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A B S T R A C T 

One of the major limitations of hyperthermia as a cancer treatment modality is the 

lack of heating equipment and techniques capable of consistent therapeutic heating of deep-

seated tumors. This thesis introduces a new pattern synthesis method capable of precisely 

controlling the power deposition level at a set of control •points in the treatment volume 

using ultrasound phased arrays. This method, called the pseudoinverse pattern synthesis 

method, reduces the pattern synthesis problem to one of estimating the minimum-norm 

least-square solution to a matrix equation of the form, H u = p , where u is the array-

excitation vector, p is the desired complex pressure at the control points, and H is a 

matrix propagation operator from the surface of the array to the control points. A useful 

solution to this problem is obtained when the number of control points is less than the 

number of elements of the array and the matrix H is full rank. This solution, called the 

minimum-norm solution, allows the array to be focused at several points simultaneously. 

This multiple-focus approach is important when ultrasound is used as a heating agent as it 

reduces the spatial-peak temporal-peak intensity required to generate a specified heating 

pattern. Furthermore, the minimum-norm solution allows the optimization of the array 

excitation efficiency and the intensity gain at the control points. These quantities are very 

significant for achieving deep localized heating with phased arrays. In fact, optimization 

of the intensity gain at the control points generally results in removal of high intensity 

interference patterns from the synthesized field. The removal of high intensity interference 

patterns eliminates one of the major disadvantages of multiple focusing. The pseudoinverse 

pattern synthesis method is introduced and discussed in detail. Simulation results are 

used to demonstrate its powerful capabilities as a pattern synthesis method. Its generality 

is demonstrated by the use of several different array structures to synthesize different 

multiple-focus patterns. Simulation results indicate that direct synthesis of multiple-focus 

patterns can provide an alternative to single-focus scanning. Finally, measured intensity 

profiles using a prototype cylindrical-section array agree well with theoretically predicted 

profiles. 
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CHAPTER 1 

INTRODUCTION 

Hyperthermia is a cancer treatment modality which aims at the preferential 

killing of malignant cells by elevating their temperatures to therapeutic levels for 

specified periods of time [1]. Historically, simple forms of hyperthermia were applied 

to small, nonulcerating cancers as early as 2000 B.C. More recently, spontaneous 

tumor regressions were observed in patients with illnesses associated with infectious 

fevers of about 40° C which lasted for several days [47]. In the late nineteenth century, 

Coley [32] administered measured doses of bacterial toxins to induce artificial fever 

in the treatment of malignant tumors. He reported disease-free survival of one to 

seven years in 3 of 17 inoperable carcinomas and 7 of 17 inoperable sarcomas [47]. 

More recent biological and clinical research accumulated clear evidence regard­

ing the viability of hyperthermia as a cancer treatment modality [1, 2, 37, 41, 44]. 

Biological studies carried over in the last 15 years indicate clearly that mildly ele­

vated temperatures have cytotoxic properties which are useful in the treatment of 

solid tumors [4]. This was attributed to the physical environment surrounding tumor 

cells which is characterized by nutritional depravation, low pH, and chronic hypoxia. 

Such conditions render tumor cells heat sensitive [1]. Furthermore, the tumor cell 

killing rate due to heating is enhanced by "heat-induced" vascular damage which 

reduces the blood How in the tumor [36]. The combined effect of the hostile tumor 
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environment and the vascular damage during hyperthermia triggers a selective and 

irreversible inhibition of metabolism that correlates with a loss of malignancy, and 

ultimately to tumor regression [48]. 

Hyperthermia can be combined with other cancer treatment modalities such as 

radiation therapy and chemotherapy. Indeed, it has been suggested that combined 

heat and radiation therapy has a synergistic effect on the response of several tumors 

[44]. This is especially important since radiation therapy is the second most widely 

used cancer treatment modality and the introduction of any agent that can enhance 

its efficacy will have a significant positive effect on cure rates [1]. The combination of 

heat and several different cytotoxins is an active research area with promising results 

already evident [68, 69]. 

Hyperthermia can be administered to the whole body (systemic or whole-body 

hyperthermia) or to a specified volume of the body (regional hyperthermia). Regional 

hyperthermia, in turn, can include a volume which contains malignant and normal 

tissues or be confined to the tumor volume (localized hyperthermia). Depending on 

the depth of the tumor from the skin, hyperthermia can be classified as superficial or 

deep. Hyperthermia can be applied by various techniques, including fluid immersion 

(systemic hyperthermia), electric currents (interstitial, localized hyperthermia), and 

elctromagnatic and acoustic waves (noninvasive, localized hyperthermia). Among 

these techniques, electromagnetic and acoustic external beam heating techniques are 

the most attractive. Ultrasonic heating is based on the absorption of high energy-

waves by the tissue [70]. The particle velocity of the tissue created by the longitudinal 

waves causes frictional losses which convert mechanical energy into heat. Ultrasonic 

beams may be focused or unfocused, stationary or translocating. For deep heating 

applications, generally more than one transducer are used simultaneously to increase 

power deposition [4, 6, 7]. Multiple-transducer applicators can be used as phased 

arrays which allow electronic scanning of focused beams thus eliminating the need 
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for mechanical translocation of the applicator head. The absorption of electromag­

netic waves in the tissue is due to conduction and displacement currents (function 

of conductivity and permittivity of the tissue). Microwaves offer the best heat local­

ization among electromagnetic waves. However, a major disadvantage of microwave 

applicators is their limited usefulness to superficial heating because of the high at­

tenuation coefficients (especially in fat). This is still a problem even with phased 

array microwave applicators where the penetration depth is on the order of 4 to 6 

cm [31]. 

Despite the mounting evidence of the usefulness of hyperthermia, alone or in con­

junction with other modalities, it is still far from being the physician's first choice 

as a cancer treatment modality. Among the reasons for the slow progress of hyper­

thermia in gaining wider acceptance in the clinic are failure to quantify the heat 

dose to provide a basis for the evaluation of the efficacy of this modality, the lack of 

heating equipment capable of consistent uniform heating of specified tumor volumes 

in the presence of tissue heterogeneities, and the lack of noninvasive temperature 

mapping equipment to provide the necessary feedback to account for the rapidly 

varying tumor environment. 

The objective of this thesis is the investigation of noninvasive heating applicators 

and heating techniques capable of producing uniform consistent heating in deep-

seated tumors. In other words, the emphasis is on noninvasive, deep, localized hy­

perthermia. For this type of application, focused ultrasound is clearly the preferred 

heating modality since it offers sufficient penetration depths for deep hyperthermia. 

Furthermore, the wavelength of ultrasonic waves at frequencies suitable for hyper­

thermia is small enough to provide small focal spots suitable for heat localization. 

There exist several ultrasonic applicator systems for deep localized hyperthermia 

in clinical use [4, 7] or in preclinical trial phases [71]. All of these systems employ 

some kind of mechanical translocation of the applicator head to scan the beam(s) 
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around the tumor volume to achieve uniform heating. Encouraging results have been 

reported with these systems [4, 7] for a variety of tumor types, sizes, and locations. 

However, the need for a large bolus remains a serious problem with mechanically 

scanned applicator systems which can lead to cumbersome applicator-patient inter­

face [25] or poor usage of the available acoustical windows due to extremely large 

applicator surface. The latter effect seriously limits these applicators' capabilities to 

localize heat inside the tumor volume. 

Phased arrays can provide a useful alternative to mechanically scanned applica­

tor systems since 1) the beam can be scanned electronically thus avoiding the need 

for mechanical scanning, 2) they can be designed to conform to the body portals for 

optimal use of available acoustical windows, and 3) with the proper pattern synthesis 

technique, useful heating patterns tailored to the tumor geometry can be easily gen­

erated and modified on line. These gains are achieved at the expense of using a larger 

number of elements with associated driving electronics. This factor is becoming less 

significant with the advent of low-power solid-state amplifiers. Moreover, the proper 

choice of the array structure and phasing technique can yield efficient applicators 

that can be realized with a moderate number of elements [S, 17]. Thus, ultrasound 

phased-array applicators can provide the most efficient heating of deep-seated tumors 

since they combine the ability of ultrasound for deep penetration with the flexibility 

of arrays to focus and steer beams at very fast rates. 

The research conducted for this thesis emphasizes the investigation of new ultra­

sound phased array structures as potential deep, localized hyperthermia applicators. 

A new pattern synthesis method is introduced for precise control of the power depo­

sition levels at a selected set of control points in the treatment volume. This method, 

called the pseudoinverse pattern synthesis method, proved useful in optimizing the 

array excitation efficiency and/or intensity gain for many useful heating patterns 

with different array structures. Simulated field profiles show that highly localized 



5 

heating patterns are possible using arrays with a moderate number of elements. Fur­

thermore, preliminary experimental data from a prototype phased-array applicator 

show good agreement with theoretically predicted data obtained using the simulation 

algorithms. 

The dissertation is organized into ten chapters. Chapter 2 defines and introduces 

some basic concepts relevant to deep, localized hyperthermia. Numerical algorithms 

used for this thesis research are described in Chapter 3. Chapter 4 describes some 

nonplanar phased array structures investigated as potential hyperthermia applicators 

in the course of this thesis research. Chapter 5 discusses the different methods of 

heating pattern generation with phased arrays. The pseudoinverse pattern synthesis 

method is introduced and discussed in Chapter 6. Chapter 7 discusses methods for 

improving the performance of a phased array in terms of some specified quantity, e.g., 

array excitation efficiency and intensity gain, based on the pseudoinverse method. 

This chapter also discusses the problem of optimal placement of control points for 

a specified pattern and the effect of quantization. Examples of simulated heating 

patterns obtained with different array structures are discussed in Chapter 8. A 

prototype cylindrical-section phased array is described in Chapter 9 along with the 

field measurement system. Finally, Chapter 10 summarizes the conclusions drawn 

from this work and provides some suggestions for future work. 
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CHAPTER 2 

DEEP LOCALIZED HYPERTHERMIA: BASIC 

CONCEPTS 

2.1 Deep Localized Hyperthermia 

The objective of localized hyperthermia is to deliver sufficient power deposition 

levels to the tumor volume to insure therapeutic temperatures throughout the tumor 

for a specified period of time while maintaining low or controlled power deposition 

levels in the surrounding normal tissues. The current advent of diagnostic techniques 

enables the detection of tumors with diameters on the order of few centimeters. When 

small tumors are to be heated with external ultrasonic beams, the effective size of 

the beam has to be contained within the tumor volume in order to ensure heat 

localization. Hence, localization requirements prompt the use of focused ultrasonic 

beams for heating. In addition to heat localization, focusing is advantageous in 

combating the effect of attenuation when deep-seated tumors are to be treated. 

Furthermore, focusing can achieve high power deposition levels in the target volume 

while sparing the intervening normal tissues. For the purposes of this thesis, tumors 

located 7 cm or more beneath the skin are considered deep-seated. Tumors located 

deeper than 7 cm will necessarily require focused beams for efficient localized heating. 

Some applicator systems were designed to heat tumor sites from 10 cm [7] to 15 cm 

[6]. The phased arrays investigated in this thesis (to be introduced in Chapter 4) are 
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designed to cover this range of tumor sites. 

2.2 Applicator Configurations 

Single-transducer applicator systems were used with a reasonable degree of suc­

cess in inducing localized hyperthermia in various types of tumors [4]. Focusing can 

be achieved with a lens attached to a disk transducer or by using shell transducers. 

The lens approach is used in the Scanned Intensity Modulated Focused Ultrasound 

(SIMFU) hyperthermia applicator system at MIT [4]. However, when deep-seated 

tumors are to be heated effectively, multiple-transducer applicator systems are more 

appropriate. This approach was used in constructing the multiple-transducer system 

for localized hyperthermia of deep tissues at Stanford [6]. This system utilizes 6 

unfocused disk transducers mounted on a spherical shell such that their individual 

beams converge to the target volume near the geometrical center of the spherical 

shell. Therefore, the system is capable of providing the necessary gain for heating 

deep tumors. Unfortunately, this applicator configuration was not successful in lo­

calizing heating to the tumor volume and patient pain was reported to be a problem. 

The multiple-transducer approach was also utilized in a scanned, focused system 

for localized hyperthermia constructed at the University of Arizona [7]. This sys­

tem is a modification of a commercial diagnostic ultrasound scanner which has a 

gantry that can be translated, rotated and tilted by stepper motors. In addition to 

a set of diagnostic transducers, part of the original system, two high-power focused 

transducers were added to each side of the gantry. The gantry and the transducer 

assembly are immersed in a water bath on top of which the patient lies. This system 

has some useful features such as computer control of the gantry, existence of the 

diagnostic system for monitoring purposes, and the relative comfort oi the patient 

during treatment. However, the large size of the transducer aperture (over 40 cm) 

necessitates locating the transducers far from the patient's body. This leads to poor 

utilization of the available acoustical windows and might render heat localization 
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difficult. 

A more sophisticated multiple-transducer system is the Helios [71]. This system 

utilizes 30 lightly focused transducers mounted on a spherical surface in four coaxial 

rings containing 6, 6, 6, and 12 transducers. The transducer assembly is mounted 

on a gantry which is immersed on a water bath. Similar to the Arizona system, 

Helios directs ultrasonic beams upwards to the patient's body which is positioned 

on top of the water tank in the center of the treatment couch. The gantry has 

five degrees of freedom for flexibility of heating pattern generation under different 

treatment conditions. 

It is evident that there is a general trend toward the utilization of multiple-

transducer systems for deep, localized hyperthermia. Multiple-transducer applicators 

are needed for providing the necessary intensity gain at the target. Furthermore, the 

in homogeneity of the treatment volume can be accounted for by independent control 

of the driving signals to the individual transducer. Therefore, the choice of phased 

arrays as heating applicators can be justified as a step in that direction. Several 

phased-array geometries were analyzed for potential use as hyperthermia applicators 

such as the linear array [24, 23], the annular array [16, 17], and the two-dimensional 

rectangular array [45]. These array structures were very similar to their counterparts 

used in ultrasonic imaging, except possibly for change of size. This was followed by 

the introduction of new applicator structures especially designed for hyperthermia 

such as the sector-vortex array [17], the cylindrical-section array [8, 9], and the 

spherical-section array described later in this thesis. Currently, only prototypes of 

phased-array applicators are being tested [43, 73, 74, 23]. The preliminary exper­

imental data from these prototypes, however, are very encouraging. A prototype 

cylindrical-section array is described in Chapter 9. 

Irrespective of the applicator configuration, basic definitions regarding acoustic 

wave propagation apply. The rest of this chapter develops the basic background for 
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acoustic wave propagation in homogeneous media and defines some of the terms that 

are frequently used in this thesis. 

2.3 Radiation of Acoustic Waves from Baffled Sources 

A linear, time-harmonic baffled source, e2wt time convention, radiating in an 

infinite, homogeneous, lossy medium produces a complex pressure field described by 

the Rayleigh-Sommerfeld diffraction integral 

where j = y/—T, p is the density of the medium, k = w/c = k0 — ja is the complex 

propagation constant (a is the attenuation coefficient), S' is the surface of the source, 

u is the particle velocity normal to the surface of the source, and r and r' are the 

observation and source points, respectively. 

The power deposition at r due to the radiating source is given by [IS] 

Q(r) = a£i£M£), (,.2) 
pc 

where a is the absorption coefficient in the medium, and the asterisk (*) denotes 

complex conjugation. Generally, a < a , i.e., absorption is less than attenuation in 

biological media [39, 72]. 

2.4 Focusing 

As mentioned above, focusing of acoustic waves can be achieved with lenses, 

shell transducers, or with phased arrays. For shell transducers, e.g., spherical and 

cylindrical, the focus forms at or near the geometric center of the shell. Ultrasonic 

focusing lenses are generally planoconcave attached to a vibrating piston, e.g., a 

disk, from one side to produce convergent wavefronts that form caustics at points 

determined by the lens design. In the case of phased arrays, a focus can be formed 

by driving the array elements with signals phase shifted with respect to each other in 

such a way that the individual beams from the array elements add constructively at 
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Figure 2.1. A generic focusing system with aperture D and focused 
at a single point with fo< al length F. 

the desired focal point. Figure 2.1 shows a generic focusing structure with aperture 

size D used to produce a focal spot at a distance F from the surface. The 6-dB 

dimensions of the focal spot in the longitudinal, AC, and transverse, Aiu, arc given 

by 

A( = A \ A ( ^ y (2.3) 

and 

Aiu = K2 
XF 

D 
(2.4) 

where A is the wavelength of the propagated sound field and K1 and K2 are constants 

determined by the geometry of the focusing transducer. For ^ < 1 (typical of 

hyperthermia transducers), Aw is on the order of 1 — 2A and A^ is on the order of 

3 - 10A. 

This chapter is concluded with a series of definitions of terms frequently used 

throughout this thesis. Definitions of acoustical quantities and dimensions of focal 

beams are based on definitions used in [51]. 

The focal spot is the volume surrounding the focal point of a focused transducer 
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defining the 6-dB dimensions of the focal beam. The focal spot is often associated 

with a point-focus where the transducer (shell, lens, or array) is focused at a single 

point. In this thesis, however, this term will also be used for shaped or diffuse foci 

which are possible using phased arrays and special lenses. 

The / number of a focused transducer is the ratio of the focal length, F, to the 

aperture, D, of the transducer. (See Figure 2.1.) 

The spatial-peak temporal-average intensity at the focus of a time-harmonic radi­

ating source is given by 

I m A = ! » ! , (2.5) 
Ipc 

where ry defines the focal point. When the source is driven by a periodically gated 

sinusoid, the spatial-peak pulse-average is given by 

I$PPA = dO&Ql, (2.6) 
2pc 

where the time average is taken over the pulse duration. Hence, the time-average 

intensity is related to the pulse-average intensity as follows: 

r TlsPPA ,., ?\ 

ISPTA = j , (2.1) 

where r and T are the duty cycle and the period of the gating function, respectively. 

The spatial-average time-average intensity, I SAT A, °f A beam is the time-average 

acoustical signal averaged over the effective cross section of the beam (defined by the 

6-dB lateral dimensions). 

The spatial-peak temporal-peak intensity, ISPTP, is the highest peak value of the 

instantaneous intensity at a spatial peak. It is given by 

/sPTP = — (2.8) 
pc 

where pm is the maximum instantaneous pressure. 

The intensity gain at the focal point of a transducer is given by 

G = - ^ L (2.9) 
ISATA,T 
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where ISATA,T is the spatial-average time-average intensity over the transducer sur­

face. A general formula for the intensity gain of a focused transducer is given by (see 

Figure 2.1) 

The following definitions are for a phased-array transducer consisting of Ar ele­

ments having an arbitrary geometry. The elements of the array are assumed to be 

driven by independent time-harmonic signals. 

The array excitation vector, u, is an N-element vector of complex numbers, u = 

[ui, u2,..., u^Y, describing the particle velocity at the surface of each array element. 

The particle velocity at the surface of the ith array element is given by u,- = cs,-eJ'*' 

where a,- and <f>i are the amplitude and phase, respectively. 

The array excitation efficiency, n^, is given by 

= % ^ x ! 0 0 % , (2.11) 
•N Umax 

where Umax is the maximum amplitude particle velocity at the surface of the array, 

and < , > defines the inner product of two complex column vectors. 



13 

CHAPTER 3 

COMPUTER SIMULATIONS 

3.1 General 

The theoretical analysis of ultrasound hyperthermia applicator systems requires 

the numerical simulation of field patterns resulting from a known distribution of 

particle velocity at the applicator surface. When the applicator is radiating in an 

infinite homogeneous medium, Equation (2.1) can be used for the evaluation of the 

complex pressure field. The power deposition, Q(r), is then given by Equation (2.2). 

The power deposition profile in the treatment volume is responsible for heat 

generation and consequently temperature elevation in the target volume. The most 

common representation of the spatial and temporal distributions of temperature in 

living systems is the bio-heat transfer equation (BHTE) [70]. This equation takes the 

general form 

p c ^ = v . (A-vr) - i % c r - r.) + Q, (3.i) 

where T is the tissue temperature, K is the intrinsic thermal conductivity of tissue. 

Wb is the blood perfusion rate, C& is the specific heat of the blood, and Ta is the 

arterial blood temperature. The BHTE models the thermal response of the tissues 

in the treatment volume to the heating stimulus, Q [19]. 

