The measurement system is a modification of that shown in Figure 2.1. 

A schematic of the modified system is shown in Figure 3.3. 

Figures 3.2(a) and (b) are representative data traces of the temperature elevation, mea

sured with the implanted thermocouples, upon exposure of the dam to ultrasound. In the 

cases shown, the exposures were at an SPTA acoustic intensity of 10 - ^ for 30 s and 1 - ^ 

for 200 sfor Figures 3.2(a) and (b), respectively. The lower arrow a in Figure 3.2(a) indicates 

the point at which the exposure is initiated after a 10 s reference signal. Viscous heating is 

seen to occur initially, as indicated by arrow b, followed by heating due to the absorption 

of sound in the tissue. The upper arrow c indicates the instant the ultrasound exposure is 
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(a) 
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100 150 

Time (s) 
200 250 

(b) 

Figure 3.2: Re 
to 30 s at 10 

ipresentative traces of temperature elevation data for (a) 15 day fetus exposed 
K , and (b) 12 day fetus exposed for 200 s at 1 -gy. 
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terminated. Fluctuations in the thermal emf output by the junction sometimes occur during 

the measurement period that are due to respiration or other movement by the dam. Such 

movements may change the location of the thermocouple junction relative to the ultrasound 

beam. Figure 3.2(a) shows an example of such fluctuations which do not affect significantly 

the determination of the temperature elevation from the measurement. 

Following the measurements, the animal and holder are removed from the tank. With the 

dam still under anesthesia, the abdomen is then opened surgically and the location of the 

thermocouple junction in each fetus is determined with the aid of a dissecting microscope. 

The dam is then sacrificed by cervical dislocation. 

3.2 Analytical Development 

The bioheat equation (1.1) has been employed by others for calculating the temperature 

increase in soft tissue resulting from exposure to ultrasonic irradiation [75], [120],[138],[154], 

[155]. A solution to the bioheat equation for an infinite, homogeneous, and isotropic medium 

can be found by the Green's function method and is given by Eq. (1.6). The infinite, 

isotropic, homogeneous Green's function given in Equation (1.4) is typically integrated over 

a sphere or cylinder with uniform heat generation to approximate the temperature elevation 

resulting from ultrasound exposure. This Green's function is employed in the analysis given 

below. Although the infinite, homogeneous and isotropic model is simple, it does allow for 

different heat source functions to be specified in the heating volume V, e.g., specification of 

the absorption coefficient of the fetus as different from that of the dam. This solution does, 

however, assume that the blood perfusion is everywhere uniform. Although blood perfusion 

is known not to be uniform [196], it is a formidable task to find the appropriate Green's 
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function for Eq. (1.1) for an inhomogeneous region. Alternatively, a numerical method, 

e.g., a finite element analysis, allows incorporation of nonuniform blood perfusion [10], [110], 

[113]. 

An attenuated traveling plane wave is typically assumed for acoustic propagation in soft 

tissue when computing the temperature increase. The equivalent heat source approximating 

the heat deposition resulting from ultrasonic absorption is then assumed to be 

qv0f(v)F(t) = 2al0e'a*f(x, y)U(t) (3.1) 

where a is the ultrasonic absorption coefficient in soft tissue, I0 is the SPTA intensity, f(x,y) 

is the beam profile in the plane transverse to the direction of propagation (z direction), and 

U(t) is the unit step function indicating a CW exposure. An unfocused piston ultrasound 

source was employed in this study. Previous studies have shown that the temperature in-

2Ji(or) 1 2 

transverse crease on the axis of propagation, resulting from a piston source with a 

beam profile (where r2 = x2 + y2, and a is a beamwidth parameter), is not significantly 

different than a source with a Gaussian distribution [38], [57]. Because a Gaussian function 

can be treated analytically in performing the spatial integrals in Eq. (1.6), the ultrasound 

intensity is assumed to vary as [57], [159], [164] 

1(f) = he'^e'^- (3.2) 

where BT = ^°'SH^W^ is the beam shape parameter in the radial dimension (HPBW denotes 

the half-power beamwidth). A Gaussian shape can also be included in the axial direction 

to approximate a focused beam. Analytical expressions for the acoustic field of transducers 

that radiate Gaussian beams have been given in the literature [58], [59], [60], and recent work 

has been published presenting analytical and numerical results of heating from such sources 
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[202]. The analytical expressions for these beams are significantly more complicated to apply 

when analytically estimating the heating due to ultrasound exposure than is Eq. (3.2), and 

not readily amenable to planar source region boundaries. A piecewise linear approximation 

to the ultrasound beam will also result in analytical expressions for the spatial integrals in 

Eq. (1.6). 

In using the intensity distribution described by Eq. (3.2), it is assumed that the shape of 

the ultrasound beam is not changed as it propagates through the tissue. Measurements in 

a homogeneous tissue such as liver suggest this is not the case exactly [160]. If a piecewise 

constant function of z is used for (3r, analytical simplifications for Eq. (1.6) still result, 

and allow for some changing of the profile. However, this may imply a better fit between 

the model and the experimental situation than is actually the case, as discussed in the 

Section 3.3. 

The spatial integrals in Eq. (1.6) can be treated analytically for a separable Gaussian 

shape intensity profile if the source region is bounded by planar surfaces. Hence, the fetus 

and dam are modeled with rectangular absorbing volumes as shown in Figure 3.4. Let the 

source region V be defined by the three regions JRI, % , and R$ with heat source functions 

qi, q2, and q3 as 

xu < x < X2d 

Rl = { vu < y < V2d 

zld < z < z2d 

qi{x,y,z) = 2adI0e~2a^z'z^e-sl^L 
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1 MHz 
Piston Source 

z1(j z=0 

Figure 3.4: Coordinates and heat source volumes used in the analytical treatment of the 
temperature elevation. 
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# 2 = < 

Xif < X < X2f 

yif < y < 2/2/ 

Zif < Z < Z2f 

q2{x,y,z) = 2adhe'2a^i-z^'2a*z-*<>>e-*-£L 

Rz = < 

X\j < X < X2f 

yif < y < V2f 

Z2f < z < z2d 

m'+v< 
q3{x,y,z) = 2adI0e'2ad(Zl'-Zld)-2a'(Z2'-Zl')-2ad{z-z>')e-~er 

where R\ is the entire volume of the larger rectangular parallelpiped, R2 is the volume of the 

smaller rectangular parallelpiped modeling the fetus, and R3 is the "shadow" region behind 

the smaller rectangular parallelpiped. The temperature increase for this heating distribution 

is then given by 

JR2+R3 

+ ^dr'q2(r')G(T-r',tS) 

+ J^df'q3(v')G(f-v',t0} (3.3) 
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where a unit step ultrasonic exposure has been assumed, and a change of variables t£ = t — 6 

has been introduced in Eq. (1.6). Upon performing the spatial integrals, the temperature 

increase is given by 

T(f,t) = ^ i e 2 < ^ « 
pOp 

£di{e'*L(r,tZ,ad) 

x [M(t£, x, xld) - M{t£, x, x2d)\ 

x[M(t£,y,yid) - M{t£,y,y2d)} 

x [N(t£, ad, z, zld) - N(tt, ad, z, z2d)}} 

I 2afI°t e-2ad(zif-zld)+2afzif 

pCp 

£dt{e-?L(T,tt,af) 

x [M(t(, x, xlf) - M{t£, x, x2f)} 

x[M{tt,y,ylf)-M{tZ,y,y2f)} 

x [N{tt, af, z, zlf) - N(tt, af, z, z2f)}} 

2adI0 2ad(zlt -zld)-2aj{z2S -zlt)+2adz2l 

£d^{e'^L(T,tZ,ad) 

x [M{t£,x,xlf) - M{t£,x,x2f)] 

x{M{tt,y,yif)-M(tt,y,y2f)} 

x [N{t£, ad, z, z2}) - N{t£, ad, z, z2d)}} 

_ W o 2aiZli 

fQd({e'^L{v,ti,ad) 

x [M{t(,x,xlf) - M(t(,x,x2f)} 
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where 

x[M(tt,y,yiJ)- M(t£,y,y2f)] 

x [N(t£, ad, z, zxj) - N(t(, ad, z, z2d)}} 

L(rttt,ai) 
1 + ^ 

-(2aiZ-ia\Kti) 

M(t£,v,vmn) = -erf 1 (i_L4**\k(_L_ 

(3.4) 

N(t£, cti, z, zmn) = - erf 
1 

x / 4 ^ 
(z - 4a;/ei£ - zmn) 

The differences between this particular method of modeling the ultrasound beam and ab

sorbing region over solutions given by other invesigators include the shape of the beam, 

incorporation of plane wave attenuation in the intensity function, and allowance for a differ

ent absorption coefficient in the fetus than that for the surrounding tissues of the dam [1], 

[155]. The source region has been approximated with rectangular parallelpipeds as opposed 

to spherical or cylindrical regions to enable analytical integration of the volume integrals for 

the described heat source [1], [155]. 

3.3 Resul ts and Discussion 

The measured values of fetal temperature increase for each of the five ultrasound doses 

employed are shown in Table 3.1. The dose is defined as the product of the SPTA intensity 

and exposure duration Iet. The intensity given in Table 3.1 is denoted as the SPTA effective 

intensity Ie to indicate that the effects of heating due to nonlinear absorption have been 
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Table 3.1: Measured and Computed (in parentheses) Temperature Elevation (°C) 

let 

200 

200 

300 

300 

450 

le 

(3) 

0.5 

1 

2.5 

10 

5 

Exposure 
Duration 

400 

200 

120 

30 

90 

Perfusion 
Constant r 

(-) 

2000 

2000 

500 

100 

100 

Day of Gestation 

9 

2.0 ± 0.7 
(1.4) 

1.9 ± 0.4 
(1.9) 

2.9 ± 1.2 
(3.2) 

3.4 ± 1.3 
(3.6) 

4.0 ± 1.2 
(3.8) 

12 

2.1 ± 0.6 
(1.3) 

2.4 ± 0.7 
(1.9) 

3.1 ± 0.8 
(3.0) 

3.2 ± 1.0 
(3.4) 

3.9 ± 0.8 
(3.6) 

15 

1.5 ± 0.5 
(1.3) 

2.2 ± 0.8 
(1.8) 

2.0 i 0.9 
(3.0) 

2.1 ± 0.7 
(3.5) 

2.8 ± 0.6 
(3.6) 

taken into account by scaling the intensity as described in Section 3.1. Each datum point is 

the average of measurements made in at least 10 different specimens. Values obtained from 

measurements in the disk (area of placental attachment) and placement of the junction in the 

gestational sac but not in the fetus were also included. These areas are integral components 

of the feto-placental unit and will have a bearing on the well being of the fetus. In addition, 

it is assumed, based on the measured data, that the temperature elevation at these points 

will not differ measurably from points in the fetus. Computed values of the temperature 

elevation are also given in parentheses. 
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The data indicate that the temperature increase is related approximately linearly to the 

dose, It. If the source terms qi, q2, and q3 are substituted into Eq. (3.3), it is observed that 

T{r,t)<xItv{r,t,ai,T,Ri) (3.5) 

where the Ri are the source regions. Then v is a function of time as well as other quantities. 

The perfusion constant r is expected to be a function of temperature, hence, will also be 

time dependent. Thus, the linear relation observed between the energy flux It and the 

temperature elevation is not necessarily expected. 

The temperature elevation in some cases was of the same magnitude, or higher than those 

previously shown to cause teratological effects in mice [71]. The table also shows that the 

temperature elevation is nearly equal in the 9 and 12 day fetuses, but less in most instances 

in the 15 day fetuses, as compared to the 9 and 12 day cases. This suggests that the earlier 

gestation fetuses are prone to temperature increases of greater magnitude from ultrasound 

exposure. The lower temperature increase in the 15 day fetuses is not presently understood. 

It is believed that absorption increases with fetal development because of the decreasing 

water content and increasing collagen and globular protein content as tissues develop, as 

well as bone development [56], [92], [95], which would lead one to expect greater heating. It 

is possible that the smaller size of the early gestation fetuses relative to the beam and the 

increased fetal and maternal vascularizations in later gestation fetuses play a significant role 

that is not presently understood. 

The mouse is an suitable animal model for this study despite maternal size differences 

because the mouse and the human have the same type of placentation, viz., hemochorial 

[119], [180]. Although vascularization increases during placental development, the uterine 

blood flow rate reaches a maximum on day 3 of pregnancy in the mouse [22] and on day 
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14-15 in the human [200]. Approximately 20% of the incoming uterine blood flows to the 

myometrium and endometrium and the other 80% to the area of placental attachment [174]. 

The blood flow volume increases due to the increase in the size of the placenta and uterus 

during gestation, particularly in the latter half of gestation. The blood flow per unit weight, 

however, remains constant [174]. 

The fetus is dependent on conduction to adjoining maternal tissues to remove heat, which 

is then carried off by maternal blood flow [77], [145]. The mechanics of circulation in this case 

are not conducive to rapid perfusion and thus heat removal. Briefly, placental blood enters 

from the uterine arteries under high pressure in jetlike spurts and flows into the intervillous 

spaces. Blood flow in the intervillous space is slowed significantly forming pools to allow 

time for exchange of nutrients and waste products from the chorionic villi. This blood is 

then forced into the uterine venous system by new incoming arterial blood [28], [200]. The 

continually increasing fetal temperature during the ultrasound exposures used in this study 

is an indication that heat is not rapidly removed as would be the case for well-perfused 

tissues. 

The computed temperature increases are also shown in Table 3.1 (in parentheses) and 

can be compared to the measured values. The size of the rectangular parallelpiped employed 

to approximate the dam is 5 x 4 x 2 cm (xu = — 2.b,x2d = 2.5; yid = —2,y2d = 2; zxd — 

—0.5, z2d = 1.5), and the absorption coefficient is taken to be 0.035 cm'1. The size of the 

rectangular parallelpipeds approximating the fetuses are 5 x 3 x 3 mm (x\{ = -0.25, x2f = 

0.25; yif — -0.15, j / 2 / = 0.15; zxi = -0.15, z2} - 0.15), 8 x 5 x 5 mm, and 15 x 9 x 9 mm 

for the 9, 12, and 15 day fetuses, respectively. The absorption coefficient for the three 

gestational ages are taken, respectively, to be 0.018, 0.023, and 0.028 cm'1. This corresponds 
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to a linear function of gestational age, where on day 19 (birth) the absorption coefficient for 

this function would be 0.035 cm'1, a reported value for the absorption coefficient in liver 

[141]. The perfusion constant r was chosen to be different for the various exposure times and 

intensities in order to obtain agreement between the measured and computed temperature 

increases. Immediate increases in the blood flow following the initiation of the exposure 

might be expected at the higher intensities and shorter exposure times as a result of the 

rapid temperature increase. Hence, a high perfusion rate ( r = 100 s) is chosen [182]. At the 

longer exposure times and lesser intensities where the rate of temperature increase is slower, 

a lesser perfusion rate (r = 2000 s) is used. A moderate rate of perfusion (T = 500 s) is 

chosen for the intermediate exposure time and intensity. In all cases, the rate of perfusion 

could be expected to be a function of the temperature and the rate of temperature increase, 

and hence time. Such details, however, are presently not available. The effect of perfusion 

on the temperature elevation is shown in Table 3.2 for the parameters of the 15 day fetuses 

used in the computations. At short exposure times even a high perfusion rate (T = 100 s) 

affects the total temperature elevation only slightly, whereas for longer exposure times the 

rate of perfusion affects the temperature increase significantly, as would be expected. 

The computed elevation is nearly equal to or greater than the measured increases at the 

higher doses. However, at the lower doses, and for the younger gestational ages, the computed 

temperature elevation is lower than or comparable to the measured values. The comparison 

between the measured temperature elevation and model calculations, while being reasonable, 

emphasize that exposure criteria based on such calculations should be conservative. It is clear 

that the model from which the computed results are obtained is overly simple relative to 

the actual experimental physiological situation. A more realistic model would include better 
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Table 3.2: Computed Temperature Elevation For Different Perfusion Constants (°C) 

-fsPTA 

(^) 

0.5 

1 

2.5 

10 

5 

Exposure 
Duration 

w 

400 

200 

120 

30 

90 

It 

(5) 

200 

200 

300 

300 

450 

100 

0.5 

0.2 

2.0 

3.5 

3.6 

200 

0.8 

1.3 

2.6 

3.8 

4.3 

r 

500 

1.1 

1.6 

3.0 

3.9 

4.9 

W 
1000 

1.2 

1.7 

3.1 

4.0 

5.1 

2000 

1.3 

1.8 

3.2 

4.0 

5.2 

00 

1.4 

1.9 

3.3 

4.0 

5.3 

determination and modeling of the ultrasound beam as it propagates and impinges on the 

fetus. Nonuniform blood flow and reasonable approximations of absorption coefficients and 

perfusion rates also need to be included. It should be noted that the absorption coefficient, 

which affects the calculations primarily as a scale factor outside the integral in Eq. (3.4), 

and the perfusion time constant T, can be chosen to fit approximately most experimental 

data obtained in a manner such as that of this study. An attempt was made, however, to 

present reasonable arguments for the values of absorption coefficients and perfusion constants 

assumed for the model calculations. 
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CHAPTER 4 

AN ANALYSIS FOR A MORE ACCURATE DETERMINATION OF THE 
ULTRASONIC ABSORPTION COEFFICIENT IN SOFT TISSUE 

This chapter comprises an analytical study of the effects of heat conduction resulting 

from finite beamwidths and sample sizes in the measurement of the ultrasonic absorption 

coefficient in soft tissues. The measurement of the absorption coefficient in fetal tissues is 

typically more difficult than for adult tissues because of low absorption and small dimen

sions of the tissue at earlier stages of gestation. If a small animal, e.g., a mouse, is used 

for experimental verification of a proposed thermal model, a knowledge of the absorption 

coefficient is required [1], and the error in the determination of the absorption coefficient is 

of concern because of the small sample size and low absorption of the tissue [189]. 

