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Determination of power deposition patterns for localized
hyperthermia: a steady-state analysis

K.B.OCHELTREE and L. A. FRIZZELL

Bioacoustics Research Laboratory, University of Illinois, 1406 West Green Street,
Urbana, Illinois 61801, U.S.A.

(Received 13 August 1986; accepted 12 December 1986)

Hyperthermia applicator design has concentrated on developing systems that allow
control of power deposition patterns. In this paper, a method is detailed which uses
the steady-state bioheat transfer equation and the target temperature distributions in
normal and tumour tissue to calculate the desired steady-state power deposition
patterns. This prospective thermal dosimetry approach is demonstrated analytically
for three tumour models: an infinite half-space model; an infinite cylinder model;
and a spherical model. A three-dimensional numerical method is demonstrated for
two different tumour geometries and further applications of this method are
discussed.
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1. Introduction

Localized hyperthermic treatment of tumours has been accomplished with both
invasive and non-invasive systems. Invasive techniques include the use of ferro-
magnetic seeds (Stauffer ez al. 1984) and interstitial microwave antennas (Taylor 1980).
Numerous non-invasive applicator systems have been employed which use several
different modalities including magnetic induction (Storm et al. 1980, Oleson 1984),
microwaves (Kantor 1981), and ultrasound (Christensen and Durney 1981, Hynynen
1986). More recent implementations of these techniques allow more precise control of
the power deposition pattern. To fully employ the increased flexibility of these systems,
it is desirable to determine the power deposition pattern required to treat a specific
tumour most effectively. '

The bioheat transfer equation has been successfully applied to the prediction of the
temperature elevation produced by hyperthermia applicators in the presence of blood
perfusion (Cravalho er al. 1980, Dickinson 1984, Roemer et al. 1984, Strohbehn and
Roemer 1984) and its limitations have been discussed (Chen and Holmes 1980,
Bowman 1981, Jain 1983). The following analysis will use the bioheat transfer equation
to provide a first approximation to the effects of blood perfusion. In general, the time-
dependent bioheat transfer equation must be used to determine the change in tempera-
ture with time. However, since much of a hyperthermia treatment period involves the
maintenance of a steady temperature, the steady-state heating conditions are evaluated
in this paper. For this, the bioheat transfer equation can be applied in its steady-state
form:

0=KV’T — W,G,T + 0O, &y

where X is the thermal conductivity of the tissue (W/m/°C), T is the tissue temperature
relative to the arterial blood temperature (°C), W, is the blood perfusion rate (kg/m’/s),
Cyis the specific heat of blood (J/kg/°C), and Q, is the local power deposition (W/m®).
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In the application of eqn (1) to comparative thermal dosimetry, a power deposition
pattern is used to calculate the resultant temperature distribution. This approach works
well for determining the temperature field produced by a given applicator or scan path,
in the case of a scanned focal region produced by ultrasound or microwaves. However,
such an approach yields no direct information regarding the placement of interstitial
sources, best applicator design, or most appropriate scan path to achieve a desired
temperature distribution in a given tumour.

From a clinical perspective, it is preferable to choose the desired temperature distri-
bution and use a hyperthermia applicator to produce that distribution, as nearly as
possible. The first step in the process is the calculation of the power deposition pattern
required to maintain the target temperature distribution. Then the computed power
distribution pattern can be approximated with a real applicator and scan path. The
calculation of the desired power deposition pattern should also provide insight into the
design of more useful applicators and scan paths. A technique for calculating power
deposition patterns from temperature distributions follows.

2. Theory

The one-to-one nature of the relationship between a power deposition pattern and its
associated temperature distribution makes possible the calculation of temperature distri-
butions from power deposition patterns and vice versa. One direction of this one-to-one
relationship is well known and easily observed, i.e. that under steady-state conditions,
for a given region and boundary conditions, a given power distribution produces a
single temperature distribution, in accordance with the steady-state bioheat transfer
equation (eqn (1)). The one-to-one nature of this transformation in the other direction is
demonstrated by the substitution of a given temperature distribution into the steady-
state bioheat transfer equation (eqn (1)) to yield a single power distribution. Since a
power distribution produces a single temperature distribution and a temperature distri-
bution is associated with just one power distribution, the one-to-one relationship is
established.

Practical limitations require that Q, > 0 which, upon substitution into eqn (1), yields

MZ V2T (2)
K

The largest spatial rate of temperature change which satisfies this constraint is obtained
by setting the two terms of eqn (2) equal, which is equivalent to setting @, = 0. Thus, by
setting 0, = 0 outside the tumour, the power deposition will be positive everywhere, and
the rate of decrease of temperature with distance from the tumour boundary will be as
large as possible. This approach has been used in all analyses which follow including the
half-space, cylindrical and spherical tumour models illustrated in this section.