This chapter describes the numerical models used for the ultrasonic fields and 
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thermal response computations. It also illustrates the numerical discretization algo­

rithms for the Rayleigh-Sommerfeld integral and the BHTE. 

3.2 Ultrasonic Field Computations 

The acoustic signal in the region of interest is assumed to be generated by an 

array of transducers radiating in an infinite homogeneous (possibly lossy) medium. 

By superposition, the total complex pressure due to an N-element array is given by 

a^W.i^ 
where un is the particle velocity at the surface of the nth element of the array. All 

array structures analyzed in this thesis are composed of rectangular elements. These 

arrays are not assumed to be planar hence computing the pressure field by transform 

methods, e.g., Fourier transform, is generally inefficient. The rectangular radiator 

method [24, 51] is an efficient numerical technique for computing the complex field 

at a point of observation due to a rectangular continuous wave source surrounded by 

a plane rigid baffle. A detailed description of the method can be found in [51]. A 

brief description of the method given here is slightly modified (notation only) from 

Ocheletree's description [51] for purposes of this thesis. 

The method assumes that the rectangular element is baffled in the (x, z) plane 

and radiates into the y > 0 half-space with the (x,y,z) coordinate system centered 

at the center of the element (see Figure 3.1). For an observation point at x,y,z. the 

element is divided uito subelements with dimensions (Aw) and (Ah) small enough for 

the observation point to be considered in the far field of the subelement. Assuming 

that the particle velocity is uniform over the surface of the subelement, the complex 

pressure at the observation point due to the subelement, centered at (xs,0,zs), can 

be given by 

jpck AwAhue-jkR . k(x - xs)Aw . k(z - zs)Ah ,„ „. 

^ = 1 7 " 72 '""= 2A ="" 2A (3-% 



15 

Figure 3.1. Coordinate system and geometry used for the rectangular 
radiator method. 
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where R is the distance from the center of the subelement to the observation point. 

The total pressure at the observation point is the sum of the pressures produced by 

all the subelements covering the surface of the element. 

As seen above, the complex pressure due to a subelement can be computed easily 

when the observation coordinate system is centered at the element. However, for a 

nonplanar array geometry, the observation coordinate system is not centered at the 

elements of the array. Therefore, it is necessary to transform the observation point 

from the observation coordinate system to the element coordinate system using the 

general transformation 

rn = T„r + t n (3.4) 

where T n and t n are rotation and translation operators associated with the nth ele­

ment of the array. The specific form of these operators is determined by the element's 

orientation and location with respect to the center of the observation coordinate 

system. These operators will be given explicitly for the different array structures 

analyzed in this thesis. 

3.3 Thermal Computations 

The thermal response of the tumor and the surrounding tissues to a power 

deposition profile produced by a time average acoustic field can be simulated by 

solving the BHTE in rectangular coordinates. Figure 3.2 shows a cross section of 

the thermal model used in the simulations. The model parameters are assumed to 

be a function of depth only and are constant in the lateral dimensions. The tumor is 

assumed to be spherical in shape and to have the same blood perfusion as the normal 

tissue. The latter assumption is a departure from the common modeling of a tumor as 

a multilayered sphere with a necrotic core (which makes it easier to heat the tumor.) 

If the tumor is indeed necrotic, then this approach results in underestimating the 

temperature levels inside the tumor. 

The transient BHTE can be solved numerically by discretizing the temporal 
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Figure 3.2. A cross section of the thermal model used for tempera­
ture simulations. 
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and spatial partial derivatives using the finite difference method. A conditionally 

stable solution for this equation can be obtained when the central difference in space 

and the forward difference in time are used [62, 63]. Solving the transient BHTE 

is useful for the evaluation of the heating rate at the beginning of the treatment, 

the presence of temperature fluctuations in the tumor due to slow scanning speed, 

and thermal dose computations. However, if one is interested only in determining 

whether a specified heating pattern is capable of inducing therapeutic temperatures 

within the tumor volume, then solving the steady-state BHTE would suffice. That 

is, one would need to solve 

V - {KVT) - WbCb(T -Ta) + Q = 0. (3.5) 

The discretization of this equation begins by expressing the spatial derivative in 

Cartesian coordinates 

Utilizing the fact that the thermal model parameters are independent of the lateral 

dimensions 
'd2T d dT d2T 

V . (A-VT) = K(,J)W + ^ A - f a ) ¥ + K{,j)w. (3.7) 

Letting T(x,y,z) = Tm<n,P and K(y) = Km,n,P at a grid point x = mAx,y = 

nAy, and z = pAz, and using central differencing, the partial derivatives can be 

written as 
d2T Km n 

^^'dx2 ~ (Ax)2 ^m+l'n'p ~ ~Tm'n-p + rm-i,7i,P] (3.8) 

r) cYT 1 
dy^^lhi = (A?/)2 Vim'n+hpTm'n+1'p ~ ^ V " + | , P + ^m.n- i j ^ i , " , / ' 

+A'mn_iiprmin..i,Dj (3.9) 

% ) ^ = ^ f [rm,.,p+i - 2%.,,,, + ^..,p_i]. (3.io) 
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For the case Ax = Ay = Az = As, straightforward algebraic manipulation yields 

the discretized version of the steady-state BHTE 

T T + (As)2(Qmin,p + WbCbTa) 

"'"'" 4 ^ , ^ + A-^_i,p + A-m.._l.p-(A6)W6C6' ^ ^ 

where 

1 — Am,n,p(-tm-t-l,n,p "r -im-l,n,p + -* 77i,n,p+l + J-m,n,p-\) 

+A rn,7, + l,pim,n+l,p + •t^-m,n-l,pJ-m,n-l,p- (o.l-J 

In the discretized equation, the following substitutions were made 

A'm ,n+i,p = Km,n+i,p (3-13) 

and 

^ . . - 1 ^ = ^ . . - ^ . (3.14) 

The over-relaxation version of the discretized BHTE is given by 

where 1 < u < 2 is the over-relaxation parameter and [i] denotes the zth iteration. 

The successive over-relaxation technique achieves faster convergence rates when the 

parameter u> is chosen properly. The choice of u depends on the grid size and 

the spatial distribution of the stimulus Q and is determined experimentally. The 

convergence criterion was chosen such that 

m a x | ^ _ r g | , | < 1 0 ^ . (3.16) 

The discretization of the transient BHTE uses central differencing spatially and 

forward differencing temporally. Letting T(x,y,z,t) = r ^ n p at a grid point x = 

mAx,y = nAy,z = pAz and time instant t = I At, and using forward differencing, 

the temporal partial derivative can be written as 

PC^- = pC m'n'\ m'n'p. (3.17) 
r dt ^ At v 
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The right-hand side of the transient BHTE is discretized similarly to the above 

procedure used for the steady-state BHTE. After simple algebra, the discretized 

version of the transient BHTE takes the following form 

rpi+i At (T — (4A"miniP + Kmtn+i,p + Km,n-itP)Tm<ntP 

"'"'" pC I (A,)* 

-t%Q(?L,p - r.) + QL.n,p} + 71.*,,,, (3.18) 

where Tl is same as T given above with temporal dependence explicitly shown. 
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CHAPTER 4 

NONPLANAR PHASED-ARRAY STRUCTURES 

4.1 General 

The use of phased arrays as hyperthermia applicators will lead to more versatile 

applicator systems which should help ultrasound gain wider acceptance in the clinic. 

The ability of phased arrays to scan focused beams around the tumor volumes with­

out the need for physically moving the applicator head should greatly simplify the 

machine-patient interface. This is extremely important since hyperthermia sessions 

can be expected to last up to 30-60 min. Furthermore, for deep hyperthermia, a 

phased array applicator can be brought very close to the patient's body, thus al­

lowing optimal use of the available acoustical windows. Therefore, it is clear that a 

significant improvement in the efficacy of an ultrasonic hyperthermia system can be 

achieved if mechanical scanning can be replaced by electronic scanning. However, 

electronic scanning is typically associated with problems that are not encountered 

when mechanical scanning is used. Specifically, as the beam is scanned away from 

the axis of the array, a reduction of intensity gain at the focus typically occurs. The 

loss of intensity gain at the focus due to scanning can limit the ability of a phased 

array to effectively heat deep tumors. Another problem associated with scanning, 

especially with uniform-lattice arrays, is the formation of grating lobes away from 

the focus. The size and location of the grating lobe associated with a scanned focus 
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puts limits on the size of tumor that can be treated with a specified array. Hence, 

for a phased array to provide a viable alternative to a mechanically scanned appli­

cator, scanned beams generated by this array have to have sufficient intensity gain 

at every point along the scan path. In addition, grating lobes, if any, should not 

exceed a specified intensity level with respect to the main focus lest they cause hot 

spots outside the tumor volume. This must be achieved with the minimum possible 

number of elements in order for the applicator to be realized at reasonable cost and 

to reduce the complexity of the driving electronics. 

4.2 Design Criteria for Phased-Array Applicators 

Ultrasonic wave propagation inside the body is significantly affected by tissue 

inhomogeneities. In fact, deep penetration of ultrasonic waves into the tissues is 

possible only in regions void of bone structures or gas spaces (known as acoustical 

windows). Clearly this requires that several different highly specialized applicators 

be available in the clinic for treating different tumor types at different locations in the 

body. Ultimately, a generation of conformal array designs should evolve for achieving 

optimal hyperthermia treatments at different tumor locations. 

Assuming that the therapist has a variety of applicators to choose from for treat­

ing a deep-seated tumor, his or her choice of specific applicator design will probably 

be guided by the following considerations: 

1. Applicator Size 

The location of the tumor determines the available acoustical window. The 

therapist must choose the largest possible applicator for this window to ensure 

maximum possible intensity gain. The focal depth F (see Equations (2.3), (2.4) 

and (2.10)) is determined. 

2. Operation Frequency 

The depth of the tumor and the attenuation/absorption values in the tissue 
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determine the operation frequency (wavelength). Using Equation (2.10), the 

size of the transducer is determined (the parameter D). 

3. Applicator Geometry 

The size and shape of the tumor determines the maximum scan depth and 

angle around the tumor. These factors determine the maximum acceptable At 

[4] (see Equation (2.3)), the the maximum acceptable intensity gain loss and 

maximum grating lobe level to ensure efficient localized heating. The geometry 

of the applicator is chosen to satisfy these requirements. 

4.3 Nonplanar Phased Arrays 

This chapter introduces three nonplanar phased-array applicator structures that 

could offer some advantages over their planar counterparts. Single-focus field pat­

terns are used in demonstrating the capabilities of these arrays and how they compare 

with planar arrays with an equal number of elements and equivalent surface area. 

This approach is helpful in understanding the basic properties of phased arrays as 

scanning applicators. As will be shown in Chapter 6, multiple-focus field patterns 

can be generated with phased arrays. In general, the characteristics of a phased 

array as a single-focus scanner remain unchanged when it is used as a multiple-focus 

scanner. 

4.3.1 The ID cylindrical-section phased array 

Figure 4.1 shows a schematic isometric view of the ID cylindrical-section phased 

array, henceforth referred to as the CSA1D. A complete analysis of this array is given 

in [S, 9]. This section describes the array geometry, the characteristic focus of this 

array, and a steered-focus beam pattern. The performance of any phased array as a 

hyperthermia applicator can be evaluated by investigating the relation between its 

geometric focus and shifted focus. The geometric and shifted foci are compared in 

terms of intensity gain, size and shape, and the relative intensity of the grating lobe. 
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Figure 4.1. Isometric view of the ID cylindrical-section array. 

Array Geometry 

Figure 4.2 shows a cross section of the CSAlD. The array consists of N rectangu­

lar elements distributed uniformly inside the circular surface of a cylindrical wedge 

of radius R, angular opening 2(j)0 and height h. The array is assumed to be sym­

metrical around the (x,y) plane, i.e., rectangular elements extend from z = —h/2 to 

z = h/2. For convenience of presentation, the origin of the (x,y) coordinate system 

coincides with the geometric center of the array. The angle between the centers of 

two consecutive elements is 60 = 2<f>0/N. The center-to-center spacing between two 

consecutive elements is dc = 2Rsin(0o/2), which also defines the maximum element 

width, w. The center of the nth element makes an angle 0n = 90(n — N)/2 with the 

x-axis. The distance between the center of each array element and the center of the 

array is rc = Rcos(0o/2). The lateral aperture of the array is given by the chord 

length, D = 272sin (^„), and the elevation aperture is equal to the height h. 
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Figure 4.2: Cross section of the CSA1D. 

The contribution of the nth array element to the complex pressure at an obser­

vation point defined by r = [x,y,z\l can be computed using the rectangular radiator 

method. This can be most conveniently performed by transforming the observation 

point to the coordinate system centered at the nth element. Under this transfor­

mation, the point at r will be transformed to the point r„ = [xn,yn,znY according 

to 
( cos (0„) - s i n ( 0 n ) 0 \ 

rn = -sin(On) -cos(6n) 0 

0 0 1 / 

r + 

/ 0 \ 

\°) 
(4.1) 

This equation defines the operators T„ and t n in Equation (3.2). 

The Characteristic Focus 

The characteristic focus of the array can be obtained by driving all array elements 

with uniform phase and amplitude distribution. In this case, the array behaves as 

a cylindrical shell which focuses energy at its geometrical center. An approximate 
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analytical expression was derived for a dense array of radius R, angular opening 2(f>0, 

and consisting of N point sources each of infinitesimal area 5A, with R » A [9]. 

The complex pressure in the vicinity of the center of the array can be expressed as 

a series of the form 

^^=4r^^^-"" 
9 o° 7 (ur\ 

- W + -^ ^ f ^ ^ s i n ( n ^ ) c o s H ) 
VO 71=1 U 

(4.2) 

where j,p,c,k are as in Equation (2.1) and the medium is assumed to be lossless, 

u0 is the amplitude of the particle velocity of each point source, Jn is the nth-

order Bessel function of the first kind, and r and 9 are the polar coordinates at the 

center of the array in the (x,y) plane. A dense array of point sources with a radius 

R = 200 mm was simulated in a lossless medium and results were compared to 

those obtained analytically by the above series form. The resulting intensity profiles 

suggest that the simulated values are in good agreement with analytical values for 

values of kr < 0.1 kR [9]. 

The array described above was then simulated with R = 200 mm, 2<j>0 = 75°, 

N = SO, / = 500 kHz, w = 3 mm, and h = 50 mm. The speed of sound was 

assumed to be 1500 m/s and the attenuation in the medium was 1 dB/cm/MHz. 

Figure 4.3 shows the intensity profile of the characteristic focus in the z = 0 plane 

and along a line passing through the array center in the elevation direction. The 

dimensions of the focal spot for the characteristic focus of this array are Aiu = 3.3 

mm, Af = 12 mm, and Az = 30 mm. The intensity profile of the characteristic focus 

in the elevation direction is determined by the Fresnel diffraction phenomenon as one 

might expect. Finally, the intensity gain at the characteristic focus of the CSA1D 

is 15.1 dB. Considering the dimensions of the CSA1D described herein, this value of 

intensity gain is sufficient for obtaining focal intensity levels capable of therapeutic 

heating of many realistic size tumors at depth. 

Steered-Focus Patterns 

The phase distribution of the driving signals to the array elements can be set such 
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Figure 4.3. Intensity profiles of the characteristic focus of the 
CSA1D. 
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Figure 4.4: Intensity profile of a shifted focus produced by the 
CSA1D. 

that a focus can be formed at any desired point within the near field of the aperture. 

In reference to Figure 4.2, the array can be focused at a point P, with coordinates 

(xj,ijj) by computing the distances d{,i = l,2,...,N between the focal point uid 

the ith element of the array. The corresponding phase shift of the driving signal of 

the zth array element is given by 

<Pi = 
c 

UoJr) + r2
c- 2r /r c cos (0} - 0{) 

= " (4-3) 

where rf = ^xj + yj, and 9j = a.rcta.n(yf /xj). 

The array described above was focused at a point P, at depth 200 mm and trans­

verse distance 30 mm from the center of the array. Figure 4.4 shows the resulting 

intensity profile. This case represents a typical steered focus to be utilized in a scan­

ning situation. The size and shape of the focal spot at P are essentially unchanged 
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when compared to those of the characteristic focus. Furthermore, the intensity gain 

at this focus is 14.6 dB which is only 0.5 dB below the intensity gain at the charac­

teristic focus. Hence, the CSA1D preserves the shape, size, and intensity gain of the 

focal spot as the beam is steered off the axis of symmetry of the array. This property 

makes the CSA1D a very useful spot-scanning applicator system when scanning is 

confined to transverse and longitudinal directions. 

Comparison with the Linear Phased Array 

A comparison between the CSA1D and a linear phased array with 80 elements 

each of which has w = 3 mm and h = 50 mm, i.e., equivalent surface area and 

center-to-center spacing was reported in [8]. The CSA1D typically produces focal 

intensity gains nearly 3 dB higher than those of the linear array (with F/D = 0.83 

fixed for both arrays). Furthermore, the relative intensity level of the grating lobes 

generated by the linear array is 4 dB higher than that generated by the CSA1D. 

These results show clearly that the CSA1D outperforms the linear array as a spot-

scanning hyperthermia applicator. 

4.3.2 The 2D cylindrical-section phased array 

The cylindrical geometry of the CSA1D proved very useful in the generation 

of highly focused beams suitable for deep localized heating. However, the CSA1D 

is limited to scanning in the transverse and longitudinal directions and cannot scan 

the beam in the elevation direction. Such a limitation can be removed by dissecting 

the elements of the cylindrical-section array in the elevation direction thus creating 

a two-dimensional array. The 20 cylindrical-section array, CSA2D, is capable of 

scanning focused beams in three dimensions, hence providing more precise control 

over the heating pattern. Figure <'..5 shows an isometric view of the CSA2D. 

Array Geometry 

The array consists of N rectangular elements each of width w and height h 

distributed in Nr rows and Nc columns (N = Nr x Nc) over the circular surface of 
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Figure 4.5: Isometric view of the CSA2D. 
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a cylindrical wedge of radius R, angular opening 2<j>0, and height H = Nch. Each 

row of elements has a cross section as that shown in Figure 4.2 with N replaced by 

Nr. The contribution of the nth element of the array (located at the n r th row and 

nc column) to the complex pressure at an observation point defined by r = [x,y,z]1 

can be computed using the rectangular radiator method. The transformation needed 

according to Equation (3.2) is 

/ cos(0Be) - s in (0 n c ) 0 \ / 0 \ 

r„ = - s i n ( % J - c o s ( % J 0 

V o 0 1 / 

r + 

\h(nr-(NT + l)/2)J 

(4.4) 

This equation defines the operators T„ and t„ in Equation (3.2). 

The Characteristic Focus 

The CSA2D was simulated with NT = 20, Nc = 20, R = 120 mm, w = h = 6 

mm, and 2<t>0 = 60° at / = 500 kHz with p,c,and a as in Section 4.3.1. The 

array was focused at its geometric center to generate its characteristic focus. The 

intensity profiles of the characteristic focus of the CSA2D are shown in Figure 4.6. 

The dimensions of this focus are Aw = 4 mm, A£ = 24 mm, and Az = 5 mm. The 

intensity gain at the focus is 21.2 dB. 

Steered-Focus Patterns 

The CSA2D was focused at a point Pi, at depth 120 mm, transverse distance 

21 mm, and elevation 0. The intensity profiles corresponding to this case are shown 

in Figure 4.7. The presence of the grating lobe can be seen clearly with a relative 

intensity level of -8 dB below the main focus. 

The CSA2D was then focused at a point P2, at depth 120 mm, transverse distance 

0, and elevation 21 mm. Figure 4.8 shows the intensity profiles due to the focus at 

P2. The relative intensity of the grating lobe associated with this focus is - 3.9 dB. 

Obviously, the performance of the CSA2D as a scanning applicator depends on the 

lateral dimension in which scanning is performed, i.e., transverse or elevation. The 

grating lobe level associated with the focus at Px can be tolerated in most scanning 
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Figure 4.6. Intensity profiles of the characteristic focus of the 
CSA2D. 



33 

" ' 4 % % 

a) z = 0 plane. 

b) Focal plane. 

