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A FINITE DIFFERENCE NUMERICAL MODEL 
FOR THE PROPAGATION OF 

FINITE AMPLITUDE ACOUSTICAL BLAST WAVES OUTDOORS 
OVER HARD AND POROUS SURFACES 

Victor Ward Sparrow, Ph.D. 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign, 1990 

This study has concerned the propagation of finite amplitude, i.e., weakly non­

linear, acoustical blast waves from explosions over hard and porous media models 

of outdoor ground surfaces. The nonlinear acoustic propagation effects require a 

numerical solution in the time domain. To model a porous ground surface, which 

in the frequency domain exhibits a finite impedance, the linear phenomenological 

porous model of Morse and Ingard was used. The phenomenological equations are 

solved in the time domain for coupling with the time domain propagation solution 

in the air. 

The numerical solution is found through the method of finite differences. The 

second-order in time and fourth-order in space MacCormack method was used in 

the air, and the second-order in time and space MacCormack method was used in 

the porous medium modeling the ground. Two kinds of numerical absorbing 

boundary conditions were developed for the air propagation equations to truncate 

the physical domain for solution on a computer. Radiation conditions first were 

used on those sides of the domain where there were outgoing waves. Characteristic 

boundary conditions secondly are employed near the acoustic source. 

The numerical model agreed well with the Pestorius algorithm for the propaga­

tion of electric spark pulses in the free field, and with a result of Pfriem for normal 



IV 

plane reflection off a hard surface. In addition, curves of pressure amplification 

versus incident angle for waves obliquely incident on the hard and porous surfaces 

were produced which are similar to those in the literature. The model predicted that 

near grazing finite amplitude acoustic blast waves decay with distance over hard sur­

faces as r~1-2. This result is consistent with the work of Reed. For propagation 

over the porous ground surface, the model predicted that this surface decreased the 

decay rate with distance for the larger blasts compared to the rate expected in the 

linear acoustics limit. 
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1. INTRODUCTION 

What do the following situations have in common: a wailing civil defense siren, 

a refrigerating thermoacoustic engine, a jet airplane taking off from an airport, a 

hyperthermia treatment for a cancerous tumor, an outdoor blast from a small explo­

sion, a lithotripsy treatment for breaking up a kidney stone, a parametric array on a 

submarine sending a low frequency sonar signal, and a 4th of July fireworks display? 

In each of these circumstances sound waves of high amplitude are present. The 

civil defense siren, the jet taking off, the small explosion, and the 4th of July 

fireworks are all loud, very loud if you are close to them. You may not be able to 

hear directly with your ears a thermoacoustic engine, or a hyperthermia treatment, 

or the sound of a parametric array. But each of these cases is analogously loud, 

involving the same physical processes as the loud sound waves outdoors. 

This dissertation presents a method for calculating numerically how the sound 

from loud sources propagates through an acoustic medium. The specific problem 

addressed in this work is the propagation of blast noise in a homogeneous atmo­

sphere near hard and porous ground surfaces. To verify the computer model 

developed for blast sounds, the sound of an electric spark pulse propagating in the 

free field and near hard surfaces is also examined in detail. The spark problem 

occurs on a scale measured in centimeters, and the blast noise occurs over distances 

measured in many meters, but again the physical problems in the two situations are 

nearly identical. The only difference between the two is that the amount of attenua­

tion in the air is greater for sparks. 
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The measurement and characterization of the impulse noise from blasts are 

critical to the prediction of the environmental impacts of military operations. One 

must take measurements close enough to a source to eliminate meteorological varia­

tions but far enough away that finite amplitude wave effects do not dominate. In 

most cases this restriction implies that one must make these measurements over 

natural outdoor surfaces. The effects of the finite impedance of the ground on the 

propagation of linear continuous waves are profound, and this fact is widely 

accepted. 

The techniques for predicting sound propagation outdoors, using the 

infinitesimal pressure amplitude assumption, linear acoustic methods, are well esta­

blished. The fast field program (the FFP) and the parabolic equation method (the 

PE) are currently the most prevalent computational approaches using the linear 

theory.1"6 These methods, however, do not accurately model the physics when the 

sounds become very loud, over 150 dB referenced to 20 //Pa, and the amplitudes of 

the pressure variations making up the sound become finite instead of infinitesimal. 

This dissertation develops a numerical model to predict sound propagation at 

high acoustic amplitudes where the infinitesimal theory breaks down. The model 

will include the contributions of geometrical spreading, ground effects, attenuation, 

and nonlinear distortion to blast pulse propagation. With this model it will be possi­

ble to make predictions for how far a receiver should be from a blast of a certain 

charge size for the infinitesimal acoustic propagation theory to be considered valid. 

This knowledge will allow measurements to be made as close to blast sources as 
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possible to minimize meteorological effects but far enough away that nonlinear 

acoustical effects will not dominate. 

The remainder of this thesis is divided into chapters. The next five chapters 

will present the background for the physical problem and detail the equations which 

describe it. Chapter 2 will review some of the other methods researchers are using 

to explore nonlinear acoustics and some of the fundamentals governing finite ampli­

tude waves assuming some knowledge of linear acoustic theory. Chapter 3 will 

review some of the considerations involved in outdoor sound propagation, especially 

the effect of ground impedance. Chapter 4 will detail the finite amplitude equations 

for a fluid such as air and will manipulate these equations into a form suitable for a 

numerical solution. Chapter 5 specifies a low frequency phenomenological model 

for a porous ground surface. The initial conditions appropriate for blasts and spark 

pulses are described in Chapter 6. 

Chapters 7 through 9 give the numerical methods used to simulate the physical 

problem. Chapter 7 presents the finite difference procedures employed for the air 

propagation numerical solution and some motivation as to why the method was 

chosen. Chapter 8 describes the numerical absorbing boundary conditions used to 

truncate the physical domain of the atmosphere for simulation on a computer with 

finite memory. The numerical solution found for the porous medium ground sur­

face is in Chapter 9. 

Chapter 10 gives examples to show that the numerical simulation method is 

operating correctly. Here, electric spark free field propagation, normal reflection, 

and oblique reflection from hard surfaces are investigated in detail. This chapter 
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also discusses the values of artificial viscosity needed for the blast wave propagation 

runs. 

Chapter 11 presents the results of the numerical simulations for blast waves 

propagating over the hard and porous medium surfaces, both for oblique and near 

grazing geometries. Chapter 12 concludes the main body of this thesis and points to 

possible future work using and extending the methods given here. Appendix A 

applies finite amplitude acoustic propagation outdoors as addressed in this disserta­

tion to music, specifically to performances of Tchaikovsky's Overture 1812 with can­

nons. Appendix B describes the computer program mcnalp developed for the 

numerical simulations. 
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2. AN INTRODUCTION TO NONLINEAR ACOUSTICS 

The theory of finite amplitude sound waves, or nonlinear acoustics, is a well 

understood subject. Several recent books have been written on the topic, or have 

chapters devoted to it as well as summary articles in journals.7"10 These references 

can provide a history of the subject, which will not be detailed here. The following 

paragraphs review some of the results of this theory. 

Sound waves are dilatational, or longitudinal, waves which propagate in 

compressible fluids and solids. If there is nothing to compress, as in vacuum, there 

can be no sound. The equations 

i | _ + V-(pu)=0 (2.1) 

p[^- + (u-V)u] + V p = 0 (2.2) 

p =p(p) (2.3) 

characterize compressible fluids where p is the total pressure of the fluid, u is a fluid 

particle velocity vector, and p is the total density of the fluid. Equation (2.1) is a 

mass conservation equation, (2.2) is a lossless Navier-Stokes force equation, and 

(2.3) is an equation of state. One may add additional terms to these equations, or 

additional equations coupled to them, w account for viscous, heat conduction, or 

molecular relaxation loss effects. 

Usually, in acoustics, the total variables p and p do not change very much 

around their ambient values p0 and p0, and u is assumed to have an ambient value 

of zero, so one may insert the substitutions p = p0 + p' and p =p0 +p' into the 



first two of the above equations to obtain 

dt 
+ V-[(p0 +p')u]=0 (2.4) 

(Po + p ' ) [ ^ + (u-V)u]+V(p 0 + p ' ) = 0 (2.5) 

where p' and p' are the deviations of the density and pressure, respectively, from 

their ambient values. Further, one can expand the equation of state (2.3) in a 

Taylor's series11 

p=Po +As+-^s2 + £[s
3 + ... (2.6) 

where the condensation s = (p — p0 )/p0 = p'/p0. 

The linear acoustic approximation neglects any terms which contain more that 

one acoustic variable or its derivative, or power higher than one. If one denotes the 

variables u, p', and/?' as the acoustic variables and keeps only the first-order linear 

terms, the linear acoustic equations result 

dp' 
dt 

+ poV-u = 0 (2.7) 

/ 5 o ^ - + V p ' = 0 (2.8) 

p ' = c , V (2.9) 

where c0 is the speed of sound coming out of the first term, A, of the Taylor's 

series expansion of the equation of state. Here, constant p0 and p0 in time and 

space are assumed. One can solve these equations simply by combining them into a 

wave equation in one of the three variables, for example, the acoustic pressure wave 

equation, 



^ 
p ' = 0 . (2.10) 

Typically, one then Fourier transforms away the time dependence of these equations 

to obtain the Helmholtz equation 

jv2+/j2)p' = 0 (2.11) 

where k is the wavenumber equal to ou/c0, and u is the radian frequency. 

This Helmholtz equation is the basis for most linear acoustic propagation pro­

grams such as the PE and the FTP. The accuracy of these programs in modeling 

the physics of the fluid depend, therefore, on how well the linear acoustic approxi­

mation made in the last paragraph holds up. If any of the neglected terms in fact 

become significant compared to the linear terms which were kept, the linear acoustic 

model will break down. 

Table 2.1, for example, lists the ratio of p'. to p0 for various sound pressure 

levels, referenced oo 20 //Pa The abbreviation SPL for sound pressure level will be 

used throughout this thesis. In Table 2.1 it is assumed that c0 = 343 m/sec and 

p0 = 1.21 kg/m3, values appropriate for air. It is clear that for an SPL lower than 

Table 2.1. Ratio of acoustic and ambient densities versus SPL. 

SPL, dB 
60 
80 

100 
120 
140 
160 
180 

/ /Pn 
1.4x ID"? 
1.4x10-6 
1.4x10-6 
1.4x10-4 
0.0014 
0.014 
0.14 
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120 dB, p' is negligible compared to p0, but for a higher SPL, especially above 160 

dB, p' is significant compared to p0. 

Nonlinearity is a cumulative process.12 A distortion of 1/1000 does not seem 

appreciable over one wavelength, but will manifest itself as a serious distortion in 

1000 wavelengths. 

To see that nonlinearity is cumulative, look at one of the simplest nonlinear 

acoustic equations. The one-directional version of the linear wave equation (2.10) 

in one dimension is 

This equation represents a plane wave moving in the +x direction. If the second-

order nonlinear terms but none higher are included, the equation becomes 

%•+* l+fi-z 

The plane wave now travels at a speed c0 

PoSf 

1 + 0-

^ ' = 0 . (2.13) ok 

Po4f 
instead of c0, and this speed 

is dependent on the amplitude of the wave. Therefore, the different parts of the 

wave will propagate at different speeds and, over long distances, the nonlinear effect 

can severely distort the wave even though the effect is small over short distances. 

The constant /? is the parameter of nonlinearity and it contains two types of 

nonlinearity in its equation (3 = 1 + B/2A. The 1 comes from the convection effect 

of an acoustic particle traveling at the speed c0 + | u | instead of c0. The B/A term 

comes from the second-order term in the nonlinear equation of state (2.6). Typical 
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values of B/A are 0.4 and 5.0 for air and water, respectively, so ft is about 1.2 and 

3.5. Theories using ft account only for plane wave nonlinear effects, as there are 

other second-order nonlinear terms ft does not include. Nevertheless, researchers 

have extended the use of ft to the approximate cases of spherical waves and cylindr­

ical waves. 

In the 1960s Blackstock developed a theory of finite amplitude sound that could 

predict three distances to describe the various stages of weak nonlinear propaga­

tion.13' u For an initially sinusoidal wave Blackstock called the distance in which the 

wave would develop its first discontinuity the discontinuity distance. Later, when 

the wave fully developed a shock, this larger distance was called the shock distance. 

Eventually, the wave would travel so far that the attenuation in the medium would 

begin to dominate the finite amplitude effects, and this was named the old age dis­

tance. For plane waves the discontinuity distance, x, is 

£-k (2-14) 
where e is the acoustic Mach number | u |/c0 and k is the wavenumber. For the 

approximate case of divergent spherical waves, however, the discontinuity distance F 

is 

F = r , e ^ (2.15) 

where f is the range from the center of curvature, and r0 is the effective radius of 

the spherical source. The plane wave result is valid under the assumption that the 

old age distance xmax » x where 
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(2.16) 

and where the spherical wave old age distance rmax » r where rmax is given by the 

transcendental relation 

rmax — 
fttkr0 

a 1 + ftekr0ln(rmaz/r0) 
(2.17) 

Here a is the plane wave absorption coefficient in Nepers/m. 

The equations for discontinuity and old age distance can be used to judge how 

far away from its source an initially sinusoidal finite amplitude wave might be con­

sidered linear again, exactly for the plane wave case, and approximately for the 

spherical wave case. Table 2.2 gives x as a function of peak pressure amplitude and 

frequency for air and similarly Table 2.3 for F and rmax. The xmaK and rmax values 

Table 2.2. x for peak pressure amplitudes and frequencies. 

SPL, dB 
120 
140 
160 
180 

x, 10 Hz 
32.4 km 
3.24 km 
324 m 
32.4 m 

x, 100 Hz 
3.24 km 
324 m 
32.4 m 
3.24 m 

x, 1000 Hz 
324 m 
32.4 m 
3.24 m 
0.324 m 

Table 2.3. 

SPL, dB 
at r0 = 1 m 

160 

170 

180 

Fandrm a x 

F, 100 Hz 
rmax, 100 Hz 
ost 5x10-6 

^max^ r 

rmax<f 

25.4 m 
1857 m 

for peak pressure 

F, 200 Hz 
rmax, 200 Hz 
a s 1.5x 10-4 

rmax<r 

167.0 m 
580.5 m 
5.05 m 
802.5 m 

amplitudes and frequencies. 

F, 500 Hz 
rmax, 500 Hz 
a s 5x 10-4 

^max"^ r 

7.75 m 
262.5 m 
1.91m 

312.8 m 

F, 1000 Hz 
rmax, 1000 Hz 

a s 8x 10"4 
25.4 m 
151.4 m 
2.0 m 

198.0 m 
1.38 m 

218.8 m 
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were calculated using values of a appropriate for the frequencies involved, and the 

values of rmax were found using an iterative computer program. Muir and Carsten-

sen have stated that shocks will not develop if rmax < F so Table 2.3 does not give 

numerical values for these cases. For each frequency and SPL xm3x was always 

greater than the values of x given in Table 2.2. 

From these tables it is apparent that the discontinuity distance decreases as the 

frequency or the SPL increases. It is also clear that the discontinuity distances for 

spherical waves are greater than for plane waves. For example, at 160 dB SPL and 

1000 Hz, x is 3.24 m, but F is 25.4 m. It makes sense that the discontinuity dis­

tance is greater for the spherical case, since the amplitude of a spherical wave falls 

off as 1/r while the amplitude of a plane wave changes only slightly when propagat­

ing. Unfortunately, these results are valid only for sinusoids and are approximate 

for the cylindrical and spherical wave cases. 

A model that includes both the parameter of nonlinearity ft and absorption has 

become known as Burgers' equation. This equation can model both pulses and 

sinusoids and may be derived from the form 

where 

a "I /W * ^ * 4 £ (2.18, 
&% #2 

* = •£-
4 MB , (7 - l)/c 
3 (i CrjfJ, 

(2.19) 

accounts for the classical and bulk relaxational dissipative processes. Note that the 

only difference between Equations (2.13) and (2.18) is the right-hand side. Here, p 



12 

is the shear viscosity coefficient, pB is a bulk viscosity coefficient, 7 is the ratio of 

specific heats, K is the thermal conductivity, and cp is the coefficient of specific heat 

at constant pressure. Burgers' equation is often written as 

Ut + ftuux> = 8ux>x> (2.20) 

where the plane wave particle velocity u =p'/p0c0 has been substituted into Equa­

tion (2.19) with the change of variable x' = t —x/c0. Much research has been 

done using Burgers' equations.15"17 

Trivett and Van Buren solved a Burgers' type equation numerically via a cou­

pled Fourier series analysis for plane, cylindrical, and spherical waves.18,19 A recent 

addition to the study of Burgers' equation is given by Mitome.20 However, at the 

time of these studies it was not clear how molecular relaxation effects could be 

added to the model, as it is today.21 Hence, another method of computation using 

the parameter of nonlinearity ft arose, called the Pestorius algorithm. 

The Pestorius algorithm incorporates the competitive effects of absorption and 

finite amplitude nonlinearity by assuming the two processes are independent over 

small steps in range.22'24 A small step in range is taken in the time domain account­

ing for nonlinear steepening. Then a fast Fourier transform is taken to the fre­

quency domain where losses are accounted for over the range step. Then an inverse 

fast Fourier transform returns the wave to the time domain, and the process contin­

ues. The iteration repeats until the modeled waves have propagated as far as is 

necessary. Researchers have used this method successfully for the prediction of 

shock wave rise times from sonic booms, ballistic waves, blasts and electric spark 
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pulses.25*27 It has been applied exactly to plane wave propagation and approximately 

to cylindrical and spherical waves since it employs the plane wave parameter of non-

linearity ft. 

Another method based on the parameter of nonlinearity ft is the NPE, which 

stands for nonlinear parabolic equation.28 This technique is similar to the standard 

parabolic equation, but contains the plane wave nonlinear steepening effects in addi­

tion to the effects of refraction and diffraction. Here, one steps the equations in the 

time domain in a particular direction. 

Aanonsen et al. have introduced a similar one way wave solution,2931 this time 

including all the second-order nonlinear effects coming from the compressible fluid 

equations, not just those associated with ft. These authors solve this parabolic type 

equation numerically using an implicit finite difference solution of a frequency cou­

pled Fourier series expansion, not unlike the method of Trivett and Van Buren. 

The Aanonsen et al. work seems most promising, but like the NPE, the Pes­

torius algorithm, and Burgers' equation methods, it can model only waves which are 

propagating primarily in one direction. These methods are not sufficient to model 

the propagation of sound outdoors, near ground surfaces which reflect sound. 

Reflected waves are not accounted for in the above theories. 

