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Spotlight-mode synthe}ic aperture radar (SAR) produces complex Fourier data pointson a

polar grid which is offset from dc in the frequency domain. To produce an image in the spatial
domzin, it is necessary to invert this sampled Fourier data prior to extracting magnitude infor-
mation. However, the polar format of the data makes this difficult, since there is no known
polar FFT. An alternative is 10 interpolate the complex polar data to a Cartesian grid and then
perform the two-dimensional FFT. The magnitude of the resulting data array represents the
magnitude of the complex ground reflectivity of the terrain under illumination. The interpola-

tion process can be very computationally intense, with an order two to fifty times that of the

FFT. Reducing the computation in the interpolation stage, while maintaining reconstruction

¢ quality is the focus of this work. Several 2D interpolation techniques are examined. including i

L]

nearest neighbor. bilinear, inverse-distance to the nth power, weighted sinc, chirp z-transform,
and the newest interpolation algorithm proposed for this problem - the cubic spline. 1t is found
that separable interpolation schemes outperform the more commonly used nearest neighbor and

inverse distance algorithms, and that the cubic spline is very competitive the weighted sinc
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interpolator in computation requirements and reconstruction quality. The chirp z-transform is

‘ i determined to be 2 good alternative to the classical interpolation-DFT approach.
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CHAPTER 1
INTRODUCTION

Radar, or Radio belecting and Ranging, has been used for decades to detect distant objects,
measure their velocity. and more recently, for terrain mapping. It was theorized in the early
1900s. and first demonstrated in the mid-30s. Subsequently, it was developed to detect airplane
bombers during WWII [1]. Since then. it has been refined and used in hundreds of applications
such as space exploration, airplane avoidance systems, insect and bird tracking, weather obser-

vation and prediction, and. of course, highway speed enforcement.

When radar is used to simply de ect the range to a distant object. a series of electromag-
netic pulses is transmitted in the direction of the object and the iwo-way time delay o, the
reflected pulses is measured. Knowing the pulses propagate at the speed of light. we can readily
calculate the range to the object. If we wish 10 measure the radial velocity of an object. we can
transmit a continuous wave (CW) electromagnetic signal (a simple sinusoid) and measure the
shift in frequency of the returned signal induced by the moving object. Again, it is simple to

calculate the velocity of the object from the frequency shift (Doppler shift) and the known

propagation velocity of the signal.

When the azimuthal position (perpendicular to range) is also desired, the transmitted sig-
nal must be sent as a narrow beam which is no wider than the desired azimuthal resolution. It
is easily shown that at a range R and carrier frequency w,. an antenna with an aperture size D
will have an azimuthal resolution of order Rw,/D meters. For radar operating al conventional
microwave frequencies (10° Hz), this implies that very small resolution requirements dictate a
physical antenna of gigantic proportions - several thousand feet across! For an airborne
antenna. this is impractical; however, very high azimuthal resolution can be achieved by syn-

thesizing a large phased antenna array in an imaging system called synthetic aperture radar.

Synthetic aperture radar (SAR) is a means of obtaining high resolution terrain maps (com-

plex reflectivity maps) by coherently processing the backscattered radar signal's phase (referred

. o
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to as “phase history '). In 1953. the University of Illinois experimentally demonstrated strip
mapped SAR[2}. This was the earliest form of SAR in which the airborne radar antenna is held
at a fixed squint angle relative 1o the terrain paich of interest. Coherent processing of the
returned radar signal produces an eflective aperture many times the size of the physical

antenna, thus creating an azimuthal beamwidth proportionally narrower, resulting in finer

azimuthal resolution.

A higher resolution form of SAR is called spotlight mode SAR. This mode requires that
the antenna be continuously positioned. or steeved. toward the center of the terrain patch dur-
ing the plane’s flight. The same patch is effectively pictured from many different angles, and

when coherently processed. produces a much higher resolution image than could be obtained

from a single observation angle.

Initially. SAR reflectivity data were processed optically. The phase histories were recorded

on film' and then processed on an optica! bench through a complex and bulky arrangement of
lenses and coherent light [3.4] . The data were continuous in the range direction and sampled
in the azimuth coordinate (the discrete return puises). Ap optical Fourier transform is thus
continuous in range and discrete in azimuth and computed almost instantaneously. Although
high resolution was achieved, the characteristics of the optical processing equipment made the
reconstruction procedure cumbersome in the laboratory and impossible during inflight data col-
lection. The advent of very fast digital processors and inexpensive semiconductor memory
made real-time imaging feasible, i.e., the terrain maps could be (theoretically) generated in the
data gathering platform online and displayed during the flight. Digital processing of the signals
led to other problems, however, and such issues as polar sampling criterion and polar-to-digital
interpolation became the focus of much study. Stark [5) presents some polar sampling
theorems for the case of complete 2 sampling rasters such as those used in computer-aided

tomography (CAT); however, they are difficult 1o apply to the case of spotlight mode SAR

'A light source, modulated by the return signal, 1s mechanically moved over film at a speed proportional to the
sweep rate of the chirp radar.
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where the recorded data region is a small slice of a toroid instead of the complete disk shaped

region of CAT.

In the polar format algorithm of recording the phase histories of the SAR data, the sam-
pled data (after coherent demodulation) are placed on a small section of a polar grid. If an
inverse discrete Fourier transform {IDFT) for polar grids were available, then the radar data
could theoretically be inverse-transformed directly and the fina) image displayed on a polar
display device. Such an IDFT is not known, however, and the data must be interpolated to a
rectangular grid hefore the IDFT operation. Even if such an IDFT were possible, polar displays
are not readily available ( though work is being done in this area {6] ). and so interpolation in
the spatial domain would be required for display on a rectangular raster, There already exist
several fast Fourier transform (FFT) algorithms as well as special purpose FFT hardware avail-

able to perform the IDFT for rectangular sampled data arrays.

The most computationally intense task in generating the radar image involves two-
dimensional interpolation from the polar grid to the reciangular grid. While an N by N 2-D
FFT requires O(N?log;N) operations, the 2-D interpolation step often reguires O{¥*N?) where
K is a number ranging from log;N 1o as high as N4, depending on the interpolation algorithm
and order. Thus. the imir7olation step enormously overshadows the FF1 step in computa-

tional complexity. i.e.. processing time. This makes the SAR imaging tool difficult to implement

in real time.

The interpolation requirements of SAR are very similar to those of the direct Fourier
reconstruction techniques used in CAT. Jenkins, Munson and 0O'Brien{7] have developed an

analogy between SAR and CAT which places projection data on the polar grid. There are two

main differences between SAR and CAT:

(1) SAR uses coherent imaging and retains the phase information from its complex targets
while CAT is non-coherent (this is not true of diffraction tomography which is a coherent

system that records magnitude and phase) and thus only the magnitude of the projection

e e e R ST
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is recorded. The recorded CAT data are also strictly positive, while SAR data are complex

and may have negative real and imaginary parts.

(2) CAT Fourier data lie in a polar grid which usually spans the full 27 in angle, and radially
from O 1o some r,,,,. while SAR data lie in a polar annulus whose width is proportional to
the radar signal bandwidth, and which is far removed from the origin occupying only a

few degrees of angular width (typically 2 to 10 degrees).

For typical systems, the geometry of the SAR data grid is very close to a rectangular, or a
rotated rectangular grid. The polar grid in CAT does not share this property. Given the small
data record of collected phase histories, and the fact that the recorded Fourier section is off set
from the Fourier origin (no dc in azimuth), it is curprising that one can obtain any azimuthal
resolution at all. Munson and Sanz [8] have demonstrated that it is the coherency of the SAR
system. together with the complex nature of tike “spatial” targets. which allows such high
image quality from such a limited amount of Fourier data. Despite these major differences
between SAR and CAT imaging. many of the digital processing techniques from CAT can be
applied to SAR. Modifications 10 these algorithms are made in accordance to the geometric
differenice between them and some approximations can be made in SAR which are inappropriate
for tomography. but the basic results of sampling and windowing. as well as reconstruction,

and error analysis of the computed tomography problem are applicable to SAR.

The reason that the interpolation requirements are so severe is due to the nature of the
transform operation. Every point in the Fourier domain contributes to the spatial reconstruc-
tion. Single errors in the Fourier domain, therefore affect the entire spatial domain. It is very
important, then, for the interpolator to be as accurate as possible, especially in the Fourier areas
where most of the energy is concentrated. Without a priori information about the spectral
energy distribution, it is thus imperative to be uniformly accurate throughout the region We
shall see that there is a trade-off between interpolator accuracy (and thus image resolution) and

computation. An important part of this research is dedicated to reducing the latter two while




maintaining the former.

Multidimensional interpolation is also important in other problems where the data gather-
ing methods provide non-rectangular sampling geometries, e.g.. underwater mapping [9].
seismic mapping [9]. imaging the ocean and sea-ice [10), and three-dimensional medical imag-
ing (11,12, 13] all gather dawa on sampling grids which may not be reclangular. Digital rota-

tion, 1nagnification, and reduction of images may also require two-dimensional interpolation.

The tocus of this thesis is on the effects that various two dimensional interpolation
schemes in the Fourier domain SAR data have on spatial domain reconsiructions. A review of
the fundamental spotlight mode SAR equations is presented in Chapter 2. The tomographic
formulation of SAR is also reviewed and compared to the radar Doppler interpretation. Alter-
nate inversion techniques are also briefly mentioned. A more detailed discussion of the interpo-
lation problem in given in Chapter 3. Classical techniques are reviewed and extended to the
SAR geometry. Spline interpolants are then presented from a DSP point of view, and a
clarification of the term spline is given. The topics of windows. aliasing, spurious targets and
artifacts are discussed in Chapter 4. as well the formulation of alternate sampling rasters. A
rather lengthy set of empirical results for many different interpolator algorithms and sampling
strategies is given in Chapter 3. It was felt that more insight could be obtained by studying
these reconstructions rather than by producing complicated expressions for the spatially vary-
ing polar interpolators. Finally. a summary of the ideas and results presented in this work is

presented in Chapter 6. Topics of [urther research to be done in the area of digital SAR image

reconstruction is also discussed.
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CHAPTER 2 \
i
SYNTHETIC APERTURE RADAR: THEORY AND BACKGROUND ]
In order to understand the interpolation problem, it is useful to see how the specific ]
P geometry developed. In the following sections, the SAR equations will be reviewed and the } i
!
| polar/rectangular geometry will be studied. The relationship to tomography will also be exam- f
i
ined. { ;
4 ’ 4
2.1 Derivation of Exact Point Target Response 1
1 Schwartz [14] investigated three data formats for SAR and included much of the analysis ; 1

that was developed from Weis and Jenkins at Lockheed (15). The analysis that follows was
the basis for the original SAR simulation program, though it was later simplified to remove Lhe i

quadratic phase term that appears in the phase equations. The signal response phase equations

here shall be referred to as the exact puint target respunse. i

The coordinate system used is shown in Fig. 2.1. The data gathering platform moves with

velocity V in the -x direction and at an altitude h. The ideal point rarget. P. is located at

(x,.y,) which is measured relative to the reference point Q. located at (x,.Y,)%. Q is located at

(0.0) on the stationary axes x'—y'. The terrain paich is assumed 1o be a square of size L by L.

ing relative to Q. The range variables r,, and r, are the distances to Q and P, respectively, and
0, is the squint angle in the ground plane during the nth pulse. The subscript n is used to
describe variables which change from pulse 1o pulse and so indicates the variable during the nth

i

-1

|

Note that the position of Q changes from pulse to pulse. since the reference axes (x-y) are mov- i
1

1

pulse when the look angle is 6,,. Later, n will be droppedt. so that each variable is defined for an 1
1

1

arbitrary angle 0.

21t is assumed that the distanc. fTom the data plattorm 1o the reference Q is known during the entire data collec

tion window. Errors in this distance measure can detocus the reconstructed image, but can be corrected through a pro ! ‘
cedure known as autofocus {16} '




'
/___ Radar Platform With Velocity V

USSP
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‘ Figure 2.1 Coordinate system for Exact Point Target Response Derivatio:

The transmitied puise is a high bandwidth chirp signal, i.e., a linearly modulated sinusoid:

2 T

cos{wt + X u €

we| 'z @1
0

otherwise

) where e, is the carrier frequency, ¥ is the linear FM sweep rate and T is the pulse duration.




The nth received pulse is

14 2
Acos(u(t=ry) + (=1 et (22)
galt) =
0 otherwise

where A is the free space propagation attenuation factor and 7, is the two-way travel time of
the nth pulse. If Yy,>>L, the propagation attenuation of the signal will be approximately the
same over all the pulses. A will be set to unity. Note the quadratic phase term in (2.2). This
will create problems later on. Note also that this particular analysis assumes that the aircraft
position is essentially constant during each pulse. The analysis of Munson e al. [7] showed
that the aircraft can have an instantaneous velocity of zero during each pulse, and that (classi-

cal) Doppler processing is therefore not strictly required for SAR.

Now. we apply stretch processing. i.e.. pulse compression®, to the returned signal. This is
the technique of compressing the chirp pulse (and thereby increasing the range resolution of the
radar) by coherently mixing the return signal with a simulated return from the reference tar-
get. Typically, this signal is generated by the transmitter sweep oscillator and delayed accord-
ing to the distance 10 the known reference. If the distance to the reference is not known pre-
cisely. the simulated reference chirp signal will also be in error and will cause defocusing of the

image. i.e.. point targets will become smeared. The nth pulse reflected from the reference Q

will have the form

4
A COS((!D,(I"‘fm.) + *2—(1‘7%)2) lt=1y, ! <T/2 (2.3)
gllu(‘) = 0 0 .

where T, is the effective pulse widih determined by the size of the terrain being imaged.

Multiplying g,(1) and g,,(t), and low pass filtering (10 retain only the difference fre-

quency). we obtain the phase function ®:

3 Stretch processing and pulse compression have seemingly opposite connotations, but refer to the same technique
of processing a strecched pulse and compressing the pulse-width through autocorrelation of a well-designed pulse signat,
¢.g., a linearly modulated churp puise. See Klauder et al. {17] for more information on chirp radars.
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Lowpass Filter { g,(t) - gon(t) } = cos(®,(1)) (2.4)
where
D, (V) = wli~1,) + ;.u-r‘,,,)z = 0 (t=To,) = (t=7,)? (2.52)
= (T,~Tou X, + 1) = —;—(‘r,f'-ﬁ;",,) (2.5b)

This phase function corresponds t-. the phase of the 1 “in-phase) channel of the demodulator
(mixer and low-pass filter). To obtain the Q channel (quadrature) output, multiply the return

signal by a form of (2.3) with cos replaced by sin and then low pass filter 10 retain the

difference frequency.

1 channel output: Real {¢/*""} = cos(®,(t))

Q channel output: Imag '™} = sin(®,(1))

We would like 1o now convert the ensemble of return signals into a two-dimensional
function and show that it is an approximation to the phase of the 2-D Fourier transform of a
point target. The two-way time delay T to a target at range r is 2r/c. where ¢ is the propaga-

tion velocity of the radar signal in free space. Substituting for 7 in (2.5b), the phase function

becomes

o, ()= %—(r,,-—ro.,)(w, + m—%;(r.f-r.f.,) (2.6)

It is now useful to mak= a change in variables
2, = (r,,/rn,,)z -1 .7

Note that for our geometries. 12,1 << 1. Applying the Pythagorean theorem to Fig. 2.1 and
making the substitution x,, = Y, tanf, we obtain

Tn

—

Ton

: L+ x P+ (Yo +y P+ 02

2.8
xs+ Y7+ h? @8

.

4 e A
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2
ro | 2x, X, +2Yoy, +x2+y?
Tn l =142k 02Y| SR A! (2.9)
Ton Ton
2y 10, +2Y,y, +x2+y
2, = u Xy €010, ” oY1 T X T Y (2.10)
Yin
The change of variables equations in (2.7" can be rearranged to obtain
Fo=Ton = Ton(/1 + 2, = 1) (2.11a)
and
t2-ré =rd z, (2.11b)
Since 1z, << 1,the term /1 + z, can be expanded into a power series
N T L L
" 2 8§ 16
in which only the first 2 terms are retained. Thus
In = Ton = -—T—ro" o (2.12)
Substituting (2.12) into (2.6) results in an approximate phase function
00 = 8y, 4y - 2 (2.13)

Note that r,, and 2, are each functions of n, as well as 0,. the angle at which the nth pulse is
transmit\cd. The notation can be modified 1o express these variables simply as functions of 0.

This results in the specification of ®,(1) as a function of 1 angd 0.

¥(1.0) = (2.14)

rﬂ(o) Z(o) + - 2vr0(9) |
—-—7——-— e T W

Now. ® is a t*vo-dimensional function which can be mapped as a function of 0 and t. Note that

ry and z are explicitly shown as functions of 8. This notation is simply 1o emphasize this func-

tional relationship.
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The variable t can be functionally translated into a range variable by defining R as a func-

tion of time

R() =Kyt + Kygser » (2.15)

where K, represents the scaling in the radial (1ime) directicn and K, gs is the offset from the

origin from which valid received data begin®, Solving (2.15) for t and substituting the result-
ing expression into (2.14) yields an expression for ® in terms of R and 8, which is a two-

dimensional function of polar coordinaies.