Figure 4.7. Intensity profiles of a transversally shifted focus with the 
CSA2D. 
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Figure 4.8. Intensity profile in the focal plane of a laterally shifted 
focus by the CSA2D. 
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Figure 4.9: Isometric view of the N x N square array. 

situations. The same does not hold true in the case of focusing at P2. Therefore, 

to make the best use of the CSA2D, scanning in the elevation direction should be 

avoided. One alternative is to focus the CSA2D at a set of points distributed on a 

vertical line and scanning this shaped focus in the transverse and depth directions. 

This approach is illustrated in Chapter 8-

Comparison with the N x N Array 

To demonstrate the effect of the cylindrical geometry on the performance of the 

CSA2D, a square N x N array, Figure 4.9, was simulated under similar conditions 

as those described for the CSA2D. The dimensions of the N x N array were chosen 

such that it has the same surface area, the same number of elements, and the same 
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center-to-center spacing as the CSA2D. In other words, TV,. = 20, and w = h — 6 

mm and the width of the array aperture was equal to the arc length of the CSA2D. 

The N x N array was focused at a point Qx at depth 120 mm, transverse distance 

0, and elevation 0. The resulting intensity profiles are shown in Figure 4.10. The 

dimensions of the focal spot are Aw — 5 mm, At = 35 mm, and Az = 5 mm. The 

intensity gain at the focus is 18.2 dB. One can see clearly two grating lobes forming 

to either side of the main beam in the transverse direction. No such grating lobes 

form in the elevation direction. The reason for this behavior is that the center-to-

center spacing in the transverse direction corresponds to that of the CSA2D and is 

larger than the center-to-center spacing in the elevation direction. 

The N x N array was then focused at a point Q2 at depth 120 mm, transverse 

distance 20 mm, and elevation 0. The resulting intensity profiles are shown in Fig­

ure 4.11. The relative intensity of the grating lobe associated with this focus is -5.6 

dB. 

A comparison of the foci produced by the NxN at Qx and Q2 with those produced 

by the CSA2D at P, and P2 demonstrates the relative performance of these two array 

structures. One can clearly see that the CSA2D provides higher intensity gain at the 

focus and a smaller grating-lobe intensity level than its equivalent N x N array. 

3.3.3 The spherical-section array 

The CSA2D was shown to be capable of 3D scanning of focused beams. Fur­

thermore, as will be shown in Chapter 6, it can also be simultaneously focused at a 

set of points with 3D distribution in the treatment volume. However, scanning in 

the elevation direction with the CSA2D can be limited by intensity gain loss and/or 

excessive grating lobe levels. This is to be expected since the CSA2D behaves as a 

planar array in the elevation direction. 

The limitations of the CSA2D can be eliminated by mounting the array elements 

on a spherical shell rather than a cylindrical shell. This results in the spherical-
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Figure 4.10. Intensity profiles produced by the N x N array when 
focused at a point 120 mm deep along its central axis. 
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Figure 4.11. Intensity profile in the z = 0 plane of a shifted focus 
produced by the N x N array. Focal point at a depth of 
120 mm and a transverse distance of 20 mm. 
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Figure 4.12. Isometric view of the spherical-section array, SSA. 

section array, SSA, which is shown in Figure 4.12. This array will be shown to have 

higher intensity gain at the focus and improved scanning capabilities in the elevation 

direction when compared to the CSA2D. 

Array Geometry 

The array consists of A^ x Nr square elements of width (w) distributed uniformly 

on a spherical section of radius (R) and angular opening (2tf>0) both transversely and 

laterally. The nth element of the array (located at row nr and column nc) makes 

an angle <j>nr with the (x,y) plane. Its projection on the (x,y) plane makes an angle 

9nc with the x axis. An observation point r = [x,y,z\l can be transformed to the 
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coordinate system centered at the nth element according to 

/ cos(0„J - s in (0 n c ) 0 \ / 0 \ 

r + 

\0J 

• (4-5) - s i n ( 6 L J c o s ( W -cos(6> nJsin(^ n r) - s i n ( ^ ) 

V-cos(0nJcos(<£n r) -cos((9n<:)sin(^nr) - c o s (<?„,)/ 

This equation defines the operators T n and t n in Equation (3.2). 

The Characteristic Focus 

The SSA was simulated with Nr = 16, R = 120 mm, w = 6 mm, and 2<p0 = 60° 

at / = 500 kHz. The intensity profiles of the characteristic focus of the SSA are 

shown in Figure 4.13. The dimensions of this focus are Aw = 3 mm, A£ = 20 mm, 

and Az = 3 mm. The intensity gain at the focus is 23.8 dB. 

Steered-Focus Pattern 

The SSA was focused at a point P at depth 120 mm, transverse distance 20 mm, 

and elevation of 0. The resulting intensity profiles are shown in Figure 4.14. The 

intensity gain at the focal point is 22.1 dB. A grating lobe with intensity level of -8 

dB below the focal intensity appears at x = —25 mm and z = 0 mm in the focal 

plane. The dimensions of the shifted focal beam are essentially unchanged from those 

of the characteristic focus. 

4.4 Concluding Remarks 

The simulation results shown in this chapter outline some of the advantages of 

nonplanar phased arrays as potential hyperthermia applicators. The results from the 

CSA2D and the NxN array (Section 4.3.2) show clearly that the CSA2D is capable 

of providing higher focal intensity gain (the two arrays have the same number of 

elements and surface area.) Furthermore, the grating-lobe intensity level associated 

with a shifted focus was lower in the case of the CSA2D. 

These conclusions hold true for the SSA which provides additional intensity gain 

and grating-lobe reduction for shifted beams. This was true for the SSA simulated 

herein in spite of the fact that it has a smaller number of elements covering roughly 
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Figure 4.13. Intensity profiles of the characteristic focus of the SSA. 



42 

2%. ̂AOkf 
^ g 

^ ^ C *<*. 
Kir, 

** 
& 

^ 

Figure 4.14. Intensity profile in the z = 0 plane of a shifted focus 
produced by the SSA. Focal point is 120 mm deep and 
20 mm off-axis. 
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the same surface area as the CSA2D and the N x N arrays simulated earlier. This 

observation demonstrates another advantage of the nonplanar phased arrays; the 

use of nonplanar phased arrays allows the design of arrays with a large surface area 

(to provide the necessary intensity gain) with a smaller number of elements than 

what would be necessary when using planar phased arrays for the same purpose. 

This conclusion is also supported by the performance of the CSA2D when used to 

scan in the transverse and elevation direction. The grating-lobe intensity level was 

smaller when the array was scanned in the transverse direction (where the nonplanar 

geometry determines the grating-lobe intensity level). 

The higher intensity gain achieved by nonplanar (geometrically-focused) arrays 

is due to the fact that the element directivity pattern is maximum near the geomet­

ric center of the array for all its elements. This is also mainly responsible for the 

reduction in the grating lobe level associated with shifted foci. The location of the 

grating lobe, however, is a function of the array lattice only and is independent of the 

element directivity pattern. Generally, approximate formulae for the determination 

of the location and relative intensity of the grating lobes for cylindrical arrays exist 

[57]. 
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CHAPTER 5 

HEATING PATTERN GENERATION WITH PHASED 

ARRAYS 

5.1 General 

The previous chapter described several array geometries potentially useful as hy­

perthermia applicators. However, irrespective of their geometry, phased arrays used 

as hyperthermia applicators usually have a large surface area to provide sufficient 

intensity gain to insure efficient heating. When near-field focusing is attempted with 

such array structures, a focal spot is generated within a small volume defined by an 

ellipsoid extending on the order of one wavelength laterally and a few wavelengths 

longitudinally. At frequencies suitable for hyperthermia, the size of this focal spot 

is too small to induce uniform heating even in small tumors. Hence, it is necessary 

to spread out the power deposition throughout the tumor volume in order to pro­

duce the desired heating pattern. A suitable power deposition pattern is one which 

allows inducing and maintaining uniform therapeutic temperature levels throughout 

the tumor volume for specified time durations while maintaining the temperature in 

normal tissues surrounding the tumor below a specified maximum acceptable tem­

perature level. Power deposition can be spread out by dynamic scanning of the focal 

spot along a specified trajectory. Scanning can also be used with multiple-focus and 

diffuse-focus field patterns. Another alternative is the direct synthesis of the heat-
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ing pattern. Methods for generating single-focus, diffuse-focus, multiple-focus, and 

shaped beam patterns are discussed in Chapter 6. Specifically, all the results shown 

in this chapter are obtained using the pseudoinverse method which is described in full 

detail in Chapter 6. The details entailed in how each of these patterns is generated 

are also given in Chapter 6. In this chapter, however, these patterns are presented 

as typical examples of single-focus, multiple-focus, diffuse-focus, and directly syn­

thesized fields defined below. The rest of this chapter discusses the generation of 

heating patterns based on these four different approaches and outlines the merits 

and limitations of each of them. 

5.2 Single-Focus Scanning 

Depending on the tumor geometry and the existence or nonexistence of a necrotic 

core or special directivity of blood flow in the treatment volume, different scanning 

procedures can be used [4, 7, 9]. However, irrespective of the scanning procedure, it is 

necessary to insure therapeutic localized heating in the tumor volume. For example, 

when heating necrotic tumors, it was found that scanning around the periphery of the 

tumor can be advantageous in inducing uniform heating, i.e., uniform temperature 

profiles within the tumor [4, 52]. 

Electronic scanning is achieved by sequentially focusing at one of a series of fixed 

points distributed along the scan trajectory such that the spatio-temporal average of 

the scalar sum of the power deposition patterns of the individual focal points produces 

the desired time-average power deposition pattern throughout the treatment volume. 

A single focal spot can be generated by instantaneously changing the phases of the 

driving signals only, i.e., uniform amplitude distributions are used. The intensity 

gain at the focal spot varies as the focal point is moved in the treatment volume. 

Losses in intensity gain can be compensated for by either varying the amplitude 

level of the driving signals or changing the dwell time at each of the focal points. To 

illustrate this, assume that their exist Nf focal points along the scan path that are 
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periodically scanned with a scan period smaller than the thermal time constants of 

the tissues in the treatment region. If equal dwell times are used at each focal point 

and loss in intensity gain is compensated for by weighting of the amplitude of the 

driving signals, the time-average power deposition in the treatment volume is given 

by 
1 Nf 

Q-(r) = 7rEQ'(rH, (5-1) 

where Qi(r) is the power deposition pattern associated with the Ith focal point, and 

wi is a weighting factor accounting for intensity modulation. On the other hand, if 

the amplitude level is held constant for all focal points and the dwell time is varied 

to compensate for loss in intensity gain, the time-average power deposition of the 

scanned field is given by 
1 N} 

Wr) = ;pEO'(r)A]l, f^) 

where Ts is the scan period, and AT; is the dwell time at the /th focal point. The 

power deposition is the source of heat generation in the treatment volume. The 

power deposition due to a field pattern associated with the /th focal point [IS] 

QM = aEM£W, (5.3) 
pc 

where a is the absorption coefficient, p(r) is the complex pressure, and p and c are 

the speed of sound and the density of the medium, respectively. The volumetric 

heat generation in the tissue is given by either Equation (5.1) or Equation (5.2) and 

represents the driving source to the bioheat transfer equation, BHTE, 

V.(A'VT) - I % ( 7 - T.) + 0 = , C ^ , (5.4) 

where T is the tissue temperature, K is the intrinsic thermal conductivity of tissue, 

Wb is the blood perfusion rate, Cb is the specific heat of the blood, and Ta is the 

arterial blood temperature. The BHTE models the thermal response of the tissues 

in the treatment volume to the heating stimulus, Q [19]. 
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Figure 5.1. A typical scan trajectory with the CSA1D. 

Electronic scanning of beams to produce time-average heating patterns entails 

instantaneous switching of driving signal distributions to move the focus from one 

point to another along the scan path. This implies that individual focal points along 

the scan path are distributed at a finite number of discrete locations. The distribu­

tion of the focal points along the scan trajectory is decided based on the half-power 

dimensions of the focal spots. Therefore, it is necessary to estimate how these di­

mensions change as the beam is moved along the scan trajectory. The neighboring 

focal spots along the scan trajectory should have a sufficient degree of overlap to 

insure uniform power deposition levels. A typical scan trajectory is shown in Fig­

ure 5.1 with the CSA1D. The scan trajectory follows a hexagonal ring which is fitted 

inside the periphery of an assumed tumor centered at the center of the tumor. The 

scan trajectory in this case is chosen to heat both the front and the back of the 

tumor. Figure 5.2 shows the scanned-field power deposition pattern produced by the 
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Figure 5.2. Scanned-field power deposition pattern produced by 
single- spot scanning around the scan trajectory of Fig­
ure 5.1 using the CSA1D. 

CSA1D when used to scan the trajectory shown in Figure 5.1. The scanned field 

profile shown in this example appears to be "rough." However, as will be shown 

in Chapter 8, the temperature profiles resulting from this pattern are smooth and 

uniform. This is due to the lowpass filter effect of the bioheat equation. To see this, 

consider the steady-state homogeneous BHTE, 

AV^f - M^QT + Q = 0, (5.5) 

where, for convenience, T now represents the difference between the actual temper­

ature and the arterial blood temperature. This equation can be transformed to the 

spatial frequency domain by using the Fourier transform which yields 

- A ^ f + M^C&f - Q = 0, (5.6) 

where w, = Jul + w^ + w^ is the spatial frequency, and f and Q are the Fourier 
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transforms of T and Q, respectively. The temperature can now be expressed as a 

function of power deposition in the frequency domain as follows 

Therefore, the transfer function, G = J , can be given by 

which represents a second-order lowpass filter with a cutoff spatial frequency of 

w, = w/^jjp. (5.0) 

Therefore, the irregularities in the power deposition patterns (which correspond to 

higher frequency components) will be smoothed out in the resulting temperature 

profiles. 

Scanning of single-focus patterns to generate a desired heating pattern is advan­

tageous mainly in the following respects: 

1. It utilizes uniform amplitude driving signals hence simplifying the driving elec­

tronic circuitry and allowing the most efficient use of the array elements. 

2. The small focal spot is ideal for heat localization. 

3. Any power-deposition build-up outside the target volume can be easily pre­

dicted. 

The first two advantages stated here are self-explanatory. The third advantage, 

however, can be explained by the following. 

The most significant power-deposition build-up outside the scanned volume is 

caused by the overlapping transmission volumes of individual beams due to the large 

cross section of the beams near the array surface. This power-deposition build-up is 

usually smooth with relative power deposition level well below that in the target vol­

ume. Figure 5.2 shows a "banana-shaped" power deposition pattern near the surface 
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of the array. Simulated thermal response to this heating pattern given in Chapter 8 

indicates that such a power-deposition build-up can be tolerated. Furthermore, im­

provement on such heating pattern can be achieved by using an array with higher 

intensity gain, e.g., the SSA. This is illustrated by an example in Chapter 8. 

The main disadvantage of single-focus scanning is the possible need for high focal 

intensities which might be objectionable because of nonthermal damaging effects. A 

focal intensity may be objectionable if it is higher than the cavitation threshold or 

if intensity saturation due to nonlinear effects can occur. Collapse cavitation can 

cause hemorrhage [4] and extreme pain, and intensity saturation can cause most 

of the power deposition to occur in the intervening tissues prior to the tumor site, 

consequently causing hot spots to occur or failure of the treatment altogether [10, 11]. 

It is important to emphasize, however, that cavitation has not been reported as a 

serious problem in clinical treatments with focused ultrasonic applicator systems. 

Therefore, with the current lack of precise cavitation thresholds in tissues in vivo 

at frequencies below 1 MHz, safety requires that focal intensity levels in excess of 

100 W/cm2 should be avoided [41, 46]. 

5.3 Multiple-Focus Scanning 

Multiple-focus scanning can be used in a similar way as outlined for a single-

focus scanning. The main difference is that the "snapshot" at one time instant of 

field patterns has more than one focal spot. This approach has the advantage of 

producing the desired time-average power deposition levels while avoiding the use 

of extremely high focal intensities. This scanning approach can be very useful in 

situations where a major blood vessel passes through the tumor. In such situations, 

it has been suggested [3] that the incoming blood should be warmed before entering 

the tumor so that the difference between the tumor temperature and the blood 

temperature is reduced which, consequently, reduces the heat carried away by blood 

flow. To achieve this, one can use a double-focus scanning scheme in which one 
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Figure 5.3: Intensity profile of a double-focus field pattern produced 
by the CSA1D. 

focus is scanned around the tumor and the other, at a relatively lower intensity 

level, is scanned along the blood vessel to warm the incoming blood. Figure 5.3 

shows a double-focus field pattern produced by the CSA1D. This field pattern can 

be used, for example, for scanning the trajectory shown in Figure 5.1. This approach 

is illustrated further in Chapter 8. 

The disadvantage of the multiple-focus approach is that the interference patterns 

formed when the array is focused at several points simultaneously are usually complex 

and their final contribution to the heating pattern is not easily predicted. However, 

when a small number of focal points is used, successful generation of desired heating 

patterns can be achieved without significant hot spots outside the tumor volume. 

Another disadvantage of this approach is that the driving signals for the array ele­

ments often vary in both amplitude and phase. Amplitude variation could result in 

low array excitation efficiency which might not be acceptable under certain condi-
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tions. However, a method for improving the array excitation efficiency can be used 

successfully with most multiple-focus field patterns makes the latter disadvantage 

less significant. The method uses an iterative weighting algorithm which achieves 

improved array excitation efficiency by suppressing the dynamic range of the ampli­

tude distribution to the array elements. This method is described in Chapter 7. 

5.4 Diffuse-Focus Scanning 

An excitation vector can be found to generate more diffuse focal patterns which 

behave like a single beam with the energy spread out in one or two dimensions. 

This increases the volume of the focal spot and allows for a small number of focal 

points along the scan trajectory at reduced focal intensity levels. This approach 

is advantageous in the generation of heating patterns with reduced focal intensity 

levels. In addition, the power deposition build-up due to scanning can be easily 

predicted from the shape of the focal beam. The disadvantages of this approach are 

nonuniform amplitude distributions and poor localization of heating when beams 

with very large cross sections are used. Figure 5.4 shows a diffuse focus produced 

by the CSA2D in which the focal spot is extended in the elevation direction while 

basically maintaining its original shape transversely and longitudinally (compare to 

the intensity profiles in Figure 4.6). The beam profile in the elevation direction for 

this focus was synthesized (using the pseudoinverse method, Chapter 6) to follow the 

formula 

0 ( 4 = Q=T%7T&' (5-io) 

This type of focus can be scanned transversely to induce the desired power deposition 

pattern in the treatment volume. 

5.5 Direct Synthesis of Heating Patterns 

Heating patterns can be directly synthesized, in principle, by focusing a phased 

array simultaneously at a set of points conforming to a specified tumor geometry. 
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a) z = 0 plane. 

b) Focal plane. 

Figure 5.4. Intensity profiles of a diffuse-focus field pattern produced 
by the CSA2D. 
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Figure 5.5. Intensity profile in the focal plane of an annular-ring field 
pattern produced by the SSA. 

The distribution of these focal points can, for example, be identical to the distri­

bution of the focal points along a prescribed scan path in single-focus scanning. 

When direct synthesis is performed with arbitrary distribution of the focal points, 

the potential interference patterns are often unavoidable and very hard to predict 

in advance. However, some geometrical patterns are possible where potential inter­

ference patterns can be anticipated and techniques to reduce them are developed. 

An example of these patterns is one in which an annular ring is synthesized which 

could be useful in heating the periphery of spherical or cylindrical tumors. Figure 5.5 

shows the intensity profiles of an annular ring pattern produced by the SSA. 

As in the multiple-focus pattern generation, the driving signal distribution varies 

in amplitude and phase which could mean low array excitation efficiency. While this 

can provide an alternative to single-focus scanning when cavitation and intensity 

saturation are anticipated, it has no significant advantage over the multiple-focus 
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scanning approach (except, possibly, in cases where scanning can be avoided com­

pletely using this technique). 
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CHAPTER 6 

THE PSEUDOINVERSE PATTERN SYNTHESIS 

METHOD 

6.1 General 

The previous chapter illustrated the different methods with which a desired 

heating pattern can be generated using a phased array. Multiple-focus field patterns 

not only allow one to prevent the use of extremely high focal intensity levels, but also 

to tailor the heating pattern to a particular tumor environment. This, in addition 

to the fast switching capability of driving-signal distributions, makes phased arrays 

the most flexible and adaptive applicator systems. 