In addition, only the Aanonsen method accounts for all the second-order non-

linearities of the compressible fluid equations. The second-order nonlinearities not 

associated with ft are important in the near field of a blast source, for example, 

since the waves here are far from planar. Second-order terms are also important 
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when direct and reflected waves interact, near a surface or near a turning point in a 

refractive atmosphere. Chapter 4 will give a model to include all the second-order 

nonlinear effects and both incoming and outgoing waves simultaneously. 
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3. SOUND PROPAGATION OUTDOORS 

This chapter reviews the keys to the modeling of sound propagation outdoors. 

Much of this material has appeared as summary articles in the literature32"34 and is 

widely accepted. Other than geometrical spreading, the primary mechanisms which 

can influence the prediction of sound levels over flat, featureless surfaces are ab­

sorption, ground impedance, refraction, and turbulence. 

The best understood aspect of sound propagation in the free field is the absorp­

tion and transference of energy as an acoustic wave moves. The primary processes 

are viscous and heat conduction effects, and molecular relaxational effects. The 

classical effects were discovered in the 1800s, whereas the understanding of relaxa­

tion has become clear only in the last 25 years. This thesis will not detail either of 

these processes, as a number of standard textbooks describe the particulars of the 

mechanisms.35,36 

The theory to account for the influence of an outdoor ground surface is well 

understood also, if the impedance Z of the ground is known. Two of the better 

journal articles which review the important aspects of the development of this 

theory are listed in the references,37,38 although the latter has innumerable mis­

prints. Unfortunately this has been a problem in the literature of propagation near 

finite acoustical impedance boundaries,39 the difficulty often being that some au­

thors use the eiut notation and others e~iut. In addition, Nobile and Hayek recent­

ly have found an exact solution for sound propagating in a homogeneous atmo­

sphere with arbitrary impedance Z that is easily implemented in a computer pro-
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gram.40 Such a program will be used in Chapter 11 to examine what peak levels 

result in the linear acoustic limit for certain frequencies and impedances, for com­

parison with the nonlinear predictions described there. 

The problem, however, is that researchers have had difficulty accurately ascrib­

ing surface impedances to particular ground surfaces. Numerous models have been 

published in the literature to relate the physical properties of the ground to Z as a 

function of frequency. One of the more frequently cited theories is provided by 

Chessel, based on the work of Delany and Bazley.41 In this formulation the ground 

is characterized by a static flow resistance, a measure of how easily air moves 

through a ground sample. The Delany-Bazley-Chessel theory is simple and is com­

monly in use in most modern outdoor acoustic propagation programs such as the 

FFP (fast field program) and the PE (parabolic equation method). Another more 

complex model of natural outdoor surfaces is the four parameter model of Atten-

borough. This theory includes a second physically intuitive parameter in addition to 

the flow resistance, called the porosity. The porosity is the volume fraction of air in 

a ground sample. In addition to porosity and flow resistance, Attenborough adds 

two more parameters, the tortuosity and the pore shape factor ratio.42 The tortuosity 

is a measure of how tortuous or twisty the pores of the ground are, and the shape 

factor ratio gives some measure of the pores' cross-sectional shape relative to a 

square or a circle. 

It will become clear in Chapter 4 that the second-order nonlinear equation of 

the air can be formulated only in the time domain. All of the above cited ground 
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models, on the other hand, are in terms of the impedance Z in the frequency 

domain. Thus, an efficient solution to the outdoor propagation problem will require 

a formulation of the ground in the time domain. Morse and Ingard have described 

such a model for propagation in a porous medium.43 In addition, Attenborough has 

related this theory to a low frequency model of the ground. Chapter 5 will elaborate 

on this model in detail. 

Morse and Ingard's equations do not include the effects of nonlinearities in a 

porous ground, however. Little work has been performed on this topic. One excep­

tion has been the research by Kuntz, Nelson, and Blackstock.44,45 These gentlemen 

investigated the effects of nonlinear propagation in batted Kevlar, a strong fibrous 

material. Their results showed that the nonlinearity in porous propagation is associ­

ated with the flow resistivity and is not similar to the nonlinearity in air. Hersh also 

developed a model for the acoustic properties of materials such as Kevlar.46 Wilson, 

Mcintosh, and Lambert have extended some of the knowledge in this area,47 but 

more research is needed. Note that the porous model employed in Chapter 5 is a 

linear model. 

Another major factor in predicting the propagation of sound outdoors is refrac­

tion in the atmosphere. Because of the heating and cooling of the ground and be­

cause of the effect of wind, the speed of sound in the air varies as a function of 

height, distance, direction, and time. Simple refraction models have been incor­

porated into programs such as the FFP and the PE to estimate the combined effects 

of ground impedance and refraction. 
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Random inhomogeneities in the air, called turbulence, also affect the propaga­

tion of sound outdoors.48,49 This phenomenon is particularly important for long 

ranges, because the weak scattering of acoustical energy by turbulence can accumu­

late over distance. The uncertainty of turbulence effects renders all acoustic propa­

gation prediction programs approximate, and more research is needed on this topic. 

Some recent simulation results and references to the literature may be found in 

McBride.50 

This dissertation later develops a model which at present accounts for neither 

refraction nor turbulence. Refraction should be no problem to add at a later date, 

as long as one rederives the equations in the next chapter under the assumption that 

p0 and c0, the ambient density and speed of sound, are functions of space. There 

should be no need to regard them as functions of time since they change negligibly 

during the passage of a sound wave. One might implement turbulence as a pertur­

bation on the variables p0 and c0 as functions of space, making many runs with 

many different perturbations to give some statistical average propagation results. 
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4. THE TIME DOMAIN AIR PROPAGATION EQUATIONS 

This chapter presents the equations to describe lossy, weakly nonlinear sound 

propagation in air. The equations include both of the classical dissipation effects, 

the effect of a bulk viscosity, and all of the second-order nonlinear terms from the 

compressible fluid equations. The expressions do not include relaxation effects. 

The equations are51"53 

d£_ 
dt 

+ p0 V u = -p'V-u - u-Vp' (4.1) 

Po^jf + Vp= - / - ^ r - PoU-Vu + (jp + jUg)V(V-u) + pV2u (4.2) 

dSfr 
p°T°-dT = KV r 

'- '̂-H '̂ P/9T 

[CP Jb 

Sfr 

T -
Tft 

pcp 
P = 

)o lCP)o 
*fr 

(4.3) 

(4.4) 

(4.5) 

The variables introduced in Chapter 2 are used in these equations, except for p, 

which now represents the acoustic pressure deviation instead of the total pressure. 

In Chapter 2 p' denoted the acoustic pressure. Again, these equations assume p0 

and p0 are constants in time and space. 

The newly introduced variables are the following: T", the acoustic temperature 

deviation; Sfr, the acoustic entropy deviation with vibrational degrees of freedom 

frozen; T0, the ambient temperature; B/A, the ratio of the first two terms of the 

Taylor* s series expansion of total pressure in terms of p'\ and ft, the coefficient of 

thermal expansion. Note that in the rest of this thesis ft does not represent the 
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parameter of nonlinearity as it did in Chapter 2. For ideal gases, ftT0 - 1. The 

Equations (4.1) to (4.5) use the notation of Pierce, with the second-order nonlinear 

terms of Hamilton and Blackstock. 

To clarify the above equations, one can write them as 

dt 

dVL 

+ p0V-u = Nl 

P0-^ + Vp=N2+Dl 

p -c2p'=N3+D3 

Tft 
T -

[pcp 

p =D4 
Jo 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

where 

jVl = - p ' V - u - u - V > ' 

N2 = -p'^--p0u-Vu 

Dl = (jfi + pB) V(V-u) + pV2u 

2 T " D2 = KV*T 

D3=c2 P/ZT 

[CP Jb 
Sfr 

D 4 = — 
"P h 

*fr 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Equations (4.6) to (4.10) give the linear lossless terms explicitly. The nonlinear 
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terms begin with the letter N in (4.11) - (4.13), and the dissipative terms begin with 

the letter D in (4.14) - (4.17). If Nl, N2, and N3 -»0, Equations (4.6) - (4.10) 

become linear and, similarly, if Dl, D2, D3, and D4 —»0, (4.6) - (4.10) become 

lossless. 

By examining the terms Nl, N2, and iV3, one may see that each of these 

terms is indeed second-order. They are each made of the sums or differences of 

two acoustic quantities or their derivatives multiplying each other. In the case of 

N3 the acoustic density deviation is multiplied by itself to give p'2. Note that there 

are no higher-order quantities such as the product of three acoustic variables or 

their derivatives. 

Since these terms contain products of acoustic variables, it is impossible to 

Fourier transform Equations (4.6) to (4.10) without introducing convolution, a 

computationally expensive process. This circumstance is not unique to the lossy 

nonlinear acoustic equations employed here, but is a mathematical reality for any set 

of nonlinear partial differential equations. Hence this research has centered on time 

domain solutions. 

To make a time domain solution possible it is necessary that each of the Equa­

tions (4.6) - (4.10) have no more than one time derivative present The only 

du offender is (4.7) which has two. Here, the time derivative term p0-xr must be 

present regardless of the amplitude of the wave. But since the term P'-KT hi N2 is 

not present in the linear limit, one can eliminate this time derivative as follows: 
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#2 = - / - ^ - p , u - V n 

= ~P' 
- V p 

Po 
- p 0 u - V u (4.18) 

= J— Vp - p 0 u - V u . 
Po 

Here, the linear lossless portion of (4.7) has been substituted into the term N2 it­

self. Note that the new form of N2 is still of second-order. 

Before a particular geometry is specified, the following assumption should be 

understood. Equations (4.1) - (4.5), or equivalently (4.6) - (4.18), implicitly as­

sume that the interaction effects of dissipation and second-order nonlinearity are 

small. If one were to include such effects, terms would be introduced that were 

third-order or higher. One neglects such interaction effects to keep the equations 

consistently second-order. 

Note that it is easy to incorporate the effects of molecular relaxation into the 

above equations. To include the primary relaxation processes of oxygen and nitro­

gen in air, Equation (4.3) becomes 

, . % ^ + , . ^ + , . , . . ^ _ « v . r <«» 
where 

and 

dTx _ T -Tx 

~dT= 7-x 

dT2 T - T2 

dt T2 

(4.20) 

(4.21) 
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The subscripts 1 and 2 denote the relaxation processes of oxygen and nitrogen, 

respectively. Using the notation of Pierce, Tt and T2 are apparent vibration tem­

peratures, cVl and c„2 are specific heats at constant volume associated with internal 

molecular vibrations, and rj and r2 are relaxation times for vibrational energies. 

The introduction of Equations (4.19), (4.20), and (4.21) poses no additional 

difficulties. One merely needs to keep track of two additional variables, 7 \ and T2. 

Now specialize the Equations (4.6) - (4.18) for a two-dimensional cylindrical 

geometry, natural for outdoor sound propagation. This thesis will use the coordi­

nates (d, z, 0), as seen in Figure 4.1. Here, the variable d represents range, in­

stead of r because this is a spherical coordinate variable, and instead of p because 

one might confuse this with a density variable. 

If there are no variations with respect to the variable 0, i.e. -—- = 0 and the <j> 
d(p 

component of u is zero, then u = ud + vz and Equations (4.6), (4.7), and (4.8) be­

come 

¥+" du u dv 
dd d dz 

\ 

= N1A (4.22) 

P o ^ + $L=N2A +D1A (4.23) 

p0-^ + ^=N2B+DlB (4.24) 

& , % % ^ = a 2 A (4.25) 

where 
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Figure 4.1. Coordinate system. 
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and 

N1A = -p' du u dv 
dd d dz - ^ - ^ 

Po &f 
N2A = — -^r - P0 

N2B = _PL3P_ 
Po & 

Po 

^w-w 

"W + HiF 

(4.26) 

(4.27) 

(4.28) 

DlA=(±p,+pB) 
a%% ̂ i a% « ^ a^ 
af2 <f&( <(2 af&; 

+ // 
cfhi , l du , efhi 
&(2 ' ( f & f ' & 2 ^ 

DlB=(^p+pB) d2u , 1 du , cPv 
H—r - ^—r 

&*& d 8g az^ 

+ » 
cPv , 1 dv , d2v 
af2 d&z ' az2 

D2A =K 
&T' , 1 3 2 " , 52?1' 

H—r o , + 
a*2 ' d ad aẑ  

(4.29) 

(4.30) 

(4.31) 

Equation (4.22) simplifies under the assumption of a homogeneous atmosphere. 

For this case 

dp0 _ dp0 

dd 8z 
= 0, (4.32) 

thus 

dt dd h +"')"]+•& fa +"')"]—('• + »'te • (433) 

Further, one can make rearrangements and see that the four time-dependent equa-

tions can take the forms 



¥+M'°+4]+i[('»+4]=™ 
du d 
dt dd 

az, a 
a az 

p 

Po 

p 

Po 

&/r 

= N2C + D1C 

= N2D +DW 

= 7328 
dt 

where 

7V1B = - [Po + p ' ) | -
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(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

and 7V2C =7Y2A/p0, 7V2D =N2B/p0, D1C =DlA/p0, DID =DlB/p0, and 

D2B =D2A/p0T0. 

Equations (4.34) to (4.37) have been written in a special way. They are each 

almost written in conservation law form where the four acoustic variables p', u, v, 

and Sfr are the only time derivatives which occur. The terms NIB, N2C, N2D, 

D1C, DID, and D2B may be regarded as "pseudo - source" terms. Also note 

that when these right-hand side terms approach zero and p' becomes negligible com­

pared to Po, the equations accurately describe two-dimensional linear acoustics. In 

contrast, if one uses the full equations of computational fluid dynamics to solve a 

nearly linear acoustics problem, the numerical solutions are usually poor in the 

linear limit Now one can write these lossy, second-order nonlinear acoustical equa­

tions as the system 

wt + Fd + G7 = SF + SG (4.39) 

where 



U) 

F = 

G = 

SF = 

P" 
u 
v 

Sfr 

(p0 + p')u 
P 
Po 
0 
0 

(Po + P> 
0 
p 
Po 
0 

NIB 
7V2C +D1C 

0 
D2B 
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(4.40) 

(4.41) 

(4.42) 

(4.43) 

and 

SG = 
0 
0 

N2D +D1D 
0 

(4.44) 

with the equations of state (4.9) and (4.10). The system (4.39) is a form solvable 

numerically by time stepping. Given the initial conditions of p', u, v, and Sfr over 

all space, these variables and p and T' are known everywhere at all future times us­

ing (4.39) and the equations of state (4.9) and (4.10). Chapter 7 will present a 

specific numerical solution method for (4.39). 
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5. THE TIME DOMAIN POROUS MEDIA EQUATIONS 

This chapter examines the time domain phenomenological equations of sound 

propagation in a porous medium. The porous equations are compatible with the 

time-dependent equations of the air. The porous medium equations will be 

analyzed in the frequency domain to determine the surface impedance, effective 

sound speed, and absorption of a porous ground surface model based on the equa­

tions. Chapter 9 will describe the time domain numerical solution used for the 

porous medium. 

Sound propagation in pores is a classical topic, which has been examined since 

the beginning of research in acoustics. In 1896 Lord Rayleigh devoted several sec­

tions in his book, The Theory of Sound, to the propagation of sound in pores and 

narrow tubes.54 Rayleigh's work was based on research by Kirchhoff. The book that 

is probably most often cited on porous materials, however, is Sound Absorbing Ma­

terials by Zwikker and Kosten from 1949.55 They extended Rayleigh's calculations in 

pores to acoustical absorbing materials. Zwikker and Kosten include many experi­

mental results along with their theoretical analysis. 

This chapter employs a model that is originally from Morse and Ingard's 

Theoretical Acoustics.,56 These authors model a bulk porous medium as an idealized 

fluid. Their model porous acoustical equations are 

n ^ + Pov-u = o (5.D 

p p |H . + <f»u + Vp' = 0 (5.2) 
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P =KpPoP (5.3) 

where fi is the porosity, p' and p0 are the acoustic and ambient densities, u is the 

average particle velocity in the direction of propagation, pp is an effective density, $ 

is a flow resistance, p' is the acoustic pressure, and Kp is the effective compressibili­

ty of the fluid in the pores. Equations (5.1), (5.2), and (5.3) are the equations of 

continuity, motion, and state, respectively. Note that Kp and pp should be viewed 

as functions of frequency. In fact, Morse and Ingard solve (5.1) - (5.3) in the fre­

quency domain, bypassing the time dependence of these equations. Their transfor­

mations usinge~lwt time dependence were 

Pe =Pz 1 + 
i $ 

PP w 

Ce = 
"VpT%e 

Ke =UKp 

(5.4) 

(5.5) 

(5.6) 

for an effective density, sound speed, and compressibility to obtain the Helmholtz 

equation 

w+ 
/ 12 

0/ ^ = 0 (5.7) 

where u is calculated from u = —V ip. The impedance of such a porous material is 

then 

Z =Pe%, =(p«,/k,)* 
(5.8) 

= (Pp/Kpn)Hi + i*/ppu)*. 

Using Morse and Ingard's results, but using the e lwt time dependence, Donate com 
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pared this impedance model to some averaged experimental data over a wide range 

of frequencies in 1977.57 He showed that the above model was probably not as good 

as a model where porosity varied as a function of depth. 

Attenborough has analyzed porous equations similar to those of Morse and In­

gard and then related them to a low frequency model of a finite ground 

impedance.58"60 His form of the generalized pore equations in one dimension are 

c0
2(p - P0) = lip -P0) . (5.11) 

Note that (5.9) was misprinted in Attenborough's 1983 J. Acoust. Soc. Am. paper, 

but appeared correctly in his 1982 Physics Reports work. These equations use a 

different notation than (5.1), (5.2), and (5.3). Here p represents a total pressure, 

with p0 the ambient pressure, and similarly for p and p0 . The constant K 

represents an effective density factor or structure factor. If one linearizes these 

equations to first-order, under the assumption p =p0 +p' and p = p0 + p', and 

remembers that at low frequencies61 7 —• 1, 

n f . + , o * = 0 ,5.12, 

p ' = c0
2p'. (5.14) 
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These equations involve only linear variables and may be compared to Morse and 

Ingard's Equations (5.1) - (5.3). 

To derive equations for a complex wavenumber, one eliminates p' andp' to ob­

tain the governing wave equation for this porous model in the average velocity u, 

, . * | » + » n * - , . * ' £ - 0 . (5.15) 

By substituting u = e ~ into this equation, the plane wave dispersion relation 

results, 

-u2
Po K + i w<S> n + k2

Po c2 = 0 (5.16) 

or 

A,2 = ^ _ ^ . (5.17) 
%, PoS, 

This latter form will be useful later, since the effective sound speed in the pores is 

ceS = w/Re [kx] and the attenuation is a = —Im[kx ], i.e., kx = ui/ceS — ia. 