-K 8
B(RO) = iﬁf_’;ffl o, + v} :““‘“ - 2"";'( : (2.16)

A proper choice of the scaling factors K, and K g5 Will simplify (2.16). Let

K w, 2r
off set = C 0

. < "= (2.17)
and substitute (2.17) into (2.16):
O(RO) = {%ro(e)xo) (2.18)
Substituting (2.10) into (2.18) gives
- 2VY()R pz
O(R.O) = -é-l-\r;;:’-(yt + X‘COto + m) (2.19)

where p° = x? + y2. the squared radial distance of P 0 Q.

To eliminate K, and make (2.19) into a more useful form, choose K, such that

Yoc
- 20
K= s (2.20)

vielding

4 The received signal in (2.2) is only valid during a small time interval which is dependent on the nearest and
farthest ponts of the imaged terrain, The nearest (and farthest) pomnt is that point which 15 the minimum (and max-
imum) distance trom the data platform to the terrain patch over the entire data gathering interval.

.
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®(R.0) = —(ysinf + x,cosf + ) (2.21)
C2 2Y0
And in rectangular coordinates where U=R cos(8) and V=R sin(6)
2
BUV) = LixU +yV + V) (2.22)
c* 2y()

This has the same form as the phase function of the Fourier transform of an offset delta func-
tion. The difference between this expression and the ideal point target response is the addition
of an extra term - Lhe quadratic phase term. This quadratic term is dependent on p? which is the
squared distance of the poiat target to the image center (reference). As the target is moved out
radially from the center, the quadratic term grows and causes a noticeable smearing of the

-
.
.

response, specifically. a point target widens. Compare this to the inverse Fourier transform. F

of a point target at (x,.y,):

f:(U.V) = F‘l{a(x‘.y'), = f8(xt'Yl) e)(xll +yV) dxdy = e;(x.\! *+ V) (2.?3)
2

UV =e " S (2.242)

= F(U.V) (2.24v)

where ¥ = -?5- has dimensions radians/meters?.
c

Recall that this is only an approximation to the exact point target response since the high-

order terms of 2, were ignored. The exact point target response can be formulated by substitut-

ing (2.11a). (2.11b), (2.14), (2.17), and (2.20) into (2.6):

2 .
HRO) = 21'1‘1,2(0) I2R §1n9 +
c

[m- 1 I - 2(0) (2.250)

1

[

r7(0) = Y2 csc®0 + h? (2.25v)

[

ey
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2Yo(x,cotd + y) + x2 + y?
2(0) =

PY() (2.25¢)
And in rectangular coordinates:
IT‘, vv .
{L.V) = 2:._(;:1__1 3\,\_'+2 l\/1+z(U.V)-ll—z(U.v) (2.26a)
< 0
2
RUV) = YR {1+ o [+ 12 (2.26b)

ilngy +y0 + 3+ v

AUV) = OV

(2.26¢)

‘These equations relate the position of a point target at (x,.y,) 10 its continuous complex phase

function ®(U,V). The data which are obtained from the imaging system consist of samples of

® on a polar grid.

The phase function relates the complex 2-D frequency pattern to the position of the point
targets. This means that a straightforward spectral analysis of the ensemble phase function
(though sampled) should lead directly to the positions of the point target. Superposition is also
applicable here. so that a continuous complex reflectivity map can be generated from the

Fourier transform o7 the reflected and processed pulses.

2.2 The Tomographic Formulation of SAR

Munson. O'Brien and Jenkins [7] have developed the theory of SAR from a tomographic
point of view. They examine SAR as a narrow-band filtered tomography problem using the
projection slice theorem. Bernfeld [18] later develops the same sort of link between the two

areas, although many of the processing considerations seem to be lacking.

In the following development. spatial domain functions will be lower case, Fourier

domain functions will be upper case and functions of polar coordinates will have the subscript

- ——
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p: i.e.. f(x)y) is a spatial domain function in rectangular coordinates and F(p.0) is a polar

representation of the Fourier transform of f(x.y). F(w,.w,) is given by

Flo,.w,) = f f F(x.y) e ™ ¥ ¥4y gy (227
and
1 @ oo " y
y) = o [ [ Flagay) €Yo, du, (2.28)

A projection of a multidimensional signal is a new function with dimension one less than
the original signal. In effect. one of the dimensions is integrated out via a line integral. The pro-

jection of f(x.,y) at an angle 0 is given by
f(u0) = ff(u cosf = v sinf,u 5ind + v cosf)dv (2.29)

A projection is a function of one variable, u, with the second parameter, 9, indicating the angle
of the projection. The transform of p(u:0) which is a one-dimensional transform with respect

touis

Pw) = [ pluflehedu (2.30)

-0

The projection slice theorem can thus be succinctly stated as
P(w#) = F,(w.6) (2.31)

The proof is found in a variety of sources. This particular statement of the theorem is given

in [13].

The projection slice theorem says that the Fourier transform of a projection of f(x,y) at
an angle 0 is equal to a slice of Flwy.wy) 1aken at the same angle @ and passing through the ori-
gin. The consequence is that the original function can be reconstructed by flling in the Fourier
data space with the transforms of the projection data and then inverse transforming the resuit.

The entire Fourier plane must be constructed with an infinite number of projections, since the
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projection operation is performed at discrete angles.

In computed tomography. f(x.y) is an attenuation coefficient. or density function. which is
to be constructed through non-invasive means. Collimated X-rays oriented at the projection
angle 0 perform the line integrals, i.e., projections, of f(x.y). Unfortunately, only a finite
number of projections are taken, and each projection is sampled so that the resulting data set
lies on a polar grid equally spaced in 0 and R. This results in an ill-posed reconstruction prob-
lem [19]. Though the previous paragraph describes a method of reconstructing the original
function f(x.y) from the sampled Fourier data (called Direct Fourier Reconstruction), there are
other techniques such as Convolutional Back-Projection (CBP) and Algebraic Reconstruction
Techniques (ART) which produce very good images. Current state-of-the-art systems have
sub-millimeter resolution. Convolutional Back-Projection has the greatest favor in CAT recon-

struction because it has the lowest computational burden for the required image quality.

Direct Fourier reconstruction suffers from the same geometric difficulties as the spotlight
SAR problem. The output data set is presented on a polar grid and must be interpolated to a
rectangular grid prior to the transformation step. Currently the computational requirements

and resulting images are not competitive with CBP.

In the Munson-O'Brien-Jenkins formulation of SAR[7], the approach to the analysis is
different from that of Weis[15]. It is simplified because the altitude of the aircraft is zero
(though this is corrected later in the paper), and the ground patch is circular (leading to a
simplified expression for determining what part of the return signal is valid). The
simplifications. however, lead to great insight into the imaging process. The following analysis
is taken from [7] and the geometry of the problem is in reference to Fig. 2.2, in which the

radar is imaging a circular patch of radius I. at a distance R from the patch center. The signal

transmitted is as before in (2.1):

—— &




cos(wt + 22) e
(1) = 2 2 (2.32)
otherwise
which can be thought of as the real part of a complex exponential
2 .
s(1) = Re eMcl ¥ %)l (2.33)

The return signal from a small differential patch dx.dy centered at (x0.Y,) and having a com-

plex reflectivity g(x0.Y,) is

Figure 2.2 Geometry of Tomographic Derivation of SAR.

T s it
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2R 2R
ro = Alg(xy.Yo)! cos ‘mc(t——-e-o-) + -;-’-(t----—c-'-'-)2 + arglg(xo.Yo)} (2.34)

Again, just as in the previous analysis, the return signal contains a quadratic phase ter.n. The
attenuation constant A can again be set to unity since it will be approximately the same for all

pulses if R>>1.. Lquation (2.34) can be simplified to

2R
| A Re {g( X".Y..)'S( l"-—-c—-‘l )dx dy l- (2-35)

This is the return from a small differential element at a distance R, from the transmitter. For
the geometry of Fig. 2.2, the locus of points at a distance R, from the data plaiform is an arc
centered at the radar system. The return signal corresponding to the superposition of all
differential patches at distance R, is the line integral along the same arc. However, if R>>L,
then the circular (spherical) radar waves can be approximated by a plane wave normal to the u
axis (the axis of transmission for an angle 8). This line integral is the value of the projection of

g(x.y) onto the u-axis at u,. Equation 2.35 can be thus rewritten as

2R + \lu)
C

;()(l) = Re Pe(u“)'s | Bt (2-36)

where R, has been rewritten as R, the distance to the terrain center plus u,. Note that these
quantities are dependent on 6 since R is changing as the plane flies past the patch. The return
signal from the entire terrain patch is given by integrating ry(1) over the entire area (here the
assumption that the terrain is circular simplifies the integration a great deal. though we could

assume that a square patch is circumscribed by the circle, and the terrain between the circle and

square has reflectivity zero.)

L
r'f1) = Re fn;(u)s
L

|- 2R+ W
¢

du (2.37)
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Because the transmitted signal is a chirp pulse, siretch processing is applied as before,
which essentially translates positional information into frequency information. This is done by

mixing (multiplying) this return r'y signal with a reference chirp from the ground patch center

COS[W‘(‘.-T()) + -;—(t"’fu)zl (2.38)

where 7, = 3?- the two-way travel time 1o the terrain center. This is low-pass filtered to

obtain
P L
r§(1) = —Re| [ polu)¥(1)-¥(1)du (2.39)
2 15
where
,Zw’ (
Y=e 7 2.400)

is the quadratic phase term. and
Y(1) = exp -j%-(ok + -;-(t-fo))u (2.40b)

The quadrature component is obtained by multiplying by the phase shifted reference chirp
sinfw(1-r,) + ;u-f.,)zl (2.41)

and low pass filter, giving the imaginary portion

L
(1) = 2 1m | polu) ¥(1)Y(1)dy (2.42)
~L
of a compiex signal
1 L
Ck1) = 3 | [ polul ¥(1)Y(t)du (2.43)
—L

T e

Sy

e e
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If the quadratic phase term. ¥(1), can be removed. Cy(t) resembles the Fourier transform of

polt) in the u coordinate plane, evaluated at [w, + g-(t-‘ro)].

ClV) = .;-Pglm, + 2 (1=1)] (2.44)

If the transmitted chirp pulse had an infinite bandwidth, then C'y(t) would represent a
continuous sample (slice) of the Fourier transform of the ground patch reflectivity, g(x.y).
(Note that if the terrain reflectivity is isotropic i.e., g(x.y) is not a function of the radar look
angle. then the projection is symmetric about the origin.) However, the pulse is only of finite
width, thus finite bandwidth. and so the processed return represents only a small section of the

Fourier slice. The return pulse is only valid for the interval

2AR+L) T ¢ g AR=-D) T (2.45)
c 2 c 2

This interval represents the two-way time for the beginning of the pulse to travel to the end of
the terrain patch until the ¢nd of the transmitted pulse reaches the beginning of the terrain
patch. These calculations are based on minimum and maximum distances. which, for a rec-
tangular paich, change from pulse to pulse (L would change non-linearly with 6). Again. the
round patch has simplified the calculations. Substituting t of (2.45) into (2.44) yields an ine-

quallity for the range of the argument of P,

.f.(«.,-v'r»,?.‘ci) § R, € %(a.,wr-?.gh (2.46)

For a typical transmitted chirp pulse where w, £¥T>> 2¥1./c, (2.44) reduces to

2 T 2 vT
R,, is bounded by the inner and ouler radii of Lhe slice of the Fourier transform of the terrain
reflectivity represented by the processed return signal.

Thus. as before, the coherently processed signal is a section of a slice of the Fourier

transform. This signal is also sampled uniformly in range so that the collection of sampled

Wy
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returns assumes a polar grid, offset from the origin and having an angular sweep width of Oy.

Many issues not covered. such as the quadratic phase term, modification for non-zero plat-
form height, curvature of the radar signal and the effects of plane movement (inducing a
Doppler term) are not included here, but can be found in[7]. As before. the quadratic phase
term has the effect (;f smearing targets which are distant from the patch center. This is obvi-
ous, since the u? term represents the square of the radial distance of a target from the terrain
origin. It is the same quadratic phase term found in the Weis analysis [15] and is difficult o
remove during processing. It can be shown that this term limits system resolution and terrain

patch size.

23 Comparison of CAT, SAR, and Analyses

Munson et al. [7] compare CAT and SAR and note important differences:

(1) As a result of stretch processing, the processed SAR signal is the Fourier transform of the

projection. In CAT, the projection is still part of the spatial domain.

(2) The processed SAR gignal gives only a small part of the projection transform devoid of dc

componeits, which can result in the loss of edges and sections of constant reflectivity.

(3) In SAR, the projection is taken normal 10 the axis of imaging rather than parallel 10 the

axis (as in CAT).

These two different ways of looking at the SAR problem lead 10 essentially the same
result: the collected data are approximately samples of the Fourier transform of the terrain
reflectivity function. With Doppler interpretation (Weis). the image is obtained by spectral
estimation. i.e.. a forward FFT, to translate sinusoids into discrete range bins. In the tomo-
graphic formulation. the data represent samples of the Fourier transform of the complex
reflectivity which must be inverse \ransformed to obtain samples of the complex reflectivity.

Both interpretations are correct, but can lead to confusion about the role of Doppler processing

and the direction of the Fourier transform. In practice. it is of little concern. since the phase is

e
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l, discarded in the final displayed image and forward or inverse transforms result in the same

[ (though inverted and scale) magnitude map.

It should be pointed out that the Direct Fourier Reconstruction approach is but one algo-

rithm for the terrain mapping. Earlier versions of strip mapped SAR. based on the same princi-

sv—
——

ple used the concept of multiple correlators o perform the stretch processing. The correlators

- amm
—

performed the job of matched flters, which were tuned 10 point targets in each range bin, hav-

ing the impulse response, which was the complex conjugate of the response of a point target of | U
1

that range bin. This, however, invoives much more processing than the FFT approach, though t

hardware implementations have deen designed and built which can reduce the processing time o

] through a pipelined architecture {20).

24 Other Inversion Techniques

The two-dimensional interpoiation scheme is the most direct method for the SAR image
reconstruction problem. Since a relstionship was formed between SAR and CAT. it can be
theorized Lthat some of the tomographic reconstruction algorithms may be used in SAR. Unfor-

tunately. many of them depend on the full set of projection data (Oy = 2w) and thus are

difficult to apply 10 SAR. In particular, the algorithms that may be of use are convolutional ‘ 4
.f back-projection (CBP) and the Hankel transform. .
24.1 Convolution back projection and the Hankel transform

Quite a bit of research has been done in the area of tomographic reconstruction algorithms

and their computational burden versus image quality (similar to the work presented here for

SAR). A celebrated paper by Pan and Kak [21] details the tradeoffs of direct Fourier inversion
with interpolation and CBP. but only very simple interpolators are used. notably the nearest
A , neighbor and bilinear {(used with a modification of the zero-padding-FFT technique described in

Chapter 3). Interpolation via the circular sampling theorem (see Stark [5,22] and Fan [23] for

further discussion about this theorem) is presented. but again, this requires a periodic data set
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(complete circular arcs) to be useful. Heffernan and Bates [24] also compared the very low-
order interpolator methods, but applied them to the projection data prior to back-projection,
rather than 2-D direct inversion. Similar work has been done by Mersereau [13). Desai and
Jenkins [25. 26] have researched the use of the CBP algorithm for the SAR problem and have
achieved image quality comparable 1o the direct inversion technique, although at the expense of
additional computation order. Even if the SAR problem could be considered a limited view
tomography problem. the reconstruction techniques of bandlimited extrapolation to supply the

rest of the Fourier data set would be far 100 costly for real time reconstruction.

The Hankel transform allows for direct polar-to-polar image reconstruction from the
sampled Fourier data by expanding the two-dimensional image into a Fourier series and then
performing a Hankel transform on these coefficients to obtain the Fourier series coefficients of
the image. ‘The use of the Hankel transform o invert the polar Fourier data set directly has
been met with limited success [27] due 10 the cost of computing the needed transforms. Work
is being done o develop a Fast Hankel Transform [28), but this transform still requires a full

circular data set.

24.2 Spectral analysis of nonuniformly sampled data.

Hostetter [29.{30] developed a control systems approach to spectral observation of data
which is irregularly sampled. The algorithm is not practical for large data records, however,
because it is of order N2 for N input points. For an N by N. 2-D array. this would require

((N*) calculations. which is not competitive with even the most sophisticated 2-D interpolator.

2.5 Polar-Rectangular Geometry for Interpolation

The first two sections of this chapter demonstrated how the spotlight mode SAR data set

falls on a polar grid of limited size. The major thrust of the work here is to use the Direct

Fourier Reconstruction algorithm to generate the complex reflectivity map of the imaged terrain

and to study effects of different two-dimensional interpolators available. Fig. 2.3 details the

Yo eom—
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polar-to-rectangular grid relationships and the parameters needed to specify the relative
geometry between the two rasters. The input polar grid is specified by
(1) Ry, the inside radius of the torus of known Fourier data.

(2) Oy, the maximum look angle of the SAR system.

au

Figure 2.3 Polar-to-Rectangular Grid Geometries.
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(3) Ar. the radial sampling increment.