This chapter describes methods for evaluating phased-array excitation vectors ca­

pable of producing desired multiple-focus field patterns. The problem of phased-array 

pattern synthesis is defined followed by a brief discussion of the previous phased-array 

pattern synthesis methods used in hyperthermia. Then the pseudoinverse pattern 

synthesis method is introduced and discussed in detail including some useful spe­

cial cases. The chapter is concluded by a set of numerical examples to illustrate 

the capabilities of the pseudoinverse pattern synthesis method. The examples also 

demonstrate how does the pseudoinverse method compare with previously used meth­

ods. The term "Multiple-Focus Field Patterns" as used in this and the subsequent 

chapters is equally applicable to "Diffuse-Focus" and "Directly-Synthesized" field 
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patterns. 

6.2 Phased-Array Pattern Synthesis 

The problem of phased array pattern synthesis aims at finding answers to the 

basic question: given a desired field pattern, Fd, and some constraints, e.g., the array 

size, number of elements, and the propagation medium, what is the driving-signal 

distribution, u, at the surface of the array which is capable of realizing Fd- Of course, 

Fj, can rarely be realized exactly. Hence, it is necessary to define what would be an 

acceptable approximation for Fd, i.e., an approximation criterion must be defined. 

Furthermore, in the most general case, Fd is a function of azimuth, elevation, and 

range. This is certainly the case for the near-field pattern synthesis utilized for 

hyperthermia. Specifying Fd everywhere in the field of the array would result in a 

huge problem that cannot be easily solved even on a supercomputer. Furthermore, 

overspecifying the field pattern almost certainly would result in violating the set of 

constraints which might result in large errors in the synthesized pattern. Therefore, 

it is desired to specify the field pattern at a minimum number of points which allows 

the realization of Fd with the closest possible fit. 

This definition of the phased-array pattern synthesis problem is similar to several 

problems in physics and engineering, e.g., antenna pattern synthesis [59], design of 

frequency selective finite impulse response filters, FIR [60], etc. This problem belongs 

to a general problem referred to in the literature as beamforming [61], a term derived 

from the fact that early spatial filters were designed to form pencil beams. This term 

applies for both radiation and reception of energy. In this thesis, however, the array 

is used to radiate energy for power deposition in the target volume. 

6.3 Previous Work 

Two methods were previously proposed to generate multiple-focus field patterns 

with phased arrays for localized hyperthermia [12, 13]. As will be seen later in this 
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section these two methods were not posed in terms of the definition given in Section 

6.2. Both of these methods attempt to maximize the power deposition level at a 

set of focal points without specifying an error criterion with which the realized field 

approximates the desired pattern. In other words, they do not guarantee the degree 

of fit between the desired and realized field patterns. However, both of these methods 

were successfully used to generate multiple-focus field patterns. A brief discussion 

of these two methods is given in this section. 

The discussion in this section is confined to time-harmonic analysis with e?wt time 

convention in homogeneous, possibly attenuating, media. Under the time-harmonic 

assumption, it suffices to describe the driving signal to an array element by Ae^, 

where A and <f> are real numbers representing the amplitude and phase, respectively. 

The speed of sound, density, and attenuation coefficient of the medium are typical 

of those in tissues and will be explicitly given when needed. 

6.3.1 Conformal focusing 

Ocheletree [12] discussed the simplified problem of M omnidirectional sources 

focused at N points in a lossless medium. Conformal focusing is performed by 

focusing the M sources at N points simultaneously. This is achieved by choosing 

the driving phase of the mth source, 90pt, such that the contribution of the source is 

maximized at each focal point. The quantity 

N 

7 = ] [ A. cos ( 4 - 0 . ) , (6.1) 
7 1 = 1 

is the sum of the in-phase components of the mth source at the focal points in which 

An is the desired amplitude at the nth focal point, and 9n is the phase on the mth 

source necessary for it to add in phase to the field at the nth focal point, 9n = kdn 

where k is the wavenumber and dn is the distance between the source and the nth 

focal point. The optimal phase 90pt satisfies 

% = - f ^ s i n ( 0 . p , - 6 U = O, (6.2) 
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subject to | j2 < 0. After simple algebra, one can show that 

and the driving signal on the mth source is 

am = E ^ ^ " , (6.4) 
71=1 

which is simply the sum of the complex signals required to focus the source at each 

of the focal points alone. As is clearly seen from the above derivation, this method 

attempts to maximize the contribution of the mth source to the signal at the nth 

focal point. It does not say anything about the degree of fit between the realized 

and desired field profiles. 

6.3.2 The field conjugation method 

This method replaces the desired focal points by small fictitious sources (con­

tinuous sources are possible). The total field due to all of these fictitious sources is 

computed at the surface of each array element. The driving signal for that element 

is the conjugate of the computed field due to the imaginary sources. For the case of 

M omnidirectional sources focused at N focal points in a lossless medium, it is easy 

to show that the driving signal to the mth array element is given by 

N jkdn 

*m = E 4. -3- ' M 
n = l " n 

where An and dn are as defined above. One can see that the only difference between 

the field conjugation method and the conformal focusing method is that the latter 

ignores the p term in the Green's function which is utilized in the field conjugation 

method. As applied in [13], the field conjugation method does not provide precise 

control over the field level at each of the fictitious sources. 

6.4 The Pseudoinverse Method 

The above two synthesis methods produce field patterns that approximate the 

desired field patterns even at the defined focal points. This approximation depends 
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on the specific choice of the focal points with respect to the array and is not governed 

by any error criterion. The pseudoinverse method introduced herein allows one to 

specify the complex field value at a set of points, henceforth called control points. If 

the number of control points is less than or equal to the number of elements of the 

array, then the reconstructed field satisfies the specified field levels at all of the control 

points. The field can assume any value at the unspecified points. However, simulation 

results performed for this thesis and elsewhere [55] show that the energy tends to 

fall off around the control points as determined by the point-spread function of the 

array used, i.e., energy concentration or focusing at the control points is achieved. 

Of course, this does not prevent one from choosing the field level at a control point 

such that the power deposition level is forced to take a relatively small value to avoid 

potential hot spots. 

6.4.1 Notation 

The following discussion assumes finite dimensional complex-valued signals. The 

excitation vectors (particle velocity distribution) of an A^-element array u G CN 

where CN is the set of N-tuples of complex numbers. The field is sampled at a set 

of M control points in the observation space of the array. The complex pressure 

at these points is given by p 6 CM where CA/ is the set of Af-tuples of complex 

numbers which define the control-point space. The underlying observation space is 

a Hilbert space of square summable bandlimited signals. The Euclidian (L2) inner 

product on the control-point space is defined by 

M 

<x,y>cM= Y,xmy™ (6-6) 
m=l 

where the asterisk sign indicates conjugation. This defines the norm of control se­

quence x as || x ||2 = < x, x > C M = Em=i I xm |2 which is directly proportional to 

the sum of the power deposition at the control points. Similarly, the norm of an 

excitation vector y is || y | |2= f< y , y >ci*= EJLi I xn |2 which is directly prop or-
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tional to the power available at the surface of the array. The notation developed in 

this subsection is important to the analysis of the pseudoinverse pattern synthesis 

method. 

6.4.2 Theoretical formulation of the pseudoinverse method 

The theory of the pseudoinverse method for multiple-focus pattern synthesis is 

as follows. 

The complex acoustic pressure at a point in the field due to continuous source is 

given by the Rayleigh-Sommerfeld integral 

iock r g-j't|r-r'| 

where j = y/—\., p and c are, respectively, the density and the speed of sound in the 

medium, k = " is the wavenumber, 5 ' is the surface of the source, u is the particle 

velocity normal to the surface of the source, and r and r' are the observation and 

source points, respectively. For an array consisting of N elements having arbitrary 

geometry, Equation (6.7) can be written as 

; p c 6 ^ / e-;Mr-rU 

£"•/,. 7 ^ ' - = *"• (6.8) 
2TT 

where S'n and un are, respectively, the surface and the particle velocity of the nth 

element of the array, and r'„ represents points on the nth element of the array. If 

the complex pressure is known, or specified, at M control points, one can write 

4 ^ E " " / 1 -<#'"=P(rm); m = l,2 M. (6.9) 
2TT ^ i Js'n | r m - r ' n | 

This equation can be expressed in matrix form as 

Hu = p, (6.10) 

where u is the complex excitation vector of the array elements u = [ui, u2, ...,uNy, 

and the vector p denotes the complex pressure at the control points in the field p = 
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[p(ri),p(r2),...,p(rAf)f, and H : CN —> CM is the forward propagation operator 

with elements 

iock r e~J'A'|rm~r»l 

"^-'-kLi^r*- (6-u) 
Using the notation introduced above, the pattern synthesis problem can be stated as 

follows: for a given control-point vector p G CM, find the minimum-energy particle 

velocity vector u G CN which minimizes || Hu - p ||2. 

The statement of the pattern synthesis problem calls for the so-called minimum-

norm least-square approximation for the solution vector u denoted u. Several nu­

merical methods have been proposed to solve this problem [75]. One solution can be 

obtained by solving the constrained optimization problem 

find u G (^minimizing J(u) =|| Hu - p ||2 +7 || u ||2 . (6.12) 

The parameter 7 is referred to in the literature as the regularization parameter [56]. 

The name "regularization parameter" is due to the fact that, in certain problems, 

the matrix operator H is ill-conditioned. The minimizing vector can be found by 

setting J (u -f Su) — J (u) equal to 0. The resulting vector is given by 

u = ( 7 I + H* t H)- 1 H- i p, (6.13) 

where I is the identity matrix and H*' is the conjugate transpose (adjoint) of H. 

The matrix H*' represents the backward propagation operator from the control-

point space to the source space. The regularization parameter can be found using 

the method of Lagrange multipliers [54] and the problem is readily solved. 

A more popular solution to the minimum-norm least-squares problem is provided 

by the Moore-Penrose Pseudoinverse H* [22] of the matrix H (also referred to as the 

generalized inverse). The pseudoinverse is obtained from the singular value decom­

position, SVD, of H according to 

H = U S V " (6.14) 
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and 

H+ = V 2 - W (6.15) 

where U is an m x m orthogonal matrix, V is an n x n orthogonal matrix, and S is 

diag{cri,a2, • • • ,crmin(m,n)}- The CT.'S determined by this method are unique and are 

called the singular values of H. The singular values are usually ordered in descending 

order, i.e., 

01 > 0-2 > • • • <Tmin(m,n) > 0. (6 .16) 

The singular value decomposition provides valuable information about the operator 

H such as -fs rank (which is determined by the number of nonzero singular values), 

and its condition number— a . The condition number determines how "close" H 
°rara(m,n) 

is to being singular, which is very valuable in analyzing the stability of the solution 

against different sources of error. 

Using the singular value decomposition, the minimum-norm least-square solution 

of Equation (6.10), u, is given by 

u = H t p . (6.17) 

The solution given in Equation (6.17) can be rigorously shown to be the unique 

vector which minimizes || Hu — p ||2 which has the minimum norm || u ||2 [15, 

58]. This property of the solution vector picked up by the pseudoinverse is always 

satisfied, irrespective of the rank of H. However, when the matrix H is full rank, the 

pseudoinverse takes the following special forms: 

1. The minimum-norm solution 

When M < N, Equation (6.10) represents an underdetermined system of equa­

tions which has an infinite number of solutions. The pseudoinverse chooses the 

minimum norm solution, given by 

u = H " ( H H " ) - i p . (6.18) 
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2. Exact inverse solution 

When M — N, the pseudoinverse is simply the inverse of H and the solution 

is given by 

u = H~ x p. (6.19) 

3. The least-squares solution 

When M > N, Equation (6.10) represents an overdetermined system of equa­

tions which has a unique solution that minimizes the square error functional 

|| H u — p ||2. This solution takes the form 

u = ( H " H ) - i H " ' p . (6.20) 

Note that the least-square solution is the solution to the constrained optimization 

problem, Equation (6.12), with 7 = 0, i.e., no constraint on || u ||2. 

The above three special cases can be obtained in a straightforward manner by 

substituting for H and H*' in Equation (6.18) and Equation (6.20) with their singular 

value decomposition ( H " = VSU*' ) . 

In many cases of practical interest, it is desired to evaluate u based on a minimum 

number of control points in the field, e.g., the focal points and, possibly, any points 

where the field is to be forced to assume reduced levels to avoid potential hot spots 

in the heating pattern. In addition to its practical significance, the minimum norm 

solution offers several advantages which makes it most useful as a hyperthermia 

pattern synthesis technique. Therefore, this solution is emphasized in this thesis. 

The following subsection discusses the advantages of the minimum norm solution 

and provides a simple interpretation of how this technique works. 

6.4.3 The minimum-norm solution 

The minimum-norm solution offers several theoretical and practical advantages. 

From the practical view point, one is generally interested in specifying the field 
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at a small set of control points corresponding to the desired foci. In this case, 

the resulting underdetermined set of equations has an infinite number of solutions. 

The minimum-norm solution translates into a "minimum energy" solution at the 

surface of the array that is capable of providing the desired power deposition at the 

control points. This is an important property from an engineering perspective. This 

is especially important in hyperthermia since the objective is to utilize the array 

aperture efficiently to synthesize a desired pattern. 

The minimum-norm solution reproduces the desired field values exactly at all the 

control points. To see this, simply examine the reconstructed field at the control 

points using u, p r = Hu. Substituting for u by its minimum-norm solution, one 

can easily see that p r = p , i.e., the resulting pressures at the control points are 

the same values specified by the vector p. This is a very useful property of the 

minimum-norm solution since one might be interested in precisely controlling the 

relative power deposition levels at the control points. 

The elements of the complex excitation vector vary in both amplitude and phase. 

A wide dynamic range of the amplitudes of the driving signals to the array elements 

means that the array operates with reduced array excitation efficiency, defined in 

Chapter 2. Hence, it might be necessary to increase the excitation efficiency of the 

array under some circumstances. This can be achieved by implementing the weighted 

minimum-norm solution. This solution can be easily derived from the unweigheted 

case in Equation (6.18) by defining a weighted inner product, < Pi,po > w = < 

P ! , W p 2 > on the control-point space. The weighting matrix, W , is an N x N 

positive definite matrix. This redefines the adjoint operator, H*' of H. 

H " : CM — • CN such that < Hu, p > w =f< u, W H " ' p > . (6.21) 

The weighted minimum-norm solution can be obtained by substituting WH*' for 
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H*' in Equation (6.18). The weighted minimum-norm solution takes the form 

uw = W H " ( H W H " ) - X p . (6.22) 

The judicious choice of W can achieve significant improvement in the array excitation 

efficiency when compared to the unweighted solution. A weighting algorithm based 

on the weighted minimum-norm solution is given in Chapter 7. 

Another quantity which is useful to optimize is the intensity gain at the control 

points. This quantity is defined by 

G=php < 6 - 2 3 ) 

where the norms of p and u are taken in their respective spaces. Substituting for u 

yields the following formula for the gain 

12 
_P_ 

p*'(HH , ()- 'p ' 
G=_.J"1 . - (6.24) 

Techniques for maximizing the intensity gain of multiple-focus field patterns are given 

in Chapter 7. Simulation results show that the maximization of gain can result in 

a dramatic reduction of interference patterns in the synthesized field. This could 

eliminate a major difficulty with multiple-focus pattern synthesis. 

An important advantage of the minimum-norm solution is its simple structure 

in which the mathematical operators are easily interpreted in terms of propagation 

phenomena. This can be helpful in understanding how the general pseudoinverse 

method accounts for various degradations associated with the propagation process. 

The reconstructed field at the control points p r is obtained by a cascade of operators. 

First, the vector p is transformed into p„, = (HH* ' ) - 1 p which belongs to an inter­

mediate control-point space by the matrix operator, (HH*1)"1 which is a Hermitian 

matrix. This operator will be referred to as a pre-emphasis operator (this name will 

be justified shortly). Secondly, the excitation vector u is obtained by backpropa-

gating pw to the surface of the array, u = Hmtpw. Thirdly, the reconstructed field 
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at the control points is obtained by applying the forward propagation operator to 

u, p,. = Hu . At this point, one should realize that both H and H"' are, in fact, 

degradation operators. The degradation introduced by these operators is due to 

attenuation, element directivity, and the fact that propagation (both forward and 

backward) is a spatial lowpass filter with cutoff frequency kc=~ associated with 1/r 

amplitude loss (A and r are the wavelength and propagation distance, respectively). 

It is easily seen that the pre-emphasis operator is the exact inverse of the cascade 

HH*1 that takes p„, into p r . In other words, the application of the pre-emphasis 

operator to the vector p corrects for the combined degradation introduced by the 

backward propagation-forward propagation cascade prior to the application of these 

operators to obtain p r , hence the name pre-emphasis. 

An analogous interpretation can be given to the generalized inverse in Equa­

tion (6.17). Substituting for the pseudoinverse in Equation (6.17) yields 

u = V E ^ U - ' p . (6.25) 

First, the operator U*' represents an orthogonal decomposition of the vector p with 

respect to the orthonormal vector set {u, : i = 1,2, . . . , A/}. The u,'s are the columns 

of the matrix U (they do not represent excitation vectors here). The orthogonally 

decomposed vector is 

Po = U " p . (6.26) 

Secondly, the operator S - 1 is applied to the decomposed vector p0. The application 

of this operator normalizes the coefficients of the vector p0 to compensate for the 

various degradations due to forward and backward propagation as stated above. This 

results in the normalized vector 

p n = 2 - ' p „ . (6.27) 

Thirdly, the operator V is applied to the normalized vector to obtain u. This op­

erator represents a linear combination operator and is, in a sense, equivalent to the 
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backpropagation operator. 

Finally, one can claim that specifying the field at a set of control points results 

in focusing the array at these points. It is very hard to prove this claim analytically. 

However, simulation results performed for this thesis and elsewhere [55]. show that 

energy concentration or focusing occurs at the control points. It is also possible to 

gain some insight into this by analyzing single-focus and double-focus syntheses in 

some detail. To do this, one needs to define an N x 1 matrix h which represents the 

forward propagation operator from the array surface to a single field point at r. The 

propagation equation defined by h is 

hu = p (6.28) 

where p is the complex pressure at r. The single-focus case is considered first. 

The excitation vector resulting from focusing the array at a single point at r : is 

given by 

" = & " - | 6 - 2 9 ) 

where pi is the specified complex pressure at r3. The complex pressure p a t a point 

r in the field is given by 
hh"( 

from which one obtains the power deposition at r which is proportional to 

where Qi is the power deposition level at rz. Using the Cauchy-Schwartz inequality 

[22]. one gets 

with equality when h = 7I11 (7 is a real constant). Therefore, the power deposition 

assumes its maximum value when h points in the direction <:-i" h j . i.e.. at the focal 

point. At points other than the focal point, the inner product h h ^ represents the 
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point-spread function of the array at r%. Since the inner product in the numerator 

is the only quantity that varies with r, the power deposition profile is determined by 

the point-spread function of the array at r% with a maximum at r t , i.e., focusing. 

A detailed analysis of a double-focus case might be helpful in understanding the 

different components of the solution vector u when multiple-focus field patterns are 

synthesized. To illustrate this, assume the field is specified at two points r% and r2 

with complex pressures p\ and p2, respectively. The propagation equation corre­

sponding to this case is given by 

£)• -(*)• (M3) 

The minimum-norm solution is then given by 

/hah;' htbfy1 (Pl\ 
tmw h ; , ) U h j U (6-34) 

Manually inverting the 2 x 2 matrix and performing the algebraic manipulation 

results in 

u = r (h,-* - h , - h , h ? ^ + K% - K^K^). (6.35) 

where 

T=DIDI%%W (6'36' 

The real numbers D\ = h%h,' and D\ = \\2\C2 represent the array directivity factors 

at ri and r2 , respectively. 