2.1. Half-space tumour model

To illustrate the calculation of the power deposition distribution from the
temperature distribution, an analytical example is considered which consists of infinite
half spaces of normal and tumour tissue. Since T will be a function of x only, the
bioheat equation is reduced to its one-dimensional form and eqn (1) can be rewritten as

T _WGT  Q
dx* K K

The objective of this analysis is to determine the power deposition pattern required to
maintain the temperature 7 of all points within the tumour, x <0, at T, and to elevate

0. 3




e P

Power deposition for localized hyperthermia 271

the temperature of the normal tissue as little as possible.
For x <0, the temperature is fixed at 7, and ¢°T/dx* in this region is zero. Thus, in
the tumour region, eqn (3) reduces to

Qp = Wl;tcb T:)’ (4)

where the additional subscript t indicates values for tumour tissue. The value for W,
can vary within the tumour region; but as long as 7 = T, eqn (4) holds and Q, can be
determined analytically.

In the region x > 0, eqn (3) takes the form

d_zz'_ I/Vbncvb]ﬂ

o ra ©)

since the area of consideration is outside the tumour region and no heat deposition in
normal tissue is desired. The additional subscript n indicates values for normal tissue.
Taking K, W;, and C, to be constants; solving eqn (5) for T; and applying the boundary
condition that T'= T, at x = 0 gives

T = T, expl— (Wi, Co/K,)ix] ©

for the temperature in the normal tissue. A cross-section of the temperature T in the
half-space model is shown in figure 1 ().

Knowledge of the complete temperature distribution allows calculation of the power
deposition pattern. The power deposition within the tumour region is given by eqn (4),
and since power deposition in normal tissue was defined to be zero, the only remaining

I
TUMOUR | NORMAL
I
434 | —T=T,
I
S 424 | K =0.55W/m/°C
< : Wp= .67 kg/m3/s
w40 [ Cp=4000 J/kg/°C
=
) @
[ .
< %0 I
= I
a 399 !
= I
w
- 381 !
I
37J i —T=0
I
&~ 0.087 (TovWpaCoKn )
£ .
=
Z 0.06
3
2 b b
o ®
& 004 — WpiCp Ty
o
a -
a
« 0021
w
L J
o)
a- O T T T T T T T T T T T T T T ﬁx
-4 -3 -2 - o) | 2 3 4

DISTANCE (cm)

Figure 1. Temperature (z) and power deposition () distributions in the half-space tumour
model.
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power deposition to be determined is that at the tumour-normal tissue boundary. For
the power deposition at the infinitely thin boundary to contribute to heating, it must be
in the form of a delta function. Letting P be the strength of the delta function at the
boundary, the power deposition is given by

Op= Po(x) + Wi Co Tou(—2x) O

where d(x) is a unit delta function centered on the tumour-normal tissue boundary and
u(—x) is a unit step function (1 for x < 0, 0 for x >0). Substituting @, into eqn (3) and
integrating from x = 0~ to 0* yields

dT(x) 0F

P=—K=" o ®

Evaluating the derivative of T at x =0~ and 0* and substituting into eqn (8) gives
P= To( I/Van'bI(n)%' (9)

The complete power deposition pattern required to produce a uniform temperature
within the tumour half space for this model is shown in figure 1 ().

2.2. Infinite cylinder tumour model

A model also considered in this study is an infinitely long cylindrical tumour, which
has application in many of the circularly symmetric bioheat transfer models. The infinite
extent of the tumour limits the applicability of this model to approximations for the mid-
section of a cylindrical tumour, although a complete analytical solution for a finite
length cylindrical tumour could be solved using the same method. The bioheat transfer
equation is transformed into cylindrical coordinates, with the angular and z-dependent
terms omitted due to angular symmetry and infinite z extent, to yield

rd*T rdT_ W,Cor*T N rz_Qp_ 0

res 10
dr2+a'r K K (10)

In the tumour region, where r < r,, the temperature is fixed at T, so that the deriva-
tives of T are zero and eqn (10) reduces to eqn (4). In normal tissue, where r > 1, the
power deposition is taken as zero, and eqn (10) becomes

2 2
rd T+ rdT WG T_ 0. (11
ar* dr K,

Eqn (11) is Bessel’s equation of order zero which has a solution of the form

T = GI(WunCo/ K1) + HEKo(WeuCo/ Ko} 1) (12)

where I, and K, are Bessel functions of imaginary arguments and G and H are
constants. As r approaches infinity 7" must approach zero, but I, increases without
bound, therefore the constant G must be zero. The constant H can be determined by
evaluating eqn (12) (with G =0) at the boundary r =r,, where T=Ts. Substitution of
these constants into eqn (12) gives

7= TKor(WenCo/Ka)') (13)
KO(ro( I/Vbncb/lgn)z)

for r>r, The temperature distribution for this model is shown in figure 2(a) as a
function of radial distance.