(4) AB the angular sampling increment.

The output rectangular (square) raster is specified by

(1) u0.v0, the bottom-left coordinate of the square grid.

(2) Au.Av the sampling increments for each of the u and v dimensions. Typically. these will

be equal.

The resolution of the system is governed by the width of the Fourier section in each
dimension. These widths, in turn, are determined by the radar carrier frequency w.. chirp
sweep width, and the maximum look angle. 6y. In the range direction. the width is

Ryax = Ry the bounds on the range variable given above determined by the radar chirp sweep

width. From (2.47) above, the resolution is given as approximately 2-'-;-1 In the azimuthal

dimension, the v-width is approximately that of the azimuthal extent of the annuluar section,
approximately 4w, sinfy. If the processed response signal represented the Fourier space exactly
(no quadratic phase term). then a point target placed at (x,.Y,) would yield a two-dimensional
sinc due to the limited extent of the Fourier space available. The resolution of the system can
be defined as the width of the sinc mainlobe divided by 2 since. theoretically, this represents
the separation of two resolvable point targets. In practice, the resoiution is degraded though

constructive and destructive interference of the phase function.

To achieve maximum resolution, it is imporiant to interpolate from the polar grid to the
largest square which inscribes the angular section (geometry shown in Fig. 2.4). The range
resolution is determined by the chirp sweep width (time-bandwidth product). and the azimu-
thal resolution is determined by the center frequency @  and the look angle 8y These parame-
ters specify the annular section location and size in the Fourier domain. The parameters used in
the simulations were w, and the look angle 8y, from which the chirp sweep width and square’s

size and position are determined. The solution in this case is straightforward trigonometry.

P,

———

2
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i Let W be the width of the square to be determined. R, and R, are also to be found - relat-

ing back the chirp sweep width of the radar.

- 2w, - Ruun + Rinax
qo = - 3

i c

Note that q, is exactly half way between R,,;, and R,,,,. but is not exactly the square’s center.

(2.48)

j =

P - WSOV~ SR S5

R N MANNNNNNNY NNNNNNNNN g

/
/

Figure 2.4 Determining the Largest Square Constrained by @, and 0.
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There is a very slight gap between the right edge of the square and the torus on the v=0 axis.

Ryuax is given by

Rmax =

2
(roun + W + ( l;’_)zl (2.49)

since the square must touch the outer radii for maximal size. W is related to R,,;, by

9
W= 2Rminlan'il\1 (2.50)
Substituting (2.50) into (2.49) gives
2 O 2 Om 2
Rmax = (Rmh\ + 2Ruuu"an"‘2—) + (Rmmmn"i“') N (25”

But from (2.43), Ryx = 2qy =~ Ry, Substituting this into (2.51) results in

0 6
(299 = Rpyin)’ = Ry + 2Rnnnw""2‘:?')2 + (Rminmn‘g")z . (2.52)

Finally, solving for R, yields a quadratic equation which has two roots:
Om Om
dgax4dq, J(1 +2 2 2 M
qox4q, |(1 tan - > + tan 5

len = (2-53)
20-(1 + 2v.a:a_22‘;)2 + mz?_z&)

The positive solution yields the correct result and R,,, and W can be obtained via (2.48) and

(2.50).

In this way. the sweep width of the radar system can be determined for a given look angle
(assuming the center frequency remains constant). If the chirp bandwidth is less than that

given above, the range resolution will deteriorate: if it is more, then the extra data are not used.

26 Oversampling and Presumming

A typical SAR system samples the demodulated output at a much higher rate than would
be necessary. based on the Nyquist rate for the recorded signal. This is because the antenna

pattern is not an ideal step function which is limited to the terrain being imaged. Rather, it has
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& transition band and sidelobes which can detect targels outside the desired patch. These tar-
gets are aliased back into the processed image and resull in false largets. By sampling at a
higher rate, and then digitally filtering the data prior 10 interpolation. these outside targets can
be suppressed. Sampling in the azimuth direction is done for the same reason, though it is

referred 10 as Doppler oversampling, since 1he azimuth antenna pattern is obtained through

Doppler methods [31). The oversampled range lines are then low-pass filtered in the azimuth
direction 10 narrow the anienna beamwidth and also 1o reduce the system noise (coherently
summing several range lines into one). It would seem that the prefiltered, highly oversampled
data would be betier input 10 the interpolation stage, since the closer spaced data would reduce
the interpolation error. This is not done because the Storage requirements for such volumes of
data are prohibitive. This topic is treated by Brown er of. in designing optimal presumming
filters which retain azimuthal resolution und allow for limited data storage {32]. Hayner [33]

uses the azimuthal oversampling on a keystone grid to analyze the noise effects of a one-

dimensional nearest neighbor interpolator and to propose an adaptive presumming filter in the

azimuthal direction.

g
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CHAPTER 3

THE INTERPOLATION PROBLEM

Before discussing two-dimensional interpolators, it is useful to examine the one-
dimensional case and see what can be extracted from there. Past experience has shown. how-
ever, that generalizing from one to multiple dimensions in signal processing algorithms is not as
simple as adding a subscript. The problem worsens when the input grid is non-rectangular, and
becomes still worse when it is irregular (the sample spacing cannot be parametized). First. we
will look at what approximation theory can give us and then some classical interpolation con-
cepts. Local versus global interpolation is discussed, as well as separable versus non-separable
interpolation. Then the DSP approach to interpolation will be reviewed. Most classical
approximation/interpolation theory texts deal with real data only, although most algorithms

can be expanded to the complex domain without loss of functionality.

3.1 Classical Interpolation

Classical approximation theory attempts to solve the following problem [34]):

If V is a normed linear space and W is a subset of V, then givena vC V, find a

w' € W such that
Hv—=w'll € liv-wl
for all w C W, where |- ! is a linear norm on the space V
The norm is typically the Chebyshev norm (! ) or the Euclidian norm (L.,). In our case, V is

the set of two dimensional functions, and W is the set of spatially limited functions, e.g., the

ideal low-pass filter (bandlimited) is approximated with a truncated or tapered sinc function

(spatially limited, but not bandlimited due to the truncation).

Classical interpolation theory sets out to solve the following problem:




Given an m partition on tbe interval L{a.b] with partition set X = x;.x5. - - - .x,

such that a=x,$x,< - - - €x,=b. Let y; = f(x;). Find a function g'(x) such that
gx)=y; 1<i<m
and
Hf(x)~g(x) N < Nf(x)~glxili for x; $x<xy .

This allows for a very general specification of g(x) which gives rise to the use of piecewise

functions in representing g(x). i.e., piecewise polynomials and splines®. If the subspace W and
V are the same, then an exact interpolant can be found. i.e., the function can be reproduced

exactly.

It is worth noting a few points about approximation and interpolation for DSP applica-
tions. With interpolation theory. we are required Lo obtain a function which passes through
each of the original datum. This has the disadvantage that a noise corrupted signal will be
reconstructed with a function passing through each noisy sample. rather than smoothing it out.
If the condition that g'(t)=y; is relaxed, then we can produce an approximating function g'(1)
which minimizes the mean squared error between g'(t) and the known data points. Let the sam-

ple error e; be defined as

&=y 8(xl)

Find a function g'(t) which minimizes

m
E) = 2 le 12

1=]

The minimizing function g'(1) is our interpolant. In this case, however, g'(x,) # y, in general.

and the original data will not be reproduced hy g.

s Throughout this chapter, the interpolating functions will be written with its argument as t or X interchangeably
because x is borrowed 1rom the mathematics area and t from the engineering area.
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For approximating a continuous function (signal), we are usually required to approximate
it only within a finite interval. This means that our data record is necessariiy a fixed length
record. i.e., it is time (spatially) limited. If our sequence is of infinite length. as in sample rate
changing a voice or communications signal, then it must be processed in blocks. Also. for a
fixed length record (such as our SAR problem) and without the use of signal extrapolation, the
interpolated recons: ruction will be only an approximation to the sampled bandlimited function.
The problem of processing a time-limited signal as if it were also bandlimited is ever present.
Recall. too, that these interpolation concepts are presented in the time or spatial domain, but are

actually applied in the SAR frequency domain where duality is used to justify assumptions
about the signal.
3.1.1 One-dimensional DSP interpolators

The following section deals with interpolation from a DSP approach [35]. It demonstrates
that interpolation (by a rational factor) is really a filtering operation. The analysis is also car-

ried out assuming that the interpolation is done in the time domain.

Assume that a continuous time function f(1) has finite energy and is o bandlimited. i.e.,

T w12 < o (3.1a)
t=—c0
and
Fw)=0 lal>0 . (3.1b)

where F(w) represents the usual Fourier transform of the function f(t):

o]

Fo)= [ e ™dt (3.2)

-

If f(1) is sampled to produce the infinite sequence x(n) (n, an integer),
x(n) = f(nT) -0 < n< oo (3.3)

where T is the sample period and T < w/0, then the function f(t) can be exactly reproduced
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with the infinite sum

. sin l,;.(t-—kT)
W= ¥ x(x) (3.4)
k== %r.-(t-k'l')

Equation (3.4) can be recognized as the classical reconstruction theorem for bandlimited signals.
It is customary to refer to the interpolation kernel in (3.4) as the function sinc(7) = ﬂ'—’;(—f-)— S0

that (3.4) becomes

0= & x(k)sine( (=K. (3.5)

Kk ® ~an

The reconstruction described by (3.5) is equivalent to passing the impulse sequence x(n)
through an ideal low-pass filter with cutofl frequency w = w/T. The low-pass filter removes

the copies (aliases) of F(w) which are replicated every 2m/T by the sampling operation.

Schafer and Rabiner [36] showed that in the realm of digital signal processing. interpola-
tion is a type of filtering operation. Interpolating by an integer factor L=T/T" is accomplished
through first forming a new sequence, v(n). by inserting L-1 zeros between the input data
points, x(n) from (3.3), and then filtering this resulting sequence with an ideal low-pass (LP)

filter (appropriately scaled).

x(n/L) n=02=L, 2L, -

v(n) = (3.6)
0 otherwise

yim= ¥ v(k)h(n=k) 3.7)

k=—o0
where h(n) is the impulse response of an ideal low-pass filter.
The output sequence y(n) will be exact samples of the original function f(1) rampled at T'

where T' = T/L. When the input sampling rate T is greater than the Nyquist rate w/c, the

requirements of the LP filter are relaxed so that all that is required is an LP filter in which the

N
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passband is approximately unity for #/T < |w! and approximately O for lwl| >0. Optimal

FIR filters can easily be designed which meet these criteria [37], however, there may be an

additional requirement that the original sample values remain undisturbed by the filtering

operation. This additional constraint may degrade the filter a bit by causing less attenuation in

the stopband [35].

If the input sequence is sampled close to the Nyquist rate, the LP filter must then be very
close to the ideal in order to avoid aliasing. This usually necessitates a high-order filter which is
very costly. This has the same effect as applying (3.5) and then sampling the continuous out-
put f(1) with a sampling period T' (although the continuous function f(1) is of course never
really formed in a finite state digital computer). When T/T' = L/M is rational, then we can

convert 10 the new sample rate by first interpolating by a factor of L, low-pass filtering, then

decimating by M (retaining only every Mth point).

A difficult problem occurs when T/T' is irrational. In this case, we may never have a
point at which x(n) and y(m) coincide. and so the above algorithm cannot be implemented. We
must resort to (3.4) for each point y(m) (see Fig. 3.1). The infinite sum, however, is impracti-

cal. and thus we form a suboptimal interpolation kernel h(t) which has finite support.

y(n) = F(xT) = 3 x(k) h(aT'—kT) (3.8)
k=~K

The notation f indicates that the reconstruction is approximate. In the more general case where

y(0) occurs at some g, such that y(0) = [(1,4.,). then (3.8) becomes

y(n) = [(1 g #nT") (3.9a)
K

= zxx( k) h(t,gea+nT'—KkT) (3.90)
k=-

This suboptimal filier may not remove all of the energy at frequencies above o, and will conse-

quently generate errors in the continuous reconstruction f(1), and so, in the sequence y(m).

PRNENVRIOYE




33

pwy KO K ) ) ) ke Q)

] |

v

( @ gyl
P T ol S T L B L
L-'r’—-\
Coreset

Figure 3.1 Irrational Rate Change with Output Off set.

In the simpler integer ratio rate conversion. h(-) is an FIR filter specified in the digital
domain as a sequence. Here, the function h(1) must be a continuous function defined within the
limits of the summation. rather than a discrete sequence. This is a consequence of convolving a
sampled sequence with a continuous function when the output samples do not match up with
the input sample spacings and the rate change is irrational. The continuous time filter must
have a transform. H(w), which removes the periodic copies of F(w) which are above w/T. The
performance of the interpolator is determined by how closely the Fourier transform of h(1)
approximates the ideal LP filter. That part of the spectrum which is not removed above w/T
will not simply show up as high-frequency noise. but will be aliased back into the baseband in

the spatial domain when this continuous reconstruction is resampled. This will be discussed

more in Chapter 4.
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In theory, an arbitrary conversion rate R could be approximated by a rational rate change
L/M. but as L. and M become large so as 10 approximate an arbitrary rate change, the filters
grow to a very high-order. As an example, a rate change of 1.045 requires L/M = 209/200, that
is, interpolating by a factor of 209 and then retaining only every 200th point. At the expense
of sample delay. processing can be broken into multiple stages, each of smaller order. Several
methods have been designed for breaking down a high-order LP filter into several low-order
stages where the decimation is reduced by factors of two [38,39]. or reduced to two stages.
each of lowered order{40). Rabiner and Crochiere present an optimization technique for break-
ing down the L/M interpolator/decimator (I-D) into a series of K smaller order FIR filters
where the optimization is done L0 minimize the total number of multiplies and adds per second
(MADS) [35.41]). They have shown that by breaking down a high-order. single-stage L/M
interpolator/decimator (}-D) into several small order 1./M 1-D sections. a significant computa-
tional savings can be achieved. This notion can be generalized to design more efficient low-pass
filters through several interpolation and decimation stages [42]. It should be cautioned. how-

ever. that cases can arise in which there is no savings in breaking down the single stage [43).

Ramstad [44)] has developed structures for conversion between arbitrary sample rates. He
discusses a hardware structiire which does real time calculation of the interpolator coefficients,
which is essentially a time varying filter. He also presents a “hybrid” interpolator that does
rational sampling rate conversion. as previously discussed, followed by a nearest neighbor,
linear. or possibly LaGrange interpolator, 10 generate data which fall between those equi-spaced
output samples. The approach is hardware oriented with very specialized structures 10 gen-
erate Lthe lime-varying coeflicients. While this may be less of 1 concern for current VSLI tech-

nology . it weuld be useful to have an algorithm that could be implemented in a readily avail-

able serial or parzllel processor or one of the commercially available DSP chips.
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3.2 Global versus Local Interpolators

Nearly all interpolators that are used have local support. That is, the interpolation ker-
nels are finite in length and use input data in only a small neighborhood of the output point.
‘The advantages 10 this class of interpolators are high speed and low cost. They are faster and
easier 10 implement because only a small, limited number of data points are involved in the

summation (convolution). The disadvantage. of course. is a poor signal reconstruction.

From the previous sections, we know that the ideal interpolator impulse response is the
sinc function which is of infinite length. This is called a global interpolator because it uses sum-
ple data (albeit with small weighting for distance samples) from the entire data space to recon-
struct the output function everywhere. Of course, for the limited data record such as in SAR,
the global interpolator only uses data from the limited set (outside the set. samples are
assumed to be zero.) The advantage of the global strategy is the adherence to the fact that a
bandlimited signal is analytic (the function must be continuous and continuously
differentiable) and thus is determined everywhere by only a piece of the function. This means
that when interpolation is performed in the transform domain. every point in Fourier space
contributes to the spatial domain reconstruction. It is this very reason that low-order interpo-

lators do so poorly in direct Fourier image reconstruction in SAR and tomography.

An example of global interpolation is the zero padding of a DFT sequence prior to per-
forming the inverse FFT 10 obtain a finer resolution spatial response. This is often used in con-
junction with local interpolators to interpolate between rolated, rectangular grids. E.g.. to
increase image resolution, calculate that image DFT. zero pad by a power of 2, then inverse
DFT the zero padded sequence. The resulting spatial domain resolution will be increased by the
padding factor. Nearest neighbor interpolation (10 be discussed later in this chapter) is then
used to obtain samples on the rotated rectangular grid. Speed is gained by means of the FI'T,

though at the expense of much more memory usage. In a 2-1) image of size 64 by 64 pixels

(4096 data ponts). resolution can be doubled (in both x and y directions), but memory is

[T
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quadrupled 10 16384 data points. For larger data arrays (increased resolution factor), the
memory required may be prohibitive. The FI'T-zero pad algorithm necessitates that resolution

be uniformly increased everywhere so that we cannot simply increase the resolution in some

small neighborhood.