In his 1983 paper Attenborough relates the structure factor K to one of me 

parameters of his four-parameter model of a porous medium by 

K = i ^ 2 (5.18) 
o 

where q is the tortuosity. The correspondence between the Morse and Ingard 

model and his four-parameter model is exact when 

H- = 1 (5.19) 
s 

where n is the dynamic shape factor and s is the static shape factor. In the four-
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parameter theory of this 1983 paper, n = s = 1 corresponds exactly to the case of 

perfectly circular cylindrical pores. Note that in his 1987 paper Attenborough shifts 

to the notation sp = n2A2/s where A = 1/2 for circular cylindrical pores, where sp 

is called a pore shape factor ratio. Under the 1983 theory,62 a typical value of q for 

soil is 1.5. 

In the 1983 paper the impedance of the Monse and Ingard phenomenological 

equations is found to be 

- ^ - = (27^ )-%%(! + i)(*/P(,sw)% (5.20) 
Poco 

which is independent of tortuosity. Note that the exponent of (27Q ) is misprinted 

in the 1983 paper itself, but (5.20) may be verified from his Equations (32), (36), 

and (38) under the assumption of large $ and low w. 

For a typical outdoor mown grass surface <& and ft might be 300,000 mks 

Rayls = 300,000 kg/(s m2) and 0.30, respectively.63 For these values and where 

p0 = 1.21 kg/m3, 7 —»1 (low frequency), and s = n = 1 (circular cylindrical pores) 

This is the impedance predicted from the Attenborough interpretation of the 

phenomenological porous model. Table 5.1 lists values of Z/[p0c0 (1 + i)] for vari­

ous frequencies, using the above constants. With these same values, one can find 

the speed of sound and attenuation in the pores from (5.17). Here, 

k 2 = 25.5t,imes 10'6w2 - i0.632w. Column three in Table 5.1 gives values of the 
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Table 5.1. Porous model impedance, sound speed, and absorption. 

A Hz 

500 
400 
300 
200 
100 
75 
50 
25 
10 
5 

Z/p0c0(l+i) 

11.468 
12.82 
14.80 
18.13 
25.64 
29.61 
36.26 
51.28 
81.09 

114.68 

ceff = oj/Re[kx], m/s 

93.61 
84.79 
74.35 
61.48 
44.03 
38.25 
31.35 
22.25 
14.08 
9.97 

a = -Im[kx], Np/m 

29.58 
26.79 
23.5 
19.43 
13.91 
12.08 
9.90 
7.02 
4.45 
3.14 

effective sound speed in the pores, and column four gives the attenuation coefficient 

for the listed frequencies. 

Notice that as the frequency decreases, the magnitude of impedance increases, 

the effective sound speed decreases, and the attenuation decreases. Also note that 

below 50 Hz ceff is less than 1/lOth the speed of sound in air, c0 = 343 m/s. This 

fact supports the hypothesis that the porous medium is locally reacting, i.e., plane 

waves in air incident on the porous surface at significant angles of incidence from 

normal will propagate into the pores normal to the surface. If the surface were not 

locally reacting, waves incident on one part of the surface would affect the waves 

propagating on nearby parts of the surface. Local reaction implies that each part of 

a porous surface is independent of all others. This concept is useful and will be 

used in Chapter 9. 

Because the reactance of the impedance, the imaginary part of Z, is equal to 

the resistance, the real part of Z in Equation (5.20), surface waves should not 

develop for propagation over this porous medium. Surface waves are independent 
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propagating waves at the interface of the air and porous medium which can some­

times develop depending on whether the reactance of the impedance is greater than 

the resistance. Surface waves have been studied in great detail, and are reasonably 

well understood.64"68 For a spherical source they propagate along the ground with a 

r-56 dependence and decrease exponentially with height. Because these waves de­

crease with distance as r~%, their contribution to the total sound field can be 

significant at medium ranges since the rest of sound field components fall off as 1/r. 

Surface waves are different from the "ground waves" of AM radio propagation, and 

one may obtain a more complete discussion on surface waves in the references. 
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6. MODEL INITIAL CONDITIONS IN AIR 

This chapter presents the initial conditions for both blast waves and spark 

pulses used in the numerical simulations given in Chapters 10 and 11. Blasts are 

discussed first, and then sparks. Scaling law theory is also discussed with reference 

to the blast initial conditions. This chapter closes describing how the initial condi­

tions were implemented near surfaces. 

6.1 Blast Initial Conditions and Scaling Laws 

The pulse shape originally used in this investigation was the ideal blast pulse of 

Reed.69 The shape closely approximates the pressure waveforms emitted both by 

electric sparks and by explosions, on different scales. Reed's pulse is 

/ 

1 -
\ 

t 

*+] 

/ 

1 -
. 

\ 
t 
T 

1 -
/ \ 
t 
T 

\ > 

511 

for 0 < t < T and pit) = 0 otherwise. The constant £p0 is the peak pressure of 

the pulse, r is the waveform duration, and t+ is the length of the positive phase, 

whenp(f) > 0. 

One problem with this idealization for numerical computations is that it has a 

discontinuity at t = 0, where it jumps from p(0_) = 0 to p(0+) = &p0. To elim­

inate this discontinuity, which contains much high frequency energy, a modified 

Reed pulse was developed. It has the wave shape of (6.1), with a raised cosine in­

troduction so that at no point in the pulse is pit) or p'it) discontinuous. The ex­

pression for this pulse is 
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pit) = 

Piit), 

Piit), 

0, 

o < t < t3 

t3<t<t2 + T 

otherwise 

(6.2) 

where 

Piit) 
4P0 

1 — COS 
7T t 

(6.3) 

and 

p2it) = A% 
t -U 

1 -
t -u 

1 - t -u (6.4) 

Here t^< t2< t3 where t2 is the "delay" of the original Reed pulse and where ts 

is when the two waveforms both meet 

Piit) =p2it) I 
t3 

(6.5) 

and their derivatives match 

jPi(f)=jWf) (6.6) 
t = t3 

Because this thesis considers only weak nonlinear acoustical waves, the pulse 

shape should be realizable in the linear acoustics limit. In this linear limit the pulse 

pit) additionally should balance, satisfying the conservation of impulse 

t2+r 

J pit)dt=0. (6.7) 

This expression means that after the pulse passes by, it should leave the compressi­

ble fluid particles in their original state. 
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For the blast wave case the durations r = 0.04 s for the Reed waveform and 

ti = 0.5x 10"3 s for the first 7r radians of the cosine introduction were used. These 

values mean the 0% to 100% rise time of the cosine introduction was approximately 

l/80th the length of the rest of the pulse. This duration of r corresponds to that 

observed 30 m from a 0.57 kg C-4 plastic explosive detonation.70 The peak level for 

this pulse is 164.1 dB SPL at 30 m. 

A computer program was written to find t+, t2, and t3 to satisfy (6.5), (6.6), 

and (6.7) with the above given values of tx and r. The values found were t+ = 

11.0326x 10"3, t2 = 0.50293016xl0-3, and t3 = 0.50585915x 10"3 s. 

The above specification, however, is only on the pressure. The system of equa­

tions (4.39) requires initial values on the four variables p', u, v, and Sfr, which im­

ply p and T'. In this research the approximation was made that the initial condi­

tions would be lossless and linear, under the assumption that the variable values 

would settle into their lossy nonlinear relationships in a few time steps. 

Using this lossless linear assumption, Sfr was assumed zero everywhere initially. 

Then T' is linearly related to p from Equation (4.5). Also, in a linear approxima­

tion one can find p = c0
2p', and u and v from p using a potential. 

For spherical pulses the radial component of particle velocity vr is related to the 

pressure by the spherical potential Fit - r/c0) as 

y dt r 
and 
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Vr = 
- P 

PoS + 
0"0 

Fit -r/c0) 

P o ^ 
(6.9) 

The variables u and v are, of course, related to vr by the geometrical expressions71 

u = vrsin9 and v = vrcos9. Thus, given p for a spherical pulse, p', u, v, Sfr, and 

T" can be found in a linear lossless approximation. 

Corresponding to the pressure waveform (6.2) - (6.4) one can find 

Fit — r/c0 )/r by integratingp with respect to t. The result is 

Fiit-r/c0) =tb) 

where 

4% 
tb sm 

4% 

7T 

1 . 

IX % 

to sm 
•K 

•Kti 

o, 

4% 
tb —^3 hi 

0 < f& < t3 

+ ^ 1 , t3< % <t2 + T 

otherwise 

+ Tt 

itb-t2)
3-it3-t2)

3 

+ 

+ r 

J- + - 1 -
r3 F+r2 

itb -t2)
4-it3-t2y 

i itb -t2)
5-it3-t2)

1 

(6.10) 

(6.11) 

For all the runs of Chapters 10 and 11 an approximate version of Ix was used, 
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approximate 7\ 

fro h -h~ hi (% - W' 

+ Tt+ T2 
(t(,-W' 

+ T-3 ^ ( + f 2 

(fo-W 
{6.12) 

1 itb-t3)* 

For the particular values of tlt t2, t3, t+, r used in this study, the difference 

between (6.11) and (6.12) is very small. Figure 6.1 plots Equation (6.10) using 

both Equations (6.11) and (6.12), with the former using a solid line and the latter a 

dashed line. 

A most successful theory72 for predicting the effects of explosions has been the 

scaling laws of Hopkinson from 1915. These relationships have been experimentally 

verified over many orders of magnitude of energy release and are very useful in an 

empirical sense. Scaling laws do not explicitly account for the absorption of the air 

or ground impedance, but instead simply state that the distance, time, and impulse 

of blasts scale as E_1/3, or equivalently W"1/3. Here E and W are the energy 

release and weight of an explosive, respectively. 

To obtain the initial conditions at 30 m for C-4 charge sizes other than 0.57 kg, 

the blast durations can be found from a scaling law. The duration of the pulse from 

a blast with weight W should be proportional to (W/W0 )1 / 3 where W0 is the refer­

ence charge weight 

Another relation,73 more approximate and based on the observation that blast 

overpressures decrease with distance at a rate of about r -1 ,2, can be used to predict 
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Figure 6.1. Pulse spherical potential from Equation (6.10). The solid line is for the 
exact 11, the dotted line is for the approximate lv 
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initial overpressures for different size blasts at a fixed distance. If the peak pressure 

is known for a charge of weight W at a fixed range,74 the expression 81og( W/W0) 

gives the increase in pressure in dB expected over that from a charge of weight W0. 

Using these expressions for peak pressure and pulse duration relative to the 

164.1 dB data, Table 6.1 gives values of the approximate duration of the pulses r in 

milliseconds and the weights W in kg, for blasts with peak sound pressure levels at 

3 dB intervals. The next chapters will use these values of peak SPL and r for the 

blast calculation initial conditions. 

6.2 Electric Spark Initial Conditions 

Because of scaling, the small explosion relative durations given in the last sec­

tion are nearly the same as those seen for electric spark pulses in air. It turns out 

that if one divides the blast values r, t+, tlf t2, and t3 by 1000, the wave shape is 

similar to that observed for an electric spark pulse. See, for example, the thesis of 

Table 6.1. Scaled blast data. 

SPL. dB 
164.1 
180. 
177. 
174. 
171. 
168. 
165. 
162. 
159. 
156. 
153. 
150. 

T. ms 
40. 

183.89 
137.8 
103.4 
77.5 
58.15 
43.6 
32.7 
24.5 
18.34 
13.72 
10.32 

W.kg 
0.57 

55.38 
23.35 
9.84 
4.15 
1.751 
0.738 
0.311 
0.131 
0.055 
0.023 
0.0098 



42 

Anderson.75 Here T is approximately 40 ps. Thus, the duration values for sparks 

used in Chapter 10 are r = 40x 10~6, tx = 0.5x 10~6, t+ = 11.0326x 10"6, t2 = 

0.50293016x 10~6, and t3 = 0.50585915x 10~6 s. 

6.3 Initial Conditions near Surfaces 

Chapters 10 and 11 will present propagation results including reflections from 

hard surfaces for sparks and hard and porous surfaces for blasts. This section 

describes the initial conditions used for those cases when a reflected wave initially 

existed in the computational domain. For simulations where an initial condition 

contained a reflected wave, linear superposition was used between the incident pulse 

and its hard surface reflection image. This starting condition is approximate, but is 

certainly satisfactory for the propagation decay analysis in Chapter 11. 

For the high amplitudes of interest in this research, the pressure doubling seen 

next to a hard surface in linear acoustics should be replaced with a more accurate 

relation dependent on the amplitude and past history of the incident wave. Thus 

the starting wave contains nonphysical components. The nonphysical wave com­

ponents, however, do not severely affect the overall solution down range. 

This linear hard surface superposition method also was employed for the initial 

conditions for blast waves over a porous ground. Boundary points where the in­

cident pulse initially intersected the ground were implemented using the hard 

ground boundary condition. For all distances greater than those initially touched by 

the incident and reflected waves, the porous medium equations coupling the air pro­

pagation equations acted as a boundary condition. See Figure 6.2. for the initial po-
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sitions in space of the direct and reflected waves with respect to the implementation 

of the boundary conditions for this porous case. 

The initial conditions described in this chapter worked well for the simulations 

of Chapters 10 and 11. They can be improved with additional work, but as will be 

seen later, the conditions were satisfactory for the modeling of finite amplitude pro­

pagation near the hard and porous ground surfaces. 

/ N 

zmiri' 

source 

r e f l e c t e d 
wavefront d i r e c t 

wavefront 

hard ground porous ground 

^ 

Figure 6.2. The initial condition in space for the direct and reflected waves with 
respect to the boundary conditions for the porous ground simulations. 
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7. NUMERICAL SOLUTION TO THE ATR EQUATIONS 

In the second volume of his lectures on physics76 Richard Feynman states 

"The only [sic] general methods of solution are numerical." This chapter describes 

the different types of numerical solutions possible for the equations given in 

Chapter 4 and then specifies the particular solution chosen for this thesis. This type 

of numerical solution should be applicable to many types of problems involving 

finite amplitude sound waves in fluids, not just the one addressed in this work. The 

properties of the techniques such as accuracy and high frequency resolution are also 

discussed. 

7.1 Background 

A finite element solution to (4.39) is possible. However, an iterative solution 

is required to evaluate the nonlinear terms in the system at each time step. This 

procedure is highly expensive from a computational point of view.77 New methods 

of finite element solution to nonlinear problems are being investigated currently,78 

but it seems that finite element methods are best suited to linear equations. 

Explicit finite difference methods do not have any difficulties with nonlinear 

equations. One can implement nonlinear terms just as easily as the linear ones with 

this technique. An explicit method, therefore, will be used in this research. 

The application of finite differences to acoustical equations is not a recent idea 

For example, an entire chapter is devoted to the finite difference solution of sound 

waves in Richtmyer and Morton's Difference Methods for Initial-Value Problems.'19 

That work, however, did not consider acoustical nonlinearities. To study blast 



45 

waves with strong nonlinearities, Brode used a finite difference solution to a set of 

fluid dynamics equations in the 1950s.80,81 Brode's methods were used for overpres­

sures of 2000 atmospheres to 0.10 atmosphere and are not applicable for weaker 

waves, the subject of this thesis. Rao and Zumwalt in 1970 modeled the pressure 

history of a sonic boom.82 Their method is not dissimilar to the one used in this 

thesis. Rao and Zumwalt's finite difference method is simplistic and it includes no 

absorption effects, but they do solve a linearized system of equations. By the early 

1970s it was apparent that for weak pressure waves, the linearized compressible flow 

equations should be used instead of the full equations of computational fluid dynam-

ics.83 

In 1974 Afford et al. stated that highly accurate fourth-order finite difference al­

gorithms gave superior results to those of lower-order for acoustic equations.84 This 

"order" is meant in a slightly different sense than the second-order nonlinearities 

discussed earlier. In a finite difference approximation, a derivative is represented by 

using a finite difference expression such as 

V W = # * + ^ - # * ) (7.1) 

where Ax is a small increment in x. The "order" of a finite difference approxima­

tion is related to how accurately the derivative is modeled in a numerical sense. 

Here 

# a + A % ) - # c ) _ ^ + CiAc + C ^ + . . . (7.2) 

where Ch C2, . . . are constants. This approximation is first-order since the approx-
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imation is dominated by the term Cx^x. Another discretization of if/ix) is 

** + *°aL** " AC> - 1>M +D^+D^ +. . . (7.3) 

which is instead dominated by the term Z^Ac2, SO this approximation is second-

order. Similarly the approximation 

Sipjx + Ay) - Qipix - Ay) - ipjx + 2A%) + j)jx - 2At) 
12 A* (7.4) 

= ip'ix) +£?1At4 + . . . 

is fourth-order. Afford et al. also found that these fourth-order methods would al­

low useful difference computations on coarse grids. 

Possibly unaware of the Afford et al. results, Walkington and Eversman used 

several different second-order finite difference algorithms to compute the solution to 

one-dimensional shocked acoustic waves in ducts.85,86 They found that their results 

agreed with the finite amplitude acoustic solution of Blackstock for an initially 

sinusoidal wave. One aspect of their work that is particularly interesting is their use 

of an artificial viscosity factor. The purpose of this artificial viscosity is to attenuate 

the high frequencies not well resolved by their finite difference grid. These high 

frequencies are generated by the finite amplitude nonlinear effects. 

The most highly developed finite difference solution to nonlinear acoustic equa­

tions has been introduced by Maestrello, Bayliss and Turkel.87'91 They used fourth-

order finite difference schemes to model the two-dimensional nonlinear interaction 

of sound with the shear layer of a jet The particular technique they employed was a 

fourth-order in space, second-order in time version of the MacCormack finite 
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difference method derived by Gottlieb and Turkel.92 Because of the completeness of 

the work of Maestrello, Bayliss, and Turkel, the remainder of this dissertation will 

use many of their techniques. S I. Hariharan also studied nonlinear acoustic propa­

gation in air proceeding similarly to Maestrello, Bayliss, and Turkel.93 His methods 

are highly mathematical and are not as straightforward as the Maestrello, Bayliss, 

and Turkel techniques, however, so the latter group's methods will be followed. 

7.2 The Finite Difference Method 

For simplicity this research uses a regular discretization in both the d and z 

directions. For any of the variables the notation 

ipit,d,z) =V(nAt, iAc /Ax) =V£y (7.5) 

represents discretizing in time in steps of Af and in space in steps of Ac. 

The Maestrello, Bayliss, and Turkel procedure begins by splitting Equation 

(4.39), 

wt+Fd+G2=SF+SG (7.6) 

into the two equations 

wt+Fd=SF (7.7) 

and 

wt+Gz=SG. (7.8) 

One may solve each split equation straightforwardly by finite difference schemes. 