The rate of heat production per unit volume qv(f,t), as given in Eq. (1.1), can be related 

to the absorption coefficient in soft tissue if the shear viscosity is taken to be zero, as given 

by Nyborg [153]. The relationship given by Nyborg includes the plane wave result 

qv(f,t) = 2aI(f)F(t) (4.1) 

where a is the absorption coefficient, J is the intensity, and F(t) is a time-dependent function 

included here to indicate a CW or pulsed exposure, but is also valid for more complex 

ultrasound fields as well. Let q'v be the instantaneous rate per unit volume at which heat is 

produced in the tissue by energy absorbed from the ultrasound field, and qv = (q'v) be its 

temporal average. The types of exposures typically of concern in experimental research and 

clinical applications of ultrasound are continuous wave (CW) and pulsed fields. The time 

average of q'v is then taken over a single cycle of the field for CW exposures and over the 
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length of a single pulse, i.e., the time over which the ultrasound is on during a single period, 

for pulsed exposures. The rate of ultrasound energy absorbed in a unit volume of the tissue 

for any ultrasound field is given by [153] 

- V - (pv) = - V • I (4.2) 

where p is the pressure, v is the particle velocity, and I is the energy flow vector or intensity. 

The rate of ultrasound energy absorbed per unit volume in the tissue must also be (q'v), the 

rate of heat production, so that 

&, = K ) = - V - I (43) 

Upon employing Eq. (4.3), the heat source function qv in a relaxing medium with zero shear 

viscosity is given by Nyborg [153] for a general ultrasound field as 

%, = (<,;) = a ^ - (4.4) 
pc$ 

where p0 is the pressure amplitude, and c0 is the small amplitude speed of sound. The 

intensity for a plane wave field is I = \^-. The volumetric rate of heat production for a 

traveling plane wave in an absorbing soft tissue medium is then 

qv(r,t) = 2aI0f(f)F(t) (4.5) 

where I0 is a reference intensity, taken here to be the spatial-peak intensity for single beam 

ultrasound fields, and / ( f ) is the spatial variation of the field. The absorption coefficient in 

soft tissue can be readily related to the rate of temperature increase by noting that the heat 

equation for negligible heat conduction becomes 

dT 

dt 
= ^ = W ( f ) m = W » ! (4.6) 
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where qv0 is the magnitude of the volumetric rate of energy deposition, p is the density, and 

Cp is the specific heat. 

Two methods, viz., the transient thermoelectric method (TTM) [64] and the pulse decay 

method (PDM) [159], [162], are currently employed to measure the absorption coefficient, a, 

in soft tissue. Both techniques seek to determine the absorption coefficient from [86], [87] 

pGp-^- = 2al = 2al0e'2ad (4.7) 

where the density p, the specific heat Cp, and the spatial-peak intensity I, at the tissue 

depth of interest d are assumed known, and —jfi* is the measured rate of increase of tem

perature with no heat conduction. The intensity at the site of temperature observation is 

determined from the free-field intensity, I0, by correcting for attenuation, which is taken 

here as approximately equal to the absorption [160]. Since the conduction term in the heat 

equation is zero only when the heat source is uniform and infinite in extent, which is not 

usually the case, it is necessary to determine analytically the error in the estimate of the 

absorption coefficient that is calculated employing this assumption. The error can then be 

minimized in the measurements. The absorption coefficient is determined by exposing the 

tissue to ultrasound and making temperature measurements with embedded thermocouples 

to evaluate - ^ . The measurements are performed in a large isotonic saline bath, described 

in Chapter 2, which serves as the uniform-temperature, acoustic-coupling medium [85]. 

The contribution to -^ , the time rate of change of the temperature determined from the 

measurements, from the absorption of shear waves in the soft tissues is typically neglected. 

An asymptotic analysis of the scattering of a Gaussian beam from a fluid-solid interface has 

shown that to zeroth order, a beam at normal incidence is transmitted in the tissue entirely 

as a longitudinal wave [102], [170]. Further, a plane wave analysis shows the conversion of 
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the incident longitudinal wave to a shear wave at the fluid-tissue interface to be small [9]. 

The small amount of acoustic energy converted to a shear wave at the water-tissue interface 

is absorbed within fractions of a wavelength of the boundary. Reported values of shear 

attenuation in soft tissues are 104 times as large as those of longitudinal attenuation [81], 

[142]. Thus, the resulting equivalent heat source is very localized and contributes negligibly 

to the derivative ^ at the 0.5-1.5 s of interest in the TTM [76]. 

The subscript on Tnc indicates that the derivative of the measured temperature increase 

resulting from ultrasonic exposure is to be evaluated when heat conduction is negligible. In 

the TTM the derivative is evaluated at short times such that the effect of heat conduction 

on the measured temperature-increase data can be neglected. The temperature derivative is 

determined indirectly in the PDM by assuming an analytical form for the temperature decay 

resulting from a short ultrasound pulse and by fitting the measured data to the assumed 

analytical expression. The curve fit then yields -jj*0- [159]. 

Each technique has advantages and limitations. The existence of an error in evaluat

ing the derivative of the temperature, which arises from viscous heating due to the relative 

motion of the embedded thermocouple and the tissue, is well-known [86], [91]. The TTM 

attempts to minimize this artifact by evaluating the temperature derivative at a time suffi

ciently long such that the contribution of the viscous heating to the derivative is negligible. 

This necessitates using small thermocouples and large acoustic beamwidths to provide a 

temporal window during which the viscous artifact is minimal, while heat conduction re

mains negligible. The PDM avoids having to determine this temporal window in estimating 

the temperature derivative for those situations in which assumptions concerning the acoustic 

beam profile, tissue boundaries, and homogeneity of the heat conducting medium are met 
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experimentally. Although infinite transverse tissue dimensions are assumed for the PDM, as 

it is currently applied, finite dimensions for rectangular and cylindrical tissue boundaries can 

be included in the analytical expressions for heat conduction, when heating with a Gaussian 

transverse beam profile. The PDM is, however, more difficult to implement than the TTM. 

For example, the beam shape must be accurately plotted and the curve fit to a Gaussian 

function for each measurement in the process of accurately determining the acoustic inten

sity. Because the experimental temperature history is curve fit to an analytical form of the 

temperature increase, which must include the boundary effects of the finite source region, 

the thermocouple junction must be accurately positioned in the tissue. In addition, since 

the derivative of the unit step exposure temperature history is taken to obtain the impulse 

response needed in the analytical procedure, a low noise signal are required to reduce numer

ical differentiation noise in the processed data. These difficulties can be surmounted, though 

considerable care and effort are required. Thus, for those frequencies and beamwidths for 

which the accuracies of the two methods are comparable, the TTM may be a more desirable 

technique. 

A difference in reported values of absorption between the PDM and TTM has indicated a 

need for analysis and improvement in the measurement techniques [141]. Specifically, absorp

tion coefficient measurements reported on liver employing the PDM were 14% higher than 

those employing the TTM at low megahertz frequencies, with greater differences at higher 

frequencies. A theoretical and experimental investigation of absorption coefficient measure

ments using the PDM has been reported [141], [164]. Error estimates were presented and 

guidelines given for making accurate estimates of the absorption coefficient with this tech

nique. However, no comparable study of the TTM has been reported. The primary sources 
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of error in applying the TTM to determine the absorption coefficient are heat conduction 

toward or away from the temperature sensor and the viscous heating artifact associated 

with the temperature sensor. A previous study of the heat conduction error resulting from 

the finite transverse half-power beamwidth (HPBW) of the acoustic beam and the viscous 

heating artifact due to the presence of the embedded thermocouple yielded guidelines for 

selecting the most appropriate size of thermocouple and specifications for the HPBW when 

applying the TTM [91]. The modeling of acoustic wave propagation, however, did not ac

count for attenuation of the plane wave propagating in the tissue, and heat conduction to 

the tissue-coupling medium boundary was not investigated. In addition, the time derivative 

of the temperature was evaluated only at 0.5 s, and the error resulting from heat conduction 

was not quantified [91]. 

The purpose of this chapter is to quantify analytically the errors resulting from heat 

conduction for a prescribed acoustic beamwidth and specified tissue dimensions, when us

ing the TTM to measure the ultrasonic absorption coefficient in soft tissue. Experimental 

guidelines for minimizing errors due to finite beamwidth and tissue dimensions, absorption, 

and viscous heating result from the analysis. An expression is defined for the relative error 

at any given time after the initiation of a unit step ultrasonic exposure. The relative error 

is the difference between the result obtained in the ideal situation with no heat conduction 

as represented by Eq. (4.7) and the result obtained using the model of the experimental 

situation, which includes heat conduction due to finite beamwidths, finite tissue dimensions, 

and absorption. Results are presented for various beamwidths, specimen dimensions, and 

absorption coefficients. 



61 

The analysis provides fundamental limits on the accuracy of a measurement of the ab

sorption coefficient employing the TTM, within the limitations of the model. For example, 

measurements of the absorption coefficient for tissues of small dimensions have been reported 

where uncertainties concerning the accuracy of the measurement remain because of the effect 

of heat conduction on the temperature derivative at the time of evaluation [35], [189]. The 

results presented in this chapter provide the fundamental limit on the accuracy of the mea

surements imposed by finite beamwidth and sample dimensions. A further example of the 

utility of this analysis is in reducing the error introduced in the derivative of the tempera

ture by the viscous heating from the presence of the thermocouple. As the TTM is currently 

applied [64], [85], and as described in the original papers by Fry and Fry [86], [87], it is 

prescribed that the time derivative of the temperature be evaluated at 0.5 s following the 

initiation of a unit step ultrasonic exposure. As shown in Section 4.2, for sufficiently large 

tissue dimensions and beamwidths, the time derivative of the temperature can be evaluated 

at times later than 0.5 s without significantly increasing the error due to heat conduction, 

while decreasing the error resulting from the viscous heating artifact. This is particularly 

useful for low absorbing tissues. Finally, by quantifying the error associated with heat con

duction, which results from the finite beam dimensions, the beamwidths for which the PDM 

can provide greater accuracy are determined. The narrowing of the acoustic beam for single, 

focused radiators is particularly important at higher frequencies. 

The thermal properties of the tissue and water coupling medium are assumed uniform 

as in previous studies [91], [159], [162]. The use of this model for the thermal properties of 

the water-tissue medium has been verified experimentally [91], [93], [141], [159], [162], [175]. 

A focused acoustic field is modeled as a circularly symmetric Gaussian beam [132], [159], 
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and includes plane wave attenuation in the tissue. Linear wave propagation is assumed. 

Planar boundaries are assumed for the tissue, i.e., the tissue possesses rectangular geometry. 

The Gaussian beam acoustic profile, together with assumed planar boundaries, allow the 

temperature for an arbitrary irradiation time envelope to be expressed in terms of a single 

integral. The error is then defined and investigated as a function of time, acoustic beamwidth, 

sample dimensions, and absorption. 

4.1 Theory 

A schematic representation of the TTM measurement configuration is shown in Figure 4.1. 

A soft tissue specimen with ultrasonic absorption coefficient a, specific heat Cp, and thermal 

diffusivity /c is irradiated with a focused ultrasound source. A thermocouple probe of small 

diameter, embedded at a depth d in the tissue, is the temperature sensor. The tissue is 

assumed to have planar boundaries with a surface facing the ultrasonic source and oriented 

normal to the acoustic axis of propagation as shown in Figure 4.1. The position vector r 

is used to denote the site of the temperature observation, relative to the center of the focal 

region, as determined in the free field. The experimental environment is modeled for heat 

conduction as an infinite, isotropic, homogeneous medium, with a zero temperature increase 

at infinity, and zero initial conditions. A diffusion length / = V^4K£ may be defined that is 

indicative of the spatial extent of the heating due to a localized heat source at a given time 

t. For a time of 2 s and a thermal diffusivity characteristic of water, K — 1.5 x 10 - 3 —-, 

the diffusion length is 0.11 cm. The dimensions of the water bath in which the absorption 

coefficient measurements are performed is typically more than two orders of magnitude 

greater than this; hence, the medium may be considered infinite. The thermal diffusivity of 
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TISSUE SPECIMEN WITH PROPERTIES a , C p , K 

FOCUSED 
ULTRASONIC TRANSDUCER 

THERMOCOUPLE 
JUNCTION 

• DC AMPLIFICATION 

Figure 4.1: Schematic representation of the experimental procedure, conducted in a large, 
isotonic saline bath. The temperature is observed at z = 0. 

many soft tissues is approximately that of water [182], such that the entire medium may be 

considered homogeneous. Exceptions, however, are skin and fat with thermal diffusivities of 

approximately 1 x 10~3 —-. A solution to the heat equation for two media of differing thermal 

properties is given in Section 4.4, from which the errors resulting from heat conduction in 

applying the TTM to measure the absorption coefficient in these tissues can be determined. 

The errors for skin and fat will be less than that for other soft tissues under identical 

measurement conditions because of the smaller thermal diffusivity of these tissues. 
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The temperature T(f, t), at any point of observation r and time t, is given by the solution 

of the inhomogeneous heat equation 

2± - KV2T = Q(f,t) (4.8) 

The source term Q(f, t) in Eq. (4.8) is given by 

la 
Q(r, t) = Qof(r)F(t) = - ^ / ( r ) F ( t ) (4.9) 

Plsp 

for a traveling plane wave in an absorptive medium [153], where 1(f) is the intensity as a 

function of position, and F(t) is employed to denote a CW or pulsed exposure. The tem

perature increase resulting from ultrasonic absorption, as well as the absolute temperature, 

are governed by the heat equation, though, only the temperature increase is important for 

present purposes. Thus, T(f, t) in Eq. (4.8) is the temperature increase above the ambient 

temperature in the bath. A solution to Eq. (4.8) can be obtained for the assumed model by 

the method of Green's functions. The temperature at position r and time t is given by 

T(r, t) = Q0 f dOF(9) f df'I(f')G(f -f\t- 6) (4.10) 
Jo Jv 

where 

G(f-f',t-6) = -

l?-r'P 
g 4«(t-8) 

3 
[4™(i-0)]* 

is the Green's function for an infinite, isotropic, homogeneous medium, and the volume 

integration is performed over the region of the absorbing soft tissue [36], [156]. 

The linear, focused acoustic beam is modeled with a Gaussian dependence in both the 

transverse and axial directions. The error for a Gaussian beam is compared to a 2Ji(ar)]2 

ar 

(henceforth referred to as uniform-displacement, circular-aperture (UDCA)) beam shape 

transverse to the direction of propagation in Section 4.3. The Gaussian shape in the axial 
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direction has been shown to be a reasonable first-order approximation for medium and highly 

focused beams in the focal region [132], [159], [162], [175]. A piecewise linear approximation 

to the axial beam variation will also result in an analytical expression for the temperature 

increase due to absorption; however, a Gaussian shape is adequate for a first-order approxi

mation. The shape of the theoretical transverse profile for a focused, cylindrically symmetric 

radiator at the center of the radius of curvature, as well as the transverse profile for an unfo

cused radiator in the far field, are given by a UDCA profile. Although the axial variation of 

the beam radiated by a planar source differs considerably from a Gaussian function over the 

entire field, a Gaussian shape is still a useful approximation at the near-field - far-field tran

sition region, for dimensions typically of concern in the TTM. Hence, the analysis presented 

is useful for unfocused as well as for focused sources. 

The intensity distribution in a dissipationless medium is taken to be 

J(r-) = I(r ,2) = i o e " £ ~ £ (4.11) 

where r2 = x2 + y2, 3r and Bz are the beamwidth parameters in the transverse and axial 

dimensions, respectively, and I0 is the spatial peak intensity at (r, z) = (0,0). The beamwidth 

parameters Br and Bz are related to the radial and axial HPBWs by /?; = ^ ln2—*-, where 

i denotes either the radial or axial dimension. The axial half-power beamwidth, which for 

clarity will be referred to as the half-power beamlength (HPBL), is approximately ten times 

greater than the radial HPBW for medium and highly focused beams, and a factor of ten 

will be used in the analysis [85]. The intensity distribution for a traveling plane wave in a 
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tissue specimen with absorption coefficient a and boundary through which the ultrasound 

enters at z = — d is considered to be 

1(f) = I(r, z) = J 0 e- 2 a ( 2 + d >e-£-£ (4.12) 

The exponential decay in the intensity is assumed to result primarily from absorption [160]. 