The assumption of a delta function for the power deposition at the tumour-normal
tissue boundary in the radial direction is made, analogous to that assumed for the half-
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Figure 2. Temperature (@) and power deposition (b) distributions in the cylindrical (C) and
spherical (S) tumour models. P is given by eqn (14) and eqn (19) for the cylinder and
sphere, respectively.

space tumour model. Again, the strength of the delta function is taken as P and is found
to be the difference of the derivatives of the temperature on each side of the tumour-
normal tissue boundary times the thermal conductivity, which is evaluated to yield

Kl(ro(anCb/Kn)%)
KO(ro( anCb/Kn)%)
where K, and K represent the zeroth and first-order K Bessel functions, respectively.
The strength of the delta function at the boundary is dependent upon r,, the radius of

the tumour. The complete power deposition pattern for the cylindrical geometry is
shown in figure 2 (b) as a function of radial distance.

P = Ty WyCo Kt (14)

2.3. Spherical tumour model

A more realistic analytical example is a spherical tumour surrounded by an
infinitely extended region of homogeneous normal tissue. Though the normal tissue is
infinite in extent, the model is applicable to most tumours because heat conduction in
the normal tissue is limited to less than several centimeters when blood perfusion is con-
sidered. Equation (1) may be expressed in spherical coordinates with the angular
dependent terms omitted, since no angular variation in temperature is desired, to yield

2
£+ﬂ—w—bch+&:O. (15)
dr rdr K K

For the tumour region, r < r,, the temperature is fixed at 7, and the derivatives of T
in this region are zero. As in the previous models, the bioheat equation in the tumour
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region reduces to eqn (4). As noted previously, W, is not required to be constant with
respect to r (in fact it can also vary with angular position) for this result to hold.
In the normal region, r > r,, O, is zero and eqn (15) becomes

2
dT 24T WuGT _ (16)
dr  rdr K,

which yields

7= A explo (WG /K ] + 2 exp [(Win Gy /K 11, %)
r I

Since T approaches zero as r approaches infinity, B =0. Applying the boundary
condition at r,, i.e. T = T, the constant 4 is evaluated to give

Tot,

T= exp [(WonGo/ K (re — 1) (18)

for »>r,. The complete temperature distribution is shown in figure 2 (a) as a function of
the radial distance 7.

The power deposition required at r =r, can now be calculated from the tempera-
ture distribution, and as before it is a delta function. The strength of the delta function P
is again found to be the product of the thermal conductivity and the difference of the
derivatives of the temperature on each side of the tumour-normal tissue boundary, and
is evaluated to yield

pP= To((anCbKn)% + Kn/ro)° (19)

The complete power deposition pattern is shown in figure 2 (b).

2.4. Properties of models

The strength of the delta function at the tumour boundary is a constant for the half-
space tumour model, a quotient of Bessel functions dependent upon tumour radius for
the cylindrical tumour model, and a simple function of tumour radius for the spherical
tumour model. The strength of the delta function is shown as a function of tumour
radius in figure 3 for the three tumour models discussed. For larger tumour diameters,
the strength approaches a constant value for all models, which could be used as an
approximation for large tumours.

For the previous illustrations, W, and K were chosen as constants to illustrate the
analytical solution. Although these must be constant in the normal tissue they need not
be constant within the tumour. Studies of tumour perfusion have shown that blood flow -
varies from near zero in the necrotic core to elevated values in the advancing front of
the tumour (Endrich et al. 1979). An example of this situation is illustrated in figure 4.

3. Methods

Practically, tumours are not exactly spherical and tissue parameters are not
constant, so the analytical solution presented in the previous section would seldom be
applicable. A three-dimensional numerical solution to the problem has been developed
using a finite difference solution (Myers 1971) to account for the various geometries and
parameter variations encountered in a clinical situation.

