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Abstract

A method for applying the fast Fourier trans-
form to the convolutions arising in the internal
field equations of the sinc basis moment method
diffraction tomography algorithm is described.
Exactly egquivalent results are obtained, whw]g
reduging the order of those computations from
to n2log n for an nxn reconstruction.

As originally derived, the sinc bagis moment
method has an order of computation of n® for an
nxn reconstruction. To reduce this order, spa-
tial convolutions in the internal field equations
were performed by a somewhat unusual applicatjon
of the FFT. Specifically, if f and f ¢q1n€
represent, respectively, the total and incident
ultrasonic fields evaluated at pixel 1 due to a
transmitter at Jlocation ¢, Ys; s the object
function evaluated at pixel j, and C]- are coef-
ficients resulting from the sinc basi$S expansions
and integrations (Johnson and Tracy, 1983),
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is a discrete version of the corresponding inte-
gral equation, suitable for digital computers.
The difficulty in applying the discrete Fourier
transform (DFT) to the convolutional sum [the sum
in Eq. 1 can be shown to be canvolutional (Cavic-
chi, 1987)] is that the region of support of Cy;
is Ru o (numerically, the Cy; are significantly
nonzero far outside the eéxtent of the object
region, Ry ). But the region of evaluation of
the convolution in Eq. 1 is only the object
region. Leaving implicit in the field arguments
the spacing scaling of the indices, the convolu-
tional form of Eq. 1 is:

Folix,iy) =
vy n-1 n-1

f¢inC(i ) + JZ—O JZ OYf¢(Jx’Jy)C(1x JX: y Jy)
X y
(2)

Note now that because 0 < iy < n- 1 (1 in Eq.
1 is a pixel with coordwnates 5 x, < n-1),
the only values of C(-,-) that contr1bute to the
aperiodic convolutional sum are those for which
0<iy - jX’ iy Jy < n-1. Us1ng the maximum
value of J n-1, and the minimum value of ‘x:
yields the ﬁower limit -(n-1). Using the m1n1mum
value of j,,0, and the maximum value of i,, n-1,
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yields the upper limit, n-1. Thus, pictorially,
the region of support that contributes to the
convolution within the object region is as shown
in Fig. 1. That is, substituting a truncated C
as indicated in Fig. 1 will be mathematically
equivalent to "using" the entire C. The solution
of the present problem becomes evident when an
alternative, pictorial interpretation of the pre-
vious formalized statements is examined. First
note that although one has, mathematically equi-
valently, the convolution of two finite region of
support sequences, the C sequence is centered on
the origin; that is, the C are nonzero not only
in the first quadrant, but in all four quadrants.
{Note that in none of the following is the circu-
lar symmetry of the Cij recognized or used.) Yet
yfis centered on }2 1,n/2-1). This problem

cannot be solved by mere1y shifting the C
sequence, for then the values "called" in the sum
will be incorrect. Consider the pictorial two-
dimensional convolution in Fig. 2a of two finite
region of support sequences f; and f, centered as
would be desired in order to use the DFT. Now
periodically extend1ng f, after zero-padding it
out to N, which is chosen to avoid aliasing,
results in fz , Fig. 2b, (where the underline
denotes zero padding and p denotes periodic
extension). Only one repetition of f{ was drawn
because, looking at the convolutional sum,

N1-1 Ng-1
fl**fz(i)(’iy):. z b2 fl(JX’Jy)f2(1x JX’ J_y)’
Jx=0 jy=0

it is seen that the argument of fy ranges only
within R so that equivalently one need only
per10d1ca+1y extend fy, as far as the evaluation
of the convolutional sum is concerned. (There is
no harm 1in periodically extending fi as Tong as
the limits of the spatial area of summation
included in the aperiodic convolution are kept in
mind.) Consider again the periodic convolution in
Fig. 2b. Another way of viewing the "aliasing"
problem is to remember, as noted before, that if,

in particular, one is intereﬁted in va]ues of the
convolution of f1 and fy on PNy, ,Ni, the arguments
of fy wi]] range from -(Nl =1) to (Ny - 1).

Thus, when "reaching back" for values in, say,
the third quadrant, one should obtain zeros. But
if f, is not zero-padded and then periodically
extended, then instead of having Fig. 2b, one
will have the situation depicted in Fig. 3: now
when reaching back for a zero, one will instead
obtain a replicated (nonzero) value of f,,. This
is another way of showing why and how much the
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input sequences must be zero-padded in order to
simulate aperiodic convolution with periodic con-
volution.

Now consider the contributing block of C for
the tomographic convolutions. Again, note that
these are the only contributing values to the
convolution in the region of interest R, , If
this function is periodically extendegi the
result is Fig. 4. Now if one chooses the block
of C in the first quadrant region bounded by the
axes and the dashed 1lines as the sequence of
finite support to be sent to the FFT, and does
not zero-pad, then when evaluating the convolu-
tional sum in R, ,, and "reaching back" into the
third quadrant for replications, one obtains (as
always) the replica of the upper right hand side
section of the dashed-line finite sequence, which
is exactly equal to what would be obtained in the
aperiodic convolution; that is, these very con-
tributions are necessary to simulate the aper-
iodic convolution. Of course, yvf must be zero-
padded out to the size of C, which is chosen for
computational convenience to be the lowest power
of two greater than or equal to 2n - 1. Note
that, outside of R, ,, the result will be gar-
bage, but those values’can be thrown away.