Call Ldi/St) and Lz(At) finite difference solution operators which advances the 

solution of (7.7) and (7.8) one step, i.e., wit + A*) = Ldi&)wit) for (7.7) and 
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wit + At) = Lg(&£)w(t) for (7.8). Then the Strang splitting method gives the 

solution to (7.6) as 

w(t+2At) =Ldi&)Lzi&)Lzibt)Ldi&)wit) (7.9) 

where both L<f(At) and Lz(Af) have been applied twice, in a symmetrical order.94 

Splitting is not exact, but is merely another finite difference numerical approxima­

tion. The symmetry in (7.9) is necessary to keep the finite difference approxima­

tions high-order. 

The operator Ldi At) is given by two versions, the first of which is 

At 
w?=w? + i-^)i7F?-8F?+1 + % , ) -rAfS2f 

w r 1 ^ w? + wf - (-^-)(72f - 8f?Li + Ff_2) + At@f 
(7.10) 

which is a two-step method, fourth-order accurate in A% and second-order accurate 

in At. Here wn denotes a temporary value in time, and Fn is the value of F at that 

temporary time. The other version of Ldi At) is 

<=w?-i-^)ilF?-8F?_i +27L2)+A*SFr 

<+'=i K + wf + i-~^)HFf-&Ftl +F?+2) +&SF? 
(7.11) 

In using Ldi At), it is necessary to alternate the use of (7.10) and (7.11) to retain ac­

curacy.95 The operator Lzi At) is similarly given in two variants 
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At 
< = < + ( ^ ) ( 7 ( ? ; - 8 G ^ + % ) + A t S G ; 

w^ 1 1 At 
wf + wf - i-=-)i7Gj - 8G/_j + Gf_2) +&SGJ 

6Ax 
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(7.12) 

wf = wf - i-^-)HGf - 8G/_i + Gf_2) + & SG? 
6Ac 

w 
n+l At 

< + < + ( ^ - ) ( 7 G ; - 8 G ^ + G ^ ) + A t S G ; 
6Ac 

(7.13) 

These fourth-order in Ac schemes are not applicable everywhere on a finite 

domain, however. The operator Ldi At) needs variable values at spatial points i—2, 

i—1, i, i+1, and i+2 to advance from time n to n+l . If i runs from 1 to 7, the 

above routines are not applicable at points 1, 2,1—1, and I. The points 1 and I are 

boundary points, and numerical boundary conditions given in Chapter 8 will ad­

vance their values from time n to time n+l . 

For the variable values at points i = 2 and i =1—1 the second-order in At and 

Ac versions of Ldi dt) were used in this research. Just as with the fourth-order in 

Ac schemes, the second-order LdiAt) has two variants 

< = wf + ^ - ( Z f - F?+1) + AtSFf 

"f+' = ^ «f + wf - ^ - ( / f - 27L1) + A t a f 
(7.14) 

and 

wf = wf - -^-(Zf - ITLi) + AtSF?1 

*r'=̂  < + %f + ^ - (Z f - i S i ) + AtSZf 
(7.15) 
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which one should alternate. Similarly at j' = 2 and j = <Z-1 for 1 < j < J, the 

second-order Z^(At) schemes are 

At 
< = < + ^(c;-GAi)+Ataof Ac 

<i = 1 At 
wf + wf - ^iGf - Gf_x) + At SGf 

Ac 

and 

At 
wf = wf - -^iGf - G/_!) + At SGf 

< + ' = ^ 
At 

< + «f + - ^ ^ - ^ A i ) + ^ ^ Ac 

(7.16) 

(7.17) 

In the future it might be possible to find some higher-order schemes which apply at 

i = 2 and i =1—1 and j = 2 and j =J—1, but the second-order schemes work 

well. 

7.3 Phase Dispersion and Artificial Viscosity 

Note the reason that the fourth-order schemes are better for wave propagation 

than the second-order schemes is because the former have minimal phase disper-

dp A* sion. The one way model equation —- + c0 — -̂ = 0 will serve as an example. If 

one substitutes the harmonic solutionpit,x) = exp[£(u>t—kx)], the model equation 

reduces to the dispersion relation u/ = c0k. 

However, if one substitutes the same time harmonic solution into a finite 

difference approximation to the model equation, a dispersion relation ui = c0k + ET 

results where ET are error terms. For example the second-order in Ac and At 

MacCormack method applied to the model equation gives 
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Pi ̂ -Pf-%-^%i-P/Li) 

+ 

2 Ac 

4, At 
Ac 

(7.18) 

iPhi -W+Pt-i), 

which turns out to be a well known finite difference method, the Lax-Wendroff 

scheme. If the substitutionp(ZAc, nAt) = exp[i(wnAt — fcZAc)] is made, the ex­

act dispersion relation for second-order MacCormack is 

-i(ei<"* -l) =c0 A-sin(AAc) + 2i 
Ac ' "Ac 

sin2(AAc/2) . (7.19) 

Similarly the fourth-order MacCormack method applied to the model equation gives 

At 
# = A" + ]5<o ̂ j r % 2 - % i + S%-i -Al-2) 

1_ 
72 ' "Ac 

12 (7.20) 
(7pf+2 - 64pf+1 + 114pf - 64p/Li + 7pf_2) 

which has an exact dispersion relation 

_i(eiuM _ i ) = 4~^-[8sin(feAc) - sin(2ftAc) 
6 Ac 

+ 18 "'° Ac 

(7.21) 
64sin2(k Ac/2) - 7sin2(A Ac) 

The derivation is straightforward. Notice that both Equations (7.19) and (7.21) ap­

proach u =c0k as A and Ac approach zero. 

These dispersion relation expressions were expanded in Taylor series for 

sin(AAc) and exp[wAt] with the symbolic manipulation program, Mathematica96 

Using these Taylor series expansions, the expressions for the error terms ET in the 

dispersion relations u> = c0k +ET were found for both the second-order and 
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fourth-order finite difference schemes. Figure 7.1 plots the relative magnitude of 

ET for the two cases using constants appropriate for electric spark pulses, c0 = 343 

m/s, Ac = 25Ox 10~6 s , and At = 200x 10~9 s. Note that the values of \ET | for 

the fourth-order scheme are less than those for the second-order scheme for all 

wavenumbers, and that the difference between the two errors increases with increas­

ing wavenumber. The idea for plotting the errors of dispersion relations was taken 

from the dispersion relation plots in the Ph. D. thesis of Trefethen.97,98 

The improvement from the second to the fourth-order methods is possible only 

because the ratio c0 A/Ac is nearly 0.25. If one uses much higher or lower values 

of c0 At/Ac, the fourth-order method will lose accuracy since it is fourth-order in 

Ac but only second-order in A . By keeping c0 A small in a relative sense to Ac, 

the errors associated with A;2 will not dominate the errors associated with Ac4. See 

the Turkel reference for the details on this criterion. 

Even with the fourth-order in Ac MacCormack method, the nonlinearities in 

the finite amplitude equations produce high frequencies that the finite difference 

methods cannot well resolve. Such inaccuracies will be evident near discontinuities 

such as a shock front, where the variables will change quickly over a few spatial 

steps. High frequency dispersion can be minimized by the use of an artificial viscos­

ity. As mentioned earlier in this chapter, WalMngton and Eversman have used a 

fourth-order artificial viscosity. Their method takes the form 

^ + 1 Lew = ^ + 1 L - " k+2 - #&i + 6 # - *W-i + WL8] (7.22) 

where v is small. One way of thinking about this process is that a low pass filter is 
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1000. 2000. 3000. 4000. 5000. 6000 

Figure 7.1. The relative magnitudes of the error terms ET versus wavenumber for 
two finite difference schemes. The second-order MacCormack method is 
represented by the solid line, and the fourth-order in space and second-order in 
time MacCormack method is given by the dashed line. 
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run on the variable ip after each time step. More correctly, note that the above 

effect is equivalent to adding an artificial viscosity to the model equation 

f + cf-Ofcobtain 

where 

^art = ^ ^ - . (7.24) 

One usually incorporates classical shear viscosity into the model equation as 

It is well known that absorption in (7.25) is proportional to w2. Similarly one can 

show with the assumptions UJ close to c0k and ^ a r tu; 3 /c 0
4« 1, that 

expUiut — kx)] substituted into (7.22) yields k =k0 —ia^ where 

(%ait = /^art^4/^ 5- Hence, adding a fourth-order artificial viscosity adds absorption 

which is proportional to u4. By picking p^ carefully, one should be able to dissi­

pate the high frequencies not well resolved by the spatial grid, while leaving the 

lower frequencies nearly unaffected. 

To implement the viscosity technique, Equation (7.22) was used on those 

points in the computational domain that were calculated using the fourth-order in 

Ac MacCormack scheme. The method was employed every time step in the follow­

ing four places: in the first and second components of Equation (7.7) and in the first 

and third components of Equation (7.8). This procedure applies the artificial viscos-
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ity to both of the split components of the continuity equation and to each of the 

particle velocity equations. Chapter 10 will provide some specific values of v that 

were used during calculations. 

7.4 Dissipation, High Frequency Resolution, and Implementation 

Another advantage of using the MacCormack finite difference schemes is that 

these methods inherently contain their own dissipative terms, which under usual cir­

cumstances are completely ignored. This dissipation is extremely useful in killing 

parasitic, nonphysical waves that can be launched by the interface of a difference 

scheme and any boundary condition, which can be absorbing, hard or porous. Such 

waves often take the form of (— l)n, i—1)1, and (-1V and can quickly swamp a 

valid numerical solution by exponential growth. Trefethen investigated such waves 

in detail. Sparrow's previous attempt to solve acoustical equations was beset by 

problems of this nature. That investigation used the Leapfrog finite difference 

scheme, a simple and standard numerical method.99 But Leapfrog is inherently non-

dissipative, which renders it useless for realistic computations involving absorbing 

and surface boundary conditions. 

In using the high-order in space finite difference schemes of the preceding para­

graphs, it may not be clear how well the high frequencies will be resolved. As a 

rule of thumb, one should always use at least 10 to 12 spatial grid points for one 

wavelength of the highest frequency. Once the spatial grid size Ac has been set us­

ing this rule, the time step A is then known from the necessity of keeping c0 A/Ac 

at about 0.25, as was discussed previously. 
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Now examine the requirements for resolving the high frequencies involved in 

the initial near discontinuity of a blast pulse. Suppose a blast wave contains a near 

discontinuity which has a rise time of rt = lx 10 -4 s, with frequencies up to 10 

times the 1/irt) frequency. Frequency resolution up to 100 kHz is required to 

model this wave. For a sound speed of 343 m/s, the wavelength of 100 kHz is 

3.43x 10~3 m, and Ac should be no larger than 3.43x 10"4 m. 

In the results of Chapters 10 and 11, the high frequencies contained in the 

spark and blast pulses will not be well resolved due to computer memory limita­

tions, so the solutions will not be accurate in the vicinity of the near discontinuities. 

With the present computer program one cannot practically perform numerous high 

frequency rise time calculations in two dimensions over large spatial grids. 

The above algorithms have been incorporated into a highly vectorized computer 

program in Fortran. The rectangular symmetry of the spatial grid and the two step 

fourth-order difference schemes are ideal for parallel implementation on modern 

supercomputers. Computationally this program requires up to 4 to 5 megawords 

(million floating point numbers) of continuous memory usage and up to 20 minutes 

of CPU time on a CRAY-2 for medium sized runs. If one halves the spatial grid 

size to better resolve high frequencies, one needs 4 times the memory, since this is 

spatially a 2-D program, and 2 x 4 = 8 times the CPU time. If one is interested in 

propagation primarily in the d direction, the program can window a pulse moving in 

that direction. This feature has already cut the memory usage of the simulation 

drastically. However, adaptive grids or different difference schemes may allow one 

to reduce this memory burden in the future. 
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Another important point is that in a typical run, the program will generate 

literally millions of numbers. Public domain software written at the National Center 

for Supercomputing Applications (NCSA) was used to translate these numbers into 

color images for interpretation on videotape and color graphics terminals.100 In addi­

tion, the program allows the user to place "numerical receivers" anywhere 

throughout the spatial domain. These receivers can record the pressure waveforms 

at the specified spatial points for the duration of a run. The present code is over 

5000 lines long, and Appendix B describes it in detail. 
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8. NUMERICAL ABSORBING BOUNDARY CONDITIONS 

This chapter describes the numerical absorbing boundary conditions that are 

used in this dissertation. First, some background on these conditions is given. The 

radiation conditions used in this research to correctly model outgoing waves are 

then detailed. Where radiation conditions are inappropriate, characteristic condi­

tions are used, and these are described also. One might use the characteristic condi­

tions for radiation conditions, but it is shown that the ones first given in this chapter 

are superior. 

Figure 8.1 shows the computational domain used in this thesis. It is bounded 

by the four sides z = zmin, z = zmax, d = dmiQ, and d = dm3X in the id,z) plane. 

The source of sound is assumed to be at the origin id = 0,z = 0). For free field 

propagation, radiation conditions are used for all of the boundaries except d = dmin 

where the characteristic condition is used. For the blast modeling of Chapter 11, 

the boundary condition along z = z^n is changed from radiation to either that for a 

hard or a porous ground surface. 

8.1 Development of Absorbing Boundary Conditions 

First of all, what are absorbing, or radiation, boundary conditions? The solu­

tion to acoustical equations using finite differences is restricted to a finite domain 

since computers have limited memory. Often a larger domain is modeled, however, 

and boundary conditions on the finite computational domain must be used which al­

low waves to pass out of the computational domain without reflections. 
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Figure 8.1. Computational domain in the id,z) plane. 
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The simulation of nearly reflectionless boundaries has been of recent interest in 

many fields. The two approaches used are the placement of an absorbing region 

surrounding the computational domain to slowly "eat up" the waves which impinge 

on it or the use of an absorbing or radiation condition which is local in space at the 

edge of the domain and which exactly satisfies an outgoing condition. The approach 

taken in this thesis focuses on this latter method since the former requires more 

computer memory. 

The problem of false reflections from absorbing boundaries has been overcome 

in recent years for scalar plane wave propagation. Researchers have been able to 

develop nearly reflectionless conditions for model equations such as 

P'tt+tfip'xx+P'yy) =0 (8.1) 

for plane waves with arbitrary angles of incidence on the boundary. Here again p' is 

the acoustic density deviation. Higdon101,102 has proposed difference approxima­

tions to the boundary condition 

A ( c o s a / A _ , . ^ ) p ' = 0 (8.2) 

which is reflectionless for the 2p plane waves at angles +_(%,. Similar, less 

developed conditions have been given by Keys.103 Higdon has shown that the often 

cited boundary conditions of Engquist and Majda104,105 are actually those in (8.2) 

with aj = 0 for all 7, i.e., they exactly satisfy plane waves only at normal incidence. 

These results, however, are not sufficient to find an exact condition for a spher­

ical wave propagating in the system of equations 
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p't+Po(Ud+Vz+j>=0 (8.3) 

P o « t + c o V d = 0 (8.4) 

PoVt+c?P'z=0- (8.5) 

These are the resulting two-dimensional linear lossless equations presented in 

Chapter 4 with the equation of state substituted into (8.4) and (8.5). Gottlieb et 

al.106 have demonstrated that the scalar results can be used in the case of a hyper­

bolic system if the boundary conditions are applied to the characteristic variables of 

the system, instead of to the natural variables such as p, u, and v in (8.3), (8.4), 

and (8.5). Characteristic variables are those variables which decouple, or nearly 

decouple, the equations in a system of equations from each other. Coughran107 also 

has stated that one should base boundary conditions on characteristic variables 

whenever possible. But the Gottlieb et al. result which extends the conditions for 

scalar equations to systems of equations yields reflectionless boundary conditions 

only for the case of plane waves, not spherical waves. Additional insight into the 

complex problem present in finding boundary conditions for hyperbolic systems can 

be gained from Higdon.108 

Bayliss and Turkel have examined absorbing boundary conditions for spherical 

waves in a hyperbolic system of acoustics equations.109,110 They propose using a se­

quence of boundary operators Bn to successively annihilate the first n terms of the 

expansion 

pit,r,e,<f>) = f]fjit-r,e,<j>)/rJ. (8.6) 
' - 1 



62 

The B1 operator is useful for the purpose of this thesis and will be used later. In 

addition, Hagstrom and Hariharan have developed spherical wave absorbing boun­

dary conditions for the Euler equations,111 but these are not useful for the particular 

problem addressed here. 

Absorbing boundary conditions must be stable numerically as well as accurate, 

but finding stable conditions is not straightforward. The recent work of Gustafs-

son,112 for example, shows that high-order boundary conditions lead to ill-posed 

problems (unstable numerical schemes). Therefore, only conditions of order one 

have been used in this research. 

8.2 Radiation Boundary Conditions 

To exactly absorb a pulse from a mono pole spherical source in Equations (8.3), 

(8.4), and (8.5), notice that the acoustic density p' exactly satisfies the separable 

wave equation 

at »ar W + % ^ irp') = 0 (8.7) 

while u, v, and vr = usm.6 + vcosO do not. Here, vr is the spherical component of 

particle velocity in the spherical radial direction r. Because the particle velocities 

will not satisfy (8.7), the conditions on the density and particle velocities will be 

different Taking the outgoing part of (8.7) gives the condition 

?+^4' p ' = 0 (8.8) 

which is the Bayliss Turkel B1 condition on the acoustic density. Now look at the 
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one-dimensional equations similar to (8.3), (8.4), and (8.5) in the spherical coordi­

nate system ir,<f>,9) with only r variations, 

2vr dvr 

r dr 
= 0 (8.9) 

'•Tr '̂f-0- (8-10) 

Equation (8.10) gives the exact condition relating p' to the time derivative of vr. 

It is not safe to base a boundary condition on (8.10) explicitly, because it in­

volves vr which depends on both u and v. For boundaries where z or d are con­

stant, as in Figure 8.1, the boundary conditions should not not involve the variables 

u and v, respectively. This is one of the results of an important paper by Majda and 

Osher,113 and it is important for this thesis since boundaries of the type z or d a 

constant will be used. 

For an upper boundary z = 2max with the interior domain being zmax < z, one 

can insert the geometrical relation v = yrcos# in (8.10) to produce the equation 

^ + c o s ^ - ^ = 0 . (8.11) 
dt Po dr 

The term -~— is easily found from 
or 

^ l = c o ^ + s W ^ - . (8.12) 
dr dz dd 

Thus, valid absorbing boundary conditions for z =zmSK are (8.8) and (8.11) 

with the insertion of (8.12). They are stable and exact for a monopole source at the 

origin. This condition is also correct for a boundary z = 2 ^ , except that its imple-
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mentation is different. The implementation used for 2max absorbing boundary con­

dition was 

A 

cW-^L 
Po 

+ 

^ - ^ • i ^ + ^ - ^ c o s * 
AZ Az 

(8.13) 

= 0 

for 2<j<I in the d direction in the domain 1<Z<Z in d and l<j<J in z. For 

2min m e implementation was 

"ft1 ~ * 
A 

C O S 0 — 
Po 

+ 

^ - ^ - A ^ + P% - / & 
AZ Az 

COS0 

(8.14) 

= 0 

In the case of an outgoing condition at d = dmax, where u is needed instead of 

v, the relation 

dt Po dr 
(8.15) 

was similarly obtained from (8.10). Equations (8.15) and (8.8) were used for the 

absorbing boundary here. The particle velocity condition for d = dmax was imple­

mented as 

% # ' - < , ' 
A 

c 2 

+ 

Po L 
n-n-^ + OizjSt^ 

M Az 

(8.16) 
= 0 
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For each of the boundaries z =2max» z = Zmin, m& d =dmaK, Equation (8.8) was 

discretized similarly. 