The formula for u suggests that the excitation vector is obtained by summing the 

direct-focusing terms (the first and third terms in the above equation) and subtract­

ing the indirect focusing terms (the second and fourth terms in the equation). A 

close examination of the indirect focusing terms reveals the mechanism by which the 

minimum norm solution accounts for multiple focusing. Consider the second term in 

the equation, it is the component of the excitation vector resulting from the cascade 
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action of h^ , h i , and h j ' , in that order, on the control point at r2. The first operator 

h j ' (scaled by 1/D2) finds the excitation vector corresponding to a single-focus at 

r2. The second operator hi computes the pressure at ri resulting from this excita­

tion vector; call this the residual pressure at rx due to the focus at r2. The third 

operator h ^ (scaled by 1/D2) finds the excitation vector due to the residual pressure 

at r i . This is subtracted from the direct focusing term at r^ The fourth term in 

the equation corresponds to the residual pressure at r2 due to the focus at r% and 

affects the direct focusing term at r2 in exactly the same way. This guarantees that 

the complex pressure at either of the control points is exactly equal to its specified 

value. To see this, the pressure at a point r in the field due to the overall excitation 

vector is given by 

„ = r ( h h ; ' ^ - h h ; ' h i h ; ' ^ + h h ; ' ^ _ h h ; % . ; ' ^ ) . (6.37) 

One can clearly see that substituting hi for h results in p = p\. Similarly, substituting 

h2 for h results in p = p2. 

6.4.4 Numerical evaluation of the pseudoinverse operator 

The pseudoinverse operator can be computed numerically, in its most general 

form, using the singular value decomposition, SVD, of the matrix H. There exist 

several efficient subroutines implemented in standard mathematical libraries which 

evaluate the spectral value decomposition of a complex matrix H. The simulations 

shown in this thesis use a LINPACK implementation subroutine to find the SVD of 

H. 

The minimum-norm solution requires evaluating the inverse of the M x M Her-

mitian matrix HH*' to find the pre-emphasis operator. This is followed by a matrix 

multiplication by the backpropagation operator H*' (see Equation (6.18)). This can 

be easily computed by the usual inverse and matrix multiplication routines. How­

ever, the SVD subroutine is also used with the matrix HH" ' since the singular values 
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and singular vectors obtained with this technique are valuable in the analysis of the 

propagation matrix. 

In addition to the direct computation of the pseudoinverse using the SVD tech­

nique, iterative descent techniques to solve Equation (6.10) were also developed [14]. 

These techniques can be very useful when the size of the propagation matrix is too 

large or efficient subroutines to evaluate the SVD are not available. The successive 

approximation, steepest descent, and conjugate gradient techniques are guaranteed 

to converge to the minimum-norm least-squares solution obtained by the pseudoin­

verse [22]. These algorithms attempt to minimize the functional 

/ ( u ) = | | K u - p | | 2 , (6.38) 

which represents the square error in reconstruction. The functional / can be written 

explicitly as 

/ ( u ) = u*'H*'Hu - u- 'H- 'p - p " H u + p""p. (6.39) 

The conjugate gradient of this error functional with respect to u can be easily ob­

tained and it takes the following form: 

V/* = H " ( H u - p). (6.40) 

Iterative techniques based on the above methods start with an initial estimate of u 

(typically 0 to assure minimum-norm solution) and modifies this estimate by stepping 

in the direction of — V/*. 

An iterative algorithm based on the steepest descent technique is given in [14]. 

The following algorithm illustrates the use of the conjugate gradient (CG) algorithm 

to solve Equation (6.10): 

Step 0: u0 = 0, the zero vector. 

e0 = H"[p - Hu0] 

qo = e0 



Step 1: Iterate i = 1,2, • • • 

u.+i = u. + 7.q« 

e,+i = H " [ p - H u , + i ] 

q.+i = e,-+i + a,q, 

where 

7.' = i | % and en = 

Step 2: If 

Go to Step 1, 

Else the excitation vector 

In the above algorithm, the conjugate direction is determined by e, = — V//". How­

ever, the step at the zth iteration is taken in the direction of q, which memorizes 

all the previous steps (gradients). This formulation of the CG algorithm guarantees 

convergence in at most M steps for a size M x N propagation operator [22]. 

6.5 Numerical Examples of Multiple-Focus Synthesis 

This section discusses a number of examples of multiple-focus field patterns 

synthesized using the pseudoinverse pattern synthesis method. These examples cover 

all of the different categories outlined in Chapter 5, i.e., multiple-focus, diffuse-

focus, and directly-synthesized patterns. All nonplanar array structures described in 

Chapter 4 are used to demonstrate the generality of the pseudoinverse method. The 

number of elements and the dimensions of the different array structures simulated 

in this section are the same as those given in Chapter 4 unless stated otherwise. 

In some examples, pattern synthesis is performed both with the pseudoinverse and 

field conjugation and the results are compared. The simulated field profiles show 

clearly that the resulting field patterns satisfy the specified field pattern exactly at 
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the control points when the field is obtained using Equation (6.18). 

A 64-element CSA1D was used to synthesize a four-focus field pattern in which 

the focal points were arbitrarily distributed across a transversal line passing the 

geometrical center of the array. The control points in this example were at —6,0,12, 

and 21 mm off the center of the array in the focal plane. For demonstration purposes, 

the relative intensity at all control points was chosen to be the same, i.e., p = 

P[l, 1,1,1]' where P is a constant. The resulting intensity profiles for this case are 

shown in Figure 6.1. The result clearly shows that the relative intensity levels at 

the control points correspond to the specified values. Furthermore, a distinct focus 

corresponding to each control point can be identified. This is typical of synthesized 

fields in which the control points are separated by more than the dimensions of the 

point-spread function of the array. This result confirms the claim made earlier about 

the focusing capability of the minimum-norm solution. 

To compare the performance of the pseudoinverse method with the previous meth­

ods described in Section 6.3, the field conjugation method was used to synthesize the 

field pattern shown in Figure 6.1. The resulting intensity profile is shown in Fig­

ure 6.2. One can clearly see that the field conjugation method fails to reproduce 

the desired relative intensity distribution at the control points. This is due to the 

fact that the field conjugation method obtains the driving signal distribution by 

applying the backpropagation operator to the elements of p directly and drops the 

pre-emphasis operator. Hence, the field conjugation method does not account for the 

degradation associated with backward and forward propagation operators resulting 

in error in synthesis. This error is not easily accounted for using ad hoc techniques. 

More significantly, this method does not provide any measure to characterize the 

resulting error. 

The pseudoinverse method can also be used in synthesizing multiple-focus field 

patterns in which the focal points are located at different depths. Figure 6.3 shows 
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a) Transversal line passing through control points. 

b) z = 0 plane. 

Figure 6.1. Intensity profiles of a four-focus field patterns produced 
by the CSA1D using the pseudoinverse method. 
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Figure 6.2. Intensity profile of a four-focus field pattern produced by 
the CSA1D using the field conjugation method. 
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the intensity profile of a two-focus field pattern in which the two control points were 

located at depths of 175 mm and 225 mm from the vertex of the CSA1D along a 

longitudinal line with off-axis distance of 21 mm. Once again the intensity levels at 

the control points were chosen to be equal which is clearly reflected in the resulting 

profile. The intensity profile obtained by the field conjugation method when used 

to synthesize this pattern is shown in Figure 6.4. The resulting intensity profile is 

shown in Figure 6.5. The intensity level at the deeper focus is -6.5 dB below the 

focal intensity of the one at 175 mm depth. It is important to note here that the 

relative magnitude of the two focal points produced by the field conjugation method 

does not depend solely on the absolute difference in depth between the two focal 

points. 

A 12 x 10 CSA2D with a radius of 140 mm was used in synthesizing a three-focus 

field pattern in which three foci where distributed symmetrically along a vertical 

line at a depth of 140 mm and 15 mm off-axis distance. The control points were 

located at z = —10 mm, 2 = 0 and z = 10 mm with equal relative intensity. The 

resulting intensity profiles corresponding to this case are shown in Figure 6.5. Note 

that the intensity profile in the z = 0 plane basically corresponds to that of a shifted 

single-focus beam shown in Figure 4.7. The main difference between this 3-focus 

field pattern and the single-focus case is the formation of a significant interference 

pattern prior to the focal plane. This interference pattern is due to multiple focusing 

and the small number of elements used for this array. A gain maximization technique 

described in Chapter 7 is shown to significantly reduce this interference pattern. 

Figure 5.4 was used to illustrate diffuse-focus patterns used in certain scanning 

applications. This field pattern was obtained by setting the pressure at seven control 

points distributed symmetrically along a vertical line according to the rule 
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Figure 6.3. Intensity profile of a two-focus field pattern produced by 
the CSA1D using the pseudoinverse method. 
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Figure 6.4. Intensity profile of a two-focus field pattern produced by 
the CSA1D using the field conjugation method. 
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a) z = 0 plane. 
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b) Focal plane. 

Figure 6.5. Intensity profiles of a three-focus field pattern produced 
by the CSA2D using the pseudoinverse method. 



80 

where rt is a constant, and z; = —rt + ^(i — 1), for i = 1,2,. . . ,7. The intensity 

profile for this diffuse focus along a vertical line is shown in Figure 6.6. In this case, 

rt was chosen to be 10 mm. A close examination of Figure 6.6 shows clearly that the 

diffuse-focus intensity profile closely follows the formula 

i + f e ) 

where QQ is the power deposition level at z = 0. The spacing between the control 

points in this case was nearly 5.2 mm which is slightly larger than the height (see 

Section 4.3.2) of the point-spread function of the array at the focal point. This 

spacing was determined to be sufficient to achieve continuity in the intensity profile. 

The choice of the optimal spacing between the control points necessary to produce 

the desired profile is discussed in Chapter 7. 

The SSA was used to directly synthesize an annular ring pattern shown in Fig­

ure 5.5. To produce this pattern, a total of 28 control points were uniformly dis­

tributed around a 30 mm-diameter annular ring parallel to the aperture of the SSA 

at a depth of 100 mm. Annular heating patterns are very important in hyperthermia 

because they are believed to be ideal for heating spherical and cylindrical tumors. 

However, these patterns are typically associated with interference patterns prior and 

distal to the focal plane which can limit their usefulness. Figure 6.7 shows the in­

tensity profile in the z = 0 plane corresponding to the focal plane pattern shown 

in Figure 5.5. One can clearly see I he high intensity interference patterns forming 

along the central axis of the array in front of and beyond the focal plane. In fact, 

the intensity level at the focal ring is -8 dB below the maximum intensity occurring 

along the axis of the array. 

The field pattern shown in Figure 6.7 represents a worst-case scenario of how the 

interference patterns can overshadow the desired heating pattern in the focal plane. 

The presence of such high-intensity interference patterns renders heat localization 
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Figure 6.6. Intensity profile of the diffuse-focus pattern shown in Fig­
ure 5.4. 
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Figure 6.7. Intensity profile in the z = 0 plane associated with the 
annular ring pattern shown in Figure 5.5. 
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difficult. However, recognizing that the axial interference pattern shown is a result 

of the symmetry of the control points in the focal plane and inspired by the concept 

of phase rotation used with the sector-vortex array [17], a technique for removing 

this axial interference pattern was developed [76]. This can be achieved by choosing 

the complex pressures at the control points according to 

Pi = p . g W ' - D ; for i = 1,2,. . . , M, (6.41) 

where M is the total number of control points forming the ring, and m (phase rotation 

index) is an integer equivalent to the vortex mode number. Stated in words, the last 

equation means that each two points that are spatially IT radians apart have complex 

pressure values that are mir apart. For m ^ 0, this phase distribution assures that 

the field along the axis of the array is identically zero, hence removing the axial 

interference. The interference pattern beyond the focal plane forms as a residual 

annular ring the diameter of which depends on the choice of the integer m above. 

In fact, analogous to the sector-vortex array, the interference pattern behaves as an 

mth order Bessel function. To prove this, one uses the Fresnel approximation of 

plane-to-plane propagation [64] 

P(f, & z.) = ^ f T (p(p, <6, O K ' ^ | , (6.42) 

where p, <f>, and z represent the three-dimensional polar coordinates, p(p, <j>,z) is the 

complex pressure field, z = 0 defines the focal plane and z0 defines the plane at 

which the pressure is computed, and FT{-} is the Fourier transform. If the complex 

pressure distribution at the control points satisfies Equation (6.41), then the pressure 

field in the focal plane can be expressed as follows: 

P(f, & 0) = p . e W - ' ) 6 (p _ a, <f _ 2 ^ ( i _ 1)) , (6.43) 

where 6(-) is the Dirac-delta function and a is the radius of the focal ring. Performing 
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the Fourier transform in polar coordinates with kp = &, one obtains 
" z0 

.2 . „ 2 , 

where <f>{ = ^jp(i — 1). The summation term appearing in the last equation can be 

substituted, in the limit, by an integral as follows: 

M M f2" ,-, 

1 = 1 

y ^ ejkpcos {<t>i)+jm<t>i _ _ f * eJh cos W+imtrfA 

= MeJ ' f Jm(6,,), (6.45) 

where Jm(kp) is the mth order Bessel function of the first kind. Substituting for the 

summation in Equation (6.44) results in 

p(p, & z.) = 1 M ^ - J ^ p ) . (6.46) 

This shows clearly that the envelope of the complex pressure field is an mth order 

Bessel function. Therefore, for m ^ 0, the pressure along the axis of the array 

beyond the focal plane is identically zero. The larger the value of the phase rotation 

index, m, the larger the diameter of the residual ring and the smaller its amplitude. 

This means that interference patterns can be effectively eliminated beyond the focal 

plane. However, the phase rotation index cannot be chosen to be arbitrarily large. 

This is due to the fact that the larger the value of m the higher the spatial frequency 

of the focal pattern. Hence, depending on the spacing between the control points, 

certain values of m result in spatial frequencies larger than y in the focal pattern 

which represent evanescent modes which are unrealizable. Furthermore, the above 

discussion does not apply the volume between the array surface and the focal plane 

where high intensity interference patterns can still be formed. An example of an 

annular-ring pattern obtained by the phase rotation technique is given in Chapter 7. 

The interference patterns associated with multiple-focus field patterns can signif­

icantly limit their usefulness. For certain cases, one might be able to find a phase 
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distribution of the complex pressures at the control points to reduce such interference 

patterns. However, this is insufficient and leaves a lot of room for unguided exper­

imentation with phase distributions. In Chapter 7, a gain maximization method 

based on Equation (6.24) is shown to significantly reduce interference patterns as­

sociated with several useful multiple-focus patterns. The method assigns values for 

the phases of the control-point vector, p , derived from the propagation matrix, H, 

and does not assume any prior knowledge of the phases of the elements of p . The 

effect of the gain maximization scheme on interference patterns associated with the 

annular-ring pattern and the three-focus pattern (Figure 6.5) will be discussed. In­

terestingly enough, the gain maximization technique results in phase distributions 

of the elements of p that result in removal of interference patterns prior and beyond 

the focal plane. 
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CHAPTER 7 

OPTIMIZATION OF THE DRIVING-SIGNAL 

DISTRIBUTIONS 

7.1 General 

In Chapter 6, the pattern synthesis problem was defined and was solved as a 

general least-squares problem using the pseudoinverse method. The minimum-norm 

solution was shown to produce the desired field level at the control points for H 

full rank. The solution chosen by the pseudoinverse operator is "optimal" in the 

sense that it is the minimum-norm vector that produces the least-square error in the 

reconstructed field. However, the "optimality" of the solution can be defined with 

respect to other parameters which can be of more significance in hyperthermia. 

Two such parameters were identified to be potentially important under certain 

circumstances. The first of these parameters, array excitation efficiency (n,\), was 

defined in Chapter 2. This parameter reflects the uniformity of the amplitude dis­

tribution of the driving signals across the elements of the array. Ideally, one would 

like to synthesize multiple-focus field patterns with uniform amplitude distribution. 

Hence, an excitation vector might be considered optimal if it maximizes the param­

eter 77,4. The second parameter, intensity gain (G), was defined in Chapter 6. This 

parameter reflects the ratio of the power deposition levels at the control points to the 

average power available at the surface of the array. The higher the intensity gain, 
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the higher the ability of the array to concentrate energy at the control points. 

The choice of an excitation vector, u, can be based on factors other than excitation 

efficiency and intensity gain. One very important factor is the robustness of the 

synthesized pattern. This factor reflects the behavior of the error functional, || Hu — 

p ||2, with respect to variations in the excitation vector, u. The objective here is to 

choose an excitation vector, u, such that a small error in this vector results in a small 

error in the synthesized field. It turns out that this is a property of the propagation 

matrix, H. In other words, it is a function of the control-point placement in the field. 

The robustness of the synthesized pattern is associated with the condition number 

of the matrix, H. The condition number, cond2(H) (defined with the L2 norm), is 

the ratio of the largest singular value to the smallest singular value of the matrix. A 

large condition number of the propagation matrix indicates an ill-conditioned matrix 

which results in a synthesized field that is very sensitive to errors in u. This requires 

one to find the optimal placement of the control points in the field to assure stable 

synthesis. 

This chapter describes methods for optimization of excitation vectors with respect 

to array excitation efficiency, intensity gain, and optimal placement of control points. 

The minimum-norm solution is used throughout this chapter. The main reason for 

this choice is that the minimum-norm solution guarantees that the relative intensity 

levels at the control points are not changed by optimization techniques. This allows 

meaningful comparisons between the optimized field patterns and the unoptimized 

ones. 

7.2 Optimization of Array Excitation Efficiency 

The elements of the excitation vector vary in both amplitude and phase from 

element to element at the surface of the array. This is typical of most pattern 

synthesis methods (except for phase-only synthesis methods). The power available 

at the surface of an ultrasonic piezoelectric transducer is limited by the maximum 
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intensity a particular piezoelectric material can support. A wide dynamic range of 

the amplitudes of the driving signals to the array elements could mean that some 

of the array elements are being driven very hard while other elements are hardly 

utilized. This situation is clearly undesirable. In fact, this situation could mean that 

the array cannot provide sufficient power deposition in the target volume. Improving 

the array excitation efficiency allows the array to provide more power at its surface 

for realistic tumor heating. Furthermore, uniform amplitude excitation signals could 

result in great simplification in the driving electronics to the array elements. 

An obvious approach for improving the array excitation efficiency is by suppress­

ing the dynamic range of the excitation vector. One can see that the weighted 

minimum-norm solution can be used to achieve this objective. This can be achieved 

by suitably choosing the elements of the weighting matrix W . The choice of the 

elements of W is arbitrary as long as it is a positive-definite N x N matrix. One 

intuitive choice of W is such that W = diag{l/\iii\,l/\u2\,... ,1/\UN\] where the 

|u,|'s are the amplitudes of the driving signals for the unweighted case. This choice of 

the elements of W is inspired by the single-focus case (applying this weighting matrix 

to any single-focus excitation vector results in nA = 100%). When this weighting 

matrix is applied to an excitation vector resulting from a multiple-focus pattern, it 

consistently results in improved efficiency. However, the resulting efficiency is gener­

ally less than 100%. Therefore, a weighting algorithm was developed to increase the 

array excitation efficiency to the desired level by repeatedly applying the weighted 

minimum-norm solution as follows: 

Step 0: W = I, the identity matrix. 

Step 1: Compute u , , , ^ using 

uw = W H " ' ( H W H " ) - i p , 

VA = ^hlWf x 100% 

If 77,1 is sufficient go to Step 3 
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Figure 7.1. Amplitude distribution of the driving signals to the 
CSA1D responsible for producing Figure 6.1. 

else H " = W H " 

Step 2: Evaluate new weighting matrix W such that 

f r^-T, for m — n; 

0, otherwise. 
Go to Step 1 

Step 3: The excitation vector u = uw. 

This weighting algorithm, although straightforward, proved to be very useful in in­

creasing the array excitation efficiency to near 100% with most field patterns. As 

a typical example of the performance of this weighting algorithm, consider the field 

pattern shown in Figure 6.1. The amplitude distribution corresponding to this case 

is shown in Figure 7.1. This signal has a large dynamic range which would result in 

low excitation efficiency. Indeed, the array excitation efficiency corresponding to this 

distribution is only 30%. To increase the array excitation efficiency, the weighting 
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Figure 7.2. Amplitude distributions obtained by the pseudoinverse 
method with different weightings. WO no weighting, Wl 
weighted once, and VV5 weighted five times. 

algorithm described herein was applied to the excitation vector. Figure 7.2 shows the 

amplitude distributions of the excitation vectors for the unweighted solution (WO), 

the weighted solution after one iteration (Wl), and the weighted solution after five 

iterations (W5). The array excitation efficiency was improved to 78.4% after the first 

iteration and to 97.3% after the fifth iteration. Figure 7.3 shows the corresponding 

intensity profiles in the focal plane. This result indicates clearly that the increase 

in the array excitation efficiency translates into an increase in the power deposition 

level in the field. 