For an example of this situation consider two
cases. The first case is illustrated in Fig. 5a.
In this case, the point of evaluation 1is inside
the object region. Because one replication of C
completely covers the object region, the other
replications of C make no contribution to the
convolutional sum, matching the situation of
aperiodic convolution with the original C. In the
second case (Fig. 5b) the point of evaluation is
outside the object region. Note here that other
replications of C 1ie over part of the object
region, making contributions that are erroneous
with respect to the aperiodic convolution
desired. The final result, therefore, wupon
inverse inverse DFT of {Yf, - C} where T is the
DFT of C as described in the above discussion, is
shown in Fig. 6a, which is the periodic convolu-
tion of Yf with the finite extent, periodically
extended C,. The result in the small square is
identical go the result in the same region of the
aperiodic convolution of Yf with the infinite
extent C shown in Fig. 6b.

The above theory is verified practically in
Fig. 7, which shows the real part of the actual
convolutions carried out in the spatial (above)
and Fourier (below) domains. They agree exactly
in the region of interest and the garbage values
from the FFT method outside of these convolutions
object region may be discarded. The computa-
tional comg]exitg is reduced by this use of the
FFT from n2 to n3log n.

Incidentally, if one considers again the pos-
sibility of using the FFT by a similar method for
the measured scattered field equations

nZ
f¢m5c = jfl ijij¢d (3)

where f ¢ S¢ s the scattered field measured at
receiver m due to transmitter ¢ and Dy ; are the
associated coefficients from the Sinc basis
expansions and integrations, the first consider-
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ation will be which values of the Dy; contribute
to the convolutional sum. Given tha% the sub-
script m refers to the receiver and j refers to a
pixel in the object region, the difference vec-
tors will fall somewhere on a ring centered a
distance R from the origin, given that the
receivers are on a ring a distance R from the
object region center (see Fig. 8a). Consequently,
what was a finite sguare contributing region of
support for the C1j (see figure 8b) becomes
roughly a ring contributing region of support,
outside of which assuming zero for ij results in
no error. However, such a region is not accept-
able for FFT computations demonstrating the
infeasibility of trying to use the FFT for the
scattered field equations convolutions.
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Figure 1 Spatial region for which Cy; contribute

to the convolutional sum in %he internal
field Eq. 1, which is evaluated within the
object region only. Thus, even though the C]j
have an infinite region of support, 1in this
context they may be treated as having finite
support.



Figure 4 Periodic extension of the region of Cy;
contributing to the convolutional field suim
evaluated in the object region (see Fig. 1).
The first quadrant region bounded by the axes
and the dashed lines is the sequence chosen
as input to the FFT.

(a) ®b)

Figure 2 The aperiodic (Fig. 2a) and the peri~
odic (Fig. 2b) convolution of a function of
spatial extent of support NixN; with another
function of spatial extent of support NyxN».
The result is shown at the bottom, where that
for Fig. 2b is a periodically repeated ver-
sion of that for Fig. 2a, with period N. In
Fig. 2b, N was chosen large enough (via zero-
padding) so that the repetitions of f, do not
interfere with each other (no aliasing).

5 {a) (b)

Figure 5 Periodic convolution process carried
out in the spatial domain. The convolvees
are the periodic extension of truncated C
(see Fig. 4) and Yf zero-padded out to the
truncation size of C. If the convolutional
sum is evaluated within the object region
(Fig. 5a), one repetition of the contributing
block of C completely covers the object
region (shown boxed), and the periodic convo-
lution equals the aperiodic convolution. If
the convolutional sum is evaluated outside

Figure 3 In Fig. 2b, when in the convolutional the object region (Fig. 5b), parts of more
sum a value of f, was called in the third than one repetition cover the object region,
quadrant, e.g., a zero was correctly obtained making erroneous contributions to the convo-
as in the aperiodic convolution because of Tutional sum.
zero-padding. If, however, the function fj, is
merely repeated without first zero-padding, a
nonzero value from another repetition will be
obtained from the third quadrant, causing the
periodic convolution to differ from the cor-
responding aperiodic convolution.
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Figure 6 The result of periodic (C truncated) (a)

(Fig. 6a) and aperiodic (Fig. 6b) convolu-

tions of C and Yf. Within the object region 2y
(shown boxed), the two results are identical,
but outside the object region they differ. As
only values within the object region are
needed, the other values returned from the

periodic convolution are simply discarded. 1?

b)

Figure 8 Contributing regions of Dy (Fig. 8a)
and Cy; (Fig. 8b) for individual “points of
evaluation of the convolutions in Egs. 3
(Fig. 8a) and 1 (Fig. 8b), where h is the
pixel spacing. The points of evaluation are
receivers (Fig. 8a) and object region pixels
(Fig. 8b). The situation in Fig. 8b is amen-
able to FFT application, whereas that in Fig.
8a is not.

Figure 7 Real part of the aperiodic (above) and
periodic (below) convolutions of C and Yf as
defined in Eq. 1. Within the object region
(square region where the aperiodic convolu-
tion 1is nonzero) the aperiodic and periodic
results are identical; outside the object
region, the periodic results are discarded.
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