In using the functional form of Eq. (4.11) multiplied by a decaying exponential term as 

the intensity distribution in the tissue, as given in Eq. (4.12), it has been assumed that 

propagation in the tissue does not significantly affect the shape of the acoustic beam. This 

assumption may be somewhat tenuous for very thick specimens [160], though the results 

will show that only the intensity distribution over a few millimeters into the tissue is of 

consequence. By substituting the Gaussian beam shape of Eq. (4.12) into Eq. (4.10), and 

introducing the limits of integration for the planar boundaries, the temperature increase is 

given by 

r(f,,) = ^r^(g)/%/r^r^-M.'^-=y-^ 
pCp JO J—d J-yi J-xi 

V 4K(t-») ; 

x - 5 (4.13) 
(4rr/c(i - 9))* 

After performing the volume integration, the temperature increase at any point r = (x, y, z) 

and time t is given by 

T(f , t ) = ^ e - ' « * , , ( F , ( , & , & , *) (4.14) 

where 

ft /w4m 
v(f,t,f3r,6z,a) = / d6F(6) 

JO 1 
, 4<c(t-g) 

e 
x -

/ i a 1 , 2a»-4a 2 K(t -9 ) \ 
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X g W 

- erf 

*l\«i 

1 / , 4 K ( ( - « ) \ ' ( 1 , \ 

W^i1*4-^)' (TTM1-12)]} 

2/1 I 

- erf 
V ^ 

X - er / 

i ( Mt-9)y I I 

1 A , 4 * ( t - g ) ^ / 1 ^ 

1 / 4/t( t-g)\* /z-4cm(t-f l ) 
V^(^^) l /J. J I 1+i^Hl + 

erf 
1 / 4K( t -g ) \5 ( z - 4 a / t ( < - 0 ) 

(4.15) 

and er/ denotes the error function [2]. 

The results for the PDM can be obtained from Eq. (4.14) by neglecting the exponential 

decrease of the intensity, letting the boundaries go to infinity, and observing the temperature 

at r = 0, yielding [159] 

noA-^m^ * (4.16) 

By letting Bz —> oo, i.e., assuming an axially uniform beam, Eq. (4.16) can be integrated 

analytically for a short ultrasonic pulse F(t) = U(t) — U(t — t0), where U(t) is the unit step 

function, to yield 

T(0,t) = 
2cJp Br 

pCp 4/c 

/ 4Ktg, 

In 1 — ^ 

- l 

1 + ^ , 
(4.17) 

Upon expanding Eq. (4.17) in a Taylor series and keeping only the leading-order term, the 

temperature is given by 

(4.18) ^=Tf°rTW 
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which is the result previously obtained for the PDM assuming a thermally impulsive source, 

i.e., F(t) = S(t) [159]. As seen from the preceding development, the ultrasound heating 

source can be considered thermally impulsive if 

irrAa < i (4.19) 

The first 1 s of data, following the initiation of the ultrasound exposure, is typically ignored 

in implementing the PDM, to allow the temperature artifact from the viscous heating of 

tissue surrounding the embedded thermocouple to become negligible. Then, Eq. (4.19) is 

satisfied, for experimental purposes, if the length of the ultrasound pulse is of the order of 

100 ms or less for any HPBW. For example, a 1 mm HPBW, K = 1.5 x 10 - 3 3f-, t = 1 s, 

and t0 = 100 ms, yield rffer = 0.062. Recent implementations of the PDM in determin-

ing the absorption coefficient have utilized the integral-differential relationship between the 

impulse and unit step responses for the heat equation [141], [164]. In practice, the temper

ature history is measured for a unit step exposure and the impulse response obtained by 

differentiating the measured data. The usefulness of this procedure is in producing sufficient 

temperature increases that can be accurately measured, without generating significant har

monic components in the acoustic field due to nonlinear propagation. A lesser intensity can 

be used to produce a measurable temperature increase with a unit step ultrasonic exposure 

than with a short pulse exposure approximating a delta function. 

The error in measuring the absorption coefficient using the TTM, which results from heat 

conduction due to the finite acoustic beam and tissue boundaries, can be investigated by 

defining the relative error 

E(f, t,Br,B„a)=\ dt
 dJ^

dt x 100% (4.20) 
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where Tnc is the temperature increase in the absence of heat conduction as given by Eq. 

(4.7), and T(f,t) includes heat conduction and is given by Eq. (4.14) with F(t) = U(t) (in 

Eq. (4.15)). Equations (4.7) and (4.14) can be used to simplify Eq. (4.20) to yield 

dv 
E(f,t,Br,Bz,a) = (l--^)xl00% (4.21) 

The limits on E as t goes to zero and infinity can be found by using the relation between the 

dv impulse and unit step responses for -SJ- [190]. In the case of a halfspace with the water-tissue 

interface at z = — d, -^ is given by 

dv 
dt 

XWX^^) 
! + f 

X g W 

(l+w) 
1 i+-V. 
4/ci V P.) 1 + 

z — AaKt ,} 
GT-rd l 
Pz 

The limits on E as t —> 0 and t —> oo are then 

+ 1 (4.22) 

limE = 
t-»o 

1 _ ^ e - S T - f c - 2 " 

x lim < erf 
t-»o 1 

1 (1 + 4*« 

\ / w V Pz )'(st ")H 
and 

lim E = 100% 
e-»oo 

x 100% (4.23) 

(4.24) 

At the water-tissue interface the limit on the error function in Eq. (4.23) goes to zero, and 

limE 
t-»o 

= ( l _ le-^-2;+2«^ x 100% (4.25) 

For z < —d, the relative error in Eq. (4.23) goes rapidly to 100% as z decreases, and for 

z > —d, E goes rapidly to 

( l - e-fr'K'2az\ x 100% (4.26) 
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as t —> 0. 

The infinite, isotropic, homogeneous modeling of the thermal properties of the water-

tissue medium assumed in the derivation of Eq. (4.14) neglected heat conduction along the 

thermocouple wire and loss of heat due to convection at the water-tissue interface. The addi

tional heat conduction due to conduction along the thermocouple wire and to convective loss 

at the water-tissue interface will result in a lower rate of temperature increase, determined 

from the measurements, in the tissue at the focal point of the ultrasonic beam than predicted 

by Eq. (4.14). An increase in the relative error defined in Eq. (4.20) will result from these 

additional components of heat conduction away from the thermocouple junction. However, 

as discussed in Section 4.2, the heat conduction along the thermocouple wire is negligible for 

a typical experimental procedure, and convective heat removal at the water-tissue interface 

can be avoided by "potting" the tissue specimen in a tissue equivalent medium [34], [56]. 

4.2 Resul ts and Discussion 

The integral-differential relation between the impulse and unit step responses shown in 

Appendix A can be used to determine -*| without performing the time integration. The error 

expression of Eq. (4.20) can then be evaluated as a function of spatial coordinates, time, 

beamwidth, beamlength, tissue specimen dimensions, and absorption. The axial HPBL is 

assumed to be ten times the radial HPBW, i.e., Bz = 100 BT for the results presented in 

this section [85], [159], [162]. The relative error for a Gaussian beam profile as given by 

Eq. (4.11) for an infinite source region is compared with measured results in mouse and 

horse liver from Goss et al. [91], and beef liver from Parker [159] in Figure 4.2. Since the 

reported values of the absorption coefficient in liver vary from 0.023 cm'1 to greater than 
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Figure 4.2: The relative error versus reciprocal HPBW and HPBW at 0.5 s following the 
initiation of the ultrasonic exposure. Comparison of a Gaussian profile (solid line) and 
experimental results in liver from Goss et al. [91] and Parker [159] (symbols). 

0.04 cm'1 at 1 MHz [94], [159], the data from both references are normalized such that the 

experimental point corresponding to the largest experimental HPBW in both cases falls on 

the computed error curve. As can be seen, the analytical results compare favorably with the 

experimental values. 

The effect of the HPBW on the relative error is shown in Figure 4.3 at t = 0.5,1.0, 

and 1.5 s. The heating volume has been taken to be infinite, and the exponential decay 

of the intensity in the tissue neglected; hence, the intensity distribution of Eq. (4.11) is 

used. The site of temperature observation is (x,y,z) = (0,0,0). As expected, the relative 

error goes to zero at each of the times shown as the HPBW approaches infinity. For a 
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Figure 4.3: Relative error versus reciprocal HPBW and HPBW for an absorbing volume of 
infinite extent at 0.5 (long dashed line), 1.0 (solid), and 1.5 (short dash) s following the 
initiation of exposure. 
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typical experimental procedure employing a medium focused acoustic beam with a 5 mm 

HPBW, the relative errors are 3.2%, 6.3%, and 9.1%, at 0.5, 1.0, and 1.5 s, respectively. 

The coefficient of variation (standard deviation expressed as a percentage of the mean) 

for absorption coefficient measurements using the TTM typically ranges from 10-30% [94]. 

Although the defined relative error which results from heat conduction can generally be 

kept smaller than the standard deviation of the measurements, in some instances, the errors 

resulting from heat conduction can add a significant bias to the estimate. For example, a 

1.5 mm HPBW acoustic field will result in an estimate for the absorption coefficient that is 

approximately 20% smaller than the value determined for negligible heat conduction, or a 

thermocouple junction at a depth of only 0.5 mm will similarly bias the estimate by more than 

10%. Heat conduction along the thermocouple also biases the measurement, but for typical 

experimental procedures employing 13 — 25 fim constantan-chromel thermocouples, this bias 

can be made less than 0.5% [86], [186]. It has been common practice to attempt to minimize 

the error due to heat conduction by employing large acoustic HPBWs and evaluating the 

time derivative of the temperature at 0.5 5. However, for those experimental situations for 

which the thermal model used herein is appropriate, e.g., a thermally homogeneous tissue 

such as liver, the analysis may be used to correct for heat conduction. 

It is advantageous to heat for a time longer than 0.5 s before evaluating the derivative -~r, 

for low-absorbing tissues, in order to minimize the error from the viscous heating associated 

with the thermocouple in the estimate of the absorption coefficient. For a tissue specimen 

of sufficient dimension that no significant heat flow has occurred due to finite boundaries, at 

1 or 1.5 s, a broader HPBW can result in the same percent error at 1.5 s as with a narrow 

HPBW at 0.5 s. For example, E = 3.2% at 0.5 s for an HPBW of 5 mm, while E = 2.5% 
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at 1.5 s for an HPBW of 1 cm. If the heat distribution resulting from the viscous heating 

is approximated transverse to the wire as a uniform cylinder with a radius equal to that 

of the thermocouple wire diameter, and along the wire axis as a Gaussian function, with 

a halfwidth equal to the acoustic HPBW, the time derivative of this portion of the total 

temperature increase at (x, y, z) = (0,0,0) is given by 

where rw is the wire radius, and qoh is the equivalent heat generation rate per unit volume. 

The heat source is assumed to be in an infinite, isotropic, homogeneous medium with « = 

1.5 x ID-3 esl . Taking the ratio of Eq. (4.27) and the derivative of Eq. (4.16) yields an 

approximation to the error introduced in the rate of the temperature increase, determined 

from the measurements, by the presence of the thermocouple. For low absorbing tissues such 

as testis, which has an absorption coefficient of 0.017 cm'1 at 1 MHz [93], the ratio ^- can 

be large. However, by evaluating the temperature derivative at longer times, the error due to 

viscous heating can be significantly reduced. For example, employing a thermocouple with 

a 13 fim diameter, and taking ^ = 1700 [86], the error in the estimate of the absorption 

coefficient can be reduced from 24% to 8% by evaluating the temperature derivative at 1.5 s 

as opposed to 0.5 s. 

Although the absorbing volume for the relative error shown in Figure 4.3 is infinite, the 

same conclusion can be reached even for very small absorbing volumes. The relative error 

versus reciprocal HPBW is shown at 0.5, 1.0, and 1.5 s in Figure 4.4 for the Gaussian heating 

distribution given in Eq. (4.11) integrated over a cube of dimension 3 x 3 x 3 mm3. The 

relative error for a 5 mm HPBW at 0.5 a is 3.2%, while the relative error for a 1 cm HPBW 
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Figure 4.4: Relative error versus reciprocal HPBW and HPBW for a 3 x 3 x 3 mm? absorbing 
cube in an infinite medium at 0.5 (long dashed line), 1.0 (solid), and 1.5 (short dash) s 
following initiation of ultrasonic exposure. 
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at 1.0 s is 3.4%. It is seen by comparing Figures 4.3 and 4.4 that as the HPBW becomes 

smaller, the heat conduction at the boundary is small compared to heat conduction resulting 

from the small HPBW for the times shown. 

The relative error as a function of time for several values of tissue thicknesses and HPBWs 

is shown in Figure 4.5. The temperature is observed at the center of the specimen thickness. 

The dimensions transverse to the acoustic axis of propagation, i.e., the x and y directions, 

are taken to be infinite, and a Gaussian heating distribution as given in Eq. (4.11) has 

been assumed. At 0.5 s there is negligible difference between the finite and infinite specimen 

thicknesses. The contribution of the finite beamwidth to the relative error is more significant 

(at 0.5 s) than that from the finite size of the tissue specimen. At longer times, the portion 

of the relative error due to the finite sample size becomes very significant. For example, note 

the 2 mm specimen thickness results. However, a wide HPBW of 1 cm results in a relative 

error of approximately 5% at 1.5 s even for a 3 mm thick specimen. 

There are experimental situations when it is necessary to measure the absorption coeffi

cient of tissue specimens with dimensions of only a few millimeters [35], [189]. The relative 

error as a function of time for several sizes of cubes and several values of HPBW, is shown 

in Figure 4.6. The Gaussian function of Eq. (4.11) has been employed for the heating 

distribution, and the site of temperature observation is the center of the cube for the finite 

dimensional cases, and the origin for the infinite dimensional case. The relative error at 0.5 s 

for a 3 x 3 x 3 mm3 cube is essentially identical to that for an infinite heating volume. The 

relative error for a wider HPBW of 1 cm at 1.0 s is 3.4% for a 3 x 3 x 3 mm3 cube and 

is less than 3.2% for a 4 x 4 x 4 mm3 cube even at 1.5 s. It is clear that the TTM can 

be employed to measure the absorption coefficient of tissue specimens of small dimensions. 
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Figure 4.5: Relative error versus exposure time for 2, 3, and oo mm thicknesses of the 
absorbing medium at HPBWs of 3 (short dashed lines), 5 (solid), and 10 (long dash) mm. 
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Figure 4.6: Relative error versus exposure time for 3 x 3 x 3 mm3, 4 x 4 x 4 mm3, and 
infinite volumes of absorbing media for 3 (short dashed lines), 5 (solid), and 10 (long dash) 
mm HPBWs. 
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Figure 4.7: Relative error versus depth of observation for an absorbing halfspace with a 
Gaussian heating distribution exponentially decaying from the interface for a = 0 (short 
dashed line), 1.0 (solid), and a = 5.0 (long dash), error at 0.5 s for a 5 mm HPBW. 

The PDM, however, may not be useful in such cases because the tissue boundaries will have 

an effect on the measured temperature increase . It is then necessary to consider the tissue 

boundaries in deriving an analytical form for the temperature. The shape of small tissue 

specimens may not, in general, lend themselves easily to boundaries for which an analytical 

form for the temperature can be found, in particular, rectangular or cylindrical geometries. 

Thus a significant error may result in using such assumptions in the determination of the 

absorption coefficient using the PDM. 

The relative error at 0.5 a as a function of the thermocouple depth for several values of 

absorption a and a 5 mm HPBW is shown in Figure 4.7, for the heating distribution of Eq. 
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(4.12) integrated over the half space z > —d. The site of temperature observation is the 

origin, and the beginning of the halfspace is the depth. The relative error does not exhibit a 

rapid increase for increasing thermocouple depth as might be expected for the case of a ^ 0, 

because in the ideal case of negligible heat conduction given by Eq. (4.7), the exponential 

decay of the intensity is assumed. Hence, the e~2ad factor in Eq. (4.14) has been normalized 

from the expression for E. The z dependence of -^ at 0.5 s, as given by Eq. (4.22), then 

causes E to be less in the absorbing than in the nonabsorbing case at depths for which the 

boundary has no effect. Physically, for large absorption coefficients, the observation point at 

z — 0 is on the tail of a heat distribution exponentially decreasing with depth. Hence, the 

temperature increase with time, at z = 0, results from absorption and heat flow from the 

region — d < z < 0. As a result, the relative error can even be negative upon normalizing 

the e~2ad factor from the expression for E. 

Absorption is important in contributing to the error if the depth at which the thermo

couple is placed is not known precisely. It has been assumed in deriving Eq. (4.14) that the 

embedded thermocouple is located at the beam maximum, i.e., z = 0, as determined in the 

free field, and that the depth in the tissue at which the junction is located is known precisely. 