It is important 1o place the zero padding in the correct position of the DFT sequence. The
DFT represents uniform samples of the z-transform of the sampled signal where the z-
transform of the finite sequence, h(n) is given by
Hz) = & h(n)z (3.10)
n=t

gk

Then, substituting z = e N , we obtain

N-1 ZRmhn
k)= T hin)e ~ (3.11)

n=t

The dc component of H(k) is located at k=0 (z = 1) and the highest frequencies are at
k=N/2 (z = -1). The zero pad therefore, must be placed at both ends of the rotated sequence,

i.e.. in the middle of the sequence H(k). This is at the high-frequency folding point of H(e).

Let the original (1ime domain) sequence be x(n). for 0Xn<N~1 (assume N even). We
wish 1o increase resolution by a factor of R where R is a power of 2. Assume also that N is

even, since most applications which use the FFT fix N to be a power of 2. The DFT of x(n) is

N~} -v,z_!kn
X(k)= ¥ x(n)-e N (3.12)

n=0

The dc point lies at X(0). so we create a new sequence W(k) by splitting X(k) at the high-

frequency folding point and inserting 1. zeroes where 1. = R*N:

X(k) 0 €£k€ NR2-1
W(k) = 0 N/2 €k€ N2+L-1 (3.13)
N(L—K) N2+L €k € N+L-t

i —
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The inverse DFT of W(k) will yield a high resolution version of x(n)

N+L-1 2Tk
wim)= 3 W(k)e W1 (3.14)

k=0

This FFT-zero pad algorithm can be very useful for determining the position of a peak in
a sampled signal when it falls between DI bins. It can be used to determine the movement of
a point target from one range (or azimuth) cell 1o another, to calculate the width of the (possi-
bly moved) peak. or 1o align sampled waveforms which may be out of phase [45). As an
example. consider a sampled periodic sinc waveform (Figs. 3.2 and 3.3). The sinc peak is cen-
tered at 4.3, but the sampled sequence, having a resolution of 1.0, could be misinterpreted by
assigning the peak position at 4.0. The resolution can be doubled by calculating the DFT of the
sequence (Ig. 3.3), zero padding the sequence 10 2N, then inverse transforming the result (Ig.
3.4). After this first resolution enhancement, the peak is resolved to 4.5. This can be bettered
by further padding the DFT sequence to 4N, 8N, and 16N, each time, doubling the time domain
resoluiion (Figs. 3.4 and 3.5). In one-dimension, the memory usage is linear with the interpola-
tion factor, but quadratic in 2-D. When the zero-pad algorithm is used to interpolate one rec-

tangular grid to another prior to nearest neighbor sampling, the memory required may prohibit

more than a simple doubling of the sample frequency.

3.3 Separable versus Non-separable Interpolators

The ideal two-dimensional reconstruction kernel is a bi-sinc. or a separable sinc function

with the interpolation kernel

A a.
sm(_..g.) sm(-——-v

T T,
h{u.v) = A (3.15)
T mv
T, Ty

This is easily derived from the one-dimensional case above, and like the one-dimensional inter-

polator, suffers from the same problem of infinite length which makes it difficult to implement.
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Figure 3.2 Original Continuous Function (Periodic Sinc).
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Figure 3.3 Sampled Function in Determining Peak Position.
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Figure 3.4 Sampled Function With 2 Times Resolution.
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Figure 3.5 Sampled Function With 8 Times Resolution.
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More important, the bi-sinc is only separable in U and V. not in R and @, which is what is
required for the polar grid. Thus, what is normally called separable for the Cartesian grid is
really non—separable for the polar grid. The separable interpolator is one that can be decom-
posed into two stages. The first stage interpolates the polar data to an intermediate grid. from
which the second stage interpolates to the final rectangular raster. The first stage interpolates
the polar data to a keystone grid, and the second stage interpolates from the keystone grid to the
final rectangular grid. The keystone grid, as indicated by Fig. 3.6, is the intersection of the A9
spaced range lines and AU spaced azimuth lines. When the range lines are equi-spaced in 0, as
in a standard polar grid. the azimuthal spacing on the keystone grid is non-uniform. If the
pulse repetition frequency (PRF) of the radar is constant, then the azimuthal spacing is con-
stant for each azimuthal line (lines of constant U). The non-uniformity of the azimuth sam-
ples for the polar-keystone grids increase the amount of computation required during the

second stage of the interpolation,

34 A Study of Interpolators

It is clear that the performance of an interpolator is governed by its approximation to the
ideal low-pass filter. It is important to have very high rejection in the stopband and be as flat
as possible in the passband. Because most of the well-known interpolators are of limited
(local) support, they must, by definition, be suboptimal. The following sections describe the
spatial domain impulse response and corresponding Fourier transform of several well-known,

but rarely characterized. one- and two-dimensional interpolators.

3.5 Nearest Neighbor

The simplest interpolator is the zeroth order, or nearest neighbor. It produces a piecewise
constant function (zeroth order polynomial) and is, in general, discontinuous at each break-

point. The impulse response of the nearest neighbor interpolator is a gate (rectangle) function

~
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Figure 3.6 lntermediate Keystone Grid.

which is 1 from -T/2 10 +T/2 and 0 outside that region (Fig. 3.7).

hyun(t) = PT/.‘.‘(‘) (3.16)
where
- | I €T/2 (3.17)
)= .
Priz 0 1U>T.
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Figure 3.7 Nearest Neighbor Impulse Response.

tion of the transforms in the frequency domain. The transform of this gate function is a sinc

waveform with very high sidelobes (Fig. 3.8) and a falloff rate of 3 db per octave.

wT

Hyn(w) = = T sinc -5

2 sin(:: T/2) (3.18)

It is these high sidelobes which fail 1o remove the high-frequency copies of the original func-

tion. Itis, in fact, a very poor low-pass filter.

The nearest neighbor interpolator, as defined above, is also ill-posed for points lying
exactly half way between known data. The output there would be the sum of the two neigh-
bors. This can be averted by arbitrarily chosing only one of the points. To make the recon-

structed function right-continuous, we chose the left point when interpolating exactly at the

sample midpoints.
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Figure 3.8 Fourier Transform of Nearest Neighbor Interpolator.

In two-dimensions, the nearest neighbor interpolator is a 2-D gate-like function which has
a shape that is very dependent on the input data sampling structure. If the input sample spac-
ing is rectangular. then the nearest neighbor function is a spatially invariant rectangular gate
pulse (of possibly differing u-v dimensions). If the input array is not uniformly spaced, then it
becomes necessary to tessellate the input sample array into nearest neighbor regions (Fig. 3.9).
The interpolator then becomes spatially varying and analysis is nearly intractable (in the

transform domain) except possibly in a stochastic sense.

On a regular sample grid (e.g.. a polar grid) it is possible 10 analyze this interpolator
because it is easier to parametize the 2-D gate. For a polar sample grid, the nearest neighbor
function is a spatially varying, rotated trapezoid which grows in size as we move away from

the origin, and which rotates with the § sample lines (Fig. 3.10). The Fourier transform of the

e




Figure 3.9 Tessellation of an Irregularly Spaced Data Array.

rotated, shifted trapezoid is a bit messy, but straightforward. The spatially varying nature of
the transform results in a transform with four rather than two parameters: u,v (frequency
coordinates) and r.0 (spatial coordinates). The trapezoid is specified by three parameters: the 2
bases and the width as shown in Fig. 3.11. The Fourier transform of this trapezoid (which has

the value 1 inside and 0 outside) can be calculated as follows:

First we see that the trapezoid is really a linearly warped, shifted, and rotated square. The

linear warping is described by a simple transformation matrix

¢ 2
, 7(a + b) 0 "

(3.19)
€242y €

e—
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Figure 3.10 Nearest Neighbor Interpolator Geometry for a Polar Grid.
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Figure 3.11 Trapezoidal Region for a Warped Sinc Interpolator.
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This matrix transforms a square centered at the origin of width one to the trapezoid centered at
the origin and with dimension parameters (a.b.c). The trapezoid dimensions (a.b.c) are depen-
dent on the spatial position of the trapezoid. We can now apply a linear shift transformation in

the +u direction with u’ = u + A, which in the Fourier domain corresponds 1o
Flu,v) = eHAvE(y,v) (3.20)

followed by a rotation. The constant A represents the amount of spatial translation along the

U-axis. A is a function of the position

u” cosd sinf| |u'

= (3.21)
v —sin@ cosf| | V'

By combining (3.19),(3.20), and (3.21), the spatially varying trapezoidal impulse response and
Fourier transform can be determined. though it is extremely awkward to use and therefore this
formulation has only nominal value. If we convolve this spatially varying trapezoid with the
input polar grid, we end up with a 2-D function that is a piecewise constant surface that looks

like blocks of varying heights. This block-like reconstruction is then sampled on the rectangu-

lar grid.

A problem that occurs with this form of the nearest neighbor interpolator is the actual
implementation. Since it s not easy to determine which trapezoid the rectangular sample falls
on, we make a small approximation by bending this shape into a section of an annulus (Fig.
3.12). It then becomes very easy to determine the nearest neighbor with simple integer round-
ing. The index of the angular coordinate is found by adding 0.5 of the angular sampling spacing
10 0. and then truncating to the integ>r value. The range index is found in a like manner with
the range sample spacing. For the particular geometries appropriate in spotlight mode SAR, this

is a very close approximation o the ideal. The Fourier transform of the nearest neighbor inter-

polator is shown in Fig. 3.13.
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Figure 3.13  Nearest Neighbor Interpolator Fourier Transform.
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While the NN algorithm is the crudest of the interpolators presented here, it still requires
square-root and arctangent functions to locate the Cartesian point in polar space. The computa-
tion, however. can be reduced by expanding these functions in a Taylor series and truncating to
3 terms. The approximation is good enough to locate the point in polar coordinates, and the
error in position is usually negligible in effect, i.e., choosing the nearest neighbor incorrectly. In
our simulations, the expansion method produced incorrect nearest neighbors in only 3 out of
4096 points - 0.073% error. Of course, the square-root/arctangent functions could also be gen-
erated through a lookup table combined with linear interpolation. As we shall see, these small
errors in the nearest neighbor coordinate approximations are usually outweighed by the error in

the algorithm itself.

When interpolating from one rectangular grid to another. which is merely displaced in U
and V (no relative rotation). where the input and output rasters have the same sampling fre-
quency. and are offset from one another by AU.AV. the nearest neighbor will merely replicate
the original data. In fact, if AU <T/2 and | AV <Ty/2. then the input and output

responses will be identical [11).

While this is the fastest and easiest algorithm which can be used o produce Cartesian
samples from polar formatted data, it results in a badly distorted response for CAT

images (24] that are full of artifacts and false lines. In SAR. it produces many false targets.

3.6 Linear Interpolation

Probably the most widely used simple interpolator is the linear inzerpolator. 1t is com-
monly used to “read between the lines” of tables or closely spaced samples. When a function is
expanded in a Taylor series about some known point £, and then truncated to two terms. the
resulting expression is a simple linear curve (straight line) through £. A signal which has been

reconstructed with a linear interpolator will be continuous. but may lack continuous first and

other higher order derivatives which make would it “‘smooth.”
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The linear interpolator is usually thought of as a connect-the-dot interpolator. It is more
desirable for analytic purposes. however, to find its impulse response. This is the convolution

kernel h(1) in our original reconstruction formula

o

y(W= Y x(n)a() (3.22)

Q
n == 1

where T is the input sample spacing. One formulation of the linear interpolator is given by

(3.23).

)'(l) = % (x, - X()) + Xq (3.23a)

t

=x,(1 - ,‘r) +x (3.239)

It ix possible to use input data x, and x,, because Lthe impulse response is shift-invariant for a

constant input sample spacing. The subscripts are simply replaced with the points on either

side of Lhe continuous varjable t.

Comparing (3.23b) with (3.12) gives an h(1) of the form

1= 14/T W ET
h(t) = (3.24)
0 It >T

which is shown in Fig 3.14a. It is important to realize that this is the impulse response which

is convolved with the input data to get a linear interpolated (and continuous) output. The

transform of this function is

Hypear(w) = A5I0°WT/2) (3.252)
T w*
= T sinc? %Il (3.25b)

which is also referred 10 as the Fejer kernel [46). It is easy to see that this corresponds to con-
volving two nearest neighbor interpolators, where each is a gute of width T centered ai 0

(extending to xT/2. The convolution of the gate pulses is equivalent 1o squaring their
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transforms, resulting in a sinc squared Fourier transform (Fig. 3.14b).

The linear interpolator can also be formulated as an inverse distance interpolator where
y(1) is equal 10 the weighted sum of each of its nearest neighbors. The weights are the normal-

ized reciprocals of their distance to y(1), i.e.,

Xo Xy
y(t) = ._1."_...__._1_.‘.'. (3.26a)
T + T—t
=xe(1=L)4x L (3.26b)
T T

which s identical to (3.23b). It will be shown that this relationship does not hold in two-

dimensions.

3.6.1 One-dimensional generalized inverse distance

The linear or inverse-distance algorithm can be generalized to the inverse distance to the N
(Nth power inverse distance) interpolator. Here. the distances to each of the two nearest data
points are raised to some power N, N21. This results in weighting the nearer point more
heavily than the other. It also results in a continuous first derivative in the reconstructed signal
at each interpolated point. The impulse response of the generalized inverse distance (GID-N)

interpolator is

(1 —-dN

h S,
(W (1=-dN+ N

(3.27)

where

This is obviously not a polynomia! function, but rather a ratio of polynomials, which are

more difficult to analyze. The Fourier transform of a polynomial is easily calculated, but the

transform of this class of functions (defined only in the interval [-T.T]) is difficult to

Bs o




formulate. However, an approximation of the GID-N transform is easily accomplished numeri-

cally with the DI'T.

In the 'imit as N approaches infinity, GID-N approaches the nearest neighbor. This is
obvious because the weighting of the nearer point approaches infinity (with N) and causes that
point to be selected as the output. With very higher order N, T must be scaled to prevent

numeric errors due to computer range problems.

3.7 Two-dimensional Generalized Inverse Distance

The linear interpolator can be extended 10 two-dimensions very simply for rectangular
input grids. For this case. the interpolator can be thought of as convolution with a sgparable
2-D triangle signal (a quadratic shaped pyramid (Fig. 3.15a) shown with equal spacing in u and
v) having a half width equal 10 the u and v input sample spacings. The bilinear interpolator
has a Fourier transform which is a separable sinc squared and is shown in Fig. 3.15b. The

impulse response for the bilinear interpolator is given by (3.28).

Muv) = (1= tut/T)(1=1vI/T,) ful <T,Ivi<T, (3.28)

However, when the input grid is non-rectangular, bilinear interpolation is difficult to for-
mulate since the data axes are not orthogonal. The most popular linear type of algorithm used

in this situation is the inverse distance interpolator. The output value at Q is the weighted sum

of the 4 nearest neighbors (Fig. 3.16).

MA
Bl =

o
]
o 0
-

(3.29)

d
Expe

The impulse response is given by
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Figure 3.16 Inverse Distance Interpolator Geometry.

1/d
..‘_/__'_ max(lul.lvl) <1
T/ (3.30)
h(uv) =
0 otherwise

where d, is the distance from (u,v) to (0,0).(0.£1).(£1.,0), and (21,2 1) with the sign depend-
ing on the quadrant in which (u.v) falls. If the summation in (3.30) is expanded and the

numerator and denominator are each multiplied by d;dad;d,. h(u.v) becomes

dadydy

h(u.v) =
dy0y0, ¥ dydyd, ¥ d;dd, ¥ didyd;

(3.31)

which avoids the problem of singularities when interpolating at an input data point. Notice

that h(u.v) has the value 1 at (0,0) and becomes 0 at the eight integer sample points around the

e r e o A T A
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origin (0,0).(0,£1),(£1,0)(£1,21). This is consistent with the constraint that the interpola-
tor should exactly reproduce the given data at the sample coordinates. The inverse distance

impulse response and corresponding l‘ourier transform are shown in Figs. 3.17a and 3.170.

The term Generalized Inverse Distance actually stems from generalizing the order of the
inverse distance weights and using additional local points in the summation. These points are
determined by extending the point set to include the next layer of points around the nearest
four. The first additional layer contains twelve more points (sixteen total), the second layer
contains eighteen points heyond that (twenty-five total). This admittedly heuristic point set

was used by Shepard [47] in contour plotting. It is used here in the computer results to deter-

mine the value of the enlarged point ~et.

h was demonstrated in the 11) case that the linear and inverse distance interpolators were
identical. In two-dimensions. this is obviously not the case, since (3.31) cannot be reduced to
(3.28). 1t is non-separable and difficult 10 analyze. even for the rectangular grid input set. A
comparison of the transforms for the bilinear and inverse interpolators, suggest that inverse
distance is inferior to the bilinear. It is easy to see (by examining the first derivative behavior
of h(u.v) about the (0.0) point) that the output function y(u.v) will not have continuous
derivatives. This is similar to the bilinear version, though more pronounced. due 1o the steeper
descent from (0,0). The problem with the first derivatives can be rectified by using inverse dis-

lance squared (GID-N, N=2). This choice has a very useful computational side effect.

The inverse distance squared interpolator has some very nice properties. First, the

sidelobes are very low (Fig. 3.18b), at the expense of a slightly wider mainlobe.