The temperature distribution required for the numerical solution was determined by
first setting the temperature in the tumour region to a constant value T, and then calcu-
lating T outside the tumour using a finite difference solution to the steady-state bioheat
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Strength of the delta function required at the tumour boundary versus tumour radius

for the cylindrical (C) and spherical (S) models. The strength of the delta function required

for the half-space model (HS) is included for comparison.
TUMOUR NORMAL

|
|
|
4 |
1
{

Wp(kg/m3/s)
i

43 —T=T,

414
40+
39+
384

TEMPERATURE (°C)

—T=0
(Tov'WbnCbKn + ToKn/ro)

374

0.204

(W/cm?)
o o o
S & &
i i 1

POWER DEPOSITION

o

o
N
w
N
4]
(2]
~
¢

ro=4 r
RADIUS (cm)

(@)

®

©

Figure 4. Example of variable perfusion within the tumour (g) and associated temperature ()

and power deposition () distributions for the spherical model.




276 K. B. Ocheltree and L. A. Frizzell

transfer equation with Q, = 0. Such a method ensures that the bioheat transfer equation
is satisfied, only positive power deposition is required, and all tumour temperatures are
held at a constant value .. The three-dimensional finite difference representation of the
bioheat transfer equation used in this solution is given by

Tk,m,n= (K/(GK + szVbe)) ((dZQp/K) + 'Izc—l,m,n + T;c+1,m,n
+ Tk,m—l,n -+ Tk,m-)—l,n =+ Tk,m,n—l + ﬂc,m,n«)—l) (20)

where k, m and n are the indices of the point at which the temperature is being
calculated and d is the distance between sample points. The associated power deposition
pattern is calculated from the temperature distribution by inverting eqn (20) to yield

Qp = (K/dz)(6 Tk,m,n - kal,m,n - Tk+1,m.n - 71k,mfl,n
- Tk,m+1,n - Tk,m,n—l - Tk,m,m—l) + VVbe T;c,m,n- (21)

The application of this equation to theoretical temperature distributions produces an
accurate result as confirmed by comparison to the analytic examples illustrated in the
Theory section.

4. Results

The three-dimensional numerical solution was applied to two tumour geometries.
The first geometry was a 4 cm cubic tumour centred at 6 cm from the skin surface. For
this particular example, tumour and skin temperatures of 43 and 25°C, respectively,
were chosen. Cross-sections of the complete temperature profile and associated power
deposition pattern, through the centre of the tumour, are shown in figure 5. The power
deposition pattern exhibits the large maxima near the tumour boundary analogous to
those seen in the analytic models. The constant value evident in the central region of the
tumour is a result of the use of a constant value for W, in this example.

The second tumour geometry consisted of a 4 cm diameter spherical tumour located
6 cm from the body surface. Figure 6 shows cross-sections of the temperature profile
and associated power deposition pattern through the centre of the tumour. The high
power deposition on the periphery of the tumour in figure 6 represents the delta function
in the theoretical models, and the variation in the power deposition at the periphery is
due to the imperfect representation of the spherical boundary in a rectangular co-
ordinate system. This results in variations in the local curvature of the tumour boundary
and the effective radius of the tumour, yielding a varying power deposition on the
tumour periphery in accordance with eqn (19).

5. Discussion :

Currently, most investigators select a hyperthermia system and then select place-
ment of sources, initial field configuration, or an initial scan path based on experience
and intuition. For the choice of initial field configuration and scan path, modifications
are made in an iterative manner based on calculations using the bioheat transfer equa-
tion prior to treatment, or during treatment based on temperature feedback. The
ultimate goal of this study is to determine an approach which will allow direct calcu-
lation of the initial treatment configuration based on the desired temperature profile,
tissue thermal properties including blood perfusion, and hyperthermia system par-
ameters such as beam size for a scanned ultrasound applicator.

As a first step towards this goal, a three-dimensional numerical method for calcu-
lating the optimum power deposition pattern given the desired tumour temperature was
presented in this paper. The method can be applied to the complex tumour geometries
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Figure 5. Contour plots of a cross-section of the temperature (@) and power deposition (b)
distributions for a numerically calculated cubical tumour model sampled every 2 mm.
Temperature contours are shown for i°C increments and power deposition contours are
given for 0-1 W/em®, 0-2 W/em®, and 0-4 W/ent.

which are encountered clinically and to tumours with non-uniform temperature-
dependent perfusion. The other stages of this study deal with examination of the initial
heating of the tumour and with techniques for generating the treatment configuration
which will most nearly produce the desired power deposition pattern. The analysis con-
siders the effect of such parameters as the heating profile around implantable sources,
multiple focus systems, and the beam size and scan path. The results of these analyses
are treated in a separate paper.
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