As seen in Eq. (4.22), -^ has an e ^ 1 +?T/ dependence, where z > — d is the location of 

the thermocouple junction. Essentially, this factor represents an error in the calculated in

tensity resulting from the error in the position. This factor becomes particularly important 

at higher frequencies where the absorption coefficient is larger. For example, at 8 MHz the 

absorption coefficient for liver is approximately 0.5 cm'1 [141]. For an HPBW of 5 mm, an 

absorption coefficient of 0.5 cm'1 and a positioning error of 1 mm, i.e., z = +1 mm, the 

exponential factor contributes 9% to the error at 0.5 s following the initiation of exposure. 
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The exponential factor exp< — &-. Ajct [in g | contributes negligibly to this error for the 

given values of HPBW and z. 

The relative error as a function of thermocouple depth in the tissue at 0.5, 1.0, and 1.5 s, 

with a = 0, is shown in Figures 4.8(a) and 4.8(b) for 5 mm and 1 cm HPBWs, respectively. 

At t = 0.5 s, no significant heat conduction results from the half space boundary for 

thermocouples placed 1 mm or deeper in both cases. The asymptotic value of the error with 

increasing depth is determined by the beamwidth as can be seen by comparing Figures 4.8(a) 

and 4.8(b) with the appropriate HPBWs in Figure 4.3. If the critical depth is defined as the 

depth at which heat conduction toward the boundary is negligible, at t = 0.5,1.0, and 1.5 s, 

the critical depth is approximately 1.0, 1.5, and 1.75 mm, respectively. It is advantageous 

to place the thermocouple deeper than the critical depth because of the rapid rise in the 

relative error for more shallow depths, as seen in Figures 4.8(a) and 4.8(b). 

The thermocouple junction is centered on the acoustic beam when measuring the absorp

tion coefficient using the TTM. The center of the beam is found by stepping the thermocouple 

junction transversely across the beam and recording the temperature increase that results 

from a short ultrasonic pulse. The resulting set of points is then fit to a second- or fourth-

order polynomial and the thermocouple junction is positioned at the maximum of the fitted 

curve. Errors in finding the beam maximum by this procedure can result from noise and from 

sampling increments that are too large. The relative error as a function of time for 3 mm and 

5 mm HPBWs for several displacements from the beam maximum is shown in Figures 4.9(a) 

and (b), computed using the Gaussian heating distribution of Eq. (4.11) integrated over an 

infinite absorbing region. As with an axial error in the estimate of the position, a radial 

positioning error essentially results in an error in the estimate of the intensity for the times 
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Figure 4.8: Relative error versus depth of observation for an absorbing halfspace for a Gaus
sian heating distribution and no exponential decay for (a) a 5 mm HPBW at 0.5 (long dashed 
line), 1.0 (solid), and 1.5 (short dash) s following the initiation of exposure; (b) same as (a) 
with a 1 cm HPBW. 
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Figure 4.9: Relative error versus exposure time for observation points displaced radially (in 
mm) from the acoustic beam maximum for (a) 3 mm and (b) 5 mm HPBWs. 
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Table 4.1: Measured Absorption Coefficients in Soft Tissue 

Tissue measured absorption coefficient (cm x) 

mouse liver 0.033, 0.034, 0.035 

pig kidney cortex 0.029, 0.033 

-' 

of interest. In general, the thermocouple junction can be precisely positioned at the center 

of the acoustic beam profile. Figures 4.9(a) and (b) emphasize that precision is necessary in 

finding the beam maximum for narrow HPBWs. 

Absorption coefficient measurements at 1 MHz obtained by the author in the course of 

other work are shown in Table 4.1. The mouse liver absorption coefficients were measured 

in three different animals on different days, and the pig kidney measurements were on the 

same animal but different sites in the tissue. The HPBW of the transducer was 5 mm. 

Although the number of measurements is few, the results illustrate that the measurement 

to measurement deviation in a specific tissue can be kept small if the guidelines concerning 

thermocouple depth and ultrasound beamwidth are followed. The results in liver compare 

well with those of Lyons et al. [141]. Although the values of absorption in kidney are lower 

than those measured by Benkeser et al. [17], they compare well with those of Goss et al. 

[94]. 
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4.3 Compar ison of Gaussian and U D C A Beams 

A Gaussian approximation to the theoretical UDCA intensity profile for a focused radiator 

at the focal point has been employed in Section 4.1. This approximation resulted in a 

simple analytical expression for -3- for a rectangular absorbing region. The ease in handling 

the Gaussian approximation analytically makes it more desirable to use for the intensity 

profile of a focused transducer than the UDCA profile. However, to use the results for 

the Gaussian beam approximation presented in Section 4.2 for the focused and unfocused 

radiators typically encountered in experimental measurements, it is first necessary to compare 

the relative error for a Gaussian beam to that for a UDCA beam. Methods for fabricating 

transducers that radiate Gaussian beams have been reported in the literature [31], [58], [109], 

[143]. However, practical considerations such as expense, frequency, and required intensity 

levels prevent the use of these devices in some instances where it is desired to measure 

the absorption coefficient employing the TTM. A solution to the wave equation within the 

parabolic approximation has been given for a Gaussian amplitude source [58], [60]. This 

solution provides a more complete description of the shape of the beam as it propagates; 

however, the mathematical expressions are more complicated than what is required for the 

analysis of the TTM. 

The relative error between the cases of no heat conduction and heat conduction for each 

heat distribution is defined in Section 4.2. The relative error for a circularly symmetric, 

axially uniform beam in an infinite, thermally homogeneous and isotropic medium can be 

compared for Gaussian and UDCA beams by solving Eq. (4.8) with the appropriate source 

functions. In this case, the ultrasound beam is considered to heat the entire region. Equation 
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(4.8) is again solved by the Green's function method. The temperature as a function of the 

radial coordinate r and time t for a heat distribution Q(f, t) = Q0f(f)F(t) is given by 

T(r, t) = Q0 f F(9)d9 f°° r'dr'f(r')G(r, r', t - 9) 
Jo Jo 

(4.28) 

where 
_z2#" 

p 4 K ( J - 8 ) 

G(r,r',t-9)= n ,± nJ0 
rr 

2K(t-9) V\2ii(t-9)J 

is the two-dimensional cylindrically symmetric Green's function, and I0 is the modified 

Bessel function of order zero [2]. The difference in the relative error is given by 

dvj dva 
SE = | Ej - EG |= 

dt dt 
x 100% (4.29) 

where the J and G subscripts indicate the temperature distribution is to be solved with the 

UDCA and Gaussian intensity profiles, respectively. Using the integral-differential relation 

between the impulse and unit step responses, the derivatives -J^- and -^F for F(t) = U(t) 

are then 

dvj(r,t) 

dt 

fOO 

= / r'dr' 
Jo 

2Jx(ar') 

ar' 

and 

dt Jo 

e 4ict / rr 

2nt 0\2Jrf 

f rr' £Le «"» . J__ 

2K< ° \2Kt 

(4.30) 

(4.31) 

where a and BT are the beam parameters for UDCA and the Gaussian profiles, respectively. If 

the temperature is observed at the origin, i.e., r = 0, the Gaussian function can be integrated 

analytically to yield 

/ W n . ^ 1 
(4.32) 

dvG(0,t) 

dt 1 + 37 

The two beam profile functions are compared in Figure 4.10 for identical HPBWs of 

3 mm. The difference in the relative error 6E(t) is shown in Figure 4.11 for 1, 3, 5, and 
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Figure 4.10: Comparison of Gaussian (dashed line) and [^^\ (solid) beams for identical 
HPBWs of 3 mm. 
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Figure 4.11: SE versus exposure time for 1, 3, 5, and 10 mm HPBWs. 
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10 mm HPBW intensity profiles. The behavior of 6E with time is the same in all four 

curves, with the exception of the time scale, though, only the first two seconds following 

the initiation of the ultrasonic exposure are shown here. The main features of SE as a 

function of time occur within the first two seconds of exposure for a 1 mm HPBW. Initially, 

dt~ ^ dt~> caching a maximum of SE = 0.43% at 0.1 s following the initiation of the 

ultrasonic exposure. The difference in the relative error goes to zero and then increases 

again with -J^ < - ^ , reaching a maximum of 1.3%. At longer times, the steady state is 

approached and SE —> 0 as t —> oo. The second maximum for the 3, 5, and 10 mm HPBWs 

is not reached in the first two seconds following the initiation of exposure, and SE(t) remains 

less than 0.5% over this time interval. Thus, for beamwidths of concern in using the TTM 

to measure the ultrasonic absorption coefficient, a Gaussian beam is a good approximation 

to a UDCA profile for identical HPBWs. 

4.4 Resul t s for Tissues wi th a The rma l Diffusivity Different from W a t e r 

Skin and fat have thermal diffusivities significantly different from that of other soft tissues. 

Whereas most soft tissues have a thermal diffusivity near that of water, K = 1 . 5 X 10 - 3 2 2 - , 

skin and fat have a thermal diffusivity of approximately K = 1.0 x 10"3 ss^-. The critical 

depth to implant the thermocouple junction can then be expected to be less in skin and 

fat than that for other soft tissues when evaluating the temperature derivative at identical 

times. Or the temperature derivative can be evaluated at later times than other soft tissues 

for the same depth of implantation of the thermocouple. The relative error E as a, function 

of HPBW will also be less in the case of smaller K when evaluating ^ at a specific time. A 

quantitative knowledge of the relative error for varying parameters allows the measurement 
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procedures to be designed to obtain the best precision and accuracy. The heat conduction 

problem for two media of differing thermal properties must then be solved. The thermal 

diffusivity in acoustically absorbing oils is also typically different from that of water, and 

a solution to the two media problem will provide insight and guidance in measuring the 

absorption coefficient. In addition, an analytical solution similar to that in Section 4.1 for 

the two media problem can be used for further experimental verification of the theory. The 

relative error as a function of HPBW was found to compare well with experimental results 

published by Goss et al. [91] and Parker [159], as shown in Figure 4.2. Further experimental 

work investigating the critical depth and variation of the relative error with sample thickness 

and time would provide additional support for the theory. Oils are typically easier to work 

with than soft tissues. An appropriate cell can be constructed with the thermocouple depth 

precisely known. For further comparison of the experiments with the theory, the two media 

problem must then be solved. 

The temperature increase in an absorbing halfspace with a thermal diffusivity different 

from that of the surrounding water coupling medium can be solved by the Green's function 

method as was done for the homogeneous medium in Section 4.1. The Green's function for 

this problem can be found by seeking solutions in the two separate media and then matching 

the boundary and source conditions. The inhomogeneity is in only one direction for the 

halfspace problem, and only the one-dimensional problem need be solved. The equations 

for which a solution is sought are 

(4.33) 

# = «,B + f(z-z')F(f) z> -d 
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where the boundary is located at z = — d (d > 0). The boundary conditions and initial 

values are given by 

G = 0 z —> ±oo 

« l f = « 2 f 2 = 21 

G = 0 t = 0 

and the source conditions implied by the delta function are 

G(z,z;) = G(z,z!_) 

(4.34) 

(4.35) 

dz *+ dz K2 

where the point source is located at z = z'. The solution to Eq. (4.33), subject to the 

boundary conditions and initial values given by Eq. (4.34), can be found using the Laplace 

transform [54]. The Green's function for the observation point at z > — d is then given by 

(»-x ' i24(«-«')2 

g 4*2(t-9) 

G(f,f',t-9) 
[47T/C2(i-0)]*" 

xl^—-e~ •«a(«-») + e - f ^ ) l (4.36) 

where rj = JQ-J^, K is the thermal conductivity, and the x and y dependences have been 

reintroduced to yield a three-dimensional Green's function. If the heat source is given by 

the decaying Gaussian intensity distribution as in Eq. (4.12), the temperature increase in 

the absorbing medium for a CW ultrasonic exposure is then 

PiCp2 Jo J-d J-oo J-oo 
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_>-«')2+(y-y')2 

(4.37) 

[47TK2i£]2 

f n - 1 _('+*'+242 _ («-»')'1 
x < e 4K2*« + e 4K2'« > 

U + l J 

for z > — d, where a change of variables t£ = t — r has been introduced. Since Medium 

2 is assumed to be an absorbing halfspace, the integration in the ± i and ±3/ directions is 

to positive and negative infinity and in the positive z direction is to positive infinity. If a 

solution is needed at times for which the finite sample dimensions are of concern, the three 

media problem must be solved. The above solution, however, is useful for evaluating the 

accuracy of the TTM in tissues and oils having thermal diffusivities different from water by 

a factor of two or three, and sample dimensions of the order of several millimeters. Upon 

performing the spatial integrations, the temperature elevation in the absorbing medium is 

r(M)=^e-2a*dt I1 d£ 
Jo 

exp _z!±%l 
&r 1+î jflL 

(i+W+if) 
x-exp 

&! + *** + 
2a2z - Aa2K2t( 

x [1 + erf A] 

1 i f - 1 
+ - — — exp 

(2d + z)2 

2 77 + 1 

2a2(2d + z) + $a2
2K2t£ 

Bz ! + **& 

1 + i«2ii 

x [1 - erfB] (4.38) 
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B = ' fuMfl^'y-ji 9'M 
Tissue specimens with dimensions of several millimeters are typically available such that 

the boundaries in the x, y, and positive z directions can be assumed to be infinite for the 

times of interest. In addition, the solution to the two media problem is sufficient for the 

purpose of comparison between the theory and further experiments. Cells of absorbing 

oil can also be constructed sufficiently large to fit the infinite boundary conditions in the 

±x,y and + z directions for the times of interest in the TTM. An alternative to using an 

absorbing oil for further experimental verification of the analysis is an absorbing rubber such 

as polymethlymethacrylate [175]. 

4.5 S u m m a r y 

It is clear that heat conduction can contribute a significant error to the measurement of 

the ultrasonic absorption coefficient when using the TTM. The temperature increase in a 

soft tissue specimen irradiated by a traveling plane wave has been derived in this chapter 

for the purpose of evaluating fundamental limits of the TTM, and for serving as a guide 

for improving the accuracy of the measurement of the ultrasonic absorption coefficient using 

the TTM. The infinite, isotropic, homogeneous modeling of the heat conducting medium, 

introduced earlier, has been employed. The acoustic beam profile has been approximated 

with a Gaussian function transverse to and along the axis of propagation. A relative error 

that represents the difference between the case of negligible heat conduction and that of 

the assumed model for the experimental environment has been defined. The relative error 
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has been studied for varying spatial coordinates, time, radial and axial beamwidths, and 

absorption. 

The analysis demonstrates that HPBWs of the order of 1 cm result in a significantly 

lesser error than more highly focused beams. A wider HPBW has the advantage that the 

time derivative of the temperature can be evaluated at times longer than 0.5 s, e.g., 1.0 or 

1.5 s, for an error due to heat conduction less than 5% in most practical cases. The con

tribution of the thermocouple related viscous heating to the temperature derivative is then 

reduced, thereby improving the estimate of the absorption coefficient. The effect of absorp

tion on the accuracy of the measurement was found to be important only when the actual 

depth of the thermocouple junction differed from the assumed position, and then was signif

icant only for large absorption coefficients. The depth at which the thermocouple junction 

should be located, such that heat conduction at the water-tissue interface is negligible, was 

found to be a function of time. The critical depths at 0.5 and 1.5 s were found to be 1 and 

1.75 mm, respectively. 

The error in the TTM measurement increases as the frequency is increased because of the 

decrease in the HPBW of the acoustic beam for single, focused, radiating elements. Larger 

HPBWs at higher frequencies entail longer focal distances over which nonlinear distortions 

in the acoustic wave may result. It is possible to generate ultrasound beams with HPBWs of 

the order of 5 mm at frequencies from 3 to 7 MHz. Beam profiles with 5 mm HPBWs at 3, 

5, and 7 MHz are shown in Appendix B. Measurements of the harmonic content of the wave 

with a hydrophone have shown that at 7 MHz an intensity of 1 ^ can be generated with a 

second harmonic component that is greater than 10 dB below the fundamental. The error in 

the TTM measurement due to heat conduction can be kept under 10% for HPBWs greater 
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than 3 mm. However, for the narrow HPBWs typically encountered at higher frequencies 

and at high intensities, the PDM measurement can be expected to yield more accurate results 

than the TTM [141]. 

Linear wave propagation has been assumed in the analysis; however, it is possible to make 

extensions to include the error contributed by harmonic absorption in a nonlinear acoustic 

field to the measurement of the "linear" absorption coefficient at a given frequency [41]. Some 

medical ultrasound devices produce highly nonlinear acoustic fields as measured in water [61], 

[62], and some evidence for the production of nonlinear fields in tissue also exists [194]. A 

nonlinear absorption coefficient, which is a function of the shock parameter a [20], [27], [53], 

[99], [149], [179], is then also important [41], [84], [96], [150]. The analysis presented in this 

chapter is applicable in such cases for estimating the error resulting from heat conduction 

and for providing guidelines for the experimental procedure. The only condition that must 

be met is that a Gaussian function, or sum of Gaussian functions, suffice to describe the 

heat source. 