All of the boundaries derived in this chapter are for linear lossless conditions. 

Fortunately, the absorption and nonlinearities present in the air propagation equa­

tions are weak. This fact allows the use of the linear conditions specified here to 

work with the nonlinear lossy equations solved in this thesis. 

The conditions here do not account for the variable Sfr, the acoustic entropy 

deviation, however. But since this variable is associated only with the losses in the 

equations of Chapter 4 and 7, its specification is not critical near absorbing boun­

daries, but is so near physical surfaces. Near the boundary d = dmiQ and near the 

radiation boundaries, Sfr was updated by simple extrapolations. Chapter 10 will 

specify boundary conditions on Sfr, as well as p', u, and v for hard surfaces. 

8.3 Characteristic Boundary Conditions 

The boundary at d = d^^ is not a radiation boundary, since in this thesis the 

sound pulses will be initially placed at d > dmin and propagate in the +d direction. 

The boundary condition implemented along d = <Zmin is called a characteristic boun­

dary since it is based on the concept of characteristic variables, defined in Section 

8.1. 

Recall the one-dimensional spherically symmetric acoustic equations in density 

deviation and radial particle velocity, Equations (8.9) and (8.10). It is possible to 

rewrite these equations in the form 
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where 

< + 
c0 0 

0 -cn < + 
1 -1 
1 - 1 n/ = 0 (8.17) 

W = 

1 , , Po 

wl' 
w2' 

(8.18) 

and where the coefficient matrix of Wr is diagonal. 

This transformation is made possible by writing (8.9) and (8.10) as the system 

A* + BAr + CA = 0 (8.19) 

where 

A = 

B = 
0 P0 

Po 

C = 

2p0 0 
r 

0 0 

(8.20) 

(8.21) 

(8.22) 

The eigenvalues of B are easily found as c0 and —c0, and two right eigenvectors as­

sociated with these eigenvalues are 

vS 
r-i = (8.23) 

Po V2" 

and 
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\/5 
r2 = 

67 

(8.24) 

Po V§ 

respectively. One can also find two left eigenvalues associated with c0 and -c0. 

They are 

h = 
1 Po 

and 

U = 

\ ^ ^-vS 

1 -Po 

(8.25) 

Vf c0V2~ 
(8.26) 

respectively. Finding such eigenvectors means B may be diagonalized through 

A = SBS - i 

where 

S = 
V 

(8.27) 

(8.28) 

and 

S"x = ^i r2 ]• (8.29) 

Multiplying (8.19) by S from the left and expanding A as A = S-1SA = S"1*/ gives 

(8.17). Here the variables W are related to A by 

W = SA (8.30) 

and 

A = S" V (8.31) 
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The variable wl' is called the outgoing characteristic variable of these equations, and 

w2' is the incoming characteristic variable. 

Similarly, one can diagonalize the cylindrical 2-D Equations (8.3), (8.4), and 

(8.5), with respect to the d direction. The resulting equations are 

vft + Dwd + Eiw, + Egw = 0 (8.32) 

for a diagonal D matrix where 

and 

D = 0 

0 

0 0 

0 0 

Ei = 0 

A,^5 Po^/5 

Po 

Po 

V2~ 

0 

Efe = 

C0 -C0 
0 

2cZ 2c? 

^_ C-L. o 
2d 2d 
0 0 0 

(8.33) 

(8.34) 

(8.35) 

w = 

V+-^% 
1 

\/5 

^ W 

• P -
Po 

c ^ u 

wl 
w2 
w3 

(8.36) 

Here the characteristic variable with respect to the +d direction is wl, the charac-
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teristic variable with respect to the —d direction is w2, and w3 — v is not a charac­

teristic variable. Examine (8.32) for the case of plane wave propagation in the + or 

— direction. Here v = w3 = 0. For propagation in the +d direction, the density 

and particle velocity are in phase as p' = ——u, which means w2 = 0. Similarly, for 
C0 

the -d direction, p' = —u, so wl = 0. 
c0 

Because of these properties, the second case w 1 = 0 was used as the boundary 

condition nearest the source at d = dmin > 0 for this research. Specifying wl = 0 

implies that no waves will enter the domain d > dmin in the direction +d. To im­

plement holding wl = 0, the variable w2 was extrapolated over one A in the d 

direction along the boundary d = dmia. In finite difference notation 

w2{H"1 = w2& (8.37) 

for all j implements the method, using the first two components of (8.36) and the 

first two components of 

vS 
iwl + w2) 

Po V2~ 
(wl - w2) 

w3 

(8.38) 

with wl = 0. The variable v is not changed on a dmin boundary update. 

Now return to the 1-D spherical Equations (8.17) and (8.18). Unlike the plane 

wave case, p' and v are out of phase except in the very far field. Restated, an out­

going spherical wave contains both an incoming and an outgoing characteristic com-
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ponent for finite distances from the source. This fact means that if one sets w2' = 0 

in (8.17) and (8.18), that the first equation of (8.17) used as an absorbing boundary 

condition will produce false reflections for outgoing waves. To demonstrate this 

point, the next section will contain a comparison between the condition w2' = 0 as a 

radiation boundary condition and the conditions derived in Section 8.2. 

8.4 Absorbing Boundary Condition Comparison 

This section compares three candidates for absorbing boundary conditions to 

see which has the minimum reflection. The upper radiation boundary condition, 

z = 2 max, was the boundary tested. 

The equations of Chapter 4 were solved using the methods of Chapter 7 in this 

comparison, under the stipulations K, p, and pB = 0, with a peak SPL of 140 dB. 

This is equivalent to solving a linear lossless system of acoustics equations. The 

upper boundary was placed at 2max = 0.03 m, and the computational domain was 

2 — zmax# 

A spherical spark pulse, of the type described in Chapter 6, was used as an ini­

tial condition on p', u, and v. Initially the pulse extended to 0.03 m from the ori­

gin, with c0 = 343 m/sec and p0 = 1.21 kg/m3, values appropriate for air. 

Four computations were performed with different conditions used along 

z = zmax. In all four calculations values of u were found from the interior equa­

tions, since this is not a boundary variable along z =zmsx. Computations one 

through four varied in the way p' and v, the boundary variables, were calculated. 
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In case one the spherical characteristic variables of Section 8.3, 

J % l L + c , ^ + ^ L ' _ w 2 ' L o (8.39) 
dt dr r \ > 

and w2' = 0, were used. Case two used the Bayliss Turkel B1 boundary condition 

on the density deviation, 

p't+c0ip'r +p'/r) = 0 , (8.40) 

and the interior equation on v, 

P0vt + c2p'z = 0 . (8.41) 

Case three also used the Bx condition on p', but on v used 

p0vt + cos9c2p'r = 0 , (8.42) 

the pair of boundary conditions from Section 8.2. The fourth case, to act as the 

ideal condition, was implemented by extending the domain beyond zmax in z, so 

that there would be no upper boundary to reflect off. The computation time for 

case four was significantly greater than that of the other three cases because of the 

former's larger domain. The conditions in cases one through three were discretized 

using simple forward and backward differences. 

For the four computations, Ac = AZ = Az = 250xl0 -6 m and A = 

200xl0 -9 s were used making c0A/Ac = 0.2744 which is appropriate for the 

fourth-order method. The pulse was allowed to propagate for 600 time steps or 120 

microseconds from its initial condition. A numerical receiver was placed at id = 

0.04 m, z = 0.025 m) to monitor the wave passage. Thus the receiver intercepts 
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the reflected part of the wave incident on the absorbing boundary at about 50 de­

grees from normal. The computation was performed on a Cray-2 supercomputer, 

and each of the four runs took about 180 son a single CPU. 

Figures 8.2, 8.3, and 8.4 are plots of acoustic pressure, p = c0V, at the re­

ceiver, comparing the ideal condition with the boundary conditions one through 

three, respectively. Case four is plotted in each of the three figures with a dashed 

line, and each of the others is represented by a solid line. Pressure is given in Pas­

cals and time in microseconds. Figures 8.5, 8.6 and 8.7 show the difference 

between conditions one through three and the ideal condition four. For example, 

Figure 8.2 shows condition one with a solid line, the ideal condition four with a 

dashed line, and Figure 8.5 gives their difference. 

Each of the computations was identical until about 65 ps when the wave 

reflected from the artificial boundaries arrived at the receiver. Figures 8.2 and 8.5 

show the reflection over much of the trough of the pulse for condition one, which is 

due to the continual misspecification of the incoming characteristic variable, w2 = 0. 

Hence, this comparison verifies that in the near field there is an incoming charac­

teristic component for an outgoing spherical wave. 
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Figure 8.2. Acoustic pressure in Pa versus time at the numerical receiver. Case 
one is the solid line, and case four, the ideal, is dashed. 
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Figure 8.3. Acoustic pressure in Pa versus time at the numerical receiver. Case two 
is the solid line, and case four, the ideal, is dashed. 
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Figure 8.4. Acoustic pressure in Pa versus time at the numerical receiver. Case 
three is the solid line, and case four, the ideal, is dashed. 
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Case two in Figures 8.3 and 8.6 shows a substantial deviation from the ideal 

which is greatest at the beginning of the reflection, while case three, the conditions 

of Section 8.2, is nearly identical to the ideal in Figures 8.4 and 8.7. The dips in the 

waveforms in front and behind the peak of the pulse for all four cases are not due 

to reflections. They were due solely to numerical dispersion in the interior finite 

difference method. It is near large waveform gradients that the high frequencies not 

being well resolved by the grid first manifest themselves. 

Not shown in Figures 8.2 through 8.7 is the fact that one could see almost no 

reflected waves off the numerical boundary for case three in color raster plots of the 

numerical domain. On the other hand, the case one boundary always showed a 

strong spherical wave reflection, and the case two boundary showed a stronger 

reflection the more grazing the angle of incidence was, although for near normal in­

cidence little reflection was present. 
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9. NUMERICAL SOLUTION TO THE POROUS EQUATIONS 

This chapter will present a numerical solution for the time-dependent 

phenomenological equations for the porous medium described in Chapter 5. This 

numerical solution will be based on the assumption of local reaction, and all waves 

propagating into the pores will be assumed to propagate normally to the surface. 

Using the linearized version of Attenborough's equations (5.12) to (5.14) with 

p' eliminated, and assuming one-dimensional propagation in the z direction with z 

direction particle velocity v, the time-dependent equations to be solved numerically 

are 

'4i++'+4^-°- (9-2) 

Recall from the last chapter that the required numerical boundary conditions along 

the ground boundary were on p' and v. In solving the air and porous equations to­

gether, the porous surface will lie on z = z^^ The obvious boundary conditions 

for this case are 

P'air = P'porous (9-3) 

yair = "porous ( 9 - 4 ) 

along the boundary where p'^r and v^. are the variables in Chapter 4 Equations 

(4.34) and (4.36) and /porous and tfporous are the variables in (9.1) and (9.2). Note 

that although vporous is an average particle velocity and v^ is not, that (9.4) is still 

correct because they are both quantities defined at points in space. 
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To solve (9.1) and (9.2), one variant of the second-order in space and time 

MacCormack finite difference method was used, giving 

'f-'f-Tt&'t+i-p 

V? = V? " ^ At, ,* 
%,# Ac 

( / * n - / f ) - A t n$ 
f,r; 

/r=i ^+/;-^(f-^i) 

v?+1 = T ^ ^ / - % ^ - ^ - ^ ; /V 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

This finite difference scheme must follow stricter stability guidelines than did the 

equations in air, due to the presence of the flow resistivity $. One can find the res­

trictions on the method by the standard, but tedious, procedure of performing a 

Von Neumann stability analysis.114 Let 

,'Tl 

vf 

An 

Bn 
,ikj&z (9.9) 

then one can determine the amplification matrix G where 

Bn+1 = CKA,L) 
An 

Bn (9.10) 

by manipulating Equations (9.5) to (9.8). The result for low frequencies, kz —»0, is 

G(A,0) = 
1 0 
o f 

(9.11) 

where 
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f = 1 ^r- + 
f o ^ 

n$At 
/ ) o ^ 

(9.12) 

The eigenvalues of GX A,0) are 

Xil2 = |-(i + e± [a + £)2-4ef) (9.13) 

from the solution of det(XI - GX A,0)) = 0 . The Von Neumann necessary condi­

tion for stability states that 

X; < 1 + 0 ( A ) (9.14) 

for all i. Under the condition <& —»0, no flow resistance, £ = 0 which implies 

\ j = X2 = 1, and stability is insured. However, for $ # 0 one can see from 

(9.12) that the time step A , relative to ——, determines whether the criterion 
PoK 

(9.14) is met It was found that choosing a A too large in the porous medium nu­

merical solution will, in fact, make the numerical solution go unstable. 

Since at low frequencies the speed of sound in the air is on the order of 10 

times faster than the speed of propagation in a porous medium, the wavelengths are 

on the order of 10 times shorter in the porous medium than in the air. Because of 

this difference, the Ac grid spacing in the pores should be on the order of 1/ 10th of 

the size of the grid spacing Ac in the air. The question then becomes how the nu­

merical scheme in the air will be mated with the numerical scheme in the pores, 

considering this difference in grid spacings in the air and pores. 

It was chosen to numerically couple the pore solution to the air solution by 

refining the air grid in the z direction as it comes into contact with the pore grid. 
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Set Ac au. = 10 Ac pores, and Aajr = 1OAt^^s- Then, referring to Figure 9.1, refine 

the air between j =2 and j=l and t=(/i+l) A and t=n A by 10. Calculate the j=2, 

t=in+l) Agjr point by the interior scheme using Ac^. and A ^ from points7=1, 2, 

and 3 at time t=/iAa i r. Then interpolate in time the values between t=(n+l) A ^ 

and %Agjr for ^ - 2 to obtain the values by the time increments of Apores for j"=2, 

indicated by the x's in Figure 9.1. Next calculate the values of air at the spatial 

points between j=2 and j=l and the values of the porous medium at all spatial 

points less than z = zmkl, using the refined values ACp^s an^ Spores* until the j=l 

t=(n+l) A ^ values are calculated. This is the boundary condition point needed for 

the next iteration. Thus, air values between j=l and j = 2 and the pore values are 

solved ten times as often as the air values in the rest of the air grid. 

In 1985 Marsha Berger analyzed this method of interpolating in time and 

refining in time and space thoroughly for stability.115 Her analysis is for a model 

equation solved using the Lax-Wendroff method, very similar to the MacCormack 

techniques used in this thesis. She found that refining in both time and space by in­

teger multiples was stable. Note that if a nondissipative difference method were 

used for the computations with this type of grid refinement, the numerical solutions 

may not be stable. 

To test this coupling of the air to the porous ground, computations were per­

formed to estimate the actual surface impedance of the porous modf1 It is possible 

to determine impedance using impedance tube techniques.116,1' £oth 50 Hz and 25 

Hz linear plane wave sinusoids were sent propagating in the —z direction, normally 
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Figure 9.1. Finite difference implementation of the air-porous interface. All the 
points to the left of z = zmin are air and those to the right are porous. The ap­
points between j'=2 and j= l , like all the porous points, are refined in z and t by 10 
compared to the rest of the air grid. 

/ K 

< • 
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mm 

Figure 9.2. Impedance measurement maximum pressure over time as a function of 
distance from the air-porous interface. The first minimum pmax from the interface 
is at zn, and the first maximum is at zx. 
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onto the porous medium from the air. A standing wave pattern results from the 

direct wave and the reflected wave superposing. Figure 9.2 plots the maximum 

pressure over time, pmax» as a function of distance from the air-porous boundary at 

zmin. The particular wave envelope shown is typical of the type seen with a large 

standing wave ratio, characteristic of a high magnitude of impedance. To calculate 

numerically the impedance, the three numbers needed are the distance zn — zmin, 

the maximum p m a x atzx, and the minimum p m a x atzn. 

The measurements made were difficult and crude since the finite difference 

grids could not be made fine enough using the two-dimensional program. Finer 

grids would have resolved the distance of the minimum pm a x to the air-pore inter­

face more precisely but would have used a tremendous amount of computer time. 

The value of Ac for both simulations presented here was 0.0625 m, and the peak 

pressure of the sinusoid was 140 dB, making the wave linear. 

For 25 Hz, the measured value of the impedance was Z/poc0 = 

14.737 + i33.146, and for 50 Hz, the value was Z/p0c0 = 11.031 + £36.348. These 

impedances are low in magnitude compared to the results of Attenborough's low 

frequency interpretation of the phenomenological porous model, as seen in Table 

5.1. The phases are significantly different also. Unfortunately, it is difficult to tell 

whether the difference between the values of impedances is due to measurement er­

ror, which was a problem, or due to fundamental differences between 

Attenborough's predictions and the numerical results for the model porous equa­

tions. 
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However, it is clear that the values found by the numerical impedance tube 

technique used here are certainly close enough so that one can infer that the air-

porous boundary is working correctly. Real impedance tube data taken from out­

door measurements have quite a bit of scatter, and the values measured numerically 

here are within the tolerances seen in such physical experiments. 
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10. VERIFICATION OF THE NUMERICAL SOLUTION 

This chapter demonstrates the validity of the numerical model developed in the 

preceding chapters. Several different types of tests were performed. First, the 

results of the numerical solution method described in the preceding chapters are 

compared to those of the Pestorius algorithm, for the case of one-dimensional pro­

pagation of electric spark pulses in the free field. This example will show that the 

ratio c0 A/Ac must be about 0.25. 

Next, spark pulse reflection numerical results are given for both normal and 

oblique incidence from a hard surface. The normal reflection simulation is com­

pared quantitatively with an analytic result, while the oblique reflection numbers are 

compared qualitatively with the effects observed for explosions on a larger scale. 

In addition, the influence of artificial viscosity on the numerical solutions is ad­

dressed, for both the cases of spark pulse and blast modeling. Finally, some com­

ments are made on the value of pB used for the blast wave runs of the next 

chapter. 

10.1 Electric Spark Pulses in the Free Field 

Spherical spark pulses in air were used to compare one-dimensional free field 

propagation using the algorithms of this dissertation and the Pestorius algorithm. 