(3.32)

For the SAR application, this is important because it is important to reduce the sidelobes in

order to reduce the artifacts created by the transform operation. Second, the inverse distance

T




Figure 3.17a  Inverse Distance Interpolator Impulse Response.
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squared algorithm obviates the need to perform the square-root operation in calculating the dis-
tances o the nearest 4 points. This is quite a computational savings, as will be shown in the
computer simulaticns. Surprisingly. this algorithm has had little application in the image pro-
cessing field. but rather has been used more in such areas as contour and 2-D surface plotting
(graphics) [47). Notice that, like the one-dimensional case, as N approaches infinity, the GID-N

interpolator approaches the NN interpolator (Figs. 3.19 and 3.20).

3.7.1 Arbitrary local point weighting

In the most general case, when interpolating to a point Q. the nearest P points, p;, are indi-
vidually weighted by a function w, a function of the Cartesian distance from Q to P,,

d, [47. 48). That is,

ZW(dl)'pl
1)

T W(d,)
)
The set of points p, is usually chosen to be the nearest P points, or a set of point within a
given circle (used in irregularly space data sets so that areas of sparse data do not used very

distance elements in the weighted sum.) w(d) can be any monotonically decreasing function

which satisfies (3.34a) and (3.34b).

Aim w(d) =0 (3 34a)
(l{l“n(} w(d) = oo (3.34v)

This very simple constraint will reproduce the sampled data exactly and can lead to several

heuristic weighting functions such as

1

e'—1

w(d) =

(3.35)

which has an exponential weighting surface. In the previous section, w(d) = d", where n = 1

for inverse distance weighting and n = 2 for inverse distance squared.
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3.7.2 Warped and spatially varying nature of GID

It should be pointed out that the Generalized Inverse Distance interpolator suffers from
the same spatially varying problem that the nearest neighbor algorithm does. For a polar grid,
the base of the tent function (for simple inverse distance) grows larger and more warped. In
the Nearest Neighbor section, the {requency response was generated by warping (and rotating)
a square gate pulse. This could be done for the inverse distance. but little insight would be
gained by such mathematical manipulations. Rather, the very narrow look angle typical of
spotlight mode SAR allows us o approximate the warped, spatially varying impulse response

with those given above (shown for square input spacing) as a stationary function.

3.8 The Weighted Sinc Interpolator

A third interpolator. henceforth to be called the Weighted Sinc interpolator (also referred
1o in the literature as the Windowed-Sinc, Standard Polar Format. and ERIM interpolator), w-
sinc, is a two-step algorithm. First, the polar samples are interpolated along the range lines to a
“"keystone raster,” that is. a sampling raster which has data on parallel azimuthal lines (Fig.
3.21). Note that this interpolation is implemented using one-dimensional aigorithms on a range
line by range line basis. In a sense. it is separable, though not in the typical U-V coordinate
system, but rather in the R.0 coordinate space. In step two. the dala are interpolated. again
using one-dimensional techniques. to the final rectangular grid. The computational complexity

of this algorithm is determined by the complexity of the 1-D interpolator for each step.

It was shown earlier that the sinc function is the ideal reconstruction filter, although it is
impractical due to its infinte support. If we attempt to use a truncated version of the sinc, the
resulting transform displays the usual Gibb's phenomenon oscillations which result from high

sidelobes and poor passband response. This problem can be alleviated by truncating the sinc

function with a tapered window function.
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sin(-T"—t—
h(t) = wlt) - ——== (3.36)

where Ty, is the sampling interval of the output sequence and w(t) is the windowing function.

The sinc function is specified in terms of the output sample ~pacing because it is actually doing

the job of low-pass filtering and signal reconstruction in one convolution. The cutoff f requency

of the low-pass filter is given by the output spacing so thay when we interpolate to a sparser

array (T'>T). the filtering operation will prevent aliasing of high-frequency data into the low
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frequencies. In the first stage of interpolation from the polar grid 1o a keystone grid, the input
sample spacing. AR, is constant from range line to range line, but the output sample spacing

changes, i.e., the sinc width changes very slightly for each range line interpolation.

Windows are most typically used to Laper data records prior to applying a transform
(either DFT or IDFT) to reduce the sidelobes caused by truncating the infinite sample sequence.
Harris [49] has cataloged a large list of well-known windows and their spectrum shaping pro-
perties in conjunction with spectral estimation and spectral leakage. Although many windows
are candidates for the w-sinc interpolator, the Hamming window was chosen in the computer

simulations because of the ease of evaluation and familiarity. The Hamming w-sinc interpola-

tor becomes

sin(%-"—
b = [0.54 + 0.46 cos( 2TL) |- 10wt (3.37)
K mt
Tout
or more simply
(1) = [0.54 +0.46 cost 2™4) | - sinc( TL) (3.38)
k Toul

where K specifies the support of the sinc calculated in terms of the output sample spacing.
Because of this specification of K. the number of input samples that fall within h(-) may vary

by 1 between any two interpolator sums. This has negligible effects.

The Hamming window is actually a modified Hanning window which is a member of the
c0s*(0) class (a = 2 for Hanning). I can be formulated as the multiplication of a raised cosine
by a rectangular window - in the transform domain, 1t is the convolution of the sinc kernel

with three impulses located at O (of height 2#). and at + /K of heights 7 each. Its transform,

therefore. is the weighted sum of three sinc kernels [49]

Wi(w) = 0.5427 sinc(l}:—w) +0.46-7 sinc(% +w) + 0.46 sinc(% -w)  (3.39)

The side-lobes of the two offset sincs cancel out the sidelobes of the main sinc, and thus, the




63

overall transform has lower sidelobes at the expense of the wider main lobe.

The Fourier transform of the lamming windowed sinc is given as the I'T of h(1):

H(w) = FT { sinc(r— 1) + (0.46 + 0.54 cos( _;\1 )= px(t) ) (3.40)

out
which is the convolution of the transforms of each term. The transform of the llamming win-

dow is given in (3.41),

_ (1.087% = 0.16K*w?)sin(7rw)
“Hammmg(w) = w("z - szz) (3.41)

As we increase K. we tuhe more terms into the summation. This has the effect of creating
a better low-pass filter. i.e.. betier interpolator, but also of increasing processing time linearly
with K. Figures 3.22 and 3.23 show the impulse response and corresponding Fourier transform
of the w-sinc for k=4 and K=10. While it is obvious that the w-sinc shows the most promise
for an interpolation kernel, the drawback is the excessive amount of computation required in
the lengthy summation (direct convolution). the evaluation of the sine and cosine functions,
and the calculation of the input data positions. The data positions of an a priori known polar
grid could. in theory. be stored in a ROM: however, the data collection path of a maneuvering
aircraft precludes such a ROM. Hence. data positions must be calculated “on the fly " Appendix

II describes a novel method of reducing sinusoid computation. but the w-sinc iaterpolator is

still costly.

3.9 Splines

3.9.1 Polynomial interpolation

The use of polynomials for function approximation and interpolation is widespread
because polynomials are very easy to manipulate, differentiate. and integrate. They are ana-
lytic and well-behaved and are representable in a large number of ways. The Taylor expansion

of a function is given as a (possibly infinile) polynomial which is often approximated by trun-
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cating to a finite length polynomial. in computer applications, polynomials are easily
represented as an array of coefficients (or derivatives at a specific point). The linear interpola-
tor presented in a prior section is really a first degree polynomial®. It is not surprising, there-

fore, that polynomials could be used for our frequency domain interpolation problem.
Given a set of dala points y;.ya. ©* *.¥n al time samples XXz, + * - .Xn. il is well known

that an N-1 th degree polynomial, py(x). can be generated such that py(x;) = y;. The Nth order

polynomial can be written as:

p(x)=a, +ax + - +a,x"! (3.42a)
1 .
= Ja,x™! (3.42b)
=]

where the coefficients a, can be generated by first forming the intermediate polynomials (called

the LaGrange polynomials)

NOX - X
L(x) = !
=1l (3.43)
=i
which have the property that
0 i)
l‘(x’) = (3.44)
1 i=j

The nth order polynomial is then generated through the sum of these LaGrange polynomials

N
p(x)=F 1(x)y, (3.45)

1=1

Note, however, that this becomes rather unwieldy to work with for large N. It is also computa-

tionally unstible on a finite precision computer.

$Some texts call it a second order polynomial because 1t 1s specitied by two coetlicients - 1t spans a two-dimensional

space. The terms degree and order shall be treated here as the highest power of the polynomidl, ... 4 cubicss a third
degree polynomial.
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Another problem with polynomials of increasing degree is convergence. As the number of
interpolating points is increased. the interpolating polynomial py(x) is not guaranteed to con-
verge to the original function f(x). In fact, it can be shown that for any sequence of sets of
poi.ms X,. there is a function f(x). such that the sequence of interpolating polynomials will
diverge at these points [34). Finally. the multidimensional polynomial is not unique for a

given set of points. i.e., a rectangular grid of sample points will not produce a unique polyno-

mial of the form

plxy)=a,x" +a,. x"ly +a,,x" 2y + o da vt +a, . (3.40)

This means that it cannot even be used as a local 2-D interpolator, preciuding its use for the

SAR system.

Though there are various ways to represent a polynomial which can reduce the amount of
instability in computation (Newton's form with divided differences, for instance), these Nth
order functions tend to oscillate too much between the nodes. This, of course, is because of the
fact that an Nth order polynomial must have N roots. On a digital computer, the high-order
terms of the polynomial are very sensitive to small changes in x. This is sometimes referred to
as an ill-conditioned function. One well known technique to deal with these shortcomings is by
using different lower order polynomials in different regions of the curve. The result is the class
of polynomials called piecewise polynomials or pp functions. Another name for pp functions is
splines.,

The 1erm spline has a rather broad definition that is frequently misused in the literature.
Most simply. a sphne is a piecewise polynomial without constraints, i.e.. nothing is said about
continuity of the spline or continuity of any of its derivatives. Typically. however, the spline
is constrained 10 be at least continuous. and m derivatives of the Nth order spline are 0 be
continuous, where m € N~1. The linear interpolator can be referred to as a firsi-degree spline
which is continuous. but lacks any continuous derivatives. A parabolic spline is a piecewise

quadratic function which has a continuous first derivative. A cubic spline is continuous and has

J
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continuous first and second derivatives everywhere on the interval.

Spline functions are often used in mathematical and curve-fitting applications, because
they can generate smooth interpolating functions with continuous derivatives at the known
data points (also called “‘hnots.” “joints.”” and “breakpoints™) [50. 51, 52]. More recently,
splines have been used in computer graphics to generate smooth curves from discrete edge

points of objects., and thus reduce the number of points required for an irregular curve.

Splines have also been used in typesetting applications where enlargement and reduction
of character sets are more easily accomplished with pen (plotter, laser, light) strokes than with
binary digitizations [53]. By storing character sets as a combination of straight lines and spline

curves. they can be arbitrarily scaled without degradation.

3.9.2 Cubic spline interpolation

To see how splines can be constructed to be smooth, i.e., Lo possess first and second deriva-
tives at each knol. we construct a simple case with only two knots with known values and

derivatives. The following is taken from Rivlin [34].

If «a<fB .and
. p(a) =W p(B) = U
(3.47)
pla)=u;, p(B)=u,
then
= |(x=B) +2(x—a)(x-B)"'
p(X) Uy (p-—a)2 (B-—a)3 (348)
4o, | x=aP _ 2x = B)x = o)
(B=-a) B -a)
+u, (x ~a)x —=B8)? s (x —o)(x—8)
(B—a) T (B-a)

Because a cubic polynomial has 4 degrees of freedom, the polynomial can be forced to have a

JRv—
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given value and derivative at each of 2 points.

If the spline is constrained o have a continuous second derivative, then it can be shown
that the entire spline, s(x). which consists of the cubic polynomial sections,
s,(x) for x,£x¥x,4,. can be uniquely specified by the given breakpoint.. x;, the sample values y,,
and the boundary conditions u'y and u'y. The system of equations thus depends on the initial
and final derivative of the knot sequence. The end conditions can also be specified as second
derivali . s, or constraints on the first and/or second derivatives which simply increase the sys-
tem of equations whick must be solved (hy 2 more equations). It is interesting to note that
spline interpolation has a global nature. Lach datum in the set of N points affects the entire
spline function, though in a much more subtle way than the Nth order polynomial interpolant.
DeBoor showed that this system of equations forms a band symmetric matrix which can be
inverted by Gaussian elimination without pivoting [54]. The recursive solution is very fast and

is implemented in the IMSL mathematics programming library.

The various boundary conditions which can be imposed on the spline function are dis-
cussed here. Unfortunately. the names of the more popular ones are not wholly descriptive of
their effects. If the derivative of the original function is known at the end points, then we
select u'y(x) = f'(x,) and w'\(x) = f'(xn). The resultant spline is called the complete cubic
spline of . Most DSP applications do not have derivalive values available, nor are they
estimated well due to additive system noise. If the second derivatives at the endpoints are
forced 10 be 0. then s(x) becomes the patural spline. This is a popular boundary condition in
available software, but is rather arbitrary and leads to only O( | t [ %) convergence. which means
that as we decrease the spacing between the knots, the functicn s(x) converges to f(x) in a

squared fashion. By contrast, the complete spline interpolant converges in O( 11 14) o f(x).

Another possible boundary condition is called not—a—knoti. In this case, the first and last

knots of the sequence. X; and Xx. become inactive and s,(x) = s2(x) and sx- (x) = sy_»(x). This,

too, has (O I t1*) convergence 1o f(x). It is the end condition used in the IMSL. math library for




spline interpolation.

The cubic spline function is given by piecewise cubic polynomials of the following

form [54]):

Sl(x) =cp, tey, (x— gl) + ¢, (x _51)2 + ¢y, (x —gl)s X, < gl < X1

where the coeflicients ¢, ; are chosen such that

s{x,) =s,(x) 1<i<€N (3.50a)

si(x) =s(x) 2€i<€N-1 (3.500)

The constant coefficient is set 10 ¢;, = v, so that the spline interpolates to the input data set at
) the knot positions. Once these coefficients have been determined through the Gaussian elimina-

tion step, it is a simple matter to locate the interpolation point within the correct interval and

compute the cubic polynomial. If many points are to be generated within an interval, this

method would be more preferable than the weighted sinc from a computational view.

The cubic spline interpolant has the unique property of maximal smoothness. That is, for
a given set of interpolation points. the cubic spline gives the smoothest curve over all functions.
The smoothness s defined as the integral of the square of the second derivative:

b

1 Sl ka (3.51) 1

This integral is minimized over all f(t) by s(1), the spline interpolant. It is also termed the

roughness [55). The smoothness integral is an approximation to the strain energy function

} (r(1)Pdt (3.52) |

[T+ (r(yp?

This is, in fact, where the term spline is derived. A spline was a thin rod used by draltsman to {

fair curves through a set of data points. The curve naturally minimized its strain energy and is

approximated by the cubic spline function.




7

Because the spline interpolating function is global aind requires a matrix solution, it does
not possess a lime invariant impulse response. Horowitz has determined the power spectral
density effects of spline reconstruction [56]. He found that higher order splines are needed to
preserve the power spectrum of the original function, but that these higher order polynomials
require much more computation lo generate and evaluate. A close cousin to the complete spline

interpolant is formed via the B-spline functions.

3.9.3 B-splines

Hou and Andrews [57] used cubic basis splines, or B-splines (sometimes called B-splines).
for image enlargement and reduction, and for text magnification and minification. with the con-

clusion that the B-spline may prove more appropriate than a truncated sinc for finite length

data records.

The term B—spline comes from the basis formulation of the reconstruction function. If

f(1) is the original sampled function (10 be reconstructed) at the points x(nT), then we con-

struct a set of basis functions, B,(t), and form the sum

R K
f(1) = Yc, B(V) (3.53)

Note that the ¢, are not the original samples y,. but rather new coefficients calculated from y,.

For equally spaced data, the B-spline functions are shift invariant and the subscript i can be

dropped from B.

The cubic B-spline is formaliv def.ned as the convolution of two triangle (Chateau func-
tions) pulses, each of width T and heigl t 1. The resulting function is given as two cubic poly-

nomials and is symmetric about the origin. The interpolation keinel is given by:

B2 -12+2/3 il <1
h(1) = B+ C=2144/3 1< 111 <2 (3.54)
0 Il >2

1
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This can be recognized as the Parzen window which has a Fourier transform (scaled so that
F(0)=1).

g 4
. w’'l
sinc( ——

Flw) = 3

(3.55)

This is expected since the convolution of two triangle waveforms corresponds to the product of
its transform, which are in turn resulting from the convolution of two gate pulses. The nth
order B-spline can be recursively generated by convolving the (n-1)th order B-spline with a

gate pulse of width T.