Another advantage of the weighting algorithm is that it could provide a possible 

means of phase-only synthesis, i.e., the excitation vectors have uniform amplitude 

distributions. To demonstrate this with an example, the amplitude distribution of the 

W5 case above was replaced by a uniform amplitude distribution while maintaining 
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Figure 7.3. Intensity profiles in the focal plane corresponding to dif­
ferent weighted solutions shown in Figure 7.2. 
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Figure 7.4. Intensity profile of phase-only excitation vector distribu­
tion obtained from W5 solution with uniform amplitude. 

the phase distribution. When this new excitation vector was used to compute the 

field in the focal plane, the intensity profile of Figure 7.4 resulted. 

7.3 Optimization of Intensity Gain 

The definition of the intensity gain given in Chapter 7 provides a measure of the 

efficiency with which the power available at the surface of the array is transmitted 

to the control points. The formula derived for this quantity based on the minimum-

norm solution is given by 

G = 
P ' P (7.1) 

p-'fHH-'J-'p 

One can see that, for a certain selection of control- point locations (which determines 

H) , the value of intensity gain is a function of the complex pressure values at the 

control points. 

Typically, the pressure levels at the control points are chosen based on the desired 
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power deposition at these points, which is a phase-insensitive quantity. This gives 

one the freedom of choosing the phases of the complex pressures at the control 

points to maximize the gain. Two approaches were taken in solving this problem. 

The first approach was to choose an arbitrary initial phase distribution for complex 

pressure at the control points and incrementally change the phases at these points 

in a direction that maximizes G. This led to the iterative procedure given in the 

following subsection. 

The second approach was to determine the control-point vector with arbitrary 

amplitude and phase distribution that maximizes G. The phase distribution at 

this maximizing vector was then combined with the amplitude distribution specified 

by the desired power deposition at the control points. This approach results in a 

"suboptimal" solution. However, it can be evaluated directly and typically results 

in a dramatic improvement in intensity gain at the control points. This approach is 

described in Section 7.3.2 below. 

7.3.1 Iterative method for gain maximization 

This method assumes that the vector p of complex pressures at the control 

points takes the following form 

/ Pie*1 \ 

0ii2 
#<!' 

(7.2) 

\ p w ^ V 

where the p;'s are the initial complex pressures at the control points and the -y/s 

are the correction phases to be determined. Examining the numerator of the for­

mula for G shows that the term p*'p is constant independent of the choice of the 

7;'s. Hence maximizing G amounts to minimizing the term in the denominator 

T = p* !(HH*')"1p, which can be expressed as a double sum of the form 

r = E E p ; ^ P n e ^ - ) , (7.3) 
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where Smn is the mnth element of the matrix (HH*') - 1 . Now, taking the derivative 

of T with respect to 7/ yields 

ay 

ar = - # e"̂  E^p.^" +;p/^ Ep;«"^^,. (7.4) 

Using the fact that (HH*') _ 1 is Hermitian, i.e., Smn = S*m, and setting the derivative 

equal to zero results in an extremum at 

7, = arg (E&nP"^") +&%W- (75) 

For 7/ to be a minimum, the condition 

| | > 0 (7.6) 

must be satisfied at 7/. The second derivative can be easily obtained and shown to 

have the following form 

52r 
= -2Kc ^ p]e-jn _ -2Rc ^ p ; e - ^ ' ^ ^ p , e ^ " } , (7.7) 

which shows clearly that if 7, corresponds to a maximum, then 7; + -K corresponds 

to a minimum. 

The derivation shown above suggests that the current value of 7, that minimizes 

T (maximizes G) is a function of all the other 7,/s. This means that the final phase 

distribution of the complex pressure on the control points needs to be determined 

iteratively. An iterative algorithm to determine the optimal phase distribution at 

the control points is as follows: 

S(epO; Choose 7r\72°\-..,7M 

Step 1: For z = 1,2,... Do Steps 2 and 3 

Step 2: For / = 1 ,2 , . . . ,M 

Compute 
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7P = arg(pfD) 

If 

Then next / 

Else 7f
f) = 7{° + 7T Next / 

Step 3: Update the pm 's 

Pm=Pmei^ for m = 1,2, ...,M 

I f | 7 ^ - 7 ^ l < ( V m = l , 2 , . . . , M 

Then Stop 

Else Go to Step 1. 

One problem encountered with this technique is its slow convergence. This is due to 

the fact that the phases are updated one at a time and not as a vector. Although 

the computation time involved for implementing this technique is not very large, it 

would be desirable to find a more efficient gain maximization scheme. The following 

subsection describes such a scheme. 

7.3.2 Direct method for gain maximization 

This method replaces the vector p by a vector p which is assumed to have 

arbitrary amplitude and phase distribution and seeks the value of p which maximizes 

G. Once the maximizing vector is found, its phase distribution is used to determine 

the phase distribution for the vector p as illustrated below. 

This technique starts by expressing G as a function of p as follows: 

G = p-'(mA-ip' (7,S) 

Rearranging this equation and taking the derivative of G with respect to p, one 
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obtains 

p " ( H H " ) - i ( 3 + p ^ ( H H * 0 _ 1 P ^ = P"'. (7.9) 

Setting the derivative to zero and taking the conjugate of the equation yields 

(HH*')p = Gp. (7.10) 

This is an eigenvalue problem, the solution of which is the eigenvector corresponding 

to the largest eigenvalue of the matrix (HH" () [15]. 

The amplitude distribution of the vector p does not correspond to the specified 

pressure amplitudes at the control points. However, it is possible to achieve increased 

intensity gain by choosing the elements of the vector p such that 

Pi = | p , y "*<*> for i = 1, 2 , . . . , M (7.11) 

where the |p,-|'s are the specified amplitudes of complex pressures at the control 

points. This technique provides a fast direct means of maximizing the intensity 

gain. Although this method yields a suboptimal solution, it proved useful in produc­

ing dramatic reductions in the interference patterns associated with several useful 

multiple-focus patterns. Furthermore, the iterative gain maximization algorithm de­

scribed in the previous section often converges to the phase distribution obtained by 

this direct approach. 

To demonstrate the effect of the direct gain maximization method described in 

this section, it will be applied to the field patterns shown in Figure 6.5 (three-focus 

pattern) and Figure 6.7 (annular ring pattern). Using a 12 x 10 CSA2D, a three-

focus pattern was synthesized by focusing the array at three points symmetrically 

distributed along a vertical line at a depth of 140 mm and 15 mm off-axis distance. 

The control points were placed at z = —10, 0,10 with equal relative intensity. This 

case is equivalent to the case shown in Figure 6.5. The phases at the control points 

were determined using the gain maximization algorithm. Using these phases, the 
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a) 2 = 0 plane. 

b) Focal plane. 

Figure 7.5. Intensity profiles of a three-focus field pattern produced 
by the CSA2D using the pseudoinverse method with gain 
maximization. 
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three-focus pattern shown in Figure 7.5 resulted. The field pattern obtained with 

gain maximization is different from the unoptimized case in two ways. First, the three 

foci are more distinctly separated from each other in the optimized case. Secondly, 

and more importantly, a dramatic decrease in the interference pattern in the z — 0 

plane occurred. As will be shown in Chapter 8, this reduction in the interference 

pattern will have a profound effect on the scanned field pattern. In fact, the field 

pattern shown in Figure 6.5 will be shown to fail in inducing localized heating for a 

simple scan path. The optimized three-focus pattern successfully generates localized 

heating when used to scan the same path. 

The removal of the interference pattern achieved by the gain maximization algo­

rithm is not a special case. In fact, it is the rule rather than the exception. This 

should not be very surprising if one considers the physical significance of the intensity 

gain. This quantity represents the ratio of the effective cross section of the wavefront 

at the surface of the array to the effective cross section of the wavefront in the focal 

plane. Since the effective cross section of the wavefront in the local plane is fixed by 

the selection of the control points, the gain maximization amounts to maximizing 

the effective cross section of the wavefront at the surface of the array. The fact that 

the wavefront converges to the focal plane from a larger cross section minimizes the 

chances of interference between the different components of the wavefront as they ap­

proach the focal plane. The following example also shows that the gain maximization 

method significantly reduces the interference patterns associated with annular-ring 

patterns. 

The SSA was used to directly synthesize an annular ring with 30 mm diameter 

parallel to the aperture of the array at a depth of 100 mm with its axis coinciding 

with the central axis of the array. A total of 28 control points were uniformly 

distributed around the ring with equal pressure magnitude assigned to each point. 

The phases of the complex pressure at the control points were determined by the 
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gain maximization algorithm. This case is equivalent to the case shown in Figure 6.7. 

Figure 7.6 shows the intensity profiles of the annular ring field pattern synthesized 

using the pseudoinverse method with the gain maximization algorithm. Comparing 

this field pattern to Figure 6.7 clearly shows that the gain maximization algorithm 

removes the axial interference pattern prior to and beyond the focal plane. Examining 

the focal pattern of the annular ring shows that a distinct focal spot now appears for 

every focal point. This is due to the fact that the pressures at the control points are 

no longer in phase with each other and the pressure field switches its polarity between 

consecutive control points which produces zeros in the field. This is also an indication 

of the higher divergence of the wavefront outside the focal plane which explains the 

disappearance of any high intensity interference patterns from the synthesized field. 

The significance of the gain maximization technique becomes even more remark­

able when it is compared with the phase rotation technique described in Section 6.5. 

The annular ring pattern described above was synthesized using the pseudoinverse 

method with the phases of complex pressures at the control points set according to 

Equation (6.41) with m = 4 and M = 28. Figure 7.7 shows the resulting intensity 

profiles. As indicated in the previous chapter, the phase rotation technique results in 

removing the axial interference patterns beyond the focal plane. However, the result 

still shows high-intensity interference prior to the focal plane. This result is typical 

of what can be obtained using the phase rotation index. In general, one cannot 

"choose" a specific value of the phase rotation index that will result in "optimum" 

intensity gain or minimize the interference pattern prior to the focal plane. 

Finally, it is instructive to examine the phase distribution of the complex pressures 

at the control points which is chosen by the gain maximization technique. Figure 7.8 

shows the phase distribution determined by the gain maximization technique at 28 

control points (indexed 1 to 29) uniformly distributed around a 30 mm annular 

ring. A close examination of this seemingly random phase distribution reveals an 



100 

a) z = 0 pi ane. 

b) Focal plane. 

Figure 7.6. Intensity profiles of an annular ring pattern produced by 
the SSA using the pseudoinverse method with gain max­
imization method. 
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a) z = 0 plane. 

b) Focal plane. 

Figure 7.7: Intensity profiles of a directly synthesized annular ring 
using the pseudoinverse method with phase rotation tech­
nique with m = 4 and M = 28. 
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Figure 7.8. Phase distribution of complex pressures at 28 control 
point on a 30 mm diameter annular ring as determined 
by the gain maximization technique. 
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interesting property. Any two points that are TT radians apart spatially (opposing 

points on a ring, e.g., points 1 and 15) have complex pressures that differ in phase by 

±7r radians. This phase difference is shown in Figure 7.9 where the abscissa represents 

the spatial indices of the first 14 points only (the phase difference shown at every 

point is that between the complex pressure at that point and the opposing one on 

the ring). This phase distribution guarantees the removal of the axial interference 

pattern. 

7.4 Optimal Placement of Control Points 

The definition of the pseudoinverse operator given in the previous chapter is 

based on an integral operator of the form given in Equation (6.7). This equation 

is known as a Fredholm integral equation of the first kind [76]; it is known to be 

ill-posed in the sense that small changes in the observation vector result in large 

changes in the solution. However, for the purposes of this thesis, the discretized 

form of this equation for the minimum-norm case (number of control points is less 

than the elements of the array), results in a matrix operator that is generally well-

conditioned. This is true for cases when the control points are arbitrarily distributed 

in the field and sufficiently spaced apart. 

Chapter 5 described the different methods of heating pattern generation. Two 

important methods are diffuse-focus scanning and direct synthesis of heating pat­

terns. In both of these methods, the synthesized field pattern is generated by the 

selection of the set of control points along a specified trajectory, e.g., annular ring or 

line. In such cases, an important question arises; given the location and the dimen­

sions of a focal pattern to be synthesized, what is the optimal number and locations 

of control points along the specified trajectory that will result in a well-conditioned 

propagation operator that results in the desired field pattern? 

To attempt to answer this question, one would need a definition of the "condition" 

of a matrix operator which takes the following form: 
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Figure 7.9. Phase differences between opposing points on the annular 
ring. 
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Definition 1 A matrix H is said to be i l l-conditioned if relatively small changes 

in the entries <?/H can cause relatively large changes in the solutions to H u = p . A 

matrix H is said to be well-condit ioned if relatively small changes in the entries 

o / H result in relatively small changes in the solutions to H u = p . 

It is important to note that if the matrix H is ill-conditioned, then the synthesis 

problem will result in large error even if the entries of H are represented exactly as 

floating-point numbers. On the other hand, a well-conditioned propagation matrix 

results in a robust synthesis of the desired field pattern. To be able to assess the 

conditioning of a propagation operator, one would need a measure which could be 

used to derive a bound for the relative error in the computed solution. This measure 

is provided by the condition number of H, cond2(H). For M < N, the condition 

number is given by 

cond2(H) = — , (7.12) 
0~m 

where o~\ and am are the largest and smallest singular values of H, respectively. The 

condition number, cond2(H), equals the product || HH*' ||2 || (HH*') _ 1 ||2 where 

the norm of the matrix HH*' is defined by the operator norm 

H H H " » 2 = l ? # L w t (7'13) 

which can be shown to be equal to cr1, the largest singular value of H. The larger the 

value of ccmc/2(H), the closer the matrix to being singular. If the vector e u represents 

the error in u and the vector e p represents the corresponding error in p, then the 

relative errors are related by the following 

which suggests that the relative error in the synthesized field is directly proportional 

to the relative error in the excitation vector via the condition number of the propa­

gation matrix. That is, the relative error in the excitation vector is amplified by the 



106 

condition number of the matrix, which can be extremely large if the matrix is nearly 

singular resulting in large errors in synthesis. 

The condition number of the matrix H also provides valuable information on the 

sensitivity of the pseudoinverse solution to errors in the entries of H. If the matrix 

E H represents the error in the entries of H, then the relative error in the solution to 

H u = p due to the error in the entries of H is bounded by 

II » P " " ' II H |P ' 
where the matrix norms are defined similarly to Equation (7.13) above. These results 

demonstrate the importance of the conditioning of the matrix H on the synthesis 

process. Therefore, when one has a choice of selecting a specific arrangement of 

control points, the optimum arrangement is the one which results in the lowest 

condition number of the propagation matrix H. 

The choice of the number of control points and the spacing between them is 

explained by the following two examples. First, consider the annular ring pattern 

described above. For a fixed radius of the focal ring, the number of control points 

on the ring was incremented from 12 points in steps of 4. The condition number of 

the propagation matrix was recorded for each case. Figure 7.10 shows the behavior 

of the condition number as a function of the number of control points. The figure 

shows a sharp increase of the condition number when the number of control points is 

increased beyond 32. When the same experiment was repeated for a ring of 10 mm 

diameter, the condition number exhibited this sharp increase for numbers of control 

points larger than 40. This result is shown in Figure 7.11. 

From the results shown in Figures 7.10 and 7.11, one might be tempted to relate 

the sharp increase in the condition number to the increase in the number of control 

points. It turns out that the number of control points is not responsible, by itself, 

for this sharp increase in the condition number. Rather, it is the spacing between 

the control points that causes this behavior. To show this, the condition number was 
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Figure 7.10. Condition number of propagation matrix vs. number of 
control points on a 30 mm diameter ring. 
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Figure 7.11: Condition number of propagation matrix vs. number of 
control points on a 40 mm diameter annular ring. 
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plotted against the spacing between the control points for the two cases discussed 

above. The results are shown in Figure 7.12. The figure shows that the two curves 

are almost identical when plotted against the spacing between control points. 

The results shown in Figure 7.12 suggest that the ill-conditioned nature of the 

propagation matrix starts to appear as the spacing between the control points ap­

proaches 3 mm. This spacing corresponds to the width of the focal spot produced 

by the SSA. To see if this is the parameter that is causing the propagation matrix 

to become singular, the condition number of the propagation matrix associated with 

the diffuse focus pattern shown in Figure 6.5 was examined. The number of control 

points along the vertical line from z = —10 to z = 10 was incremented from 5 in steps 

of 2. Figure 7.13 shows a plot of the condition number against the spacing between 

the control points along the line. This case shows that the matrix approaches singu­

larity as the spacing between control points approaches 5 mm which corresponds to 

the height of the focal beam for a single focus. In general, the propagation matrix 

becomes ill-conditioned when the spacing between the control points in any direction 

is comparable to the dimension of the focal beam in that direction. 

7.5 Effect of Quantization 

Usually the elements of the excitation vector, u, are obtained theoretically 

assuming infinite precision representation. For practical realization, however, the 

elements of u must be quantized to a fixed number of bits. As a consequence, the 

realized field pattern differs from the ideal one which would have been obtained if 

the elements of u were realized with infinite precision. This adds another source of 

error to the synthesis process. The error bounds for the reconstructed field can be 

obtained using Equation (7.14) from the previous section. This section, however, 

aims at providing some examples to identify conditions under which error due to 

quantization can be significant. An iterative method for the reduction of error clue 

to quantization is also given. 
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Figure 7.12: The results of Figures 7.10 and 7.11 plotted against the 
spacing between control points. 
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Figure 7.13: The condition number of a propagation matrix responsi­
ble for generating a diffuse focus against the number of 
control points. 
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The driver circuit to the array elements is assumed to be capable of independently 

setting the amplitude and phase of the excitation signal at each element. The digital 

driver circuit is assumed to generate a periodic rectangular pulse of the form 

(A t-<f><\r\, 
/(*) = { , (7.16) 

l O \r\<t-<t><T; 

and 

/(<+n = /w, (7.17) 

where T is the period of the pulse, <j> represents a time (phase) shift, and | ^ | is 

the duty cycle. A matching circuit which passes only the fundamental component 

of this signal to the piezoelectric elementis assumed to be used. From the Fourier 

series representation of f(t), the Fourier coefficient of the fundamental frequency of 

this signal is given by 

^ - ( i ) . - ^ ™ ( = ) (7.1S, 

which defines the amplitude, ( £ j sin (y-), and phase, ^ , of the driving signal to 

the transducer element. 

Quantization allows r and A to assume a finite number of discrete values de­

termined by the number of bits supported by the digital controller. The digital 

controller used to drive the array is assumed to provide 3-bit amplitude quantization 

and 4-bit phase quantization. Consequently, the phase shift can assume the values 

determined by 

T An = n-; for n = 0 , 1 , . . . , 2 ^ - 1 . (7.19) 

The duty cycle can take values determined by 

1 . _i [*\ai\ 
— > = —sin 
Tin TT \ A 

T 
= n—; for n = 1,2,... ,2 3 - 1. (7.20) 

The latter equation implies that the maximum duty cycle allowed is 0.5 (50 %). 

The quantized phase, <j>q is obtained from its continuous value, <p, according to the 
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following rule: 

46, = * . ; for &, < < t + ^ <&.+! , (7.21) 

where A<f> = ?£ is the phase quantization step. The quantization rule given herein is 

nothing more than a rounding operator. Similarly, the quantized duty cycle, | ^ | , 

is obtained from its continuous value, \f\, according to the following rule: 

where AT = -^ is the duty cycle quantization step. 

The phase and amplitude quantization levels given above were determined to 

be sufficient for the accurate generation of single-focus field patterns. Independent 

simulations and experimental data obtained with an existing phase and amplitude 

controller (with the same quantization levels) support this claim. However, when 

synthesized multiple-focus patterns are generated with the quantized phase and am­

plitude levels given above, one needs to examine the effect of quantization on the 

"quality" of the resulting pattern. The "quality" of the resulting pattern is deter­

mined based on a "measure" of the error between the reconstructed pattern and 

the ideal pattern which would be obtained assuming infinite precision phase and 

amplitude control. 