The absorption parameters of both programs corresponded to the ANSI standard for 

attenuation in the atmosphere.118 The particular version of the Pestorius algorithm 

used was that of Bass, Ezeli and Raspet.119 Although this program adds the effects 

of vibrational relaxation dissipation, and the current implementation of the equa-
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tions of Chapter 4 does not, the frequencies included in the spark pulse were high 

enough to not be affected by the 02 and N2 relaxation effects. For all the spark cal­

culations, pB was set to zero, commonly known as the Stokes assumption.120 

The values p0 = 1.21 kg/m3 and c0 = 343 m/s were used with a grid 322 x 322 

bounding 0.005 to 0.045 m in d and -0.02 to 0.02 m in z where Ac = 1.25x 10 -6 m 

in the finite difference program. The constant A was picked as A = 100x 10~9 s, 

giving c0 A/Ac = 0.2744, appropriate for the algorithms of Chapter 7. The pulse 

was started with the initial peak pressure of Ap0 = 20,000 Pa or 180 dB referenced 

to 20 pPa at 0.03 m from d = z = 0. The values of t+, r, th t2, and t3 were given 

in Chapter 6, r = 40x 10 -6 s, for example. The pulse was propagated for 400x 10 -6 

s, corresponding to 4000A;. 

To follow the pulse, the windowing capability of the program was employed in 

the d direction. Numerical receivers were placed at z = 0.0 and d = 0.03, 

0.057447, 0.08488, 0.11232, and 0.13976 m to correspond to the placement of the 

receivers in the Pestorius algorithm. An artificial viscosity coefficient of u = 0.08 

was used, and the simulation took 18.56 min on a Cray-2 supercomputer. 

The solid lines in Figures 10.1 to 10.5 show the results of this run while the 

dashed lines provide the results of the Pestorius algorithm. Figure 10.1 gives the 

initial conditions. Note that the initial conditions for the two programs are not ex­

actly the same, therefore their propagation should not be exactly alike. As Figures 

10.2 to 10.5 show, the pulse shape becomes closer to the letter N as it 
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Figure 10.1. A free field spherical spark pulse propagating in air. The solid lines are 
the finite difference results, and the dashed lines are from the Pestorius algorithm. 
Time is given relative to a wave traveling at 343 m/s. Initial conditions at d = 0.03 
m. 
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Figure 10.2. Same as Figure 10.1 at d = 0.05744 m. 
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Figure 10.3. Same as Figure 10.1 at d = 0.08488 m. 
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Figure 10.4. Same as Figure 10.1 at d = 0.11232 m. 
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Figure 10.5. Same as Figure 10.1 at d = 0.13976 m. 
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Figure 10.6. Same as Figure 10.1 at d = 0.13976 m, with no artificial viscosity. 
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Figure 10.7. Same as Figure 10.1 at d = 0.13976 m, with c0 A/Ac = 0.5488 and 
no artificial viscosity. 
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propagates. This is the well known nonlinear phenomenon of propagation speed be­

ing a function of amplitude. The positive acoustic pressures travel faster than the 

sound speed c0, while the negative acoustic pressures travel slower than c0, accord­

ing to Equation (2.13) of Chapter 2. Most of the nonlinear steepening occurs early 

in the propagation, since the distortion is a function of amplitude which is falling off 

as 1/r. 

It is obvious that the agreement between the finite difference program and the 

Pestorius algorithm is good. The pulses lengthen at about the same rate, and the 

amplitude dependence is similar. This indicates that the amounts of nonlinearity 

and absorption seen in the two programs were nearly the same. Notice, however, 

that the finite difference program takes into account all the second-order nonlinear 

effects, while the Pestorius algorithm uses only the /? plane wave nonlinear effects. 

Thus, the spherical pulse, started in the free field, should not propagate exactly as 

the Pestorius algorithm dictates. This may account for some of the difference 

between the two results. The negative pressure dip before the steep rise in pressure 

at the front of the pulse in the finite difference program case is a direct result of the 

phase dispersion mentioned in Chapter 7. 

This phase dispersion increases if the artificial viscosity is removed. Figure 10.6 

shows the same finite difference result at d = 0.13976 m as does Figure 10.5, but 

with v = 0. Clearly, phase dispersion produces undesirable ripples. As previously 

stated, this is due to the nonlinear effects generating frequencies that are too high to 

be well resolved by the spatial grid. 
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With v set to 0, one can also see the effect of having c0 A/Ac too high. Figure 

10.7 gives the results of another run at d = 0.13976 m, with the difference that A 

was doubled while v = 0. For this value of A , c0 A/Ac is 0.549. The large ripples 

preceding the front of the spark pulse are due to the errors of the time discretization 

dominating the errors of the spatial discretization. It was found that artificial viscos­

ity does little to help give a clean solution when c0 A/Ac is too high. 

10.2 Normal Spark Pulse Reflection from a Hard Surface 

This section gives the results of the program for finite amplitude electric spark 

pulse normal reflection from an infinite, flat, hard surface boundary. An analytic 

result exists for this case which will be used for comparison. 

For normal plane reflection from a hard surface, Pfriem has derived the pres­

sure amplification factor 

'( 1 
Pi 

[{Pol 

I/Y 

- 1 

where p0 is atmospheric pressure, pt is the incident total pressure (atmospheric pres­

sure plus acoustic pressure), and % = 27/(7 — D where 7 is the ratio of specific 

heats.121 Here a gives the ratio of the acoustic pressure near a hard surface when a 

wave reflects to the acoustic pressure with the surface absent as the wave passes by. 

The expression is derived under the assumption of an ideal gas, and is easy to com­

pute since, for air, % = 7. In the linear limit a equals 2, the familiar result of pres­

sure doubling. 
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By making two runs of the finite difference program, one with a hard surface 

and one without, the ratio of pressures was found and a predicted. The program 

was run in the free field for the initial peak pressures of 154, 160, 168, 174, and 180 

dB on the domain 5.005 < d < 5.085 and -0.02 < z < 0.02 m. The peak of the 

pulse was placed 5.03 meters from the origin initially to make the propagation nearly 

plane. Here, all the computational boundaries used the absorbing or characteristic 

conditions of Chapter 8. Then, for the same initial conditions, the domain 5.005 < 

d < 5.045 and -0.02 < z < 0.02 meters was used where the boundary d = dmax = 

5.045 meters was changed to be hard. This hard boundary was implemented in 

finite difference notation as 

/ /L , j = p7Lf_u do.2) 

ufLjj = -uti-u (10.3) 

^ / j = u / L / _ i j (10.4) 

* fn , /=Sf ,w_ , / (10.5) 

for all j where 1 <i < I. 

Condition (10.2) merely represents the continuity of density, or pressure in the 

linear limit Equation (10.3) implies that the hard wall does not move as the wave 

impinges on it. Equation (10.4) is not required physically, but is required numeri­

cally due to the Strang method of splitting in the numerical technique of Chapter 7. 

Lastly, condition (10.5) represents the continuity of T', from the equations of state 

(4.9) and (4.10). 
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Both 162 x 162 (Ac = 250xl0~6, A = 2OOx!O~9, and v = 0.01) and 322 x 

322 (Ac = 125xl0-6, A = lOOxlO-9, and u = 0.08) runs were used in the predic­

tions of a. Figure 10.8 gives the Pfriem result as a solid line showing a as a func­

tion of the free field incident peak pressure in dB referenced to 20/u Pa The filled 

circles in this figure are the results for the 162x 162 runs of the program, and the 

filled squares are for the 322x322 runs. The programs measured the peak pressures 

encountered atz = 0 and d = 5.045 — (Ac/2) m when the hard surface was present 

or absent, and these numbers were compared to obtain a. Notice that the peak 

pressures in the free field and hard surface runs do not occur at the same times. 

The peaks of the finite amplitude waves travel at speeds proportional to their ampli­

tudes, which are different for the two runs. 

The agreement between the Pfriem result and the finite amplitude result is gen­

erally very good. This is despite the fact that the Pfriem result assumes lossless pro­

pagation, and the finite difference calculation accounts for classical absorption 

effects. The 322x 322 predictions seem to deviate from the Pfriem result as the in­

cident peak pressure approaches 180 dB. It is difficult to tell how much of this man­

ifestation is due to the phase dispersion of the numerical scheme and how much is 

due to the second-order lossy nonlinear equations from Chapter 4 beginning to 

break down at the high reflected pressures, on the order of 186 dB. If the problem 

is due to phase dispersion, one should be able to obtain better agreement by adjust­

ing the artificial viscosity and by using a finer grid. 
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Figure 10.8. Normal reflection amplification factor versus free field incident peak 
pressure in dB referenced to 20 pPa for sparks. The solid line is the Pfriem result 
The circles and squares are the finite difference results for a coarse (162x 162) and a 
finer (322x322) grid run, respectively. 
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10.3 Oblique Spark Pulse Reflection from a Hard Surface 

Notice that the verification calculations presented thus far, free field spherical 

propagation and plane wave normal reflection, could have been performed with a 

one-dimensional program. There would have been a significant decrease in CPU 

time and memory usage for a one-dimensional code. However, a two-dimensional 

nonlinear effect is now presented, the cumulative interaction of a spherical electric 

spark pulse obliquely incident on a hard surface, which cannot be computed using a 

one-dimensional program. There is no analytic solution to compare with the finite 

difference results in this case, so we will examine the qualitative agreement between 

the program results and what is expected from physical arguments and explosion 

data 

In the normal incidence plane wave case, the Pfriem equation and the numeri­

cal results gave a ranging from 2.00 to about 2.15 depending on the incident ampli­

tude. For normal reflection, the incident and reflected components of the pulse in­

teract over the pulse transit time. For oblique incidence, however, the incident and 

reflected components of the pulse can interact over much longer periods of time. 

Therefore, it is reasonable to expect that for oblique reflection the interacting in­

cident and reflected components of the pulse could produce a larger or smaller than 

is the case with normal reflection. The amplification factor a would be smaller if 

the oblique incident and reflected waves destructively interfered with each other 

more than in the normal incidence case, and a would be larger if they constructively 

interfered. It also stands to reason that the interference producing deviations in a 

would be a function of the incident angle. 
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Researchers have observed this phenomenon experimentally and numerically 

for spherical explosion blasts incident on natural ground surfaces.122'123,124 For ex­

plosions, a is the normal reflection result for angles near normal, increases to a 

peak, and then actually decreases below 2 for angles close to grazing incidence. The 

specific curve of a versus angle depends on the incident peak pressure. 

Calculations were made to show that spark pulses have a versus angle curves 

similar to those for explosions. The program was run for a spherical spark pulse 

above a hard surface at 2 = zmin using the finite difference relations 

</ - !== < / -2 (10-7) 

%j- i = - < / - % COS) 

Sfr,,_r=*frw_; dO.9) 

for all i where 1 < i < I. These equations are similar to (10.2) to (10.5). 

The spark pulses were always centered around the origin of the coordinate sys­

tem initially, and the hard surface was located at zmin = -0.0075, -0.01125, -0.015, 

-0.01875, -0.0225, -0.025, -0.03, and -0.035 m. Corresponding free field runs on a 

larger domain with the hard surface absent were also made. Numerical receivers 

were placed along the ground surface or its equivalent to obtain numerical predic­

tions. From one pair of free field and hard surface runs it was possible to obtain 

one point to put on each plot of a versus incident angle for each constant incident 

pressure. Thus, the 8 pairs of runs produced up to 8 points on each plot of a 

versus incident angle for fixed incident pressure. 
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Figure 10.9. Oblique reflection amplification factor versus angle in degrees for a 
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Figure 10.10. Same as Figure 10.9 except the peak pressure is 10.0 kPa, 174 dB. 
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These simulations used Ac = 250x 10~6 m, A = 200x lO~9 s, and v = 0.01 

with the initial peak 0.03 m from the origin at a pressure of 180 dB. Each of the 16 

runs needed between 2.34 and 5.76 min of CPU time on a Cray-2. 

The individual data points in Figures 10.9 to 10.12 present the results of these 

runs, corresponding to peak incident pressures of 15000 Pa (177.5 dB), 10000 Pa 

(174 dB), 5000 Pa (168 dB), and 2500 Pa (162 dB). Figure 10.13 joins each of the 

numerical data points in Figures 10.9 to 10.12 and plots these curves for comparis­

on. The results confirm the assertion that a should be a function of incident angle 

for each constant incident pressure. As can be seen for the 5000 Pa numbers (Fig­

ure 10.11), a is near the Pfriem normal incidence result for most small angles of in­

cidence. The amplification factor a increases to 2.41 as the incident angle increases, 

and then it decreases below 2 to 1.78 or less as the angle becomes closer to grazing. 

These curves are similar to those seen from explosions on a larger scale as 

given in the Glasstone, Kinney and Graham, and Heaps et al. references. This 

qualitative agreement between the spark and blast oblique incidence a versus in­

cident angle curves is intuitively satisfying, but some laboratory work should be per­

formed in the future to experimentally verify these spark oblique curves. No refer­

ences to this type of experimental data have been found in the literature. 

10.4 Artificial Viscosity and Bulk Viscosity Values for Blasts 

Recall that v = 0.08 was used for the free field spark simulations to produce 

Figures 10.1 to 10.5. This value was found by trial and error, increasing and de­

creasing v, until the best result was obtained. The goal was to have the minimum u 
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which would still reduce the ripples produced by the phase dispersion. 

Numerous calculations were made with idealized blast pulses of approximate 

length rff 40x 10 - 3 s and various peak pressures. Computations were performed re­

peatedly to find optimum values of v. It was deemed that a value of v was good 

when it was the minimum value such that the drop from peak pressure to the zero 

crossing was monotonic, when no two values of time between the peak and the zero 

crossing were associated with the same value of pressure. The values that were 

found for A = 200x 10"6 s and c0 A/Ac = 0.2744 are given in Table 10.1, and the 

values for A = 100x 10-6 with the same c0 A/Ac in Table 10.2. 

These tables demonstrate that the amount of artificial viscosity needed general­

ly increases as the peak amplitudes increase. This makes sense, since more high 

frequencies that the grid cannot well resolve are generated as the amplitude in­

creases. More nonlinearity means more high frequencies, so a higher v is needed 

Table 10.1. Coarse grid minimum artificial viscosities for blasts. 

4%,, Pa 
200 

2000 
5000 

10,000 
20,000 

Ap„, dB 
140 
160 
168 
174 
180 

minimum v 
< 1x10-6 

lxlO"5 

IX 10-5 
lxlO"3 

5xl0-3 

Table 10.2. Fine grid minimum artificial viscosities for blasts. 

Ao„,Pa 
200 

2000 
5000 

10,000 
20,000 

Ap„,dB 
140 
160 
168 
174 
180 

minimum v 
1x10-4 
2x ID'3 

4x 10-3 
4x lO-3 

lxlO"2 



108 

for higher amplitudes. The fact that a higher u is needed for the finer grid also 

makes sense from Equation (7.24) of Chapter 7. That relationship, however, is not 

exactly followed, so other effects not directly considered here may be involved. 

Finally, the values of pB used in the blast runs above should be discussed. 

The lossy second-order nonlinear model of Chapter 4 currently does not include the 

effects of molecular relaxation dissipation. Relaxation is not important for spark 

pulses due to their high frequency content, so pB was assumed negligible and set to 

zero for sparks. For the lower frequencies involved with blasts, however, one can 

increase pB to account for some of the energy lost by relaxation processes. 

It is possible to derive an expression for the absorption due to a relaxation pro­

cess in the low frequency limit, as an increment to pB, ApB. The expression is 

^ g = ^ ^ l ( ^ X ) ^ (10.10) 

where rt is the tth relaxation time and (o%X),% is the maximum absorption per 

wavelength associated with the ith relaxation process.126 

If one looks at a chart of absorption coefficient a versus f for air such as Fig­

ure 10-13 in Pierce's book, it is obvious that two relaxation processes in air, 02 and 

N2, primarily control absorption at low frequencies. Unfortunately, using the low 

frequency limit for both these processes would make the absorption too high for 

frequencies in the range 100 to 1000 Hz. Using too high an absorption would 

severely affect the peak sound pressure levels observed at long ranges. 
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The finite difference numerical method described in Chapter 7 already has 

some intrinsic dissipation, to which an artificial fourth-order viscosity was added. 

To keep the peak sound pressure levels as accurate as possible, the minimum addi­

tional bulk viscosity was sought. Such peak levels are dominated by the high fre­

quency absorption. If the low frequency limit of the 02 relaxation process alone is 

used, the absorption for the high frequencies in the blast pulse turns out to be about 

right, and this technique was employed. Oxygen has a relaxation frequency at fi = 

12,500 Hz. 

For the 0 2 bulk relaxation effect (^X)TO is 0.0011 and r,- = 1 / (2^) = 

12.732x 10~6 and ApB is 1.27x 10~3 using c0 = 343 and p0 = 1.21. Although pB 

is usually assumed zero, experimental evidence has shown it to have the value pB 

= 0.6p for air. To this value ApB was added, giving pB = 0.6p + ApB = 

1.281x ID'3, which is about 70 p. 
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11. FINITE AMPLITUDE BLAST PREDICTIONS 

This section presents the findings of this dissertation on the propagation of 

finite amplitude blast sounds outdoors. Throughout, the emphasis is on the oblique 

reflection of blast sounds from hard surfaces and from the porous medium model of 

a ground surface presented in Chapters 5 and 9. For a particular charge size and 

geometry three runs were made. The first run was in the free field with no 

reflective surface present. The second run introduced the hard surface ground, 

while the third used the porous medium ground. This chapter will first give the 

results for a wide variety of angles of incidence, corresponding to one charge at vari­

ous heights. Then, to investigate propagation near the ground, the geometry will be 

held fixed for differently sized charges. 

11.1 A Fixed Charge Weight at Various Heights. 

Numerous runs at various heights were made that would have had a peak free 

field pressure of 180 dB at 30 m from the source. Looking at Table 6.1, a 180 dB 

pulse at 30 m is 183.89 ms long in time, or equivalents, approximately 63 m in 

space. This spatial dimension implies that for the initial conditions of this disserta­

tion the wave cannot be within 63 m of the origin. For the runs made here, the ini­

tial condition used was a spherical 183.89 ms pulse that had a peak of 8,571.4 Pa 70 

m from the origin. This new peak makes the gross linear assumption that between 

30 m and 70 m, the wave fell off as 1/r and did not distort. These calculations were 

made with different domains, depending on the heights of the sources. For each 

run the artificial viscosity used was u = 5x 10"3 with a coarse grid of A = 200x 10 -6 
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s and Ac = 0.250 m. The three programs each took approximately 19 to 30 min on 

a Cray-2 for each height investigated. 

Graphs were developed giving the amplification factor a as a function of in­

cident angle for a fixed incident pressure. As in the last chapter, a is the ratio of 

the acoustic pressure received near the reflection surface to the pressure at the same 

receiver with the reflection surface removed. The source heights used to obtain the 

numerical predictions were 1, 11, 21, 31, 41, 51, and 61 m. Figures 11.1, 11.2, 

11.3, and 11.4 give the resulting hard surface amplification factor versus angle plots 

for the fixed incident free field peak pressures of 9000, 5000, 2500, and 1250 Pa, 

respectively. Figure 11.5 presents composite graphs when all the discrete data points 

from Figures 11.1 to 11.4 are joined by lines. 