This formulation of spline reconstruction is actually a different interpretation of the com-
plete spline given above. The implementation is slightly different. but the dependency of ¢, on
y, is global, and thus while the B-spline does have finite support, the B-spline coellicients do
not. The interpolation function is generated by computing the ¢,'s and then filtering this
sequence with the B-spline kernel. The previous interpretation leads to a faster implementation
and is used in the computer analysis. A B-spline type of reconstruction can be done with a
slight modification to the basis function, which leads to an interpolation impulse response that

resembles a truncated sinc function,

3.9.4 Cubic spline convolution

The complete spline interpolant is generated by solving a system of equations which come
about by the constraints on the interpolating points, the first and second derivative matching at
these points. and the boundary conditions. A more general cubic spline that does not have all

these constraints is given by the following piecewise cubic polynomial which is symmetric

about the origin [11}):

a3ls+82t2+a]t+au ] <1
h(t) = ' (3.56)
bytd +byti + byt +b, 1S Itl K2
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To create an impulse response that interpolates the data exactly, f(x) must be 0 at t=1 and
t=2. Also, first derivative of each cubic should match at t=1. This gives seven constraints in
all, but the piecewise function has eight constants. This constant can be made a variable in the
function {(x) which can be modified 10 generate diflerent cubic spline functions. It is important

lo remember that this spline is different from the complete cubic spline interpolant presented

previously.

(c+2)3 = (c4+3)2 4+ 1 1l <1

h(t) = (3.57)
ct? = 5ct? + 8¢t — 4¢ 1€ 1t €2

When the constant ¢ has the value -0.5, the interpolation error goes to zero with the third
power of the sample interval (O1T31). The second derivatives of the two polynomials are
forced to be equal if ¢ = -0.75. This same result was used by Keys [58] who demonstrated that
the accuracy of the interpolation is between the linear and complete spline interpolant. This
form of cubic spline convolution is studied in the computer analysis of Chapter 5. The impulse
response of the modified B-spline with ¢ = -0.5 is plotted against the w-sinc of order 4 in Fig.
3.24a. Note that this B-spline is remarkably similar to the w-sinc. Similar performance is

expected. The Fourier transform of the B-spline (¢ = -0.5) is presented in Fig. 3.24b.
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CHAPTER 4

WINDOWS, SPURIOUS TARGETS AND ALTERNA i'TVE SAMPLING GRIDS

This chapter presents a number of lopics that are important in SAR processing. Window
design for SAR data arrays is discussed. and the usefulness of optimal windows is examined.
Spurious target generation resulting from the Fourier domain interpolation stage is presented,
and some one-dimensional examples are shown. Finally, alternate sampling grids are propos=d

which can reduce the computation and even the complexity of the sampling hardware.

4.1 Windowing the Data Array

It has heen demonstrated that spotlight mode SAR can generate a data set which is
approximately the Fourier transform of the complex reflectivity map. This is inverted with the
DFT (FFT). The same procedure is used for the tomographic reconstruction problem as well as
remote sensing arrays (ground-based aeronomy SARs). However. when using the DFT as an
approximation to the Fourier integral. errors occur due 10 the limited size and particular shape
of the recorded data. It is well-known that strict truncation (uniform windowing) of a signal
results in Gibb's oscillations. or sidelobes, which can obscure weak signals. These sidclobes can
be reduced through the use of a weighting function. or window which tapers to zero near the
ends of the sampled data set. In addition, this tapering smooths out discontinuities at the end
points (the DFT assumes that the data represents one period of a periodic signal, so x(0) follows
x(N-1)) which can result in sidelobes as well. The type of window used dramatically affects
the resulting outpul spectrum. often reducing the high sidelobes at the expense of a wider
mainlobe. The disadvantages of windows is the loss of information {rom the tapered spectral
shaping which may not be representative of the signal spectrum. and a more difficult evaluation
of the output image. i.e.. the MSL cannot be used as a good measure of image quality. Win-
dows have also been used successiully i the design of FIR filters [59). Indeed. the weighted

sinc interpolator o} Chapter 3 was essentially a filter designed by tapering the sinc function
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with a Hamming window.

Harris [49] has examined a number of windows and cataloged them according to peak
sidelobe levels, mainlobe width, energy leakage, and several other parameters. The windows are
also presented graphicaily. and examples of using windows in spectral estimation are given.
Additional window designs and measurements are given by Geckinli and Yavuz [60] which
favor the Hamming and Kaiser-type windows for spectral analysis and demonstrate the
optimality of the truncated sinc window for an energy maximization criterion. Because SAR
can be viewed as a spectral estimation problem, windows are examined which can improve

sidelobe reduction and resolve point targets.

In this section, we briefly examine some of the windows which were used in the computer
evaluations of 2-1) interpolators. Pravious work in optimal window design for irregularly

shaped data set is also discussed.

4.1.1 Separable versus circularly symmetric windows

Probably the most common windows used in two-dimensional signal processing are separ-

able. That is. they can be represented as
wix.y) = w(x) - waly)
where typically, w, and w, are the same function, which is a good. one-dimensional window.

Huang [61] has shown that good circularly symmetric filters can be designed by rotating

good one-dimensional windows, i.e.,
wa_y(xy) = w",(\/x2 +y?)

The circular weighting function has been using in optical SAR processing due to the nature of

the spherical lens. It was also the weighting function chosen by ERIM for their processing of a

rotaling platform imaging system [62].
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Unfortunately, when using windows with the DFT for spectral analysis, a window which
is non-zero (although equal) at the endpcints will generate discontinuities when rotated, and
thus produce higher sidelobes than the one-dimensional case. A Hamming window is one exam-
ple. The two-dimensional circularly symmetric Hamming window shown in Fig. 4.1b displays
the discontinuous boundary. This is an example of a window which is good for the one-
dimensional and separable 2-D cases. but possesses a poor circular response. Experimental
results in the next chapter demonstrate the inferior image quality. This may be corrected with
a zero taper window such as the Hanning window which displays no such discontinuities (Fig.
4.2). The additional problem with the rotated window is the great information loss due to the
relatively large area of zero weighting near the high frequency “corners.” If the energy concen-
tration is approximately zero for x* + y> 2 r’, then a circularly symmetric window may be
appropriate. 1t would work very well if the Fourier transform data had a circular region of

support. However, spotlight mode SAR. in general. does not.

4.1.2 Optimal windows for SAR

Windows can also be designed which are optimal in a given sense. In {63). Papoulis listed
several oplimization criteria such as maximum energy concentration, specified zero crossings.
minimum energv moment. and the minimum amplitude moment. The maximum energy con-
centration criterion generates a window which has maximal energy in a given range (-0 o o)
and is solved via the prolate spheroidal wave functions (PSWF). Solutions, both continuous
and discrete, of the PSWF are discussed by Slepian [64. 65, 66). The specified zero crossings

criterion is a generalized window of the form

w(t) = k(1 4 2« cos(at)) p,(1) (4.1)
where
= —2sin(at)
« 2at + sin(2at) (42)

where the zero crossings are specified by a. The Hamming window is a special case where the

PRSTEUR U,




Figure 4.1b A Circularly Symmetric Hamming Window.
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Figure 4.2a A Separable Hanning Window.
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Figure 4.2b A Circularly Symmetric Hanning Window.
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discrete window transform has zero crossing on the DFT sample points. This property makes
the Hamming window useful for the interpolation evaluation problem since, a properly placed
and sampled IFourier domain Hamming window will result in an image sampled in the nulls of
the image domain sinc function. In this way, the interpolation error can be calculated indepen-
dently of windowing effects. Several examples of circularly windowed data records are given

in the experimental results.

The previous sections demonstrated the design of two-dimensional windows via a rather
heuristic algorithm ( i.e., take a good one-dimensional window and transform it into a two-
dimensional window). However, neither method takes ;dvamage of the shape of the region of
known data. O'Brien [67] and Staehling [68] examine the question of optimizing the design of
windows for irregularly shaped data regions. Since the spotlight mode SAR data lie on a
loroidally shaped region. it is worthwhile to examine how these windowing strategies can be

used prior to the FFT operation.

O'Brien investigated the use of an energy maximization criterion to generate windows
which can be used on spatially limited images of irregular shapes, e.g.. an L shape, a duel cone,
and a circle. The solution is based on an iterative application of the time and frequency limit-

ing operations found in the Papoulis extrapolation procedure [69]. The window design is for-

mulated as an eigenvalue problem.

Af(nm)=BTf{(nm) (4.3)
where

B = W-!BW is the bandlimited operator,
T is the spatial truncation operator.,

B is the frequency-limited operator, and

W is the DFT matrix.

O'Brien goes on to demonstrate the convergence of the algorithm, and gives several examples
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which show the types of windows designed for the simple geometric shapes given above.

Staehling used the Hamming window applied in directions orthogonal to the edges of the
given data set (Fig. 4.3). The individual window arcs were expanded 10 meet the edge of the
knovw data region. llis results demonstrated better sidelobe control than the separable or cir-

cular case. This may be expected since the windowed data record becomes a function which

gradually approaches zero.

The limitation of these algorithms is due to the lack of knowledge of the shape of a gen-
eral data set. Also, the algorithms are numerical optimization procedures. Specifically, the data
region shape must be known before design or application of the adaptive window design. If
this a priori information is unavailable, then the separable window (somehow optimized for the

full region) is the better and (computationally) simpler alternative. In the case of the toroidal

Hammin 3

Along R

Hammin
Alon
Avrcg

Figure 4.3  Application of the Hamming window 10 Orthogonal Edges.
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dala set, the previous strategies could be used only if the toroid were sampled on a rectangular
raster prior to windowing with zeros surrounding the data record (Fig. 4.4). This, however, is
precisely the problem faced in the interpolator. After the interpolation step, the window boun-
dary is a moot point since the data are now on a rectangular raster and standard windows can
be applied. Because the Hamming window allowed the placement of zeros at the image sinc

zeros, it was used after the interpolation stage for the sidelobe reduction.

Data 'Rasl'on

Figure 4.4 The Toroidal SAR Data Set on a Rectangular Raster.
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4.2 The Limited Data Record and Extrapolation

This section briefly discusses the effects that a limited data set in the Fourier domain has
on the image reconstruction. This is a ubiquitous problem for signal processing and is covered a
great deal in the area of extrapolation. The datla set that we are given extends over only a very
small part of the Fourier domain - a piece of a torus. Qutside this region, the data are non-zero
(for spatially limited images. it cannot be zero), but in interpolating from one grid to another,
it is often assumed to be so. Bandlimited extrapolation of the known signal set would seem to
be worthwhile in SAR for two reasons: 1) the resolution of the system is proportional to the
size of the Fourier piece so that by extending the dala set, we can increase the system resolu-
tion; 2) when interpolating from one grid to another, the high-order interpolators will not “fall
off " the sample grid near the edges. In practice, (2) is not as much a problem as would appear.,
because the size of a real system raster is several orders of magnitude larger than the interpola-
tor kernel ana errors would only occur near a few corners of the grid (Fig. 4.5). O'Brien [67]
briefly examined the possibility of extrapolating the Fourier data set beyond the recorded
region. but concluded with results consistent with Abend [70]. who notes that bandlimited

extrapolation has only limited use in spectral estimation.

4.3 Spurious Targets

It is well-known that interpolation errors in the Fourier domain lead to a noisy response
in the spatial domain. The very nature of the transform operation predicts a global error in the
spatial domain for singular errors in the Fourier domain. The following sections review and

attempt to qualitatively characterize this interpolation error effect for tomography and SAR.

4.3.1 Munson-O'Brien analysis In [67] O'Brien examined the effect of interpolation in one
domain on the transform domain, specifically looking at sample rate changes during the ‘nter-

polation stage. The results help explain the presence of spurious targets in the output image.

B
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Figure 4.5 Areas where the Interpolation Kernel Falls Off the Edge.

In[16]. Munson clarifies O'Brien's analysis of spurious targets. The result of(16), are presented

briefly here for completeness.

The analysis can be simplified if the Cartesian-to-Cartesian (C-C) interpolation problem is
reduced to one-dimeasion. Though the SAR interpolation problem is polar-to-Cartesian (P-C)
rather than the simpler C-C geometry. the analysis can be used to predict where spurious tar-
gets may appear. since the section of the polar grid is approximately rectangular. This type of

approximation may not be useful in the tomographic setting where the grids have markedly

different she pes.

The sample rate conversion problem can be viewed as an analog interpolator followed by
a sampler with the new period T'. In the case where the interpolation is performed in the

Fourier domain. the process can be viewed as shown in Fig. 4.6, with the input sample set

B
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available after the initial transform operation. The case and hat notation here is like that
defined in the Chapter 2 discussion on the projection slice theorem. The imaging process per-

forms the Fourier transform of f(1). into F(w). Flw) is then sampled at times nT to form

F(nT). The sample rate conversion step can be thought of as a two step process of analog inter-

polation followed by a resampling operation. Because the interpolation step is inexact, it pro-
duces the continuous function F(w) which contains aliased copies of f(1). This is resampled as
F(mT") and converted back to the time (spatial) domain as f(k) via the FFT operation. We
would like to determine the relationship between f(k) and f(x). Note that f(k) is a sampled
function. and the original function f(x) is continuous. The continuous interpolation kernel is

h(1) with transform H(w). It will be convenient to define the infinite sampling sequence

St(x) = ¥ 8(x=KkT) which is used in both the time and frequency domain. It is important to

remember that the operations normally performed in the time domain (sampling, convolution,
elc.) are now being done in the frequency domain, but the duality property of Fourier theory

can be used Lo understand what is happening in the image (t1ime) domain.

The output of the initial sampler (after the Fourier inversion step) s
F(nT) = F(w) - Sy(w). This has the effect of convolution with the infinite impulse sequence

S2#(1) in the time domain. Aliasing can result if T is insufficiently small. The sampled Fourier
T

sequence is convolved with the continuous interpolation kernel, H( omega ) to reconstruct an

approximation to F

F(w) = ¥, F(nT) H(w — nT)

(4.4a)
= {F(w)St(w)} * Hw) (4.4b)

In the time domain, this becomes
‘f(l)*s?lr(l)} “h(1) (4.5)

T

The final sampling step multiplies the reconstructed function with the infinite sampling
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Figure 4.6 Sample Rate Conversion Model for Fourier Data Interpolation.

function, but with period T'

{F(w)-Sy(w)} * H(w) } - Spw) (4.6)

and in the time domain

|{m) Sz (0} h(t)]* S20(1). (4.7

T

It is precisely this second convolution after the h(1) windowing which accounts for spurious

(aliased) targets to appear in the reconstructed image. It was shown in the interpolation

. . 27
chapter that the interpolation k.rnel must have a trarsform. h(t), which removes the “—

r

spaced copies of the spectrum (In this case, the copies are of the image.) If h(1) were handlim-

ived, the spurious targets would not appear. This would, of course, create an infinit¢ length

interpolation kernel.

——n




4.3.2 Analysis for the nearest neighbor interpolator

Stark analyzed the nearest neighbor algorithm in terms of random jitter noise in the
polar-rectangular interpolation stage to explain streak artifacts and high-frequency noise
induced into a direct-Fourier reconstructed tomographic image [22]. lle generates a noise
model of the positional error in the transform domain as a uniformly distributed variable
between -1/2 and +1/2. This corresponds to the position error induced from using the nearest
neighbor which must be within 1/2 a sample point away (sample period T normalized 1o 1).
This positional error “noise” is uncorrelated with the signal. Stark showed a relationship
between the positional error noise, the Fourier transform of the original signal and the Fourier
transform of the interpolated signal which demonstrates that the positional error generates
noise which is correlated with the signal. He concludeed that the correlated noise translates into
streaking artifacts in the spatial domain, as well as producing high-frequency amplification.
The streak artifacts are also found in the SAR interpolation problem as smearing across the

reconstruction.

Some insight into what is occurring can be gained by looking at the u.v error terms of each
interpolated point for the nearest neighbor algorithm. Let E, be the amount of error in the u-
direction and E, be the error in the v-direction (Fig. 4.7) in the Fourier plan2. In gereral, E,
and E, will both be functions of u and v. Let there be a point target at (u, . v,). The Fourier
transform is

Fla(u-u.,.v—vo) = F(UV)=e Mt V¥) (4.8)

Let (U,V) be the nearest neighbor to the polar sample (U.V). Thus, F(U.V) is used instead of

the true F(U,V", Define the transform relationship
f(uv) = FIYRLV) <=> FUV) = FV) (4.9)

Now. expunding F(C.V) ina2-D Taylor series
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Figure 4.7a. Nearest Neighbor Position Error in U Direction.

Figure 4.7b.

Nearest Neighbor Position Error in V Direction.
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JF(UV)
-V

P (uY)
oV

FCV) = F(UV) + (U -1) (4.10)

+ (V=V)

+ higher order terms.

But
E,(UV) = (U = U) = F,ple,(uv)) (4.11a)
E(UV) = (V= V) = Fy_ple(u.v)) \4.11b)

is the transform of the positional errors for each coordinate which depends on (u,v). The par-

tial derivatives of F are

S (L)

o = imFUV) (4.12a)
Q'.%‘.Jvﬁl = jvo F(L.V) (4.12b)
Thus. (4.10) becomes
F(O.V) = = F(U.V) + ju, F(L.V) E,(U.V) (4.13)
+ jvo F(UV) E(U.V)

where the higher order terms have been dropped. The spatial domain equivalent is

f(u.v) = f(u.v) + juo f(u.v) ** e (u.v) (4.14)

+ jvo f(u,v) ** e (u.v)

Equation (4.14) shows that the point target position and 2-D error surface are related 10 the
image reconstruction though a 2-D convolution, and that the error surface is proportional to the

position of the point target u, and v,,.