To demonstrate the effect of quantization on the synthesis process, consider the 

four-focus pattern given in Figure 6.1. Figure 7.14 shows the intensity profiles of the 

ideally reconstructed pattern (solid line) and the quantized pattern (dashed line). 

(The term quantized pattern means the reconstructed field pattern with quantized 

excitation vector.) One can make two observations from examining the quantized 

pattern. The first is that the four focal points are still clearly identifiable in the 

reconstructed field and they occur at their original positions. This is generally true 

for multiple-focus field patterns, i.e., the error due to quantization is not likely to 

result in total loss of the synthesized pattern. The second observation is that there 
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Figure 7.14. Intensity profiles of the ideally reconstructed four-focus 
field pattern (solid line) and the reconstructed field pat­
tern with quantized excitation vector (dashed line). 
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is some directionality associated with the resulting error; one can see clearly that the 

focus at x = 0 suffers the most from quantization. This also indicates a general trend 

in the effect of quantization errors on the reconstructed fields. The maximum error 

in the reconstructed field can be expected to occur at those control points where the 

array has maximum directivity. To illustrate this, let the quantized excitation vector 

be 

u , = u + eu , (7.23) 

where u is the unquantized excitation vector and e u is the error due to quantization. 

The resulting error in the reconstructed field can be given by 

e p = He u . (7.24) 

The error at the ith control point can be expressed explicitly in terms of the rows of 

the propagation matrix as follows: 

epi = h ,eu , (7.25) 

where h, is the ith row of the matrix H. Using the Cauchy-Schwartz inequality, the 

upper bound of this error can be given by 

m a x | e p i - | 2 = | | h 1 | | 2 | | e u | | 2 . (7.26) 

Recognizing that || h, ||2 is nothing more than the directivity of the array at the ith 

control point, one can see that the maximum error in the reconstructed field is likely 

to occur at points where the directivity of the array is maximum. This maximum 

error occurs when h*' = 7 e u where 7 is a real constant, i.e., the e u is in phase with 

h"'. On the other hand, the error will be zero when h"' and e u are orthogonal. 

The above discussion gives the value of the maximum possible error in the re­

constructed field at any one of the control points. Therefore, by the mere selection 

of the control points (and consequently forming the operator H) , one can identify 
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the control points where this error is likely to be maximum. However, the actual 

error distribution varies randomly from one pattern to another. More precisely, it 

varies from one excitation vector to another. Figure 7.15 shows the quantized field 

patterns in the focal plane corresponding to those given in Figure 7.6a (28 control 

points around a 30 mm diameter annular ring with gain maximization) and Fig­

ure 7.7a (same as Figure 7.6a but obtained with the phase rotation method with 

m = 4). One can see from these results that the first observation made above is still 

true. 

To minimize the error in the reconstructed field due to quantization, the following 

simple algorithm was implemented based on the conjugate gradient, CG, algorithm 

given in Section 6.4. 

Step 0: Find u0. The infinite precision excitation vector. 

Step 1: For i = 1,2,.. . iterate. 

Find u , = (5[u,_i]. The quantized excitation vector. 

If || e p | |2< e Go to Step 3. 

Step 2: Use CG algorithm with u0 = u7 to find new infinite precision vector u,-. 

Go to Step 1 

Step 3: Excitation vector u = u,. 

In the above algorithm, Q[-\ denotes quantization, and e p is as in Equation (7.17) 

above. Applying this algorithm to the four-focus field pattern shown in Figure 7.14 

resulted in the field pattern given in Figure 7.16. This result shows that a reduction 

in error due to quantization is possible using this algorithm. 

Finally, the fact that the error in the reconstructed field has a directivity suggests 

that more than one error measure be used in examining the effect of quantization. 

The L2 norm of the vector ep , </|| e p ||2, gives a measure of the square error in the 
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a) Quantized annular ring pattern (Gain maximization). 

b) Quantized annular ring pattern (Phase rotation with m = 4). 

Figure 7.15. Quantized annular ring patterns. 
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Figure 7.16. Intensity profiles of the ideally reconstructed four-focus 
field pattern (solid line) and the reconstructed field pat­
tern with quantized excitation vector with reduced quan­
tization error (dashed line). 
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reconstructed field. The Lp norm of ep , defined as 

l|epllp=(E^j ' (7-27) 

gives a measure of the absolute maximum error in the reconstructed field (when 

p —> oo). An optimal quantization scheme can be designed to minimize both of these 

measures simultaneously. This would result in minimizing the square error while 

maintaining the uniformity of error distribution over all the control points. The 

effect of quantization is analyzed in more detail in [28]. 
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C H A P T E R 8 

EXAMPLES OF HEATING PATTERNS 

8.1 General 

This chapter discusses examples of simulated phased-array heating patterns 

as described in Chapter 5. Rather than giving an exhaustive list of examples for 

the different combinations of applicator geometries and heating pattern generation 

methods, this chapter aims at defining the heating pattern generation as a design 

problem. Towards this objective, the various steps for choosing driving signal dis­

tributions based on the specified tumor size and geometry are highlighted. This is 

followed by the definition of a set of performance criteria or figures of m,erit for heat­

ing patterns for the evaluation of their heating efficacy. Section 8.2 describes the 

parameters used simulating both acoustic wave propagation and thermal response to 

power deposition patterns. Section 8.3 discusses energy considerations which guide 

the choice of a specific heating pattern generation method. This is followed by Sec­

tion 8.4 which defines some figures of merit for the evaluation of the heating efficacy 

of power deposition patterns. Sections 8.5 and 8.6 discuss specific heating pattern 

generation methods. 

The example discussed in Section 8.5 of this chapter is chosen to illustrate the use 

of multiple-focus scanning as an alternative for single-focus scanning. The multiple-

focus scanning is performed using multiple-focus beams obtained both with and 
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without the gain maximization technique described in Chapter 7. The results indicate 

that gain maximization plays a vital role in inducing localized heating when multiple-

focus scanning is used. Section 8.6 discusses the direct synthesis of annular ring 

heating patterns. 

8.2 Model Parameters 

The propagation model used in this chapter and throughout this thesis is assumed 

to be homogeneous and lossy. The speed of sound is assumed to be 1500 m/s and the 

density is assumed to be 1000 kg/m3. The attenuation coefficient, a, was taken to be 

0.01 neper/mm at 1 MHz. The frequency dependence of the attenuation coefficient 

was assumed to follow the power law 

o = o.(/r, (s.i) 

where a0 is the attenuation coefficient at 1 MHz, / is the frequency in MHz, and 7 

is a constant. The value of 7 used in the simulations was taken to be 1.1 [11]. All 

the simulations were performed at an operation frequency of 500 kHz. 

The thermal model described in Chapter 3 is used throughout this chapter. The 

blood perfusion is assumed to be uniform throughout the treatment volume (includ­

ing the tumor). The tumor tissues are assumed to be the same as normal tissues 

both for acoustic wave propagaion and thermal conduction. The rest of the model 

parameters are shown in Figure 3.2 (the thermal conductivity, K, is given in SI 

units). The boundary conditions are such that the skin temperature is kept constant 

at 25°C and the walls of the treatment volume are at the body temperature of 37" C. 

The absorption coefficient was assumed to be equal to the attenuation coefficient. 

This thermal model is adapted from one used in [26]. 

8.3 Energy Requirements 

Simple design formulae have been derived for computing the power dissipation 

inside a spherical tumor volume which would raise its temperature to a specified 
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level both under transient and steady-state conditions [4]. For example, the power 

required to sustain Tn °C of hyperthermia inside a spherical tumor of radius rt can 

be estimated by 

Pt = 4%r, ThK, (8.2) 

where K is the thermal conductivity of the tissue. Of course, the power deposition 

inside the tumor is concentrated around a finite number of points in the tumor volume 

(the focal points along the scan path or the control points in a directly synthesized 

pattern). For clarity, the following discussion will assume that the selected points 

inside the tumor correspond to the focal points along the scan trajectory. 

The total power in the tumor can be approximated by 

.= i 

where Qi is the power deposition level at the z'th focal point, and % is the effective 

volume of the focal spot, and Nj is the number of focal spots along the scan trajectory. 

Assuming that the effective size of the focal points does not change as they traverse 

the scan trajectory and equal power deposition at each of these points, the power 

deposition at each point can be given by 

Q." = ^ , (8.4) 

where V is the effective size of any focal point along the scan trajectory. 

The pressure level at a focal point can be determined as follows: 

1. The spatial-peak time-average intensity at a focal point is given by 

T Vau 

4 , ^ = ^ 

where a is the absorption coefficient. 

2. Assuming equal dwell time at each focal point, the factor j in Equation (2.7) 

becomes ^ - where N/ is the number of focal points along the scan trajectory. 
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Therefore, the spatial-peak pulse-average intensity at the focal point can be 

given by 

^ ^ = - 2 ^ - ' 

This quantity is very important because it determines the spatial-peak time-

peak intensity level, ISPTP-

3. The pressure magnitude at the focal point is given by (using Equation (2.6)) 

„ = .MW. 
a 

This value is then used to determine the excitation vector, u, at the surface of 

the array corresponding to this focal point. 

The above procedure can be modified to accommodate multiple-focus scanning in a 

straightforward manner. Assuming that a multiple-focus pattern with nj foci is used 

to replace the single-focus pattern in scanning the same trajectory, the above steps 

can be used in the multiple-focus case in the same way by substituting -^- for Nj in 

steps 1, 2, and 3 above. 

8.4 Evaluation of Heating Patterns: Figures of Merit 

The choice of a specific applicator or heating pattern generation method depends 

on such factors as availability, constraints, and efficacy for a specific tumor environ­

ment. Assuming that the therapist has a choice of different alternatives for a specific 

situation, it would be useful to guide his or her choice by defining some figures of 

merit for the realized heating patterns. The following parameters were identified as 

possibly useful performance criteria for heating pattern generation methods: 

1. Power Concentration Ratio, TJQ. 

This parameter expresses the ratio of the average power deposition in the tumor 

to the average power deposition in the treatment volume, i.e., 

_±fVtQ(v)dV 
^ ^W(i#/' 
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where Vt and V are the volumes of the tumor and the treatment regions, 

respectively. This parameter is defined in a similar way to the directivity 

function of an antenna. It reflects the ability of a heating pattern to concentrate 

energy in a tumor. 

2. Average Power at the Surface of the Array, PA-

This quantity is important from the engineering point of view. It determines 

whether or not a specific applicator is capable of providing the necessary power 

deposition in the tumor. It is also important if the operating efficiency of a 

specific applicator is taken into consideration. 

3. Percentage of Tumor Volume over 43°C, 7743. 

This parameter has obvious clinical value since 43°C is the accepted value by 

most clinicians as the threshold for therapeutic heating. This parameter, com­

bined with the maximum temperature outside the tumor volume, is probably 

the ultimate parameter for evaluating the efficacy of a specific heating pattern. 

The heating patterns discussed in the following sections will be compared based on 

these parameters. The value of the power concentration ratio, TJQ, as an indicator of 

heat localization will become apparent from the following results. 

8.5 Single-Focus Scanning versus Multiple-Focus Scanning 

A 12 x 10 CSA2D array with a radius of 140 mm and an angular opening 

of 90° was chosen to heat a 30 mm diameter spherical tumor centered at a depth 

of 90 mm beneath the skin. For comparison purposes, both single-focus scanning 

and multiple- focus scanning were used to generate the same heating pattern in the 

treatment region. The heating pattern was specified for conventional scanning by 

choosing a scan trajectory which consists of 27 points distributed over three rhombi 

as shown in Figure 8.1. The rhombi were positioned at z = —10, 0, and 10 mm with 
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Figure 8.1. A 27-point scan trajectory consisting of 3 rhombi fitted 
inside a 30 mm diameter tumor. 

their centers at the same vertical line passing the center of the tumor. The sides 

of each rhombus were 17 mm. The array was positioned such that its geometrical 

center coincides with the back of the tumor, i.e., the center of the tumor is 130 mm 

from the vertex of the array. 

The blood perfusion in the treatment volume was assumed to be uniform with 

a value of 5 kg/m3/sec. Experience with the BHTE shows that Equation (8.2) 

underestimates the power requirement for well-perfused tumors. Therefore, based 

on that equation and allowing for blood perfusion, the power dissipated within the 

tumor volume to sustain a 1°C hyperthermia was determined to be 2.5 W. Using 

Equation (8.4), the time-average power deposition level at each of the focal points 

was specified to be 0.4 W/cm3 which requires a focal intensity ISPPA = 108 W/cm2 

at each of the scan points specified above (the effective volume of the focal spot is 

nearly 200 mm3, see Section 4.3). The single-focus field patterns needed to traverse 
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the scan path were synthesized using the pseudoinverse method. The average power 

at the surface of the array, PA was 81 W. Figure 8.2 shows the resulting scanned field 

intensity profile. The maximum power deposition was 0.48 W/cm3 . The increase 

in power deposition in the field is due to the overlap in the intensity profiles of the 

different foci which always add to each other. The power concentration ratio for this 

pattern, TJQ is 18.1. The resulting temperature profile is shown in Figure 8.3. The 

percentage of the tumor over 43°C, 7743 is 88% with a maximum temperature equal 

to 46.1°C occurring inside the tumor. This result indicates that the single-focus 

scanning successfully achieves localized heating in the tumor volume. Although the 

41°C profile can be seen to extend from the skin surface to the tumor, this is not 

considered to be an objectionable condition. The only potential problem with this 

technique is that the spatial-peak pulse-average intensity might be objectionable if 

it causes cavitation or intensity saturation to occur. 

The three-focus field pattern shown in Figure 6.5 was designed to substitute 

for the single-focus scanning technique in generating the heating pattern described 

above. The average power available at the surface of the array necessary to produce 

2.5 W inside the tumor was 73 W. The three focal points correspond to three points 

on the scan trajectory that lie on a vertical line shown in Figure 8.1. The maximum 

focal intensity needed in this case is 36 W/cm2 which is probably safe under ordinary 

conditions. However, as shown in Figure 8.4, the scanned field pattern exhibits large 

power deposition build-up outside of the tumor which cannot be tolerated. This 

power deposition build-up is due to the interference pattern appearing in Figure 6.5. 

Figure 8.5 shows the temperature profile produced by the power deposition pattern 

of Figure 8.4 which shows clearly that the power deposition build-up leads to unac­

ceptable temperature levels outside the tumor. The highest temperature outside the 

tumor was 44.5°C which occurs near the skin. The power concentration ratio, TJQ, 

for this pattern was 18.1 and the percentage of tumor volume over 43°C was 81%. 
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Figure 8.2. Heating pattern generated by single-focus scanning of 
trajectory shown in Figure 8.1. 

Figure 8.3. Temperature profile resulting from the heating pattern 
of Figure 8.2. 
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Figure 8.4. Heating pattern generated using multiple-focus scanning 
with the three-focus pattern shown in Figure 6.5. 

Figure 8.5. Temperature profile resulting from the heating pattern 
shown in Figure 8.4. 
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The three-focus pattern shown in Figure 6.5 fails to provide a viable alternative 

to single-focus scanning. Although it reduces the required focal intensity to an 

acceptable level, it generates unacceptably high power deposition build-up outside 

the tumor volume. This problem is effectively solved by using the three-focus pattern 

of Figure 7.5 which was obtained with the gain maximization technique. The scanned 

field profile resulting from scanning this three-focus pattern is shown in Figure 8.6. 

This power deposition pattern results in the steady-state temperature distribution 

shown in Figure 8.7. The average power available at the surface of the array was 

86 W. The power concentration ratio was 17.6, and the percentage of tumor over 

43°C was 87.1%. These results indicate clearly that the gain maximization technique 

successfully generated localized heating of the tumor. As a matter of fact, the results 

clearly indicate that it outperforms the single-focus scanning. 

8.6 Directly Synthesized Annular Heating Patterns 

Directly synthesized annular-ring patterns similar to that shown in Figure 7.6 

can be very useful in heating tumors with spherical or cylindrical geometries. The 

gain maximization technique described in Chapter 7 allows such heating patterns 

to be synthesized to produce the desired profile in the focal plane while the rest of 

the treatment volume is virtually free of high-intensity interference patterns. This 

eliminates one of the major disadvantages of using directly-synthesized patterns for 

localized heating. This section illustrates the use of such patterns in heating a 30 

mm diameter tumor centered 90 mm beneath the skin. 

As in the previous section, the power required to maintain a 1°C hyperthermia 

was determined to be 2.5 W. The tumor was to be heated using the directly syn­

thesized annular rin0 pattern shown in Figure 8.8. The 24 mm diameter ring was 

synthesized using 20 control points distributed uniformly around its circumference. 

The effective size of a focal spot generated by the SSA was nearly 0.140 cm3. The 

power deposition value at the control points was determined to be 0.9 W/cm 3 to 
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Figure 8.6. Heating pattern generated using multiple-focus scanning 
with the three-focus pattern (maximum gain) shown in 
Figure 7.5. 

Figure 8.7. Temperature profile resulting from the heating pattern 
shown in Figure 8.6. 
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achieve 2.5 W inside the tumor (based on a blood flow of 5 kg/m3 /s). The power at 

the surface of the array necessary to achieve this power deposition level was 61.6 W. 

The power concentration ratio for this pattern was 44.4. The resulting temperature 

distribution reflects the high-power concentration ratio where one can easily see that 

any significant heating is confined to the tumor region. However, the percentage of 

the tumor volume above 43°C is only 62% which might not be acceptable. Therefore, 

this heating pattern cannot adequately heat the specified tumor volume. 

The annular ring heating pattern of Figure 8.8 fails to deposit sufficient power at 

the center of the tumor. Therefore, for this relatively well-perfused tumor (blood flow 

of 5 kg/m3/sec), a temperature drop occurs in the center of the tumor. This can be 

remedied by direct synthesis of a pattern that heats the center of the tumor as well as 

the periphery. Figure 8.10 shows an example of such a pattern. This pattern consists 

of 30 control points distributed at two annuli, 10 points at the inner (with 12 mm 

diameter) and 20 points at the outer (with 24 mm diameter). The power deposition 

level at each of these control points was determined to be 0.62 W/cm3 to achieve the 

2.5 W power inside the tumor. The pattern was synthesized using the pseudoinverse 

method with the gain maximization technique. The power needed at the surface of 

the array was 68 W. The power concentration ratio was 53.7. Figure 8.11 shows the 

temperature profile resulting from the double-ring heating pattern of Figure 8.10. 

The result shows that the high power concentration ratio leads to a highly localized 

heating. The percentage of the tumor volume above 43°C is 95% and the maximum 

temperature in the tumor is 47.6°C. 

This last example is very significant since it illustrates that a directly synthesized 

heating pattern which is capable of therapeutically heating the tumor is possible. 

This heating pattern eliminates the need for scanning, mechanical or electronic. The 

importance of the gain maximization technique in the generation of such heating 

patterns cannot be overemphasized. Not only does this method increase the power 
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a) z = 0 plane. 

b) Focal plane. 

Figure 8.8. Intensity profiles of a 24 mm annular pattern synthesized 
using the pseudoinverse method with gain maximization. 
The number of control points is 20. 
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Figure 8.9. Temperature profile resulting from the annular ring pat-
tern of Figure 8.8. 
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Figure 8.10: Intensity profiles of a directly synthesized double-ring 
pattern. Inner ring 12 mm diameter, 10 control points. 
Outer ring 24 mm diameter, 20 control points. 
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Figure 8.11: Temperature profile resulting from the double-ring pat­
tern shown in Figure 8.10. 
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deposition at the control points, but it also significantly reduces any high-intensity 

interference patterns prior to and beyond the focal plane. 

Finally, the power concentration ratio, TJQ, seems to provide a good indicator for 

localization of heat in the tumor. This is seen clearly by comparing the results of 

Sections 8.5 and 8.6. The three heating patterns described in Section 8.5 have values 

of TJQ of nearly 18. Although these patterns induce localized heating, the resulting 

temperature profile in each of these cases has a "tail" which extends from the front 

of the tumor toward the skin. This extended heating varies from nicely contained 

(in the case of multiple-focus scanning with gain maximization) to unacceptable (in 

the case of multiple-focus scanning with no gain maximization) with the single-focus 

scanning pattern somewhere in between. On the other hand, the heating patterns 

given in Section 8.6 have more than double the value of TJQ of the previous cases. 