C H A P T E R 5 

96 

U L T R A S O N I C A B S O R P T I O N IN FETAL B O N E 

Although the values of the absorption coefficient for many tissues have been reported, 

including some attenuation values for bone [97], [98], [124], little is known about the acoustic 

absorption in fetal bone and its variation with fetal development. Thus good estimates of 

the temperature increase in the fetal bone and in the surrounding tissue during exposure to 

ultrasound cannot be made. The anisotropic, heterogeneous nature of bone is known to make 

the measurement of the elastic constants difficult [106], [118], [203], [204]. The measurement 

of attenuation and absorption in bone is likewise difficult. The absorption is likely to be a 

function of the type of wave as well as direction of propagation. Also, knowledge of acoustic 

intensity values at the site of temperature measurement needed to calculate the absorption is 

inadequate [64]. Calculation of absorption from the temperature-increase data also requires 

knowledge of the heat capacity Cp [64], at the site of interest, which is not available for fetal 

bone. 

In this chapter, acoustic wave propagation in anisotropic elastic solids is reviewed and 

difficulties in measuring the elastic constants and attenuation and absorption in solid ma

terials are enumerated. In the absence of detailed knowledge of absorption in fetal bone, 

as a function of the type of wave and propagation direction, the measurable temperature 

increase resulting from exposure of the specimen to ultrasound becomes the useful quantity 

for assessing thermal effects. The temperature increase in human fetal femurs exposed, in 

vitro, to 1 MHz, continuous-wave (CW) ultrasound is presented. The transient thermoelec

tric method, originally developed for measuring the absorption coefficient in soft tissues and 



97 

liquids is employed to measure the temperature increase [86] [87]. The specimens studied 

represent the range of gestational ages from 59-108 days. The temperature increase mea

sured over an extended period of time, as well as the time derivative of the temperature 

at 0.2 s following the initiation of a unit step acoustic exposure are presented. The time 

necessary for the temperature to increase by \°G is considered a useful parameter and is 

presented for described exposure conditions [6]. Estimates of the error in the temperature 

measurement associated with the method of insertion of the thermocouple are also given. 

5.1 Acoustic Waves in Solids 

The necessary equations to describe the elastodynamic state of a body are Newton's law 

(the force equation), a description of the deformation of the body, and a constitutive relation. 

Newton's law may be written for a volume element V, bounded by a surface S, in the linear 

theory as [3] 

The general nonlinear statement of Eq. (5.1) must have ^ replaced by the total differential 

2%. The vector t represents a distribution of surface traction forces over S, f is the body force 

per unit mass to which the volume element is subjected, and u is the element displacement 

vector. The Cauchy stress formula can be used to relate the traction force to the second 

rank stress tensor T [48] 

U = 2 > j (5.2) 
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where nj is the unit normal to the surface in the j direction, and the Einstein summation 

convention is followed. Applying the divergence theorem to Eq. (5.1) results in the Cauchy 

equation of motion 

% + ,/; = , ^ i (5.3) 

where d, denotes partial differentiation with respect to the j spatial variable. The deforma

tion of the body is described by the second rank strain tensor 

Si^lidw + diUj) (5.4) 

An interchange of i and j leaves the right-hand side unchanged; hence, the strain tensor is 

symmetric. The final equation describing the elastodynamic state of a body is the constitu

tive equation relating the stress and strain, which for a Voight solid is given by [144] 

Tij = CijuSki + rfijki-—- (5.5) 

where Cijkl and V)ijkl a r e the stiffness and viscosity tensors, respectively. Symmetry argu

ments can be invoked to reduce the 81 components of Cjjfcj and TJijkl to 21 independent 

components. An analogous development of the equations of motion can be given for liquids 

[165]. 

In the absence of body torques, it can be shown that the stress tensor T is symmetric. As 

a consequence of the symmetry of T, S, and c, a reduced notation can be introduced and is 

given by Auld [8], [9]. The stress and strain tensors are then represented by a six-component 

vector, and the stiffness tensor can be represented by a 6 x 6 symmetric matrix. The three 

elastodynamic equations for a lossless medium then read [9] 

V . T + , f = , ^ (5.6) 
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I=^V,u (5.7) 

T = i ! :S (5.8) 

The operators V and V, are defined by Auld for Cartesian, cylindrical, and spherical coor

dinates [8], [9]. 

The boundary conditions for two solids that are in firm contact, i.e., no slippage at the 

interface, are given for the velocity and stress by 

(%-%)• h = 0 

V ! - v 2 = 0 (5.9) 

The normal component of force, as well as the velocity, must be continuous across the inter

face. Equation (5.9) applies for a stationary boundary; however, in elastic wave propagation 

the boundary actually moves. This motion is neglected in the linearized theory. 

The power flow for elastic waves can be derived in a manner similar to Poynting's theorem 

in electromagnetism as [9] 

P n = - v T n (5.10) 

and is the power flow density in the A direction. The negative sign is a result of the sign 

convention used for the force exerted by Medium 1 on Medium 2, and the power flow is from 

Medium 1 to Medium 2. 

The acoustic wave equation can be derived from Eqs. (5.3) - (5.5), or from Eqs. (5.6) -

(5.8). Upon differentiating Eqs. (5.6) and (5.7) with respect to time, writing -jr = v, and 
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using the constitutive relation for a lossless medium, two coupled equations for velocity and 

strain result 

as 
dt 

d2\ 
dt2 Pa,2 

= V.v (5.11) 

where the double dot product denoted by : is given by Auld [9]. Eliminating S from the two 

equations results in the wave equation for the velocity vector 

„ = „ _ d2V dl 
V - c : V . v - , — = - , - (5.12) 

The complexity of wave propagation in anisotropic solids can be illustrated by investi

gating plane wave solutions. The dispersion relation for plane waves is found by making the 

substitution v(f, t) = vejut'jklf in Eq. (5.12), where the vector 1 is given by 1 = kx+{ y y+/ z z 

and k is the propagation constant. The resulting equation for the velocity vector is 

where 

r« = 

w 

Til Pl2 Ti3 

Pl2 P22 T23 

P l 3 ^23 Ps3 

— r y - sijP Vj = 0 (5.13) 
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and 5»j is the Kronecker delta. The nontrivial solution to Eq. (5.13) must have 

|^r*-%,| = o (5.14) 

which is the dispersion relation. Equation (5.13) is commonly referred to in the literature 

as Christoffel's equation, and Tij as the Christoffel matrix. However, Green first worked 

on the theory of plane wave propagation in anisotropic media in 1839 while pursuing the 

mechanical theory of light. 

The dispersion relation, Eq. (5.14), results in a third-order polynomial in (£)2 . The 

positive and negative roots of the three solutions correspond to positive- and negative-

going plane waves of three different types. Because the Christoffel matrix is Hermitian, the 

eigenvalues (£)2 are real. For all but the most simple cases, the solutions of Eq. (5.14) must 

be obtained numerically. Once the eigenvalues are obtained, the corresponding eigenvectors 

can be found from Eq. (5.13), which, in general, also requires a numerical solution. Equation 

(5.14) defines a surface in fc-space at a fixed frequency that gives £ as a function of its 

direction 1. This surface is referred to as the slowness surface because - = — is the inverse 
U Vj, 

of the phase velocity. Several examples of the slowness surface for a number of crystal types 

and crystal planes are given by Auld [9]. 
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In general, the particle velocity vector will be neither orthogonal nor parallel to the 

propagation vector for plane wave propagation. Thus, except for isotropic crystals, there 

are no pure shear or pure longitudinal modes of propagation for an arbitrary direction. It 

should be noted that shear and longitudinal modes are entirely plane wave concepts and are 

not applicable to other types of waves, viz., cylindrical and spherical. There are, however, 

particular directions and planes in an anisotropic crystal in which a pure longitudinal or 

shear wave will propagate. For example, a pure longitudinal mode can propagate if [29] 

v x l = 0 (5.15) 

i.e., 

lyVz - lzVy = 0 

lxVz ~ lzVx = 0 

lXVy - lyVx = 0 

Equation (5.15) represents only two independent equations. A third independent equation 

can be found by noting that Eq. (5.13) can be written as 

—Tij - SijP 
w 

S = o (5.16) 

where the Vij are the direction cosines of the velocity vector. Since v and I are parallel in 

the directions for which a pure longitudinal mode can exist 

k2 

—Vij - Sijp 
w 

lj = 0 (5.17) 

The Vi in Eq. (5.15) can then be replaced by the /j. Upon using Eq. (5.15) with Eq. (5.17), 

three equations for the pure longitudinal mode directions, given by lx, ly, and lz in terms of 
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the elastic constants of the medium, result. The polarization vectors and phase velocities for 

pure mode directions have been derived in terms of the elastic stiffness constants for several 

different crystal types [9], [29], [33], [47]. 

A dynamic method for determining the elastic stiffness constants of a material is to 

measure the velocity in several directions in the bulk material [203], [204]. The propagation 

velocity is measured using plane wave techniques along a known direction in the crystal and 

then related to the constants of the elastic stiffness tensor. The number of independent 

constants of the stiffness tensor fixes the number of independent measurements that are 

necessary. Another method that has been used in the 100 MHz to 1 GHz frequency range, 

to determine the elastic stiffness constants of solid materials, is the line focus beam acoustic 

microscope [121], [122]. This method has also been used to acoustically characterize dental 

material [123]. 

The attenuation of the acoustic wave as it propagates through the solid is an impor

tant consideration. Numerous experimental and theoretical studies of attenuation in both 

crystalline and polycrystalline materials appear in the literature [13], [108], [157]. The con

stitutive relation given by Eq. (5.5), which includes viscous damping effects, applies to a 

Voigt solid and is valid only if the frequency of the acoustic wave is well below that of any 

relaxation frequencies in the material; the acoustic loss per wavelength in the material is 

therefore small. The two processes involved in viscous damping are the thermoelastic and 

the Akhieser mechanisms. Thermoelastic attenuation is the result of irreversible heat flow 

from compressed regions to rarefracted regions and occurs only for longitudinal waves since 

shear motions produce deformations of unit volume elements and not size changes. Akhieser 

damping results from interactions between the equilibrium phonon distribution in the ma-
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terial and the passing, coherent acoustic wave. The attenuation that results from these 

mechanisms is proportional to the square of the frequency. 

Typical experimental studies for determining the viscoelastic portion of the complex 

stiffness matrix involve measurement of attenuation via insertion loss or optical measurement 

in the solid for well-characterized modes and direction of propagation. A theoretical analysis 

then enables the viscosity tensor to be determined. For example, the viscosity tensor has 

been determined for lithium niobate, which has six independent constants, from twelve 

different measurements (six independent) of attenuation [13]. A perturbation formula for 

the propagation vector for uniform plane wave fields then allows the viscosity tensor to be 

determined from the attenuation measurements [8]. It should be noted that the modes and 

directions of propagation in this study were well-known and this knowledge is inherently 

necessary for designing the experimental procedure and determining the viscosity tensor. 

The results showed the attenuation of lithium niobate to fit a square law behavior to within 

the experimental accuracy of the measurements. 

Other types of attenuation, which are not a viscous effect, occur in solids with a resulting 

variety of attenuation versus frequency behaviors [21], [107], [144]. In these cases the simple 

constitutive relation of Eq. (5.5) is not sufficient to describe the loss properties of the 

material. This may be the case for attenuation and absorption in bone. Not only is little 

known of acoustic wave propagation in bone, it is possible that it does not behave as a 

Voigt solid since the attenuation measurements that have been reported in the literature 

show it to be highly attenuating [97], [98]. The result is that the constitutive relation of Eq. 

(5.5) may not be adequate for describing the loss properties of bone, and the methods for 

characterizing the loss in a Voigt solid are not applicable. 
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Previous studies have shown that cortical bone is anisotropic and piezoelectric with psue-

dohexagonal crystalline properties [117], [118], [125], [203], [204], [205]. In these studies the 

six independent coefficients of the elastic stiffness tensor were determined from sonic velocity 

measurements with specified orientations to the long bone axis of human and bovine femurs. 

Plane wave techniques were used, and a knowledge of the crystalline structure of the bone 

was presumed. The dispersion of the ultrasonic velocity in a human femur has also been 

studied using these techniques [206]. Disagreement, however, over the precise anisotropy of 

bone and the applicability of the above techniques used to determine the elastic stiffness 

coefficients remains [128], [129]. Other studies have reported ultrasound measurements of 

the elastic modulus in trabecular bone [7] and the distribution of ultrasound velocities over 

a human tibia [114]. The anisotropic nature of dental tissues has also been studied using 

critical angle reflection techniques [130]. It has been shown, however, that a critical angle 

reflection technique does not generally allow for the determination of the elastic constants 

because pure mode propagation must be assumed [106]. It has been shown above that this 

is the case only for certain directions of propagation in the crystal. 

Attenuation studies based on insertion loss measurements in bone have also been reported 

in the literature [83], [89], [124], and a compilation of these studies is given by Goss et al. [97], 

[98]. Approximate values of attenuation for the "longitudinal" and "shear" waves in cortical 

bone are 4 emfffi{z and 7.5 cm^IHz, respectively [89]. However, none of the experimental 

studies of attenuation reported to date have properly taken into account the different modes 

of propagation in an anisotropic crystal. The attenuation can be expected to be a function 

of the direction as well as of the mode of propagation [13]. 
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It is clear that the anisotropic and inhomogeneous nature of bone makes the determina

tion of the elastic and loss properties of the tissue difficult. All previous studies have been 

performed in adult bone where samples are of sufficient size to apply plane wave measure

ment techniques in the low megahertz frequency range used in medical ultrasound. These 

specimens can be cut and machined to obtain planar faces at specified orientations to the 

crystallographic axes. The problem is more complex for fetal bone because of the size and 

shape. The diameter of the human fetal femur is approximately 0.5-4.0 mm for gestational 

ages of 60-150 days. Fetal bone is not only too small to cut and machine, but also too 

soft. Thus, determining the elastic and loss properties of fetal bone in a manner as might 

be obtained in adult bone may not be possible. 

Finally, determining the heat deposition in the bone resulting from power loss from the 

acoustic wave requires a knowledge of the acoustic velocity v and the stress tensor T in the 

material. The equivalent heat source is then given by the negative of the divergence of the 

real power flow [45], i.e., 

9.(f) = - | v . » e [ v . f | (5.18) 

The scattering of an incident ultrasonic wave from a fluid to an anisotropic cylinder is a 

formidable problem. Solutions for scattering of plane and cylindrical waves incident from a 

fluid on a fluid cylinder appear in the literature [44], [73], [140], [148], [191]. Studies of the 

scattering of plane and cylindrical waves incident from a fluid on an isotropic elastic cylinder 

have also been reported [72], [78], [79], [126], [136], [192], [193]. Studies of both plane wave 

scattering from an elastic halfspace and from an elastic cylinder that include attenuation in 

the elastic medium have been reported as well [51], [78]. However, no solutions for scattering 
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of plane or cylindrical waves incident on a lossless or absorbing anisotropic elastic cylinder 

are known. 

Thus, not only are the elastic stiffness and loss properties of fetal bone as a function 

of gestational age unknown, so too are the solutions to the particular scattering problem. 

Hence, the heating in the fetal bone resulting from ultrasound exposure cannot presently 

be determined by computation. The equivalent heat source, which results from ultrasonic 

absorption, is thus unavailable by indirect methods for studies of heat transfer in the bone 

and the surrounding tissue. The temperature elevation resulting from ultrasonic exposure in 

the fetal bone, however, can be measured directly. In Section 5.4, the measured temperature 

increase in human fetal femurs irradiated in vitro with unfocused ultrasound at 1 MHz is 

presented. Measurements of the temperature elevation in the skulls of mice irradiated with 

focused ultrasound at 3.6 MHz have also recently been reported [38]. 

5.2 Methods 

The fetal femur specimens are obtained from the Central Laboratory for Human Embry

ology, University of Washington, Seattle, WA. The specimens are frozen and packed in dry 

ice, shipped via overnight mail, and stored at — 70°F prior to the measurement procedures. 

The fetal femurs are exposed to 1 MHz, CW ultrasound, and the transient thermoelectric 

method is employed to obtain the thermal history [64]. All soft tissue attached to the bone 

is removed. A constantan-chromel thermocouple junction of diameter 25 to 40 fim, lap 

soldered to yield an axial dimension of approximately 300 fim, is the temperature sensor. 

The thermocouple is positioned midway along the length of the femur in the diaphysis with 

the aid of a 30 gauge hypodermic needle, o.d. 0.31 mm. The needle is readily inserted by 
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pushing for the earlier gestational age specimens (59-78 days), but it is necessary to drill 

a hole with a # 80 drill bit (0.33 mm diameter) to enable insertion in the harder bone of 

later gestational age specimens. The thermocouple junction is positioned in the specimen 

with the aid of a dissecting microscope. The specimen, with the junction in position, is 

then submerged in physiological Hank's solution to allow fluid to fill the space created by 

the insertion process. The specimen is held in a special supporting device, which does not 

interfere with the incident ultrasound field, and is potted in 3 % Bacto-agar (Diffco Lab

oratories). The agar is heated and dissolved at 78 °C and is poured as a liquid into the 

supporting device with the specimen in place at 38 °C to 40 °C. The liquid solidifies at 

35 °G, and remains solid at 37 °C, the temperature of the bath in which the measurements 

are conducted. The agar has negligible acoustic absorption and a sound speed nearly that of 

water [34]. The agar potting minimizes the removal of heat by convection to the ultrasound 

transmission fluid. The dimensions of the agar potting are 3 x 5 x 8 cm, with the 5 x 8 cm 

plane lying in the plane of the xy axis, and normal to the direction of the incident ultrasonic 

field, as shown in Figure 5.1. The femur cross section is approximately elliptical, and the 

specimen is oriented with the major axis parallel to the direction of the incident field. 