Now as a special case. suppose L, (U,V) and E,(U,V) are 2-D periodic with fundamental fre-

quencies (ay. 8,) and (B,. B,). Then:

<

e e e sopv————
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- (101, a,V)

LUV = E Zay et it (4.152)
1

E(UV)= Z ; by H1BuU + kBV) (4.15b)
1

and
f(u.v) = f(u.v) + o Z Z ay flu + o,V + kav) (4.16)
1 kK

+ jvo 2, X by f(u+iB,.vikay)
Pk

Equation (4.16) represents the special case when the error surfaces in Fourier space are
periodic. If the sampling frequencies in the input sampling array are approximately constant,
as in the case where only sub-patches are used in the reconstruction, then the interpolation will
be from a near-rectangular grid to an exact rectangular grid, which is perhaps rotated. The
error surfaces in this case are periodic triangle waveforms with an orientation that determines
a and B (Figs. 4.7a and 4.7b). By knowing the relative geometric orientations of the grids, the

resultant smear pattern may be predicted.

Equation (4.16) also shows that the smear magnitude is proportional to the displacement
of the point target from the origin. Points farther away from the patch center will cause

greater smear. This is similai to the effect caused by the quadratic phase term in the SAR phase

equations (Chapter 2).

The error surface directional vectors defined as & = (a,.a,) and B = (8,.8,) describe the
smearing direction and depend on the error surface orientation. The input polar grid displays a
spatially varying period and orientation which is slowly modulated with respect to the rec-
tangular grid. Although these error surfaces may not exhibit 2-D periodic behavior in the gen-

eral case, for the near rectangular SAR geometry, and rectangular to rotated-rectangular grid

geometries, they are approximately periodic.

i e w3
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4.4 Alternative Sampling/PRF Strategies

The previous sections have dealt primarily with the standard polar input raster.

Modifications to the sampling and/or radar pulsing mechanism allows other sampling rasters to
be used with greater efficiency and reduction of error. This concept was presented in a tomo-
graphic setting by Mersereau and Oppenheim [71] through the use of concentric square sam-
pling. The resulting image reconstruction is significantly improved because interpolation is
only done in one direction. Simplifying the interpolation geometry to one-dimension also
reduces the computation of the interpolation stage, both in locating the grid points and per-
forming the filtering/sample rate changes. Of course, this type of sampling strategy requires a
much more sophisticated sampler. In SAR, alternate grids may be designed to take advantage
of a smart sampling device.as well us a programmable pulse repetition frequency (PRF) genera-
tor. The keystone grid is rather well-known, but more as an intermediate interpolation grid
rather than an input raster. Another, is a polar-like grid with equi-PRF spacing. The range
samples are uniformly sampled for each return signal. and the pulses are transmitted at a uni-
form rate (the PRF is constant) as the radar moves past the terrain at a constant velocity. This
results in a range lines which are unequally space in 8. However, the intermediate (keystone)

grid produced by the separable ulgorithms will have equally spaced samples in the azimuthal

direction.

4.5 Keystone with Smart PRF

If the incoming signal is sampled on the keystone grid shown in Fig. 3.6, then the complex
two-dimensional interpolation reduces to one-dimension. This greatly reduces interpolation

error and computation time as shown by the computer simulations of Chapter 5. It also allows

for a novel interpolation-Fourier transform operation in one step - the Chirp Z-transform.
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4.5.1 The chirp z-transform algorithm

An N-point DFT of a sequence can be thought of as sampling the z-transform of a
sequence uniformly around the unit-circle in the z-plane. The chirp z-transform is widely
known as a generalized DFT algorithm that computes M samples of the z-transform along an
arbitrary spiral contour in the z-plane. Once more, N and M need not be the same as in the
DFT, nor do they have to be highly composite for implementation with an FFT. The chirp 2-

transform is based on using the FFT to perform fast convolutions of the input sequence with a

chirp. or frequency ramped, signal. The algorithm is explained in its entirety by Rabiner et al.

in [72] of which a distilled version is found in [73]. It is used in pole enhancement, narrow-
band frequency analysis. bandlimited interpolation, and arbitrary radix DFT computations.
Although the most general form of the chirp z-transform allows for computation on an arbi-
trary spiral contour in the z plane. this application uses it to sim»ly perform an M point DFT
with an N point sequence, M and N being different. This means that the contour reduces to the

unit circle in the z-plane with the output sequence beginning at a non-zero phase angle.

The M point chirp z-transform of the N point sequence x(r) is given by

N=1
X(m)= I x(n) A"Wom (4.17)

n=t
= 1wy . . 27y .
where A = Age specifies the output start angle and radius. and W = Wye specifies Lhe
contour curvature. and output sample spacings as shown in Fig. 4.8. In the SAR case. the out-
put contour is still on the unit circle, although it may be located at the arbitrary angle 2w,

and extend to 27(M—1)¢, where ¢, is the output sampling angle ( ‘ig. 4.9).
Through some algebraic manipulation, (4.17) can be reduced to a 3-step process of

(1) Ramping Umultiplying by a frequency swept sequence) the N point input sequence by
A-h we2,

(2) Convolving this result with W2,

N
vt 4 e 4

[P
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Figure 4.8  The Contour Represented by A and W in the Z-plane.

Figure 4.9 The Chirp-Z Transform Contour L.ying On The Unit Circle.
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(3) Deramping the convolved sequence with W*/2,
This is illustrated in Fig. 4.10.
The normal convolution can be done with an FFT if the sequences are properly padded

with zeros Lo avoid wrap around (circular convolution). Unfortunately, the zero padding

increases the FFT size to N' which is the first power of vwo greater than N + M. This can lead

‘ to much higher computation time for small N, and make the chirp-z algorithm complexity
disproportionately high compared to the other interpolation algorithms. It must be remem-
bered. however, that the chirp-z approach folds the Fourier domain inversion step into the
interpolation stage so thal comparisons must be made with the 2-D IFFT step added to the com-

plexity measure. This becomes less of a problem as N is increased, since the FFT time is order

Nlogg\

X(n) h(n) X(zp)

A’”lh{n) E— 1/h(n)

h(n) = W-/2

Vigure 4.10 The Chirp 7-transform as a Pre- and Post-Multiplied Convolution.

=
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In the SAR geometry, the Keystone sampling and smart PRF place data points on straight
azimuth lines with sample points equi-spaced on any particular azimuth line (though the spac-
ing changes from azimuth line to azimuth line). The chirp-z algorithm is applied to each key-
stone azimuth line placing the output points on the rectangular grid. A standard FFT is per-
formed in the orthogonal direction. 1lere, A = exp(j@,) and W = exp(~j¢,). where 0, is the

angle of the first spectral sample and ¢, defines the output sample spacing.

The number of input points N for the chirp-z algorithm is arbitrary, and the number of
output points M is equal 1o the rectangular raster size - 1024 for the total image. 64 for the
computer simulations. Fach azimuthal input line is windowed (Hamming) prior 10 the chirp
z-transform. Note that as the azimuth line index increases with range. the input sample spacing
increases and the window size will increase. This is a modification of the warped windows dis-

cussed by Staeling and ()'Brien. The range line window is applied prior to the secondary I'I'T

stage.

The input data set lies on a trapezoidal raster and the output of each chirp z-transform
must be correctly phased between azimuth lines. This can be done by multiplying each output

point by a linear phase term that changes from azimuti !.ne to azimuth line

expljv (u tan6))

Because the chirp z-transform is a forward transform (which is followed by a forward
FFT) and the data set is already in the Fourier domain. the resulting image must be time

reversed, i.e.. rotated 180 °, 10 correct the effect of a double forward transform since

FT 'F‘l‘lf(x.y)l I = f(=x.~y)

4.6 Polar Format with Equi-PRF

A slight modification to the PRF will place the samples on an equi-PRF grid which appears

like a polar grid, but with angular increments that are not constant (Fig. 4.11). This has the




96

advantage that the separable algorithms in Chapler 3 which generate an intermediate keystone
grid will have equi-spaced sample points along the azimuth lines (just as the smart-PRF key-
stone grid in the previous section). This simplifies the interpolation step in the second stage of

the separable algorithms (weighted sinc, spline) and thus reduces computation.

Figure 4.11 Equi-PRF Polar Grid.




97

| CHAPTER §

| EXPERIMENTAL EVALUATIONS

3 The previous chapters presented the theory of interpolation for signal reconstruction in

both spatial and frequency domains. This chapter applies this developed theory to the original

[

problem of image reconstruction in synthetic aperture radar.

P,

The following sections describe the approach taken for the computer experiments, the

1 simplification to the SAR model used, and the results of the various interpolators. A novel
L measure of image reconstruction is also presented here. Because the number of parameters is
large (Fourier section of interest, point ta.get location, data record window, interpolator type.

and interpolator order) only a subset of imag2 plows i ,iven. A more complete set of interpola

tor performance results are given in tabular form (Tables C.1 10 C.12) in Appendix C.

5.1 Interpolation Model

In the evaluations, we assume a look angle, 8,,,, of 3°. This is the angle over which all of

the data are collected. The rectangular array to be interpolated onto is inscribed within the two
! arcs Ry, and Ry, Which are proportional to the chirp bandwidth defined in Chapter 2. The
4 input polar sample array is assumed to have a size of 1024 by 1024 points with 1024 equally

spaced samples along each range line R, 10 R, and 1024 samples along arcs from —0,,,,/2 to

H +0,01 /2.

A program to generate SAR data from the equations of Chapter 2 was written, allowing

each of the many geometric and system parameters 10 be adjusted. While (2.26). represented

ﬁ an exact point tlargetl response. the smearing caused by the quadratic phase term obscured the
effects of the interpolator, and thus were abandoned for a newer. simpler model: the Fourier
transform of a spatially offset impulse function. A single. ideal point target was placed at

. . - \'E .
(x.ys) and the corresponding Fourier transform, e "' ™" VY® yag sampled un the uniform

polar grid. Allowable target positions which did not produce aliasing ranged from -32 to +31
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in the spatial domain. We used (-23,24) as the point target position in the evaluatisns
presented here. This stressed the interpolator by including high-frequency components while
allowing ihe filter response to have a finite-width transition band. High frequenciex stress the

interpolator because a higher degree of variation is more difficult to reproduce with simple ker-

nels.

Because our computer resources did not permit processing such a large array. we chose to
examine interpolator effects on various 64 X 64 subarrays of the full 1024 by 1024 grid. Euch
64 X 64 subarray is numbered from 1 to 16 along tite U-axis. and from 1 to 8 along the V-axis.
For example, subarrays (2.8) and (16,1) are shown in Fig. 5.1. Symmetry about the U-axis
eliminates the need 10 study the interpolator for v < 0. The subarrays (2.8), (10.5), (16.1) and
(16.8) were studied, since they represented various sections of the full array that would have
unique properties. i.e., rotation, maximal sample rate change, average performance, etc. The
input data region cf each subarray was extended in both range and azimuth by 15 sample
points in each direction (making the available data 94 by 94 sampies) so that the higher order
interpolators did not ““fall off " the edge of the input. Since the origingl 1024 by 1024 grid had

only a very small set of points where this occurs, this data extension was justifiable for the

subarrays.

5.2 A Novel Figure-of-Merit

Evaluation of the interpolators is a difficult task, especially since radar data interpretation
tends to be subjective. The figure of merit that we have used is called the Multiplicative Noise
Ratio (MNR), which is very similar 1o the more commonly kaown “integrated sidelobe ratio”
frequently used for one-dimensional radar evaluation [1]. Because the rectangular grid is
weighted with a serarable Hamming window, an ideal point target is spread 3 samples in each

dimension U and V. In the following experiments, the mainlobe of the response is defined as

the 5 X 5 square centered on the peak response. The MNR for the reconstruction is then defined

e P
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. N x N subarray (2,8)

=)

N x N subarray (16,1)

é Figure 5.1 Geometry of Fourier Domain Subatray Locations.

EXACT RECONSTRUCTION

X

MNR UIN OB) ¢ -48.13114
w#INCOW:  HRAMMING
FOURIER PIECE (2.8) RECTANGULAR DRTA FORMRT

Figure 5.2 Exact Reconstruction for a Target at (-23,24),
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as

I (magnitude of the points outside mainlobe)?
"Y.(magnitude of the points inside mainlobe)?

MNR = 10-log

Figure 5.2 shows a perflectly reconstructed ideal point target at (-23.0,24.0) with a calculated
MNR of -48.13 dB. It was produced by generating targei data directly on a rectangular grid
and bypassing the interpolating stage during reconstruction. The floor for all point target
response plots has been set 10 -60 dB relative to the peak value. Note, in Fig. 5.2, the effect of
the Hamming window on the ideal response. The point target has widened and the rest of the
samples fall on the nulls of the sinc (the response for a point target on a limited record). If the
target is moved to a position halfway between sample coordinates. the sinc response is then
sampled on the peaks of the sidelobes. resulting in a badly distorted response and an MNR of
-28.5 (Fig. 5.3). This demonstrates that the MNR calculations are valid only for targets which
are positioned directly on the sample points. If the interpolator caused the target 1o move only
slightly. the sidelobes become visible and the MNR increases misleadingly. It is interesting o
note that the MNR can produce values which apparently differ from a subjective view. Some-
times. one reconstruction will look better than another, but the MNR value is worse (more posi-
rive). This is usually the result of a very wide target response in which the samples directly
outside the true 5 by 5 mainlobe are summed in the denominator. causing an increase (more

positive) in the MIVR. The results are thus obtained as follows:
(1) Generate a sampled polar array by sampling the Fourier Transform of the ideal target.
(2) Interpolate to the rectangular grid of interest (1.1) 1o (16.8).

(3) Window the resulting 64 X 64 rectangular data subarray with a separable Hamming win-

dow.

(4) Calculate the IFFT.

i are s



POINT TARGET AT (-22.5,23.5)

MNR (IN DB) ¢ -28.50
EXACT RESPONSE
HINDOW: HAMMING (SEPARRBLE)
FOURIER PIECE: 2.8

Figure 5.3 Exact Reconstruction for a Target at (-22.5,23.5).

POLAR: NERREST NEICHEOR

WINDOW: HRMMING
MMR (IN 0B) : -42,12410

INTERPOLATOR: NEAREST NE!GHBOR

FOURIER: € 1, 1) TARGET: -22.20. 24.00 MAGITUCE: 1.9

Figure 5.4 Nearest Neighbor Interpolator at (1.1).
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(5) Calculate the MNR of the spatial domain image.

(6) Display the log;, of the squared magnitude of the reconstruction (the power) with a floor

of -60 dB.

The program evaluate calculates the image MNR and locates the largest (magnitude)
twenty points on the grid 1o determine the positions of the spurious peaks and false targets.

The dB levels of these points relative to the detected peak are also calculated.

5.3 Algorithm Complexity

This work focused on improving the SAR reconstruction juality. while reducing the
interpolation processing time, i.e.. reducing the computational resources required to perform the
algorithm. The required resources are specified by what we have termed “complexity” - a
measure of how complex (in terms of mathematical operatations) the algorithm is to perform.
Algorithm complexity is a difficult issue. because the algorithms presented do not offer an order
of magnitude increase in processing speed, but typically improve speed by a factor in the range

of 2 to 10. Also, the results are dependent on the order of the interpolator.

Crochiere and Rabiner{35] use the notion of Multiply-ADditionS or MADS/sec when
optimizing the decimation/interpolation stages for a sample rate converter. This was used
because the final design was a simple time-invariant FIR filter with real coefficients which has
only multiplies and adds. Neither complex arithmetic or divisions are required, nor transcen-
dental function evaluation (sine, square root, etc.). They also make the assumption that an add
takes the same amount of time as a3 multiplication. This may not be totally unfounded. as in
the case when all arithmetic (necessarily integer) is done with a look-up table and requires only
one clock cycle. Real multiplies. however, typically require more time than real adds. and real

divide operation is more expensive than a real multiply (although no divides are performed in

the simple 1D FIR filters).
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Here. the algorithm complexity is calculated by computing the number of operations of a
given type that occur in the interpolation software. Though this measure would seem to be
based on the particular programming practice, it takes into account many of the operations nor-
mally ignored by “order of complexity analyses.” such as calculation of the coordinate spatial
position and the evaluation of trigonometric functions. The complexity was determined by
diagramming program loops and generic operations and identifying function calls. Tri-
gonometric and transcendental function calls were given their own unit of cost measure so that
the complexity would not be skewed hy a particular implementation, such as look-up table,
power series expansion, or a table-interpolation scheme. Thus, the cost to evaluate the sin
function is represented as C,;;,. the cost to compute a square root is C,. the cost to compute a

complex exponential is C,y,. and the cost Lo generate a sinc value is Cy,. The cost of a real add

or subtract is C,;, and the cost of a real multiply or divide is C,q. Although it may seem that -

this is a crude estimate of algorithm complexity. it has been found through our experience to be
reasonable. The complexity calculation was based on the inteipolator alone, and did not
include the windowing, file reading/writing, or post processing times (array permuting, magni-
tude detection, etc.). The FFT stage has been included in the complexity analyses because the

chirp-z algorithm performs both interpolation and FFT as one, inseparable operation.