The resulting temperature profiles indicate that the temperature elevation occurs in 

the vicinity of the tumor volume in each case. 
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CHAPTER 9 

A PROTOTYPE CYLINDRICAL-SECTION PHASED 

ARRAY 

9.1 General 

The previous chapters dealt with the theoretical aspects of the phased-array 

pattern synthesis problem. The basic tool for verification of theoretical concepts 

introduced in this thesis was the simulation of wave propagation from the different 

phased-array structures into an infinite homogeneous medium. Computer simulation 

provides a powerful tool for the analysis and synthesis of phased-array heating pat­

terns. It provides a controlled environment in which the researcher can isolate the 

cause and effect factors for the different parameters in the system. This establishes 

one's understanding of the pattern synthesis problem. Furthermore, computer simu­

lation accelerates the research process especially when a high-performance computer 

is used. However, the ultimate goal of the research program that made this the­

sis possible is to design and test prototype phased-array hyperthermia applicators. 

From the engineering research viewpoint, experimental verification of synthesized 

field patterns using a phased-array prototype enhances the validity of the simulated 

field patterns. Furthermore, experimental apparatus would be extremely essential in 

the verification of the validity of more complicated computer models for the inho-

mogeneity of the propagation medium. 
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This chapter describes the initial experience of a prototype cylindrical-section 

phased-array applicator which has been designed and constructed. The applicator 

consists of 64 rectangular PZT-8 ceramic elements 3 mm x 50 mm bonded to an 

aluminum matching plate forming a 75°cylindrical section with a radius of 200 mm. 

Figure 9.1 shows an isometric view of the CSA with a close-up view of the matching 

plate and mounted elements. The transducer elements are individually matched 

to the driving amplifier circuits using the matching circuit configuration shown in 

Figure 9.2. 

9.2 Experimental Setup 

Figure 9.3 shows a schematic diagram of the experimental setup used for testing 

the CSA. The array is driven by a 64-channel amplifier system with independent 

phase and amplitude control of each element. Amplitude and phase resolutions are 

3-bit and 4-bit, respectively. A 16-line Direct Memory Access (DMA) controller card 

is used for loading the proper driving signals to the digital phase and amplitude 

controller and a synthesizer/function generator provides a common clock for all the 

channels to assure proper phasing. The operation frequency is the clock frequency 

divided by 16. A complete description of the driver assembly is given in [27]. 

The acoustic output of the CSA is probed by a Nelson-Towmey needle hy­

drophone. The received electrical signal is digitized and analyzed by a Data Precision 

D6100 waveform analyzer which filters out the broadband noise and performs rms 

measurements for the evaluation of the acoustic field strength at the current location 

of the hydrophone. The probe can be linearly moved in the x-.y- and ^-coordinates 

and rotated in the ^-direction with a Daedal stepper motor stage driven by Daedal 

stepper motor indexers. The controller of the driver/stepper motor assembly is 

provided by a stepper motor control card which is a part of the HP 3852A data 

acquisition and control unit. 
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a) Isometric view. b) Top view. 

c) Close-up view of matching plate with mounted ceramic elements. 

Figure 9.1: The cylindrical-section phased-array prototype. 
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Figure 9.3. Experimental setup for testing the CSA. 
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9.3 Element Characterization Tests 

Two simple tests were performed to characterize the individual elements of the 

array. First, the array elements were driven individually with a fixed amplitude driv­

ing signal and the acoustic signal from each element was recorded at the geometric 

center of the array. This test provides a measure of the scaling of the magnitude of 

the driving voltage as it is converted to particle velocity at the surface of each array 

element. These amplitude scaling factors, ?/,•, vary from element to element. The 

results of this test are summarized in Figure 9.4 which shows the distribution of the 

amplitude scaling factors for the array elements. The nature of the variation in the 

amplitude scaling factors is modelled in the histogram given in Figure 9.5. 

The second test is aimed at estimating the phase shift between the driving voltage 

and the particle velocity at the surface of each array element. This phase shift is a 

variable quantity (from element to element) determined by differences in the electrical 

matching circuit, cable length, and element bonding which might be different for each 

element of the array. To achieve this, the array elements were driven in pairs with 

one element designated as a reference element. Assuming that the driving voltages 

for the reference element and the element under test are VT = AeJ<t>r and K = Ae3*', 

respectively, the corresponding particle velocities at the surface of each element are 

(ignoring mutual coupling between elements) uT — VrVT and «,- = %T,. The complex 

constants VT = aTe:l3r and F; = #,c^ ' account for amplitude scaling and phase shift 

between the driving signals and the surface particle velocity. The complex pressure 

at the geometrical center of the array is given by 

p=D(VrTT + ViTi), (9.1) 

where D is a complex number accounting for the element directivity and propagation 

from the array surface to the measurement point (this factor is the same for all array 

elements when the measurement is performed at its center). The intensity of the 
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measured signal is 

/ = # ( a ? 4 - ^ + 2 ^g(J)) , (9.2) 

where K is a real constant, and J is a complex quantity given by 

J = a,-are''<*'-*'-+A-/H (9.3) 

Clearly, the measured intensity is maximum when arg(J) is zero, or 

A<f>i = (f>i — (j>T 

= & - A . (9.4) 

This quantity, Afa, is a measure of the phase shift between the driving voltage and 

the particle velocity for each element of the array. 

The results of the phase-error measurements are summarized in Figure 9.6 which 

.«hows the phase-error distribution for the CSA ID. Figure 9.7 shows a histogram of 

the phase-error variation. 

9.4 Simulation Algorithm 

An ideal CSA with dimensions corresponding to those given in Section 9.1 was 

simulated in water to find the excitation vector, u, using the pseudoinverse method 

(see Section 6.4). The elements of the vector u were quantized (according to the 

quantization rules given in Section 7.5) and downloaded to the digital phase and 

amplitude controller which provides the electrical driving signal distribution at the 

output of the amplifiers. 

The simulated profiles were obtained by evaluating the Rayleigh-Sommerfeld in­

tegral on the surface of the array with and without accounting for the phase shifts 

and amplitude scaling between the electrical driving signals and the particle velocity 

at the surface of the array. Assuming ideal conditions, the electrical driving signals 

were used as surface particle velocity on their corresponding elements of the array 
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to obtain the simulated intensity profiles. These will be referred to as ideal simu­

lated profiles. Accounting for different amplitude scaling and phase shifts between 

the electrical driving signals and surface particle velocity, the particle velocity at the 

surface of the zth element was assumed to take the value 

u{ = Kmej(A*i+^Vi, (9.5) 

where K is a constant, 7 is a constant phase shift across the matching plate, and %-

is the complex driving voltage to the z'th element. These will be referred to as phase-

compensated intensity profiles, i.e., simulated patterns using the actual measured 

phase shifts between the driving signals and the surface particle velocity. 

9.5 Experimental Results 

The prototype CSA was tested in a water tank at an operating frequency of 

500 kHz. Acoustic field intensity profiles were measured along a transversal line at 

a depth of 200 mm from the vertex of the array passing its geometrical center. The 

span of the measurement line was 40 mm (symmetrical around the axis of the array) 

with spacing between measurement points of 0.2 mm. Simulated intensity profiles 

(both ideal and phase-compensated) were evaluated at 500 kHz at a corresponding 

set of points. 

Figure 9.8 is a graph of the simulated (ideal in solid line and phase-compensated in 

dashed line) and measured (in dashed dotted line) normalized intensity profiles of the 

characteristic focus of the CSA along the measurement line. This focus was formed 

by driving the array with uniform amplitude and phase driving-signal distribution. 

This focus is due to the geometry of the array. The measured intensity profile exhibits 

asymmetrical side lobes. The phase-compensated intensity profile agrees well with 

the measured results for the first three side lobes on both sides of the main beam. 

The intensity at the geometric focus was measured by a calibrated Marconi PVDF 

bilaminar shielded hydrophone (Serial Number IP056). A wideband preamplifier was 
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Figure 9.9. The focal intensity at the geometric focus as a function 
of the dc supply voltage. 

also used ( G. E. C. Identity Y-33-9724, Serial Number IP135). The hydrophone and 

the preamplifier were originally calibrated at the National Physical Laboratory, Eng­

land. Calibration at 500 kHz was performed at the Bioacoustics Research Laboratory 

at the University of Illinois using the suspended ball technique [30]. Figure 9.9 shows 

the focal intensity of the geometric focus of the array as a function of the dc supply 

voltage (which determines the maximum amplitude of the driving signals). The focal 

intensity of the geometric focus shown in Figure 9.8 was 13.5 W/cnf (the dc supply 

level was 20 VDC). 

A shifted focus field pattern was synthesized by focusing the array at a point 

located 10 mm off the axis of the array at a depth of 200 mm from its vertex. 

Figure 9.10 shows the simulated and measured normalized intensity profiles. This 

case also shows that the phase-compensated simulated profile can be used to predict 

the actual intensity profile. 
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The pseudoinverse method was used to synthesize a double-focus field pattern in 

a plane 200 mm deep. The two foci were at -5 mm and 10 mm from the geometrical 

center of the array. Figure 9.11 shows the simulated and measured normalized in­

tensity profiles corresponding to this case. A slight shift of the focus at 10 mm can 

be noticed for both the simulated and the measured results. Moreover, the relative 

intensity of the two foci in the resulting field pattern is different from the intended 

value (which is 1 : 1). One can see clearly that the phase-compensated simulated in­

tensity profile is still capable of predicting the actual profile even when multiple-focus 

patterns are simulated. 

Finally, the phases of the driving signals to the array elements were preshifted by 

the A<p,-'s, i.e., 

A # = A# - A&, 

where A<f>f and A^f are, respectively, the actual driving phase and the computed 

driving phase. This phase distribution was then used to drive the array to produce 

the shifted focus of Figure 9.10. This was done to examine the possibility of removing 

the effect of phase error from the measured intensity profile. Figure 9.12 shows a 

dB plot of the measured phase-corrected intensity profile and the measured intensity 

profile of Figure 9.10. The dB measurements were made with reference to the focal 

intensity of the geometric focus in Figure 9.8 (this shows that the focal intensity of 

the steered focus is reduced by 1.2 dB from the geometric focus intensity level). The 

results indicate that these two patterns differ mainly in the sidelobes. Furthermore, 

the result demonstrates the fact that the phase-corrected profile has more balanced 

side lobes. A similar result was obtained with the geometric focus case of Figure 9.8. 

However, no significant improvement in the double-focus pattern was observed due 

to phase correction. The following section summarizes the results obtained with this 

experimental setup. 
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Figure 9.12. Measured intensity profiles in the focal plane of the 
shifted focus of Figure 9.8. (Solid line, same as Figure 9.8; 
dashed line, phase-corrected profile.) 
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9.6 Concluding Remarks 

The prototype CSA was tested in a water tank and was shown to be capa­

ble of generating single-focus and double-focus field patterns with the pseudoinverse 

method. Simple tests were performed that enabled the prediction of the surface 

particle velocity from the electrical driving signal by accounting for differences in 

matching circuits, cable lengths, and bonding of the individual elements of the array. 

Thus, the theoretical simulation predicts the actual field pattern generated from the 

prototype rather than that resulting from an ideal array structure. This simula­

tion technique, although simple and straightforward, proved useful in predicting the 

actual intensity profiles as the results suggest. Indeed, the phase-compensated in­

tensity profile in Figure 9.11 predicted the slight shift of the focus at 10 mm and the 

drop of the relative intensity at the focus at —5 mm. These results are encouraging 

since the values of A<̂ ,- were measured with 4-bit resolution (using the digital phase 

and amplitude control circuit). These estimates can be improved substantially by 

available phase measurement apparatus (a dual-channel synthesizer is available with 

phase resolution of 1° for each channel), hence allowing improved agreement between 

the phase-compensated and actual profiles. From a hyperthermia perspective, the 

fact that the simulated and measured profiles differ only in the sidelobes attests to 

the robustness of the synthesis procedure. 

A significant conclusion that can be made from the above results is that the im­

perfections in the fabrication of the array can be successfully accounted for. The_ 

next step would be to account for these imperfections in the pseudoinverse formu­

lation. This allows for the evaluation of the driving voltages at the output of the 

amplifiers in terms of the specified pressures at the control points. Although this has 

no bearing on the synthesis problem, it is an important practical issue which needs 

to be addressed. 
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C H A P T E R 10 

CONCLUSIONS AND RECOMMENDATIONS F O R 

F U T U R E W O R K 

10.1 Conclusions 

The problem of phased-array pattern synthesis for inducing deep localized hyper­

thermia was considered. The thesis research examined the possibility of improving 

both the applicator geometry and the phasing scheme to achieve heating patterns 

capable of therapeutically heating realistically sized tumors at depth. The main 

components of this thesis research are (in chronological order) 

1. New nonplanar (geometrically focused) phased arrays were analyzed for po­

tential usefulness as deep localized hyperthermia applicators. Specifically, the 

CSA1D, CSA2D, and SSA array structures were examined. These arrays were 

compared with equivalent planar arrays. Two arrays were considered to be 

equivalent if they have the same- number of elements (with the same size) and 

the same center-to-center spacing between the elements. The comparison was 

based on the focal intensity gain and grating- lobe intensity level for shifted and 

unshifted foci with the same ^ for both arrays. Compared to their equivalent 

planar arrays, nonplanar phased arrays offer the following advantages which 

could be significant for deep localized hyperthermia: 
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(a) Higher focal intensity gain which can be very significant in sparing the 

intervening tissues and assuring efficient heating within the tumor. 

(b) Lower relative intensity at the grating lobe which is very necessary for 

heat localization. 

(c) Smaller focal spot size (especially in the longitudinal direction) which is 

very important for localized heating of small-to-medium sized tumors. 

2. The pseudoinverse pattern synthesis method was introduced and analyzed. The 

method finds the minimum-norm least-square error solution to an operator 

equation of the form H u = p, which relates the array excitation vector at the 

surface of the array, u, to the complex pressures at a set of control points in 

the treatment volume, p . The operator equation was discretized and reduced 

to a system of linear equations which was solved in a finite dimensional space 

setting. 

The minimum-norm solution was emphasized throughout this thesis. There are 

several advantages to the use of this solution in phased-array pattern synthesis. 

(a) The minimum-norm solution reproduces the specified power deposition 

levels exactly at the control points, therefore, allowing for precise control 

of the heating pattern. 

(b) The field distribution produced by the minimum-noim solution tends to 

concentrate the energy around the control points, i.e., the energy is focused 

at these points. 

(c) The minimum-norm solution allows the optimization of the intensity gain 

and array excitation efficiency. In fact, simulation results indicate that 

the maximization of intensity using the minimum-norm solution virtually 

eliminates high-intensity interference patterns from multiple-focus fields, 

thus eliminating one of the major disadvantages of multiple-focusing. 
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(d) Exercising reasonable precautions in the selection of the control points 

typically results in a well-conditioned propagation operator which results 

in robust synthesis. The only precaution to be observed is not to choose 

spacing between control points in a specific direction to be smaller than 

the dimension of the point-spread function of the array in that direction. 

3. The various approaches to heating pattern generation with several different 

phased arrays were considered. The procedure for the determination of excita­

tion signals at the surface of the array capable of producing the specified power 

deposition in the tumor was outlined. Also, a number of performance indices 

for heating patterns were identified and used in comparing their heating effi­

cacy. Multiple-focus field patterns obtained with gain maximization techniques 

were shown to provide an alternative to conventional single-focus scanning. In 

fact, a directly synthesized double-ring pattern was shown to be capable of 

adequately heating a tumor without the need for scanning. Significantly, ther­

apeutic temperature profiles obtained with this technique were highly localized 

to the tumor volume. 

4. Initial experimental results with a prototype cylindrical-section phased array 

are in good agreement with the theoretical predictions. A double-focus pattern 

was synthesized and realized experimentally despite various sources of error due 

to array imperfections, quantization, etc. This attests to the robustness of the 

minimum-norm formulation. 

The following conclusions can be drawn from the work performed in the course of 

this thesis research: 

1. Simulation results show that deep localized hyperthermia is achievable when 

the applicator geometry and the phasing scheme are chosen properly. 
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2. Multiple-focus scanning and directly synthesized heating patterns can success­

fully substitute for single-focus scanning. 

3. The gain maximization technique generally results in removing high intensity 

interference patterns. This eliminates the most significant disadvantage of di­

rect synthesis as a method for heating pattern generation. 

4. Experimental measurements with the CSA1D prototype prove that computer 

simulation is a useful tool in the analysis and design of phased-array applicators. 

10.2 Recommendations for Future Work 

This thesis dealt with the synthesis problem in a deterministic sense. This ap­

proach was sufficient to prove the validity of the different concepts introduced in the 

course of this work. In a practical situation, the entries of the propagation opera­

tor, H, can be either measured or computed based on a numerical nonhomogeneous 

model of the treatment volume. When this is the case, then the entries of H will be 

inexact. The propagation operator is generally well-conditioned and the inversion 

should be stable against errors in the entries of H. However, a statistical description 

of the form 

H = H + E, (10.1) 

where H is the actual propagation operator, and E represents the error or uncertainty 

in H, will be necessary to study the performance of the pseudoinverse in the presence 

of noise. 

The experimental measurements obtained with the cylindrical-section phased-

array prototype were very encouraging. Both single-focus and double-focus patterns 

were successfully synthesized. However, further investigation of this array is neces­

sary. Specifically, its ability to heat realistic tissue volumes, e.g., perfused kidney, 

needs to be tested. Furthermore, the simulation results given in Section 8.5 were 



156 

obtained using a 120 element CSA2D. Fabricating this array would be a straightfor­

ward extension of the CSA1D prototype. A prototype CSA2D would provide true 

three-dimensional control of heating patterns. In addition, it would allow direct syn­

thesis of more complex multiple-focus patterns potentially useful in hyperthermia. 

Such an applicator prototype would be invaluable to the course of this research. 

The concept of real-time adaptive control of phased-array heating patterns needs 

to be developed. With the pseudoinverse method, the power deposition level at any 

of the control points can be changed at any time (increased or decreased) if the matrix 

H ^ H H * ' ) - 1 is available. In addition, potential hot spots can be removed by placing 

additional control points at the location of the interference which force the field to 

take relatively low intensity levels there. A recursive algorithm to achieve this is given 

in [21]. However, the addition of more control points unnecessarily increases the size 

of the operator H. This could result in an ill-conditioned propagation operator 

which can produce unacceptable errors in synthesis. A suitable adaptive algorithm 

for reducing the interference at a point other than the originally specified control 

points is one that expresses the excitation vector at each time step as a difference 

between two orthogonal components; 

u(* + l) = u ( 0 ) - v ( f ) , (10.2) 

at time t + 1, where u(0) = H*£(HH* f) - 1p (the minimum-norm solution resulting 

from the definition of the original control points), and v(t) belongs to the null space 

of the adjoint H**. This condition guarantees that Hu(i + 1) = Hu(0) = p; VZ, 

i.e., updating the excitation vector does not disturb the power deposition levels at 

the original control points. The excitation vector should converge to a value which 

minimizes the power deposition at the point of interference in a finite number of 

steps. 

The implementation of such an adaptive algorithm will provide the necessary tool 

for successful realization of a phased-array hyperthermia applicator in the clinic. This 
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is essential because of the rapidly changing tumor environment during the treatment. 

In this case, however, the main problem is not the development of adaptive algo­

rithms per se, but identifying the necessary and sufficient feedback parameters that 

determine the next step of the adaptive algorithm. In the absence of an adequate 

noninvasive temperature mapping technique, more experimental and theoretical work 

needs to be done in the area of reconstructing temperature profiles from a limited 

set of data and an assumed mathematical model. This problem is currently being 

researched by several groups [33, 65, 66]. 

Finally, one of the essential tools for treatment planning would be the develop­

ment of suitable software that realistically models the treatment volume both for 

wave propagation and thermal computations. For this, one needs an accurate de­

scription of the treatment volume if available, e.g., CT scan data. The integration of 

the pseudoinverse method with a suitable model of the treatment volume will provide 

a powerful treatment planning procedure. 
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