The supporting device, containing the potted specimen, is positioned in a gently stirred 

bath of degassed mammalian Ringer's solution maintained at 37 °C during the measurement 

procedures. The specimen is irradiated with ultrasound and the change in the thermal 

emf, developed by virtue of the temperature increase at the thermocouple junction relative 

to the "cold junctions" outside the acoustic beam, is amplified, digitized, and stored for 

later analysis. A schematic representation of the preparation and measurement procedure 

is shown in Figure 5.1. The acoustic beam is centered on the thermocouple junction in the 
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Figure 5.1: Schematic representation of the experimental procedure. 

bone specimen by irradiating the specimen with short ultrasound pulses, typically 200 msec, 

and observing the resulting temperature spike. The beam is then stepped across the bone 

specimen. The beam is axisymmetric so that plotting along the x and y directions only 

is necessary (see Figure 5.1). A typical beam plot is shown in Figure 5.2. An example of 

the measured temperature increase versus time trace is shown in Figure 5.3. The reference 

temperature, which is assumed to be the temperature of the bath, i.e., 37 °C, is established by 

sampling the thermal emf prior to the initiation of the ultrasound exposure. The ultrasound 

is then turned on while sampling of the thermal emf continues. A short cooling period is 

also sampled, after the ultrasound exposure has been terminated. 

The exposure intensities are determined in the free field in degassed mammalian Ringer's 

solution with a thermoelectric probe that is calibrated against a steel sphere radiometer as 
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plotted with an implanted thermocouple. 
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discussed in Chapter 2 [63]. The specimens are irradiated with CW ultrasound at the beam 

maximum; hence, the intensities given are spatial-peak, temporal-average (SPTA). However, 

it is easily shown that it is also the SPTA intensity that is important in assessing the 

temperature elevation upon exposure to the pulsed ultrasound fields typically encountered 

in clinical fetal imaging. 

Although the temperature increase with time in the femur specimens does not follow 

precisely a simple exponential curve, this mathematical form will suffice for the present 

argument. Assume that the temperature increase as a function of time in the specimen for 

a CW (unit step) exposure is given by 

Tcw = T„ ( l - e'r) (5.19) 

where TTO is the steady state temperature as t —* oo, and r is the time constant. The 

behavior of the assumed form as t —> 0 and as t —> oo is what would be measured. The 

thermal impulse response T$(t) is 

% : = Ts(t) = ^e'i (5.20) 
dt T 

Typical clinical imaging devices use a pulse of the order of 1 fis and pulse repetition frequen

cies (PRF) approximately 1 kHz. Such a pulse train can be described by 

oo 

F(t) - Y, «(* - n W ) - «(* - niPRF - iPW) (5.21) 
n=0 

where tPVI is the pulse width in seconds, and iPRP is the reciprocal of the PRF. Although the 

sum in Eq. (5.21) extends to infinity when the ultrasound will clearly be turned off, it is 

unimportant because the time integration would extend only over the period of the exposure 

if the time dependence given by Eq. (5.21) were put in the solution for the temperature 
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increase given by Eq. (4.10). A significant simplification for the temperature elevation then 

results by using Eq. (5.21) to describe the ultrasound pulse train. Proceeding with the 

standard linear systems theory development, the temperature elevation resulting from the 

pulsed ultrasound field is 

%,(() = ( ^ ) * F(<) = %(<) * f ( ( ) (5-22) 

where the asterisk denotes the convolution operation. An analytical form for Tp(t) is most 

easily obtained through the use of the Laplace transform. The convolution becomes a mul

tiplication in the transform domain, and fp(s) = ff(s) F(s), where the tilde denotes the 

Laplace transform of the function, and s is the transform variable. The Laplace transform 

of a periodic function is given by [176] 

F(4 = Y^prM3) (523) 

where P is the period, in this case iPRP, and Fi(s) is the transform of a single period of Eq. 

(5.21) 

1 1 — e~'tpw 

The Laplace transform of the temperature increase resulting from the pulsed exposure is 

The inverse transform of Eq. (5.25) can be obtained from the inversion integral and residue 

theorem as [50] 

W«) = T-f^-f4«-*) (5-26) 
\ %PRF 1 — e T / 
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The pulse width tPW and pulse repetition period 2PRP are several orders of magnitude greater 

than the thermal response time constant T, even for very small specimens and/or beam sizes; 

hence, 

1 - e ^ t pw 
, IEEE. 4 
1 — e T 1PRP 

The temperature elevation is then 

t,w x PRF (5.27) 

Tp(t) « ^ x tpW x PRF ( l - e~r) (5.28) 

It is necessary to relate T^, to the time-average heat source (q'v), where the brackets 

denote the time average. In the case of an exposure in a relaxing medium with zero shear 

viscosity, {q'v) = ~^, where a is the absorption coefficient, p0 is the pressure amplitude, p is 

the density, and CQ is the infinitesimal amplitude speed of sound [43], [153]. Then 

where <£ (s) is a unit strength quantity to give Too the correct dimensions. This quantity 

is necessary because of the mathematical form assumed in Eq. (5.19) for the temperature 

increase 

T(f0,t) = Ig-t f1 d(F(t - H) i df'f(f')G(f0 - f',tO « Too(l - e"r) (5.30) 
pup Jo Jv 

For plane waves, the square of the pressure divided by pc0 integrated over the period of 

the waveform is the temporal average intensity [16], [42]. The period for a CW exposure is 

simply the reciprocal of the frequency, and j ^ - = /SPTA. The temperature increase for a CW 

exposure would then be 

2a t 
Tow = - 7 r ^ W ( l - e " ) (5.31) 

plsp 
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The time average is taken over the length of one pulse for a pulsed exposure when determining 

the equivalent heat source (q'v) and is the spatial-peak, pulse-average (SPPA) intensity. The 

temperature increase resulting from the pulsed ultrasound exposure is then 

2a t 
Tp = — j> x 7SPPA x iPW x PRF(1 -e") (5.32) 

pcp 

The product 7SPPA X W X PRF is defined for medical ultrasound fields as JSPTA [100]. Upon 

substituting this into Eq. (5.32), the temperature elevation resulting from a pulsed exposure 

would then be the same as that measured for a CW exposure for the identical 7SPTA- The 

sphere radiometer has been used as a calibration for the 7SPTA of pulsed ultrasound fields 

[40], [84]. The time constant of the deflection of the suspended sphere is orders of magnitude 

greater than the ultrasound pulse width 2PW and the reciprocal of the PRFtPM. The above 

mathematical development can be used to justify this calibration procedure as well. 

Three implicit assumptions were made above which deserve further discussion. First, 

the simple exponential rise assumed for the temperature increase upon exposure to CW 

ultrasound can be improved to include other exponential terms, e.g., 

T(t) = Toor£ane-^\ (5.33) 

The pulsed response would then be 

Tp = TO0xtPWxPRFYtan(l-e'^) (5.34) 
n = l 

where only those time constants rn for all J™-, -*?*• < 1 are included in the above summa-
<n >n 

tion. Equation (5.34) is then the same result as Eq. (5.32) as far as the temperature elevation 

at a particular 7SPTA for a pulsed ultrasound field is concerned. It has also been assumed that 

the absorption coefficient given in Eq. (5.29) is the same for diagnostic ultrasound as that for 
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a CW ultrasound field. This is not always the case. It is well-documented that some medical 

diagnostic instruments produce a highly nonlinear acoustic field at the focus [62], [161], [194] 

and that the absorption in such fields can be significantly greater than that in a "linear" 

acoustic field of the same intensity but with insignificant harmonic development [37], [41], 

[53], [84], [96]. This consideration cannot be neglected when interpreting the results of the 

next section. Finally, Eq. (5.29) applies to absorption in soft tissue, i.e., a fluid medium, 

since a medium with zero shear viscosity must be assumed to deduce Eq. (5.29) for (qv). It 

will be seen from the results in the next section that the temperature increase in fetal bone 

upon exposure to ultrasound is linearly related to the incident intensity as determined in the 

free field. Hence, the above results should apply to bone as well, viz., that the temperature 

increase is proportional to /SPTA independent of the type of exposure, i.e., CW or pulsed. 

5.3 Es t imat ion of the Er ro r in t h e T e m p e r a t u r e Increase Measu remen t s 

The implantation of the thermocouple in the bone requires that a hole be introduced 

to allow for insertion of the hypodermic needle and "threading" of the thermocouple wire 

through the bone. The hole that results from this process is approximately 0.3 mm in 

diameter. In the case of soft tissue it is presumed that the tissue relaxes back around the 

thermocouple wire and junction, but the tissue is actually removed from the bone by the 

insertion process. The hole that remains is filled with very low absorbing physiological 

Hank's solution. Hence, a portion of the heat source, i.e., the highly absorbing bone, is 

removed from the source region. The removal of part of the heat source will result in a lesser 

measured temperature upon exposure of the specimen to ultrasound than if no hole had been 

introduced in the bone. The resulting difference between the temperature that is measured 
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and the temperature that would result if no hole were present can be expected to be small 

for the later gestational ages, for which the diameter of the bone is approximately ten times 

that of the hole. However, the diameter of the bone is roughly two or three times that of 

the hole in the earlier gestational ages, and a significant error resulting from the removal of 

highly absorbing tissue might be expected. An error in the rate of temperature increase is 

also expected for the earlier and later gestational ages. It is necessary, for interpreting the 

results of the measurements, to obtain a reasonable approximation of these errors. 

An approximation to the error introduced in the measurement by the insertion of the 

thermocouple is obtained in a manner similar to that used in Chapter 4 for determining 

the error due to heat conduction resulting from finite beams and sample dimensions. The 

heat flow problem for fetal bone is more complex than that in soft tissue, because of the 

differing thermal diffusivity of the bone specimen and the surrounding 3% agar medium and 

water bath. A two- or three-dimensional finite element analysis would yield an accurate 

result for the error if the equivalent heat source, as well as the thermal diffusivity, are 

well known in the bone. However, the heat source function in the bone is likely to change 

with gestational age because of the changing ultrasound properties and dimensions, hence, 

a changing intensity distribution. Also the thermal diffusivity is expected to vary. The 

soft tissue value is approximately K = 1.5 x 10~3 Sy- and the values for adult cortical and 

cancellous bones are K = 8.43 x 10~3 ^f- and K = 2.81 x 10~3 ~ , respectively [182]. Because 

the bone mineral content steadily increases into adolescence, the thermal diffusivity of fetal 

bone for gestational ages of 60-150 days is likely to be only a few times that of the soft 

tissue value, as opposed to five and one-half times greater as in the case of adult cortical 

bone. The results of the next section will show that these issues are not of serious concern 
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and that approximating the region as homogeneous is sufficient. A sufficient estimate of the 

error can be obtained by employing the infinite, homogeneous, isotropic medium Green's 

function previously used in Chapter 4 in the analysis. 

An approximation for the difference in the temperature between the ideal case with 

no hole in the bone and the actual case can be obtained by integrating the product of the 

equivalent heat source resulting from absorption and the infinite, isotropic, and homogeneous 

medium Green's function over the entire source region and subtracting away the temperature 

increase resulting from an equivalent heat source over the hole. The temperature increase 

over the entire heating volume representing the bone specimen and the volume representing 

the hole are [36], [156] 

T0(r, t) = Q0 f d9F(9) j df'f(f')G(f -f',t- 9) (5.35) 
JO JVo 

and 

Th(f, t) = Q0 f d9F(9) f df'f(f')G(f -f',t- 9) (5.36) 
Jo JV)i 

where 
Ir-r'l2 

G(f-f',t-9) = 
[4TTK(< - 9)]2 

and the 0 and h subscripts pertain to the entire volume and the hole source regions, respec

tively, and Q0 is the rate of the temperature increase as t —• 0. The difference between 

the temperature increase for the case in which no hole is introduced T0 and that where the 

source region has a hole, expressed as a percent of T0, is 

ST = To-(To-Th) x l 0 Q % = T^ x 1 Q 0 % (5.37) 
io J-o 
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The percent difference in the derivative of the temperature increase is defined similarly as 

m. - (S& _ SSk) 
ST' = -2 Wg. a±l x 100% (5.38) 

at 

If the heating due to ultrasonic absorption in the bone is modeled with a Gaussian shape 

as was done in Chapter 4 in soft tissue, and the source region given by the bone volume 

is approximated as a rectangular parallelpiped, the volume integral in Eq. (5.35) can be 

performed analytically resulting in 

%(f) = Q0e'2adv(f,t,BT, Bz,a) (5.39) 

where the source region boundaries are defined as in Section 4.1, and v(f,t,BT,Bz, a) is given 

by Eq. (4.15). The coordinate system used is shown in Figure 5.1. The volume integral over 

the cylindrical region defined by the hole in the bone can also be performed analytically for 

r = v V + z2 = 0 , and x = 0 as 

T(0,0,i) = Q0t f di-t— [° r'dr'e-& H dx 
Jo 2.KIC, Jo Jxi v%4 

X g W 

-erf 

X2 ( W A 2 

/SJrff V ft ) 
Xl (,+AKts\k]\ (5.40) 

where the change of variables i£ = t - 9 has been introduced. The remaining integrals for 

To and 7% can then be evaluated numerically to determine ST and ST'. 

Three cases were analyzed for different sizes of the source region V0, corresponding to the 

dimensions of the fetal femur specimens for 59, 89, and 108 days of gestation. The percent 

difference ST is shown as a function of time in Figure 5.4 for these three cases. The decay 

of the heat distribution in the source region was taken to be zero. 
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Figure 5.4: ST versus time for source region dimensions corresponding to the dimensions of 
fetal femur specimens of 59 (curve 1), 89 (curve 2), and 108 (curve 3) days (see Table 5.1 on 
page 127). 
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While ST is significant during the first two seconds, the asymptotic value is reached 

quickly thereafter. Although ST is 5% or less for the cases representing the 89 and 108 day 

specimens, it is 20% for the case representing the 59 day specimen. The size of this error 

or difference may initially seem significant; however, the temperature increase for the corre

sponding specimen is very small. The temperature elevation in the 59 day specimen upon 

exposure to 1 MHz ultrasound at a SPTA intensity of 1 ^ is 0.10 °C after 20 s. Thus, even 

if ST were 100 %, i.e., T0 = 2(T0 - TH), the temperature elevation in the femur specimen 

resulting from ultrasonic exposure is less than 1 °C, a normal diurnal variation in the body 

temperature of the mother. 

The time rate of change of the temperature elevation is also considered to be important as 

shown in the Section 5.4. The percent difference between the derivative of the temperature 

elevation with the hole for the thermocouple present and the derivative of the temperature 

that would result with no hole in the source region is then also of interest. This difference, 

given by ST', is shown in Figure 5.5. 

It is necessary to evaluate the derivative before significant heat conduction takes place, 

as indicated in Appendix C, to obtain a reasonable estimate of the magnitude of the rate of 

temperature increase Q0. The time derivative of the temperature elevation is evaluated at 

0.2 s for the measurements presented. The percent difference ST' at 0.2 s is approximately 

37% for the case representing the 59 day specimen and 31% for the cases representing the 

89 and 108 day specimens. Although ST' is significantly less at later times, e.g., 0.5 s, the 

measurements show that significant heat conduction occurs between 0.2 s and 0.5 s. For 

example, the time derivative of the temperature elevation per unit of exposure intensity of 

an 89 day specimen is 0.46 ^ *$- and 0.36 — ^ at 0.2 s and 0.5 s, respectively. 
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Figure 5.5: ST' versus time for source region dimensions corresponding to the dimensions of 
fetal femur specimens of 59 (curve 1), 89 (curve 2), and 108 (curve 3) days. 
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The limit of ST' as t —> 0 approaches 100% even though the curve in Figure 5.5 does 

not indicate this. The curve shown does not go to 100% as i —» 0 because the derivative is 

evaluated numerically from Eqs. (5.39) and (5.40), with a central difference at all but the 

endpoints [52]. A forward and backward difference is taken at the endpoints. Alternatively, 

the integral-differential relation between the impulse and unit step response can be employed 

as was done in Chapter 4 to avoid numerical integration and differentiation in order to obtain 

ST'. In this case 2& and ^ are simply the integrands of Eqs. (5.39) and (5.40) with £ = 1. 

Then, upon taking the limit t —> 0, it is seen that ST' is 100 %. 

Figures 5.4 and 5.5 show the relative difference for ST and ST' for the worst case of the 

thermocouple junction positioned at the center of the hole, i.e., r = 0. However, as a result 

of the method by which the specimen is prepared for the measurement, the thermocouple 

junction may be positioned next to the bone at the hole boundary. To avoid a double 

numerical integration in the analysis, the hole was approximated as having a square cross-

section with sides equal to the hole diameter, and ST and ST' were evaluated for the three 

cases under consideration. The results comparing ST and ST' for the observation located at 

the center of the hole and at the hole periphery (square hole in both cases) are shown in 

Figures 5.6 and 5.7. The difference for both ST and ST' is discernible only for the analysis 

representing the 59 day specimen, in which case, it is approximately a 5% change for both 

ST and ST'. 