These hard surface amplification factor versus incident angle plots show two 

major results. First, the amplification factors are up to 2.65 for the blast runs, 

whereas they were up to only 2.4 for the hard oblique runs of electric spark 

reflections in the last chapter. Secondly, the hard surface curves of a versus in­

cident angle are also more peaked for the blasts in Figure 11.5 than for the sparks in 

Figure 10.13. This difference in hard oblique incidence amplification factors 

between sparks and blasts indicates that these reflections do not scale simply. 

Similarly, the oblique porous run results for amplification factors appear in Fig­

ures 11.6 to 11.10. In general, these results are more peaked and the peaks are 

more toward grazing incidence compared to the hard cases. It is unwise to directly 
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Figure 11.1. Oblique hard reflection amplification factor versus angle in degrees for 
a fixed free field incident peak pressure for blasts. When the angle is 0 degrees, the 
wavefront is locally normally incident, and when the angle is 90 degrees, the wave-
front is locally grazing. The free field incident peak pressure is 9.0 kPa, 173 dB. 
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Figure 11.2. Same as Figure 11.1 except the peak pressure is 5.0 kPa, 168 dB. 
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Figure 11.3. Same as Figure 11.1 except the peak pressure is 2.5 kPa, 162 dB. 
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Figure 11.4. Same as Figure 11.1 except the peak pressure is 1.25 kPa, 156 dB. 
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Figure 11.5. A composite of Figures 11.1 to 11.4. Oblique hard reflection 
amplification factors versus angle for the four free field incident peak pressures for 
blasts of 10.0, 5.0, 2.5, and 1.25 kPa 
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Figure 11.6. Oblique porous reflection amplification factor versus angle in degrees 
for a fixed free field incident peak pressure for blasts. When the angle is 0 degrees, 
the wavefront is locally normally incident, and when the angle is 90 degrees, the 
wavefront is locally grazing. The free field incident peak pressure is 9.0 kPa, 173 
dB. 
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Figure 11.7. Same as Figure 11.6 except the peak pressure is 5.0 kPa, 168 dB. 
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Figure 11.8. Same as Figure 11.6 except the peak pressure is 2.5 kPa, 162 dB. 
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Figure 11.9. Same as Figure 11.6 except the peak pressure is 1.25 kPa, 156 dB. 
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Figure 11.10. A composite of Figures 11.6 to 11.9. Oblique porous reflection 
amplification factors versus angle for the four free field incident peak pressures for 
blasts of 10.0, 5.0, 2.5, and 1.25 kPa 
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compare the actual amplification factors between the hard and porous cases, howev­

er, since the initial conditions for the two cases are approximate. 

The a versus angle curves developed here are similar to the strong shock calcu­

lation results of Heaps et al. and the curves in Glasstone's work, The Effect of Nu­

clear Weapons. These authors do not use the notation used in this thesis, however. 

For comparison Heaps et al. call a the reflected overpressure/P, while Glasstone 

merely refers to it as the reflected overpressure ratio Pr/Ps where Ps is given in at­

mospheres. The similarity of the curves presented in this thesis to the curves of the 

Heaps et al. and Glasstone references shows that the numerical method of this 

thesis is accurately predicting the oblique incidence of blast waves. 

11.2 Different Charge Sizes at Near Grazing Incidence. 

Many runs were made with source heights of 1 m with various initial peak pres­

sures to see the effect of a varying charge size for a fixed geometry. Runs with ini­

tial peak pressures corresponding to 180, 174, 168, 162, 156, and 150 dB at 30 m 

were carried out The 180 dB and 174 dB cases were performed using initial peaks 

of 8,571.4 Pa at 70 m and 7,500 Pa at 40 m, respectively, since these larger blasts 

could not be started at 30 m. The pulse initial durations and corresponding charge 

sizes of C-4 plastic explosive are listed in Table 5.1. 

Receivers at 30, 45, 60, 90, 120, 180, 240, 360, 480, 720, and 960 m from the 

source at heights of 0, 1, 2, and 5 m recorded the waves as they propagated, as well 

as all maximum pressures encountered near the ground. These free field, hard sur­

face, and porous surface runs were made using the artificial viscosities of Table 
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10.2, or interpolated values thereof, with A = 100x 10 -6 s and c0 A/Ac = 0.2744. 

The 150 dB, 156 dB, and 162 dB peak runs were propagated for 0.4 or 0.2 s. The 

168 dB run modeled propagation for 0.8 s, the 174 dB run for 1.6 s, and the 180 dB 

run for 3.2 s. The shorter programs took about 20 min on a Cray-2, while the larg­

est programs took 5 h or more of Cray-2 CPU time apiece. The 180 dB runs were 

particularly expensive computationally because of the large physical size the blast 

pulse occupied, and their computation would not be possible using something other 

than a state of the art supercomputer (as of 1990). 

The resulting 150, 162, and 174 dB peak SPL versus range plots for propagation 

near the hard surface are presented in Figures 11.11 to 11.13, respectively. In these 

figures the 0 m receiver height peaks are given by the solid lines, the 1 m receivers 

by the short dashed lines, and the 5 m receivers by the long dashed lines. The 156, 

168, and 180 dB results were similar. The curves show that although the peak 

sound pressure levels are initially different at the different heights, this goes away 

quickly, and there is no difference in level as a function of height further out The 

peak levels all fall off near the rate of r-1-2, 7.23 dB per doubling of distance, which 

is given on these figures as a solid line denoted by "ref." This r"1,2 reference line is 

started at 170 dB at 20 m and extends to 640 m. 

This decay rate of approximately r - 1 , 2 agrees with the empirical relation given 

by Reed for weak shocks in the far field of a strong blast126 The finite difference 

simulation, therefore, is making predictions consistent with the weak shock region 

of a strong shock calculation. 
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Figure 11.11. 150 dB initial peak pressure SPL versus range for hard surface propa­
gation. The 0 m receiver height is given by the solid line, the 1 m height by the 
short dashed line, and the 5 m height by the long dashed line. The solid line ending 
with the label "ref." shows a decay of r""1,2 for reference. 
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Figure 11.12. 162 dB initial peak pressure SPL versus range for hard surface propa­
gation. The 0 m receiver height is given by the solid line, the 1 m height by the 
short dashed line, and the 5 m height by the long dashed line. The solid line ending 
with the label "ref." shows a decay of r~12 for reference. 
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Figure 11.13. 174 dB initial peak pressure SPL versus range for hard surface propa­
gation. The 0 m receiver height is given by the solid line, the 1 m height by the 
short dashed line, and the 5 m height by the long dashed line. The solid line ending 
with the label "ref." shows a decay of r~12 for reference. 
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Figures 11.14 to 11.19 show the hard ground numerical receiver pressure 

versus time curves at 120 m range for a 150 dB peak free field initial pressure at a 0 

m height, 150 dB peak at 5 m, 162 dB peak at 0 m, 162 dB peak at 5 m, 174 dB 

peak at 0 m, and 174 dB peak at a 5 m height, respectively. The 150 dB plots show 

much dispersion and absorption, while the 162 dB plots show less, and the 174 dB 

even less than that. As is expected the "shock" is more pronounced at the higher 

amplitudes. Little difference is seen in the waveforms between when the numerical 

receiver is near ground level and when the receiver is at a 5 m height 

The porous simulation peak SPL versus range plots for 150, 162, and 174 dB 

are given in Figures 11.20 to 11.22. Again, the results for 156, 168, and 180 dB 

peak sound pressure levels were similar. For this porous case the plots show a 

marked difference in peak levels as a function of height, compared to the hard 

simulations which showed little difference. The peak sound pressure levels were al­

ways the greatest near the porous surface. This effect may seem counterintuitive, 

but is due to the near grazing geometry used here and the particular impedance of 

the porous surface, i.e., a high magnitude impedance with phase angle of 7r/4. 

For the 0 m receiver height the porous peak levels decayed at about r-1-2, ex­

cept for the 150 dB initial peak run which fell off faster. This rate of r"1 2 is what 

was seen for the hard surface runs. However, for increasing initial peak pressure, 

the sound pressure levels at the 5 m height decayed at a rate less than r-1-2 and 

those at the 1 m height even less than that. Comparing Figure 11.13 (174 dB, hard) 

to Figure 11.22 (174 dB, porous) after the simulation settles down, it is clear that 

the slopes of the curves for the 0 m height cases are nearly identical. 
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Figure 11.14. Pressure versus time at the 120 m range and the 0 m receiver height 
for a 150 dB initial peak blast propagating over the hard surface. 
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Figure 11.15. Pressure versus time at the 120 m range and the 5 m receiver height 
for a 150 dB initial peak blast propagating over the hard surface. 
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Figure 11.16. Pressure versus time at the 120 m range and the 0 m receiver height 
for a 162 dB initial peak blast propagating over the hard surface. 
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Figure 11.17. Pressure versus time at the 120 m range and the 5 m receiver height 
for a 162 dB initial peak blast propagating over the hard surface. 
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Figure 11.18. Pressure versus time at the 120 m range and the 0 m receiver height 
for a 174 dB initial peak blast propagating over the hard surface. 
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Figure 11.19. Pressure versus time at the 120 m range and the 5 m receiver height 
for a 174 dB initial peak blast propagating over the hard surface. 
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Figure 11.20. 150 dB initial peak pressure SPL versus range for porous surface pro­
pagation. The 0 m receiver height is given by the solid line, the 1 m height by the 
short dashed line, and the 5 m height by the long dashed line. The solid line ending 
with the label "ref." shows a decay of r"1-2 for reference. 
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Figure 11.21. 162 dB initial peak pressure SPL versus range for porous surface pro­
pagation. The 0 m receiver height is given by the solid line, the 1 m height by the 
short dashed line, and the 5 m height by the long dashed line. The solid line ending 
with the label "ref." shows a decay of r~12 for reference. 
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Figure 11.22. 174 dB initial peak pressure SPL versus range for porous surface pro­
pagation. The 0 m receiver height is given by the solid line, the 1 m height by the 
short dashed line, and the 5 m height by the long dashed line. The solid line ending 
with the label "ref." shows a decay of r-1-2 for reference. 
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Here one also sees that the 1 m height short dashed line is falling off significantly 

less fast than the solid 0 m height line, and the 5 m height long dashed line slightly 

less fast. 

These results indicate that the peak amplitudes are decaying less fast for in­

creased charge sizes for receivers not on the porous ground surface. Larger charge 

size blasts, hence, seem to undergo less attenuation due to ground impedance than 

do smaller charge size blasts. Larger blasts have higher initial peak levels to in­

crease the nonlinear effects, but also are longer and have an increased low frequen­

cy content Since both frequency content and peak amplitudes are being changed 

for different size charges, the decrease in "excess attenuation" for larger charges 

clearly cannot be attributable solely to the increased finite amplitude effects. 

The pressure versus time plots for the porous runs are shown in Figures 11.23 

to 11.28. Here the 150 dB initial free field peak plots at heights 0 m and 5 m, Fig­

ures 11.23 and 11.24, respectively, show that the amplitude magnitudes of both the 

peak and rarefaction are significantly larger near the ground. This is quite different 

than for the hard surface case where virtually no amplitude difference was detected 

as a function of height. For the larger initial peak amplitude cases in Figures 11.25 

to 11.28, however, only the peak of the blast waves showed a significant increase in 

pressure near the ground. Here the "trough" shapes and magnitudes of the pulses 

seem to be unchanged as a function of height, for both 162 and 174 dB. 

These findings agree with time harmonic linear theory for the particular 

geometry and complex impedance used here. Single frequency waves were run in a 

homogeneous atmosphere sound propagation program based on the work of 
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Figure 11.23. Pressure versus time at the 120 m range and the 0 m receiver height 
for a 150 dB initial peak blast propagating over the porous surface. 



134 

160.0 -| 

120 0 -

80.00 

40 00 

0_ 
0 000 

-40.00 

-80 00 -

-120.0 -

-160 0 1 1 1 1 1 1 i i 

2344 2418 2492 .2566 .2640 .2714 .2788 .2862 2936 

t, S 

Figure 11.24. Pressure versus time at the 120 m range and the 5 m receiver height 
for a 150 dB initial peak blast propagating over the porous surface. 



135 

CO 

o 

X 

o_ 

1.250 

1.000 -

.7500 

.5000 -

.2500 

.0000 

.2500 -

-.5000 

.7500 1 1 1 1 1 1 1 1 

.2289 .2417 .2544 .2672 .2800 .2928 .3055 .3183 .3311 

t, S 

Figure 11.25. Pressure versus time at the 120 m range and the 0 m receiver height 
for a 162 dB initial peak blast propagating over the porous surface. 
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Figure 11.26. Pressure versus time at the 120 m range and the 5 m receiver height 
for a 162 dB initial peak blast propagating over the porous surface. 
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Figure 11.27. Pressure versus time at the 120 m range and the 0 m receiver height 
for a 174 dB initial peak blast propagating over the porous surface. 
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Figure 11.28. Pressure versus time at the 120 m range and the 5 m receiver height 
for a 174 dB initial peak blast propagating over the porous surface. 
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Nobile and Hayek.40'127 In the program the values of impedance from Table 5.1 

were used, as a function of frequency. This Nobile and Hayek calculation indicated 

that there was little difference in levels as a function of height for low frequency 

waves, but a significant difference as a function of height for high frequencies. 

In Figures 11.23 to 11.28 the 150 dB initial peak pulse contains more high fre­

quency energy relative to higher amplitude blasts which allows both the peak and 

trough of the pulse to be greater in magnitude at the 0 m height than at the 5 m 

height For the larger amplitude waves, however, the high frequencies manifest 

themselves near the "shock" fronts of the pulses and it is here that the amplitude 

difference is seen between the two heights. Another contributor to the peaks being 

increased is certainly finite difference phase dispersion. This numerical effect would 

enhance the peaks also, particularly for the highest runs made at 174 and 180 dB in­

itial free field pressures. 

Porous and hard ground runs were also made with the source heights of 3 m 

instead of 1 m. These values will not be reported in detail here for brevity's sake, 

since the values were close to those for the 1 m height blasts. No difference was 

seen in the far field for either the hard or porous cases, and near field differences 

were only 1 to 2 dB. 
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12. CONCLUSIONS AND FUTURE WORK 

This dissertation has described a finite difference numerical model for the 

propagation of finite amplitude acoustic blast waves in a homogeneous lossy 

atmosphere. The nonlinear air propagation equations included classical dissipative 

effects and may easily be extended to include molecular relaxation effects. The 

model also accounts for both hard and simple porous media ground surfaces. A 

time-dependent locally reacting formulation of Morse and Ingard's phenomenologi­

cal model of a porous medium has been developed to represent the porous ground. 

The propagation of finite amplitude pulses such as electric spark and blast waves has 

served to validate the computer algorithms. 

The model agrees with the results of free field propagation of sparks using the 

Pestorius algorithm. It further agrees with the analytic predictions of the pressure 

amplification factor a for the case of normal plane reflection. The blast computa­

tions of a versus angle for various fixed incident peak pressures also give similar 

results to those models currently in use for strong shock waves. The finite 

difference program computes slightly different a versus angle curves when the 

bounding surface is changed from hard to porous. 

For different charge sizes detonated near the hard ground surface, the simulat­

ed peak sound pressure levels decayed very closely to the power law r~h2 which has 

been observed in physical experiments. It was found that the larger the charge size, 

the less the peak levels above the ground are affected by finite ground impedance 

excess attenuation. This is an important result, not predicted by linear theory pro­

pagation codes. 
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The interaction between finite ground impedance and finite amplitude effects 

seems to be significant, but not straightforward. The assumption of a first-order ad­

ditive combination of ground impedance and nonlinear effects should not predict, in 

general, the correct decay rates of peak sound pressure levels with distance. Such 

an additive interaction between finite amplitude sound and ground impedance was 

proposed by Raspet Bass, and Ezell, for example.128 

The computer program may be easily extended to increase its accuracy and use­

fulness. The first obvious extension to the code is to add molecular relaxation 

effects as described in Chapter 4. Using such relaxation effects in a one-dimensional 

code would allow the user to calculate blast wave rise times. This one-dimensional 

program would be fast compared with the two-dimensional version and would run 

on small mainframe computers instead of on a supercomputer. Another useful ex­

tension would be to permit p0 and c0 to vary with space. This addition would allow 

the modeling of nonlinear propagation in a refractive atmosphere. 

It would also be desirable to use a 1-D program to further test the impedance 

of the air-ground interface presented in this thesis, over a wide variety of frequen­

cies. Recall that computation expense made surface impedance measurements 

difficult for the 2-D program. Since the amplitudes of the waves in the air are 

finite, it also makes sense that a better porous model would account for nonlinear 

effects. One might use the nonlinear flow resistance as developed by Blackstock et 

al for this modification. Another avenue to pursue to give a more realistic porous 

medium model would be to make the porosity of the medium vary with depth. 
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The newly developed numerical techniques called ENO for Essentially Non Os­

cillatory and TVD for Totally Variational Diminishing might be better numerical 

techniques for solving the equations of this research.129,130 The ENO methods have 

only recently been used successfully in more than one dimension, and questions 

remain on how TVD might work in multidimensions. For a 1-D code these 

methods should eliminate almost all of the phase dispersion seen with the MacCor­

mack schemes. 

Another area that merits further research is the development of absorbing 

boundary conditions. It would be useful if an absorbing boundary not only exactly 

absorbed energy from one isolated source, but also from a source and its images. 

The recent work of Gustaffson provides some insight into possible implementations. 

In addition, this dissertation contains linear lossless boundary conditions which were 

applied to a system of lossy nonlinear equations. One should derive the absorbing 

boundaries for the lossy nonlinear system itself and provide a mathematical stability 

proof for the resulting conditions. 

Finally, this thesis has centered solely on the propagation of sound in air out­

doors. The equations developed, however, are applicable to other fluid acoustic 

media also, such as water. There is great promise in using this type of numerical 

solution in biomedical ultrasonics, for example, lithotripsy, diagnostic ultrasound, 

and hyperthermia modeling. Applying the finite difference methods in the time 

domain to underwater acoustics, such as in simulating parametric arrays, should be 

possible also. 
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APPENDIX A. 

FINITE AMPLITUDE ACOUSTICS AND THE 1812 OVERTURE 

There are few outdoor musical events which compare to a live performance of 

Peter Hyich Tchaikovsky's Overture 1812 with cannons. This Opus No. 49, universal 

in its appeal, has packed audiences for orchestras all over the world since its first 

performance in 1882. The score calls for not only cannons, but also the pealing of 

church bells and a brass band ad libitum. 