The results presented in this section assume the decay of the heat source function to 

be zero in computing T0. This corresponds to no attenuation of the intensity across the 

bone diameter. The temperature elevation measurements in the fetal bone irradiated with 

1 MHz ultrasound show the center of the bone diameter to be approximately the maximum 
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Figure 5.6: Comparison of ST versus time for the observation point at the hole center (solid 
lines) and at the hole/heat source boundary (dashed lines) for source region dimensions 
corresponding to the dimensions of fetal femur specimens of 59 (curve 1), 89 (curve 2), and 
108 (curve 3) days. 
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Figure 5.7: Comparison of ST' versus time for the observation point at the hole center (solid 
lines) and at the hole/heat source boundary (dashed lines) for source region dimensions 
corresponding to the dimensions of fetal femur specimens of 59 (curve 1), 89 (curve 2), and 
108 (curve 3) days. 
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of the heat source function. This is determined by evaluating the derivative of the measured 

temperature increase and verifying that heat flow is away from the point of the measurement. 

At higher frequencies the attenuation across the bone diameter is likely to be significant and 

should not be neglected. 

5.4 T e m p e r a t u r e Increase Measurements a t 1 M H z 

Two transducers were used to obtain the data presented in Table 5.1. The 59 and 89 day 

specimens were irradiated at the focal point of a 1 MHz, 5.08 cm aperture, focused PZT-4 

transducer, with a radius of curvature of 15 cm and 3 and 6 dB beamwidths of 0.5 and 0.6 cm, 

respectively. All remaining specimens were irradiated with an unfocused, 1 MHz, 2.54 cm 

aperture, PZT-4 transducer with 3 and 6 dB beamwidths of 1 and 1.5 cm, respectively, at a 

distance of 93 A from the transducer face. The beam profiles for these transducers are shown 

in Appendix B. Because of the small diameter of the 59 day specimen, less than 1 mm, 

relative to the half-power beamwidth of the focused transducer, the difference between the 

temperature increase that would have been measured with the unfocused transducer and 

that measured with the focused transducer is negligible for the exposure time shown. To 

determine the difference in the temperature elevation upon exposure for the two transducers 

in the heating of the later gestational age specimens, the temperature increase was measured 

in an 83 day specimen irradiated first with the focused and then the unfocused transducer. 

The spatial peak, temporal average (SPTA) intensities were the same in both cases. It was 

found, for example, that the temperature increase resulting from irradiation with the focused 

transducer was 24 % less, after a 60 s irradiation, than that measured using the unfocused 

transducer. 
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Table 5.1: Temperature Elevation in Fetal Femurs Exposed In Vitro to 1 Megahertz CW 
Ultrasound (°C) 

Gestational 
age (days) 

59 

67 

78 

83 

89 

91 

108 

Irradiation 
time (s) 

20 

20 
35 

20 
35 
50 

20 
35 
50 
60 

20 
35 
50 
60 

20 
35 
50 
60 
180 

20 
35 
50 
60 

Diameter 
(±0.5 mm) 

0.5 

0.75 

1.2 

1.2 

1.5 

1.8 

3.3 

Length 
(±2 mm) 

11 

15 

17 

24 

27 

30 

38 

0.1 

Intensity ( 

0.5 1 

W \ 
an2) 

5 

Temperature Elevation 

0.03 

0.06 
0.07 
0.08 

0.31 
0.38 

0.41 

0.05 

0.13 
0.15 

0.34 
0.39 
0.42 

0.66 
0.78 
0.86 
0.90 

0.69 
0.78 
0.82 
0.84 

0.89 
1.07 
1.19 
1.26 
1.59 

1.48 
1.75 
1.92 
2.01 

0.10 

0.27 
0.31 

0.69 
0.79 
0.85 

1.31 
1.53 
1.68 
1.74 

1.39 
1.55 
1.64 
1.69 

1.79 
2.14 
2.39 
2.54 
3.19 

2.92 
3.49 
3.85 
4.00 

0.48 

1.60 
1.83 

3.94 
4.6 
5.0 

6.5 
7.6 
8.3 
8.7 

7.0 
7.9 
8.4 
8.6 

8.9 
10.6 
11.8 
12.4 
15.3 

14.9 
18.3 
20.4 
21.3 

10 

(°C) 

0.96 

3.35 
3.89 

8.7 
10.2 
11.3 

14.0 
16.3 
17.8 
18.4 

14.1 
15.6 
16.8 
17.2 

19.3 
23.0 
25.4 
26.6 
32.6 

28.1 
35.0 
40.0 
43.1 
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Table 5.1 lists the temperature elevation measured in the specimens at specific exposure 

intensities, as well as the length and diameter of the various gestational age specimens 

studied. The femur cross-section is approximately elliptical and the dimension given for the 

diameter is the average of the major and minor axes. The error in the measured temperature 

is less than 3% as indicated in Section 2.3. The temperature increase was measured for two 

different 108 day gestational age specimens in order to assess the repeatability of the entire 

procedure, which yielded a difference in the temperature increase between the two specimens 

of approximately 6% for the range of times listed in Table 5.1. 

The temperature increase of the 78 and 89 day specimens, irradiated with the unfocused 

and focused transducers, respectively, versus intensity is shown in Figure 5.8. It is apparent 

that the temperature increase is linear with exposure intensity for linear acoustic fields at 

the exposure site in the range of 0.1-10 —^. The deviation of the 5 and 10 ^ values for the 

78 day specimen is a result of nonlinear acoustic propagation as explained below. Although 

the linearity of the temperature increase with intensity is expected, the result is fortuitous. 

The temperature increase can then be measured at any intensity, assuming a linear acoustic 

field, and scaled to the desired intensity. The same conclusion will hold for the temperature 

increase in a nonlinear field for a given harmonic development, i.e., shock parameter a [20], 

[26], [27], [99], [149], [179]. Pressure amplitude measurements with a wideband hydrophone 

(NTR Systems, Inc.), with a 1-20 MHz bandwidth, in degassed mammalian Ringer's solution, 

showed the second harmonic component in the field of the unfocused transducer to be down 

10 dB from the fundamental at an intensity of lO—^-, while the second harmonic was down 

24 dB from the fundamental at 0 . 5 ^ - . The linearity of the temperature rise with intensity 

for the two specimens irradiated with the focused transducer, shown in Figure 5.8 for the 
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Figure 5.8: Temperature increase at 20 s following the initiation of the ultrasound exposure 
versus intensity for 78 and 89 day specimens 

89 day specimen, is a result of the second harmonic component being down 25 dB from the 

fundamental at 10^y at the focal point. 

The increased absorption of ultrasound in soft tissue in a nonlinear ultrasound field over 

that for linear propagation has been studied [12], [39], [41], [84]. It is evident from the data 

in Table 5.1 for the specimens irradiated with the unfocused transducer that an incident 

ultrasound field with developed harmonics impinging on bone will also result in increased 

heating under some circumstances. For example, the temperature elevation in the 78 day 

specimen at the "10 ^ r " intensity is 26 % greater than that expected by extrapolating from 

the 0.1, 0.5, and 1 ^-j- intensities. The absorption of ultrasound in bone is expected to 

be a function of the bone mineral content, hence, gestational age, as well as the frequency. 

As a consequence, the development of harmonics in the acoustic field is not expected to 
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affect the temperature elevation resulting from such exposures for those gestational ages 

and frequencies at which all the energy is absorbed near the surface. It should be noted 

that the higher harmonics will scatter from the bone in a fashion different from that of the 

fundamental, with a resulting change in the intensity distribution in the bone. 

The quotation marks around the 10 —^ intensity value above indicates that the linear 

relation between the intensity and the square of the voltage applied to the transducer de

termined from the calibration procedure at low acoustic intensities (linear fields) has been 

extrapolated. Thus, since the device is known to be linear, the output power at this "10 ^ " 

is ten times that at 1 -^-. However, because the shape of the beam changes as the acoustic 

wave propagates and the higher harmonics develop, and the higher harmonics can be signif

icantly attenuated [20], [40], the intensity cannot be accurately determined by extrapolating 

the low-intensity, linear-field calibrations. Experimental results given by Carstensen et al. 

[40] indicate this difference to be only a few percent at 1 MHz and 93 A from the transducer. 

The values of temperature increase in Table 5.1 for specimens irradiated at 1 - ^ at 20, 35, 

and 50 s are shown as a function of gestational age in Figure 5.9. The temperature elevation 

is seen to increase rapidly as a function of gestational age. The temperature increase at 20 

s in the 59 day femur is only 0.10 °C. At this gestational age the bone is still very soft and 

ossification is just beginning. As was shown in Section 5.3, ST is 20% for the approximate 

analysis corresponding to this gestational age. However, it is clear from Figure 5.9 that even 

doubling the resulting value yields a temperature increase of only 0.2 °C at 1 —^ (SPTA). 

A normal diurnal temperature variation for a pregnant woman is approximately \°C [6]. 

Temperature elevations in the fetus resulting from exposure to ultrasound that are less than 
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1°C are then considered safe [6]. The temperature elevation in the 108 day specimen at 60 

s and 1 -^2 exposure intensity is 4°C, and is no longer insignificant. 

It is interesting to note that this value of the measured temperature increase is in the same 

range as that measured by Carstensen et al. [38] in the mouse skull irradiated with 3.6 MHz 

focused ultrasound at 1.5 ^ , which was approximately 3.5 °G for young mice (< 17 week) 

and 5.2 °C for old mice ( > 6 months). It is not surprising that the temperature increases for 

the femur and mouse exposures are in the same range, even though the frequencies, as well 

as the beam sizes, differ. At some gestational age the bone is expected to become so highly 

absorbing that all the power transmitted into the bone will be absorbed and converted to 

heat. At that point, the temperature elevation will be frequency dependent only in so far 

as the heating volume is affected. Explicitly, the incident energy will be absorbed within a 

smaller distance of the bone surface as the frequency is increased. The beam size will also 

influence the temperature elevation. If the 108 day fetal femur temperature-increase value 

irradiated at 1 - ^ is scaled to 1.5 -^y, the intensity used by Carstensen et al., the resulting 

temperature increase at 60 s is 6 °C. This higher value, as opposed to that measured by 

Carstensen et al., is consistent with the sizes of the beams employed in the two studies. In 

the work presented here, the HPBW is five times that used in the study by Carstensen et al. 

The temperature increase measured at long times in the femur specimens is a function 

of the intensity at the point of measurement, thermal diffusivity, amount of acoustic energy 

converted to heat, i.e., absorption, and the total heating volume of the specimens. The 

thermal diffusivity and absorption are expected to vary with gestational age. A quantity 

is desired to identify the portion of the temperature increase that is not dependent on the 

heating volume of the specimen, as gestational age increases. For soft tissue, the temperature 
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Figure 5.9: Temperature increase in the fetal femurs versus gestational age at 20, 35, and 50 
s following the initiation of ultrasonic exposure at 1 ^ y (SPTA). 
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increase due to absorption is separated from the tissue volume and intensity by assuming 

a knowledge of the acoustic intensity in the tissue and evaluating -jgr, the time derivative 

of the measured temperature increase, at a time at which heat conduction is negligible, to 

determine the ultrasonic absorption coefficient, as was discussed in Chapter 4. The problem 

is more complex in the case of a fetal femur specimen. The acoustic intensity at the site 

of the temperature measurement will vary with gestational age because of the changing 

acoustic properties as well as the changing dimensions of the bone. The ultrasonic intensity 

distribution in the specimen is unknown because of the complexities of the propagation in an 

anisotropic material and the difficult scattering problem, and absorption in compact bone 

is expected to be different than that in the inner bone lumen. In the absence of specific 

knowledge of the absorption as a function of the mode of propagation and the propagation 

direction, and lacking analytical or numerical solutions for the scattering from an elliptical, 

anisotropic cylinder, the rate of heating as t —> 0, i.e., Q0 = -^-|*_»o, in the fetal bone is 

considered to be useful as shown in Appendix C. Although the quantity IQ1 -^, where 

J0 is the free-field SPTA intensity, evaluated when heat conduction is negligible, is not 

independent of the specimen size or shape, it provides a useful measure of the variation in 

heat deposition with gestational age that is not dependent on the total heating volume of 

the specimen. The quantity Q0 = -jp- |;_*o (negligible heat conduction) will be a function of 

the bone mineral content, heat capacity, density, and intensity at the site of the temperature 

measurement, all of which vary with gestational age. 

A second-order polynomial curve is fit to the digitized measured temperature over the 

first 0.5 s for the 59 and 67 day gestational age specimens, and over the first 1 s for the 

remaining specimens [19]. The derivative of the temperature increase at 0.2 s, normalized to 
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Figure 5.10: Time derivative of the temperature, normalized to the incident intensity, versus 
the gestational age of the specimens. The solid curve is a quadratic least-squares fit to the 
measured data. The dashed line is the value obtained for soft tissue with an absorption 
coefficient of 0.05 cm'1. 

the SPTA intensity incident on the specimen, as a function of the gestational age, is shown 

in Figure 5.10, where the quantity IQ1 -gr at 0.2 s has been measured for a single specimen of 

the gestational ages available; thus, no error bars are shown. The error in the determination 

of the gestational ages is ±2 to 4 days, depending on the gestational age [183]. 

In order to minimize errors introduced by heat conduction, the time derivative of the 

temperature is evaluated at 0.2 s herein, as opposed to the more common 0.5 s delay when 

using the transient thermoelectric method to measure the absorption coefficient in soft tissue 

[57], [91]. It has been shown for soft tissues that appreciable errors can result in evaluating 

the derivative of the temperature, while assuming no heat conduction, if the thermocouple 

junction is placed too near the boundary between the absorbing specimen and nonabsorbing 
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coupling medium [57], [162]. It has been determined that a thermocouple junction placed 

1 mm or deeper in soft tissue is consistent with the assumption concerning negligible heat 

conduction away from the junction at 0.5 s [57], [91], [162]. In evaluating the time derivative 

of the temperature of the fetal femur' specimens, the important dimension is the diameter 

of the bone at the location at which the temperature is measured. The diameters of the 

fetal femurs range from 0.5 to 3.3 mm for the gestational ages studied. The small size of the 

specimens causes the value of IQ1 -JJ to be sensitive to the placement of the thermocouple 

junction in the specimen. The placement of the thermocouple junction too near the bone 

surface can result in a significantly different measured IQ1 -^ . In addition, the functional 

variation of the intensity over the femur, in the vicinity of temperature measurement, al

though unknown, may not be slowly varying, and, hence, would shorten the linear portion 

of the temperature increase after the initiation of the ultrasonic exposure. 

The contribution of the viscous heating, which results from the relative motion of the 

thermocouple wire and the bone, to the temperature derivative at 0.2 s is negligible. The size 

of the hole left by the insertion of the thermocouple in the bone is several times larger than 

the diameter of the thermocouple wire. Contact between the bone and the thermocouple 

wire occurs over only a fraction of the circumference of the wire. The resulting heating 

distribution is appreciably smaller than would occur in the case of soft tissue where the 

tissue is presumed to relax to its original conformation to make contact around the entire 

periphery of the thermocouple wire. The time dependence of the viscous heating in the case 

of the bone specimens should then be small at exposure times shorter than the 0.2 s of the 

same response obtained for soft tissue [86], [87]. The measurements show the rapid rise time 

in the temperature response associated with the viscous heating to be approximately 0.05 s, 
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which is 25 % of the time at which the derivative of the temperature is evaluated. The above 

ratio of the fast rise time to the time at which the derivative is evaluated is comparable to 

the ratio for measurements in soft tissues. 

It has been suggested that the temperature increase at a particular time for a given femur 

specimen might be normalized to the square of the radius of the femur, in an attempt to 

discern the degree of the increase in absorption with gestational age that is independent of the 

total heating volume [49]. Analytical results for a uniform, infinite, cylindrical heat source in 

an infinite, isotropic, and homogeneous medium given by Filipczynski provides some impetus 

for this normalization [75]. The bone however is not infinite, and the ultrasound beam and 

hence the equivalent heat source are reduced from the beam maximum over the length of the 

bone. In addition, the equivalent heat source resulting from absorption at higher frequencies 

is not expected to be a uniform cylinder [38]. Asymptotic results at short times, given by 

Filipczynski in an earlier paper [74], for the temperature increase resulting from an infinite 

uniform cylindrical heat source show that -^|f_,o = ^Q- (see Eq. (1.5) for notation). This 

result is entirely expected as is clear from the discussion in Appendix C. The same result 

is obtained for a shaped equivalent heat source approximating an ultrasound beam. For 

example, if Bz —> oo in Eq. (4.16), the integral can be performed analytically. Taking the 

derivative of the Taylor series expansion and keeping only the leading-order term for small 

timeyield g ! | ^ o = % ( = = % . 