This appendix will explore some of the aspects of 1812 performances with can­

nons as they relate to the subject matter of this dissertation, the propagation of 

finite amplitude waves outdoors. For example, are the cannon sounds loud enough 

to exhibit finite amplitude behavior? Could the amplitudes produced be high 

enough to change the propagation time of the cannon blast sounds, interfering with 

a clean performance of the music? Or could the peak pressures be so loud as to 

cause pain for certain individuals? 

This work is 420 measures long and runs approximately 15 minutes, if no cuts 

are made to the score. Sixteen cannon blasts were specified by the composer in the 

piece, 5 shots in measures 328 to 332, and 11 from measures 388 to 404. Conduc­

tors often take substantial liberties with the composer's score, however. The author 

has heard some performances where a single shot is put in on the first beat of meas­

ure 36. Other performances omit Tchaikovsky's first group of 5 shots entirely due 

to their difficult syncopated rhythm, and/ or continue to blast away between meas­

ures 405 and the end.131 
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Getting the blasts right on the beat in time with the orchestra is a major 

difficulty, as one might expect. A chain of command between a conductor and 

some national guardsmen firing blanks from howitzers probably will not get the job 

done. The composer originally hoped that electrical ignition could be used, a con­

ductor having 16 switches to flip at the appropriate moments.132 A technique similar 

to this has been used for several years now by J. Paul Barnett of South Bend Repli­

cas, Inc. Mr Barnett, a builder of Arable antique cannons for museums and historic 

landmarks, has developed an electronic system where he will fire 16 Lyle guns for 

an orchestra safely and on the beat These guns originally were used to shoot life 

saving lines from shore to ships in distress. 

The author was allowed to observe and record one of Mr. Barnett? s 12 or so 

concerts per summer, a performance with the Chicago Symphony Orchestra at the 

Ravinia Summer Music Festival in Highland Park, Illinois on August 13, 1989. A 

0.0064 m Larson Davis microphone was mounted 0.91 m above the ground, 12.2 m 

from the closest gun and 16.2 m from the furthest gun. The guns were in two 

rows, all facing away from the recording apparatus. The microphone signal was 

preamplified and fed into an Nagra DJ reel-to-reel recorder at 0.38 m/s speed. The 

recording apparatus was calibrated with a Bruel and Kjaer Pistonphone with a refer­

ence level of 123.9 dB sound pressure level. Mr. Barnett used 0.092 kg black 

powder charges, wrapped in aluminum foil and plastic wrap. There was a thunder­

storm just prior the the concert, and the grassy ground between the recording dev­

ices and the guns was water soaked during the performance. 
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In the laboratory the blasts were analyzed using a Hewlett Packard 1727A 

Storage Oscilloscope. Based on the voltage waveforms from the blasts, referenced 

to the pistonphone source, the following peak sound pressure levels in dB were 

found for the 16 shots in the order they were fired: 141.8, 138.5, 136.5, 137.9, 

139.6, 135.0, 138.5, 139.0, 136.9, 140.5, 139.0, 139.8, 138.5, 138.5, 141.0, and 

141.0. In most of the blasts two peaks were observed, an initial large direct wave 

peak (SPL just given) and a smaller peak occurring later due to some reflection. 

The blast wave forms including reflection were 24 ms to 32 ms in length. 

With these data in hand, it is possible to speculate on whether finite amplitude 

propagation effects have a significant impact on these 1812 pulses. Considering that 

the sound was roughly falling off as Vr, it is clear that finite amplitude nonlinear 

effects should be important only in the near field of the guns. If the level has al­

ready fallen to a 141 dB maximum at a minimum distance of 12.192 m, no 

significant change in the speed of propagation would be noticed. Adding a few dB 

to account for the receiving equipment being behind the gun would make little 

difference. One can predict that using slightly more black powder for larger charges 

would not change this hypothesis. 

On the other hand, since many individuals' threshold of pain is below 140 dB, 

the peak pressures from Barnetf s Lyle guns could be uncomfortably loud even 

several hundred feet from them. It is important to remember that in a large crowd 

of people with no ear protection, some individuals will be more sensitive to the blast 

noise than others, and that the audience and musicians should be kept a 
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respectable distance from these guns. At Ravinia, some audience members were 

approximately 30.5 m from the closest gun, which is probably too close. 
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APPENDIX B. 

COMPUTER PROGRAM DESCRIPTION 

This appendix describes the computer program, mcnalp, employed in this 

thesis. The acronym mcnalp stands for MacCormack Nonlinear Air-Linear Porous 

and uses the second-order in time and fourth-order in space MacCormack finite 

difference schemes for the main part of the nonlinear air equations in two-

dimensions and the second-order in time and space MacCormack method for the 

linear pore equations in one-dimension. The code is over 5000 lines of FOR-

TRAN77 statements and was optimized for the Cray type supercomputers. The 

language FORTRAN was used since that was the only scientific language available 

on the Cray other than assembler in the beginning of this research. 

The program may be run in its current form to model blast waves propagating 

outdoors either in the free field or over a hard or a porous model of the ground. 

One can also make minor modifications to the program to model the propagation of 

electric spark pulses in air or weak explosions under water. 

As it is described here, the program is ready for running in a batch mode Cray 

environment. All of the subroutines are in one file except for one routine 

"d8pimg" which physically writes out a National Center for Supercomputing Appli­

cations (NCSA) Hierarchical Data Format (HDF) raster image file. The HDF rou­

tines are public domain software routines available from NCSA. To change various 

parameters which control the operation of mcnalp, the user must modify the code 

itself in the main program. At a later date, this drawback will be eliminated by 
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providing an interactive, user friendly front end. For this description, however, the 

current batch mode implementation will be assumed. 

The program mcnalp provides several types of output, some of which are more 

useful than others for particular applications. The program produces image files of 

raster images in HDF form, numerical receiver files of pressure versus time at 

specified locations, and a file of maximum pressures encountered along the ground 

surface called rpmx.out. These are the three most often used types of output 

mcnalp provides. The program can also produce ASCII output files of pressures if 

the raster data output is not desired and can print almost all of the numbers com­

puted in the program using a debugging option. This last type of output was used 

only in the early stages of this research. 

Nine logical variables, i.e., true or false variables, control the major ways the 

program can operate. When "debug" is true, debugging output is printed to the 

screen. If "raster" is true, the HDF image files are produced. Otherwise, ASCII 

output is placed in the file ascii.out If "sscale" is true the HDF files are printed 

with the variables scaled by the factor 1/r which keeps the images from fading away 

for long distance propagation. The flag "allrast" specifies whether all the variables 

will be printed in raster HDF files, or just the acoustic pressures. The variable 

"rcvrs" indicates whether the numerical receiver data will be produced. The loca­

tion of the receivers must be specified by the user in mcnalp's main subprogram. 

The flag "rowpmax" tells mcnalp whether or not to save the values of maximum 

pressure recorded along a line in the d direction, usually the ground surface. If this 

flag is turned on, the user must specify the distance between the source and this line 
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of maximum pressure data in the main subprogram. The two variables "gnd" and 

"hard" together tell whether a ground surface is used and if so what kind is used. 

If "gnd" is false, a free field calculation is made. If "gnd" is true, "hard" being 

true specifies that a hard ground is in use, and "hard" being false gives the porous 

ground case. The last variable "doupdat" indicates whether updating in the d direc­

tion is used or not. If "doupdat" is true, an updating routine is called every few 

time steps to conserve computer memory by overwriting a part of the memory that 

the wave leaves by more free field that the wave can propagate into. 

The coordinate system used in this program is cylindrical. The program em­

ploys some different names for the coordinate axes compared to the rest of this 

thesis, however. While in the main text of this thesis the coordinate system used 

was id, z, (j>) with <f> variations eliminated, mcnalp currently uses the two notations 

ir, z, (j>) and (y 1, y2, ^ ) . Therefore, whenever the reader sees ay 1 or a cylindri­

cal r in the program, it always means d. Similarly y 2 always means z. 

The main grid array "grid" in the air is rectangular in d and z. The coordinate 

d goes from y l = 1 to y 1 = numyls, and z goes from y 2 = 1 to y 2 = numy2s. 

The array "grid" contains the variables p', u, v, and Sfr at the present time n and 

the temporary time ft used in the MacCormack finite difference methods. The vari­

ables p and T' are kept in arrays of the same names. The porous medium is kept in 

an array "pore" which contains both p' and v for the pores at the times n and h. 

All of these variables are kept in a Fortran common block /gridvars/. Because the 

fourth-order in space MacCormack schemes of the air cannot be used near the 

boundaries, /gridvars/ also contains the arrays "specr" and "specz" to help with 
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data storage in implementing the second-order in space MacCormack schemes near 

the boundaries. 

The other common blocks in this program hold global variables grouped togeth­

er for convenience. The block /times/ contains information needed for printing the 

raster images at specific times, the values of A , and the time at which the program 

will stop. The block /cons/ holds the constants needed for air propagation such as 

the sound speed and the other thermodynamic variables. On the other hand, 

/peons/ contains the constants needed for the porous medium. The massive block 

/bndvars/ groups together the variables needed for the boundary calculations. Since 

"grid" is rectangular, four boundaries are needed, the boundary close to the source, 

the outer boundary opposite the source boundary, the ground boundary, and the 

upper boundary. 

Some smaller common blocks are much more limited in their scope. The block 

/flags/ holds the logical variables described above. The block /diffcon/ contains the 

constants used in the main MacCormack routines which are precomputed to speed 

program execution. The common block /pulsvars/ holds the variables to describe 

the modified Jack Reed pulse for the initial conditions of the simulation. The infor­

mation to control the updating in the d direction routines is contained in the block 

/upblk/. The block /revr/ holds numerical receiver height and distance informa­

tion. Finally, /rpmax/ includes the variables to save the maximum pressures along 

a line in the d direction, usually along the ground surface. 

The subroutines in the program are for the most part self-documenting with 

ample comment lines. The largest routines "diffarp," "diffarc," "diffazp," 
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"diffazc," "diffbrp," "diffbrc," "diffbzp," and "diffbzc" were the most time con­

suming to write and perform the MacCormack time difference methods in the air. 

The diffa routines use the "a" version of the MacCormack methods, while the diffb 

routines use the " b " version. The next to last of the letters in the names of these 

eight routines specifies first what direction the routine is for, either r, i.e., d, or z, 

and the last letter tells whether this routine gives the predictor step or the corrector 

step. For example, "diffbzp" is the predictor step of the b MacCormack method in 

the z direction. 

The boundary conditions are implemented in routines "upbndl," "gndbndl," 

"outbndl," "srcbndl," "prebnd," and "bnd2." The first four routines compute 

and store the information needed for the boundaries under free field conditions, 

and "bnd2" applies either these data and/or the appropriate ground condition. 

Routine "prebnd" precalculates values needed for the numerical boundary condi­

tions. Subroutine "porous" computes all of the variable values in the porous medi­

um for use as a porous boundary condition in "bnd2." The equations of state in the 

air at the times n and h are used in the routines "pandt" and "pandt2," respective­

ly, to give updated values of p and 7". Subroutines "enta" and "entb" are used in 

addition to the "diffXXX" modules to keep the values of Sfr correctly updated near 

the boundaries in the air. 

Two of the unique features of mcnalp include saving memory by updating or 

windowing in the d direction and recording the maximum pressure values along the 

ground. The routine "update" performs the first function, and "getrpmax" the 
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second. The subroutine "wrpmax" writes out the file rpmx.out if the maximum 

pressure information is desired. 

The other routines which give results for later analysis arc "prntifok," 

"prntgrid," and "prraster." The program calls "prntifok" every time step to see if 

any images should be saved and to save the numerical receiver waveforms, should 

there be any receivers specified. If the raster data output is needed, "prntifok" calls 

"prraster," or if ASCII images are needed, it calls "prntgrid." 

The first of the rest of the Fortran modules called by the main program are 

"prediff" which precomputes the constants needed for the MacCormack routines 

"diffXXX." The routines "getw," "getw2," "getwt," and "getwt2" compute one-

directional derivatives so the "diftXXX" routines can calculate the mixed deriva­

tives which occur in the dissipative terms of the air equations. This is one place 

where one might be able to improve mcnalp, by incorporating these routines into 

the "diffXXX" routines. The program also calls the real functions "rm2" and 

"rpot2" which are the modified Reed blast pulse pressure and potential waveforms, 

respectively. 

The main routine in mcnalp can be thought of in four sections after all the 

variable declarations. In the first section the user specifies the problem to be solved 

by setting the flags, defining the constants to be used, placing the boundaries, speci­

fying the times to print images, and placing the numerical receivers. The second 

section of mcnalp generates the discretized grid on which the problem will be 
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solved, and the third section initializes the variables to their initial condition for the 

beginning of the calculation. 

The last section of mcnalp is the main loop of the program in which the nu­

merical solution is advanced in time. For every iteration of this loop the variables 

are all stepped in time one A . Each time the loop is executed, two paths are alter­

nately taken. This alternation is necessary since the MacCormack "a" and "b" 

schemes must be alternated, as well as the r, i.e., d, and z directions. 

The first path through the loop is now described. The second path is similar. 

The program mcnalp first computes the radiation boundary conditions and saves 

these numbers using "upbndl," "gndbndl," "outbndl," and "srcbndl." The r, 

i.e., d, direction routines are then called. The routine "getwt" precomputes infor­

mation for "diffarp" which comes next. Subroutine "enta" then updates the entro­

py variable Sfr near the boundaries. Routines "pandt2" and "getwt2" then update 

p and T' at the temporary time and precompute information at the temporary time 

for "diffarc" which follows. An invocation of "pandt" to obtain the pressure and 

temperature deviation completes the r direction part of the main loop's first path. 

The z direction part of the main loop's first path begins by "getw" precomput-

ing information for "diffazp" which follows it The routine "pandt2" then updates 

p and T" at the temporary time. Subroutine "getw2" then precomputes values for 

"diffazc" which comes next The "bnd2" routine is then called to update the 

boundary values for the air grid. If the porous ground is employed in the calcula­

tion, "bnd2" calls the routine "porous" at this time. After "bnd2" finishes, the 

routine "pandt" updates p and T' at this time. The program has now advanced the 
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numerical solution one time step, Ai. This pass of the main loop ends by calling 

"getrpmax," "prntifok," and "update." 

In the next iteration of the main loop the " b " routines are called, first in the z 

direction then in the r, i.e., d, direction. It then also calls "getrpmax," "prntifok," 

and "update." Next the "a" path of the main loop is executed again. This process 

continues, the program alternately passing through the two paths of the main loop, 

until mcnalp terminates when the time reached exceeds the maximum time the 

user has specified. 

The last major component of mcnalp which requires detailed description is the 

updating procedure. If the flag "doupdat" is false, no updating is performed, and 

the grid variables span the d direction from "minyl" to "miny2" using the discreti­

zation i going from 1 to "numyls." The problem here is that a wave, initially 

between "minyl" and "maxyl," moving in the d direction will eventually pass the 

"maxyl" boundary and propagate out of the numerical domain. 

If the flag "doupdat" is true, however, a wave moving in the d direction will 

never move out of the numerical domain because every few time steps the domain 

is extended in the -W direction while simultaneously deleted in the -d direction. 

Performing these extensions beyond the outer boundary and deletions close to the 

source boundary windows a pulse moving in the +d direction. 

This action saves much computer memory for a long distance propagation run. 

Instead of having all of the distance between the initial pulse position and its final 

position in memory at once, only the window that the pulse is in at any one time is 
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kept in memory. 

The windowing, or updating, procedure is performed with the array "ii." In 

mcnalp, whenever a variable is given d or z positions such as p(i,j) for the pressure 

a td = " y l ( i ) " a n d z = "y2(j)," the notation p(ii(i),j) is used. If "doupdat" is 

false, no updating is performed and the "ii" array takes the values "ii(l)"= 1, 

"ii(2)" = 2, . . ., "ii(n)" = n, etc. Thus in the "doupdat" false case the array "ii" 

acts as if it is not there at all. 

If "doupdat" is true, however, after the wave has propagated a certain dis­

tance, an update is performed. Suppose there were ten points in the d direction, 

"numyls"= 10, and "ii" and "y l " had the values "ii(l)"= 1, "ii(2)"= 2, . . ., 

"ii(10)"= 10 and "yl(ii(l))"= 1.0 m, "yl(ii(2))"= 1.1 m, "yl(ii(3))"= 1.2 m, . . 

., "yl(ii(10))"= 1.9 m, respectively, initially. If the update shifted things by 2 

points, one would be left with "ii(l)"= 3, "ii(2)"= 4, . . ., "ii(8)"= 10, 

"ii(9)"= 1, "ii(10)"= 2 and "yl(ii(l))"= 1.2 m, "yl(ii(2))"= 1.3 m, . . ., 

"yl(ii(8))"= 2.0 m, "yl(ii(9))"= 2.1 m, "yl(ii(10))"= 2.2 m. Here the d dis­

tances 1.0 m and 1.1 m are no longer represented, having been replaced by dis­

tances 2.0 and 2.1 m. By repeating this method over and over for updates as the 

wave moves, the pulse is windowed for propagation in the d direction. 

To implement this updating procedure, the user needs to specify a variable in 

the main program, "ng." The variable "ng" is the number of grid increments, i.e., 

the number of Ac's, the wave should move before an update is performed. Anoth­

er variable the program automatically initializes for the updating procedure is "ut." 

The variable "ut" is the update time and gives the amount of time elapsed since the 



156 

last update. The test "Is ut c0 > ng Ac ?" is made at the bottom of the main loop 

of the program, and routine "update" is called if this test is true. The routine "up­

date" zeros the variable " u t ' every time the procedure is invoked to prepare for 

the next update. The subroutine "ut" is incremented by A on every iteration of 

the main loop to count up until the update test is true. 

One final note about the present version of mcnalp. Statements reading 

CDIR$ rVDEP were placed before some of the do loops in the subroutines. Under 

Cray FORTRAN the statement is a compiler directive to Ignore Vector DEPenden-

cies. These compiler directives were inserted to tell the Cray FORTRAN compiler 

that even though the do loop might look as though it could contain a dependency, it 

does not and should be vectorized. Dependencies are sequences of memory refer­

ence operations that keep a loop from vectorizing, and eliminating dependencies 

gives a marked increase in performance. Under most FORTRAN compilers these 

CDIR$ rVDEP statements are interpreted as comment statements. 

To give some idea of how well mcnalp vectorizes and performs on the Cray 

series, a short run was made on both the Cray-2 at NCSA and the CERL Pyramid 

Pyr90x mainframe computer. Global optimization was used with the Fortran com­

pilers on both systems. On the CERL Pyramid with no one else logged in, the pro­

gram took approximately 90 min of CPU time. The Cray-2 ran the same program 

in 5.3 s, approximately a speed-up of 1000 times. 
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