The temperature-increase data reported in this study can be compared to that expected 

for soft tissue by computing IQ1 -^ = -g-, where I0 is the SPTA intensity, for nominal 

soft tissue values of a,p, and Cp [97], [98], [182]. For a = 0.05 cm'1 and pCp = 3.78oCj7
cm3> 

I'ld£ = 0 . 0 2 6 ^ ( ^ ) - \ This value of /0
_1 g can then be compared directly with the 
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values measured for the fetal bone studied as shown in Figure 5.10. The values measured 

for the 59 and 108 day specimens are approximately 2 and 30 times greater, respectively, 

than the soft tissue value. The temperature increase measurements presented have been for 

a single orientation of the femur specimen with respect to the incident ultrasound field. It 

is likely that the quantity IQ1 -jr , for negligible heat conduction, will be different for other 

orientations. Preliminary results in fetal pig femurs exposed to ultrasound indicate that the 

temperature elevation is a function of the direction of the incident wave on the elliptical 

cross-section [15]. This is expected to be the case for the fetal femur exposures also. The 

angle of incidence is likely to influence the value of IQ1 -rr and the temperature elevation also. 

Chan et al. analytically studied the heat generated by ultrasound in fat-muscle-bone layers 

and found the heating in and around the bone to be dependent on the angle of incidence 

of the ultrasound beam [45]. This is expected since the energy transmitted into the highly 

absorbing bone is a function of the angle of incidence. 

The time required for the temperature to increase 1 °C for a specified set of ultrasonic 

exposure conditions is considered important in view of the fact that the diurnal variation 

in the body temperature of the mother is of this magnitude. Thus, ultrasonic exposure 

conditions, in which the primary consideration for deleterious effects to the fetus is heat 

deposition, are considered to be without risk if such a temperature increase is not exceeded. 

The irradiation time necessary for the temperature to increase 1 °C in the specimens studied 

is shown in Figure 5.11 for incident intensities of 1 and 5 - ^ . 
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Figure 5.11: Time of ultrasonic exposure required for the temperature increase to reach \°C 
versus gestational age. 
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C H A P T E R 6 

S U M M A R Y A N D R E C O M M E N D A T I O N S F O R F U T U R E W O R K 

The temperature elevation in the fetus resulting from absorption of ultrasound in diag

nostic exposures is of concern because of the well-established teratogenicity of hyperthermia, 

and the possibility of more subtle, as yet undetermined, effects of elevated fetal tempera

tures. The absorption of ultrasound and the resulting temperature elevation in soft and hard 

fetal tissues have been addressed in this study. 

The temperature increase in fetal mice exposed in utero to 1 MHz ultrasound was pre

sented in Chapter 3. Temperature elevations between 1.5 °C and 4 °C were measured for 

exposure intensities between 0.5 and 10 -^-. A simple analytical model was given that al

lowed for different absorption coefficients in the dam and the fetus; however, only uniform 

perfusion throughout was considered. Values of absorption and perfusion were chosen to yield 

reasonable, although not exact, agreement between the calculated and measured values of 

temperature increase. Values assumed for the absorption coefficient were extrapolated from 

available experimental data, and qualitative arguments were given for the assumed values of 

perfusion. The analytical results presented employed a very simple model for heat transfer; 

however, more complex models require information regarding the absorption coefficient and 

perfusion in the fetal tissues not presently available. 

Future work in the study of in utero temperature increases upon exposure to ultrasound 

would include the measurement of the absorption coefficient in fetal soft tissue. Also, tem

perature increase measurements at medical diagnostic frequencies with narrow beams would 

provide more clinically relevant information. Finally, an improvement in the experimental 
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method to minimize the movement of the dam during the measurement procedure would 

possibly increase the precision of the measurements. 

An analytical analysis of the transient thermoelectric method (TTM) for determining the 

ultrasonic absorption coefficient in soft tissue was given in Chapter 4. The ultrasound beam 

was approximated with a Gaussian function, and the temperature increase resulting from 

the absorption of acoustic energy was analytically determined from the Green's function 

representation of the solution of the heat equation. A Gaussian source heating in an infinite, 

isotropic and homogeneous medium was assumed in the analysis. An error was defined that 

represented the percent difference between the ideal case without heat conduction and that 

of the analytical model, which included heat conduction due to the finite dimensions of the 

beam and tissue specimen. The error was then investigated as a function of the transducer 

beamwidth, tissue specimen dimensions, position, and time. 

The analytical results of the error as a function of HPBW were found to compare well 

with published experimental data. An analytical expression for the temperature increase was 

given also for a Gaussian source heating in a halfspace bounded by a medium of differing 

thermal diffusivity. It was shown in Chapter 4 that the error in the measurement of the 

absorption coefficient in soft tissue resulting from heat conduction can be kept small for 

sufficiently broad HPBWs. For example, an HPBW of 5.0 mm and tissue dimensions greater 

than 3.0 mm result in an error of less than 5% due to heat conduction, if the time derivative 

of the temperature is evaluated at 0.5 s. A critical depth was defined for implanting the 

thermocouple in the tissue such that heat flow to the boundary would have no effect at the 

time the derivative is evaluated. The critical depth was found to be 1.0, 1.5, and 1.75 mm 

when the time derivative of the temperature is evaluated at 0.5, 1.0, and 1.5 s, respectively. 
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Previously, the time derivative of the temperature has been evaluated at 0.5 s when applying 

the TTM. The analysis presented in Chapter 4 has shown that the time derivative of the 

temperature can be evaluated at later times with an error due to heat conduction less than 

10%. This is particularly advantageous in low absorbing soft tissues, such as fetal soft tissue, 

for minimizing the viscous heating artifact associated with the thermocouple. 

Future work in the analysis of the TTM would include further experimental work to 

obtain additional support for the analysis. Absorption coefficient measurements at times 

different from 0.5 s and at shallow depths in a material would provide information on the 

defined error as a function of time and depth of thermocouple placement. Absorbing oils 

or polymethylmethacrylate are possible materials from which this information might be 

obtained. Absorption coefficient measurements in soft tissue as a function of frequency are 

also needed for further comparison with those for the pulse-decay method. 

Acoustic absorption in fetal bone was discussed in Chapter 5. The difficulties in deter

mining the absorption in bone as a function of the direction of propagation and the mode of 

propagation were enumerated. In the absence of specific knowledge concerning acoustic ab

sorption in fetal bone, the temperature elevation can be measured, and is useful for assessing 

thermal effects. The temperature elevation in fetal femurs resulting from exposure to 1 MHz 

ultrasound was measured for gestational ages between 59 and 108 days. The measured tem

perature increase at an exposure intensity of 1 —^ at 20 s for the 59 day specimen was 0.10 

°C, and the value for the 108 day specimen was 2.9 °G. The latter value of temperature 

increase is clinically of concern, because it exceeds the \°C temperature elevation generally 

considered to be safe [6]. The time derivative of the temperature increase was evaluated to 

obtain an equivalent heat source for ultrasonic absorption in fetal bone. The initial rates of 
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temperature increase in the 59 and 108 day gestational age specimens were found to be 2 

and 30 times that expected for an adult soft tissue such as liver. 

Little information regarding the temperature elevation upon exposure to ultrasound has 

been available for human fetal bone. Although this study provides insight into the problem, 

a great deal of work remains to be done. The temperature elevation upon exposure to 

ultrasound was studied for only a single orientation of the bone specimen with respect to 

the ultrasound beam. It is likely that the temperature increase and the initial rate of 

temperature increase depend upon the orientation of the bone with respect to the ultrasound 

beam. Further work is necessary to determine this variation and the maximum temperature 

increase. Temperature elevation measurements are also needed at higher frequencies, as 

a function of gestational age, particularly at clinical frequencies. Temperature increase 

measurements in and around the bone with the surrounding tissue left attached to the 

bone would also be informative. The significantly greater absorption in bone as compared 

to soft tissue is presumed to result from the collagen and mineral matrix of bone. The 

density and bone-mineral density of the bone specimens can be measured to determine a 

possible correlation between the temperature elevation and the mineral content. The data 

presented in Chapter 5 gave the femur length as a function of gestational age, and the 

temperature elevation was measured in the ossified region. To establish a more accurate 

equivalent heat source, the length of the ossified region alone should also be measured. 

An analytical investigation of the intensity distribution in absorbing, cylindrically layered 

media would provide approximate information on the spatial distribution of the heating in 

the bone. This spatial variation combined with the measured initial rate of the temperature 

increase would provide a more realistic source term in the bioheat equation. Numerical 
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calculations could then be performed to estimate the temperature elevation in the fetal bone 

and the surrounding tissues. Blot's theory of acoustic propagation in porous media may be 

applicable for determining the attenuation in bone and merits consideration in the future 

study of acoustic wave propagation in bone [18], [23], [24], [25]. 
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APPENDIX A 

INTEGRAL-DIFFERENTIAL RELATION BETWEEN THE IMPULSE AND 
UNIT STEP RESPONSES 

Let L denote the general, linear, ordinary differential operator 

6 = % ^ + - + * 4 + *° (A.1) 

where the coefficients {ap...a0} are constant. Let E(t — r) be the impulse response satisfying 

LE(t-r) = S(t-T) E = 0,t<r (A.2) 

and F(t — r) be the unit step response satisfying 

LF(t-r) = U(t-r) F = 0, t < r (A.3) 

Because the operator L has constant coefficients, the impulse and unit step responses are 

time invariant, i.e., E(t,r) = E(t - T,0) = E(t - r) , and F(t,r) = F(t - r,0) = F(t - r) . 

Then it is easily shown that 

-2ffifd-*(.,T) (A.4) 

and further, since L has constant coefficients 

i.e., the time derivative of the unit step response is the impulse response. Let the distribution 

/ be denoted by (f,(f>), where ^ is a testing function [116]. Then 
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{L(-mp),m - X>(-^)^< 
= JI-fcL F(t,r)4>(t)dt 

= -JL r u(t - r)4>(t)dt 
dt J-oo 

= ^ ) 

= (f(<-T),4<)) 

= (LE(t,T)J(t)) (A-6) 

or in the distributional sense - ^ ^ = E(t,r). 
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A P P E N D I X B 

T R A N S D U C E R B E A M P R O F I L E S 

The ultrasound beam profiles for the transducers employed in the experimental mea

surements are given in this appendix. The beam profiles for each transducer were plotted 

using the ultrasound irradiation system shown in Figure 2.1. All field plots were measured 

with small voltages applied to the transducer, and the second harmonic was measured to 

be 15 — 20 dB below the fundamental in all cases shown. Two plots superimposed for two 

orthogonal directions relative to the acoustic axis of propagation are shown for each trans

ducer. Circular PZT-4 crystals were used in the transducer design. The beam profile for 

the focused 1 MHz transducer is shown in Figure B.l. The diameter of the transducer is 

5.08 cm, and the experimentally determined focal length is 15 cm. The HPBW is 4.76 cm. 

The field plots for the plane-piston, 1 MHz, unfocused transducer, # 101, at 93 A from 

the crystal face (slightly beyond the near-field, far-field transition region) are shown in Fig

ure B.2. The diameter is 2.54 cm, and the HPBW is 1.1 cm. The field plot at 193 A from the 

crystal face of the same transducer is shown in Figure B.3. Finally, field plots for the Gaus

sian transducer, # 201B, at 3, 5, and 7 MHz are shown in Figure B.4. The crystal aperture 

is 2.54 cm with the contact electrode on the back surface being 7.5 mm. The transducer has 

a fundamental frequency of 1 MHz. The distances of the plots from the crystal face are 5.0, 

8.0, and 13.0 cm at 3, 5, and 7 MHz, respectively. The field plot for the 1 MHz, focused 

transducer is also shown. The HPBW at all frequencies is approximately 4.5 mm. 
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Figure B.l: Ultrasound beam profile for the 1 MHz, focused transducer. 
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Figure B.2: Ultrasound beam profile for the 1 MHz, unfocused transducer # 101, 93 A from 
the crystal face. 
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Figure B.3: Ultrasound beam profile for the 1 MHz, unfocused transducer # 101, 193 A from 
the crystal face. 



150 

HI 

1.0 r 

0.8 -

0.6 

1MHz 

3 MHz 

5 M H z 

- - « = — — 7 M H z 

i 

I 
0.4 

0.2 

0.0 
• 8 -6 8 

Radius (mm) 

Figure B.4: Ultrasound beam profile for the Gaussian transducer # 201B, at 3, 5, 
7 MHz. 
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APPENDIX C 

A SIMPLE INTERPRETATION OF THE EQUIVALENT HEAT SOURCE 
RESULTING FROM THE ABSORPTION OF ULTRASOUND BY 

BIOLOGICAL TISSUE 

The acoustic propagation properties of fetal bone are as yet unknown, in particular, the 

absorption. Another quantity that characterizes the equivalent heat source resulting from 

absorption is therefore needed. The temperature elevation in the bone and surrounding 

tissues can then be estimated using numerical or analytical methods, and the subsequent 

thermal risk to the developing tissues assessed. In the absence of perfusion, and at short 

times such that heat conduction is negligible, the bioheat equation Eq. (1.1) becomes 

dT(f,t) 
dt 

9"("'*) (C.l) 
t->o P°P 

If the acoustic properties of the medium are known, the volumetric rate of energy deposition 

is given as in Eq. (5.18) [45] 

fr(F) = - ^ V . » e [ v - f ] (C.2) 

In the absence of specific knowledge of the acoustic properties of fetal bone, Eq. (C.l) 

indicates an experimental method for determining an equivalent heat source for ultrasonic 

absorption in fetal bone. A simple example is given below. 

Let the source function to the bioheat equation be written as 

*JM m bissm=QoF{t)m (C3) 
P0P pLp 

where Q0 (—•) is the magnitude of the rate of the temperature increase, qvQ is the volumetric 

rate of energy deposition, and /(f) and F(t) are the spatial and temporal variations of 

qv(f,t) = qV(3F(t)f(f), respectively. 



152 

The nature of the equivalent heat source as given in Eq. (C.3), when the source of the 

heating is ultrasonic absorption, can be seen by investigating the solution to a uniform heat 

distribution of infinite length, with a cylindrical cross section of radius r0, in an infinite, 

homogeneous medium. In this case the appropriate Green's function is given by 

<Kry,t-f)^^^^-6fS,i.(^LJj (c.4) 

where r2 = x2 -f y2. The temperature increase at the radial coordinate r and time t is then 

given by 

The spatial variables can be integrated analytically if the temperature is observed at r = 0, 

resulting in 

T(0, t) = Q0 f d9F(9)e'^ 11 - exp r0 (C.6) 
4ic(t -9)\) 

If the material characteristics of the medium p and Cp are known, as well as the magnitude 

of the heat source qVo, the maximum temperature (which occurs at r = 0) as a function of 

time can be computed from Eq. (C.6). In the case of ultrasonic absorption in soft tissue 

irradiated by a traveling plane wave, qVo is proportional to the acoustic intensity. The pro

portionality constant is determined experimentally for soft tissues as discussed in Chapter 4. 

The situation is considerably more complex in bone because the acoustic absorption in bone 

as a function of the mode and the direction of propagation is unknown. The constant Qo 

is comprised of thermal constants and quantities characterizing the conversion of acoustic 

energy to heat. In the case of soft tissue, these quantities can easily be separated; however, 

as seen by Eq. (C.6) this is not entirely necessary for determining the temperature in this 
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example. If Q0 itself can be determined experimentally, the temperature in this example can 

still be calculated from Eq. (C.6). 

Let the absorbing cylinder be exposed to a unit step CW ultrasonic exposure, i.e., F(t) = 

U(t), where U(t) is the unit step function. For the sake of this simple example, the ultrasound 

"beam" is assumed to heat the cylinder uniformly. The temperature increase at r = 0 is 

then given by 

r(o,t) = «0 />-^{i-"p[-4^]} <c '7» 
In soft tissue, the ultrasonic absorption coefficient is determined from the derivative of Eq. 

(C.7) (with no perfusion) at short times. The derivative of the unit step response is the 

impulse response and no integration is necessary in this case. A general proof of this is given 

in Appendix A. Since measurements of the ultrasonic absorption coefficient in soft tissue 

are typically performed in vitro, the perfusion time constant goes to infinity, and 

^ = Q0 [l - e-fc] (C.8) 

The relationship between the temperature and Q0 is established as -gr Q = Q0, by evalu

ating the derivative of the temperature at t = 0. The temperature increase for this example 

can then be computed without specific knowledge of the absorption coefficient. It is, how

ever, necessary to know K, the thermal diffusivity of the medium, and T if the medium is 

perfused, in order to calculate the temperature elevation. It should be noted that the ob

servation point taken in this example is at the heat source maximum; hence, the heat flow 

is away from the observation point. If the heat source had the shape of an ultrasound beam 

and it is desired to measure Q0 = -QT |;_»Q , it would be necessary to make the observation 
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at the maximum of the heat source to obtain an estimate of Q0, if no other information 

regarding the ultrasound field in the tissue was available. 

The ultrasonic absorption coefficient can be measured directly for soft tissues and an 

analysis of the procedure is given in Chapter 4. Hence, lumping the acoustic and thermal 

properties of the medium together in the quantity Q0 is unnecessary. However, determining 

an ultrasonic absorption coefficient for bone presents a formidable problem as discussed in 

Chapter 5. In this case, the quantity Q0, which can be measured directly, will be useful for 

numerical and analytical calculations of the temperature in the fetal bone and surrounding 

tissues. 
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