The computation time for the interpolation set was measured for each algorithm with
varying orders and different input grids. Because the VAX CPU timing facility is sy'stem load
dependent (the measured cpu time is a function of the load of the system), an average run lime
value was computed over all of the runs for a particular grid and interpolator. This value is
used to plot the algorithm times and to compute another performance measure - the
IMNRI/CPU ratio. This ratio is useful to describe the quality/cost of an interpolator. Higher
ratios indicate a betier reconstruction for the amount of computation used. It is only useful to

compare interpolators within a given subarray. since the MNR ratios vary dramatically

between subarrays with similar order interpolators.

A nannntand
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5.4 Polar Grid

The polar grid input array represented the most well known data geometry. The Fourier
piece (1.1) is the subarray which is closest to the output grid in both sample spacing and orien-
tation. This leads one to believe that the nearest neighbor interpolator should perform quite
well here. In fact, it does very well, as shown in Fig. 5.4 with an MNR of -42.12. This is only 6

dB away from the ideal respnnse.

In subarray patch (2.8), the nearest neighbor does not perform nearly as well (Fig. 5.5).
With an MNR of -5.64. the reconstruction is extremely noisy and contains many streaky
artifacts. It is interesting to note that the nearest neighbor prod-.ces a streak pattern which is
similar to the artifacts described by Stark [22] in his nearest neighbor analysis. It can also be
explained in terms of the nearest neighbor analysis presented in Chapter 4. The rotated grid in

(2.8) generates an almost periodic positional error surface which has an orientation related to

TABLE 5.1 Evaluation Results for Fourier Piece (2.8) on Polar Grid.

Target Interp. Parumeter | MNR (db) | CPU time | | MNR/CPU |
Positicn (seconds)

-23.24 NN -5.04 3.28 1.72
-23.24 G-1D (0.1) -14.56 19.82 .73
-23.24 G-1D (0.2) -18.41 5.15 3.20
-23.24 G-1D (0.3) -17.00 22.57 0.75
-23.24 wsinc 2 -18.92 17.2 1.07
-23.24 wsing 4 -24.50 28.4 0.86
-23.24 wsinc 6 -30.37 413 0.74
-23.24 wsinc 8 -36.53 53.0 0.69
-23.24 wsingc 10 -42.65 61.7 0.69
-23.24 wsinc 12 -46.88 70.6 0.66
-23.24 wsinc 14 -48.06 82.7 0.47
-23.24 wsinc 16 -48.24 94.7 0.51
-23.24 B-spline -0).25 -23.01 17.22 1.34
-23.24 B-spline -0.50 -25.17 17.22 1.46
-23.24 B-spline -0.75 -27.62 17.22 1.60
-23.24 B-spline -1.00 -30.46 17.22 1.77
-23.24 | Spline (IMSL) -32.41 27.7 1.17
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i - Figure 5.5 Nearest Neighbor Interpolator at (2.8).
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Figure 5.6 Nearest Neighbor Interpolator at (10.5).
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the relative input/output grid angles. The same type of smearing is present when the target is
moved to (1,-15) (Fig. 5.7). The MNR is a little better at -10.63, because the Fourier data is
more slowly varying, but ihe reconstruction noise obscures the image. Finally, in the (16.1)
subarray, the nearest neighbor interpolator generates many spurious targets due to the change
in sample rate (Fig. 5.8). The azimuthai rate change at this position in space is approximately
1.05, and the Munson-O'Brien equations [16] predict spurious targets along the axis of rate
change (the predicted position is 27.2, the measured position is 27) with magnitudes propor-
tional to the interpolator frequency response beyond the cutoff frequency. Since the nearest
neighbor interpolator transform is a sinc, the sidelobes are very high, and thus, produce the
great numbers of high spurious targets. It is difficult to measure the angular orientation of
these error surfaces (they are not at the polar grid angle) but the angled smearing is quite clear
(Fig. 5.5). The same type of smearing is present in the nearest neighbor reconstruction of

subarray (10.5); however, it is in a different direction (Fig. 5.6).

Figure 5.7 also shows that the use of the FFT as an approximation to the Fourier
transform has produced a reconstruction which is apparently one period of a 2D periodic signal.
The other reconstructions reflect the same conclusion. This is. of course, expected, since the

finite record sampling operation implicitly creates a periodic signal.

The inverse distance (ID) interpolator performed better than the nearest neighbor (NN) in
all subarrays, based on the MNR values. In (2.8) (Fig. 5.9). there is a marked decline in the
MNR: -14.56 dB (ID) compared to -5.64 dB (NN). Compare this with the inverse distance
squared (ID?) reconstruction of Fig. 5.10. The MNR of -18.42 suggests that the ID? s slightly
better than ID, and furthermore, the interpolation time is 3.45 times faster. This is a significant

improvement overall as seen by the IMNRI/CPU ratio in Table S.1.

If the generalized inverse distance interpolator is used by including the next 16 nearest

data points, both ID and ID? reconstructions are poorer (Figs. 5.11 and 5.12, and Tbl. 5.1).

Increasing the order of the inverse distance interpolator beyond 2 did not seem to improve the
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POLAR: NEAREST NEIGHBOR

WINDOW: HAMMING
MNR (IN DB) : -10.62914

NERREST NE IGHBOR

FOURIER: { 2, 8) TARGET: 1.080.-15.00 MAGITUDE: 1.0

Figure 5.7 Nearest Neighbor Interpolator at (2.8), target at (1.-15).
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Figure 5.8 Nearest Neighbor Interpolator at (16,1).
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response (see Table 5.1). This is verified by comparing the respective MNRs.

The ID and ID? interpolators performed only 3 dB better than NN in the (16,1) subarray
| (Figs. 5.13 and 5.14). Subjectively, the NN reconstruction at (16,1) (see Fig. 5.8) is extremely

poor compared to 11D and ID?, and yet the MNR differ by only a few dB. Part of the reason for

this lies in the fact the images are plotted with log scales where the floor is at -60 dB. This is

only one-thousandth the height of the peak and so contributes negligibly to the image MNR.

d ‘ However, the eye views image intensity logarithmically, so the plot was scaled as such. despite

the misleading MNR value.,

The spurious targets are also present in the ID and 1)’ images, and there is little that can

be done with these low-order aigorithms to reduce their height. With this in mind, we turn 1o

TABLE 5.2 ILvaluation Results for Fourier Piece (16.1) on Polar Grid.

Target Interp. Parameter | MNR (db) | CPU time | | MNR/CPU | 3
Position {seconds)
W ——— -
-23.24 NN -1.97 3.28 0.60 ;
23.24 G-ID ©.1) a4l 19.82 0.22 |
-23.24 G-1D (0,2) -4.48 5.78 0.77
: -23.24 G-1D (0.3) -4.30 22.57 0,19
3 -23.24 wsinc 2 -4.13 17.7 0.23
] -23,24 wsinge 4 -7.435 28.4 0.26
-23.24 wsing 6 -10.62 41.3 0.26
-23.24 wsinc 8 -13.76 53.0 0.26
-23,24 wsine 10 -17.01 61.7 0.28
-23,24 wsing 12 -20.53 70.6 0.29
-23,24 wsinc 14 -24.48 82.7 0.30
-23.24 wsinc 16 -29.10 94.7 0.31
-23.24 wsinc 18 -34.66 102.5 0.34
-23.24 wsine 20 -41.38 112.0 0.37
-23.24 wsine 22 -47.10 126.0 0.37
-23.24 wsine 24 -479t% . 134.0 0.36
-23.24 B-spline -0.25 -1.67 17.22 0.45
-23.24 B-spline -0.50 -9.29 17.22 0.54
-23.24 B-spline -0.75 -11.06 17.22 0.64
-23.,24 B-spline -1.00 ~-13.07 17.22 0.76
-23.24 | Spline (IMSL) -15.35 21.7 0.55
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Figure 5.9 Inverse Distance Interpolator at (2.8).
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Figure 5.10 Inverse Distance Squared Interpolator at (2.8).
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Figure 5.11  Generalized Inverse Distance Interpolator at (2.8).

POLAR: INVERSE (1.2)

e A A T AT i

WINDOW: HAMMING l
MNR (IN 0B) : -i6,57963
FOURIER: 1 2. 3)  TARGET: -23.00. 24.00 MRGITUDE: 1.0

Figure 5.12  Generalized Inverse Distance Squared Interpolator at (2.8).
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Figure 5.13 Inverse Distance Interpolator at (16,1).

POLAR: INVERSE (@.2)

WINOOW: =RMMING
MNR (IN DB} : -4,85232

INTERP: INVERSE DISTANCE  S1ZE:
FOURIER: {18, 1}  TRARGET:

2 OPDER: 2.2
-23.20, 24.00 MAGITUDE: 1.9

Figure 5.14 Inverse Distance Squared Interpolator at (16.1).
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the more sophisticated weighted sinc interpolators.

It was shown in Chapter 3 that the sinc kernel would exactly restore a bandlimited signal
which was properly (Nyquist rate, infinite length) sampled. The weighted sinc is the spatially
limited approximation and the image reconstructions presented here demonstrate that even a
very narrow part of the sinc performs remarkably well. FFigures 5.15 and 5.16 show the results
of interpolating with a windowed sinc of orders 2 and 6 in the (2.8) subarray. Even for a win-
dow of only 2 samples wide, the w-sinc produces an MNR of -18.9 dB which is much better
than the ID interpolator. The CPU time is even lower for the w-sinc because it is implemented
separably. If the window is widened to 6 samples, the reconstruction improves, and the MNR
drops to -30.4 dB. The w-sinc size can be increased further to 10 and 14 to improve the MNR
still more (Figs. 5.17 and 5.18), but soon a point is reached where the MNR fails to drop (see
Table 5.2). The reconstruction is approaching the exact point target of Fig. 5.2, and so added
terms to the w-sinc interpolator simply increase the algorithm cost without a noticeable perfor-

mance improvement.

If the w-sinc interpolator is used in the (16.1) Fourier subarray, the order can be adjusted
to reduce the spurious peak to an acceptable level. In Fig. 5.19, the w-sinc interpolator of order
6 produces an image with a secondary peak at -10.2 dB below the peak. If the order is
increased to 16 (Fig. 5.20). the peak drops to -28.6. Of course, the processing time rises propor-
tionately from 41.3 seconds to 94.7 seconds, the ratio of which, 0.44, is roughly 6/16 (0.38),

i.e.. the algorithm processing time is approximately linear with interpolator order. If the order

. is increased to 20, the secondary peak disappears from the image (it is below 60 dB).

The processing time of the NN and GID interpolators is relatively small compared to the
w-sinc of any order greater than 2. The strength of NN and GID lies in speed. though, rather
than high quality image reconstruction. The processing times for each of the various interpola-

tors are plotted against interpolator order in Fig. 5.21. The NN algorithm is referred to as

zeroth order, and the GID order refers to the power of the inverse distance, 1.e.. I is first order
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Figure 5.15  W-Sinc Interpalator of order 2 at (2.8).
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Figure 5.16  W-Sinc Interpolator of orcer 6 at (2.8).
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Figure 5.17  W-Sinc Interpolator of order 10 at (2 .8),
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Figure 5.18 W-Sinc Interpolator of order 14 a1 (2.8).
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Figure 5.19 W-Sinc Interpolator of order 6 at (16.1).
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Figure 5.20  W-Sinc Interpolator of order 16 at (16.1).
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and IN? is second order.

The ™MNRI/CPU ratio is plotied in Fig. 5.22 for the w-sinc interpolator as applied to
several of the subarrays. Several observations can be made by studying this family of curves.
First, the w-sinc curves all converge to the value (.36 d3/s. We would expect convergence 10
this ratio since each w-sinc can become arbitrarily close to the exact response MNR. and the
processing time of w-sinc is independent of the subarray. Notice that the ordering of the
curves from top 1o bottom corresponds to the increasing value of the range subscript of the
subarray coordinate pair. This indicates that the more distant subarrays require higher order
w-sinc interpolators to achieve the same MNR values. This is due to the increasing sample
spacing which generates the spurious targets. These targets can only be removed by increasing

interpolator order at the axpense ol processing time,

The IMNRI/CPU value can be thought of as a henefit/cost ratio. A higher ratio indicates a
better reconstruction for CPU resources used. The slope indicates the amount of improved
MNR for the amount of additional CPU time used. Since CPU time is proportional to interpola-
tor order, a more negative slope corresponds to a decrease in the amount of MNR improvement.
Ultimately. this means that the size of the interpolator can be varied as it is moved out in the

radial direction to achieve the same MNR for each subarray. This concept is discussed in

Chapter 6 under Further Research.

The last algorithm shown here for the polar grid is the cubic spline and B-spline interpola-
tors described in the last section of Chapter 3. The first version of the splines. the complete
cubic spline, is implemented much like the w-sinc algorithm. The data are first interpolated to a
keystone grid by calculating the spline coeflicients for each interval and then evaluating the
corresponding cubic polynomial at the intermediate (heystone) points. The bulk of the process-
iag is consumed in calculating the coeflicients via the matrix solution step. Evaluation of the
cubic polynomial is relatively fast compared 1o the calculation of the polynomial coefficients.

Aext. a cubic spline is generated in the azimuth direction and evaluated along the rectangular
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grid coordinates. As shown in Table 5.1 for the subpatch (2,8), the MNR is roughly that of a
windowed sinc of an order between 6 and 8 (the interpolator order need not be even, nor must
it be an integer), yel processing time is close 1o the w-sinc of order 4. The cubic spline recon-
struction is shown in Fig. 5.23. The IMNRI/CPU ratio is much higher for the cubic spline than

it is for the w-sinc, since it performs so much better for the equivalent processing cost.

The modified B-splines also do quite well compared to the w-sinc interpolator. They were
implemented the same way as the w-sinc, i.e.. with the intermediate keystone grid. Four
different values of the parameter in Fq. (3.52) are used, -0.25. -0.50, -0.75, and -1.00. with
~1.0 providing the best reconstruction. The MNR of -30.46 is only 3 dB worse than the com~

plete cubic spline. and the processing time is much lower (driving the MNRIVCPU ratio up). It

is shown in Fig. 5.24.

Chapter 4 described several windows which may be applicable for SAR data. The efTects
of different windows may be seen by examining the image reconstructions from a typical inter-
polator: for example. a 10th order w-sinc. If a uniform window is applied. i.e.. no weighting
function. then the reconstruction is a very narrow spike surrounded by some low sidelohes
(Fig. 5.25a). This is a result of proper target placement so that the output sinc is sampled in
the nulls. The sidelobes are a result of interpolatcr error. If the Fourier data is windowed with
a disk shaped 1-0 weighting function, then the MNR is dramatically worsened 10 -4.87 dB and

the image looks very much like an NN interpolation (Fig. 5.25b).

The separable Hamming window. the siandard used in the evaluations, has an image
reconstruction of the same data shown in Fig. 5.26a. The MNR is a very low -42.65 dB. The
output of a circular Hamming window is much noisier in appearance (Fig. 26b) and has an
MNR ol -28.12 dB. It is apparent that the discontinuity at the Hamming edge is causing some
problems. There is an additional, more subtle effect occurring as a result of using the circular

Hamming window. The zeros of the circular Hamming Fourier traasform do not fall on the

Cartesian grid sample points. Thus, even an exact target reconstruction will display sidelobes

B
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POLAR: SEPARABLE SPLINE

L

WINDOW: HRMMING
MNR (IN 0B) : -33.34587
SEPRRABLE SPLINE (IMSL)

FOURIER: ( 2. 81  TARGET: -23.00. 24.29 MAGITUDE: 1.2

Figure 5.23 Complete Cubic Spline Interpolator at (2.8).

POLRR: 20 BSPLINE A= -1.0

WINCOW: HRMM]IIG
MNR LIN DB) ¢ -30.46%03

SOURIER: 2, 8)  TRARGET: -23.00. 24.09 MRGITUDE: .8
Figure 5.24 B-Spline Interpolator with Parameter = -1.00.
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which could be misleading. This can be corrected slightly through the usc of the Hanning win-
dow which goes to zero smootaly. The Hanning window causes faster sidelobe decay. while
having a slightly higher first sidelobe than the Hamming. Figures 5.27a and 5.27b display the
results of the Hanning window. both separable and circular. Note that the separable Hanning

window comes very close 10 matching the separable Hamming window with an MNR of -40.59

dB.

5.5 Equi-PRF Grid

The equi-PRF grid gained little in the way of performance. Figures 5.28 and 5.29 are
examples of thc nearest neighbor algorithm applied to the equi-PRF grid in the regions (2.8) and
(16,1) which may be compared to Figs. 5.5 and 5.8 for the standard polar format. (Tables C.5
to C.18 show processing time and MNR values for each of the equi-PRF algorithms.) The pro-
cessing time was slightly improved for the w-sinc algorithm because the azimuth pass (interpo-
lation on the intermediate keystone grid) calculations were simplified. With the standard polar
grid, the keystone samples were unevenly spaced in azimuth, resulting in excessive coordinate
positional information involving trigonometric functions. With equally spaced data, positional
information is calculated as a simple real multiply. For splines and B-splines, the differences
were very slight, corregponding to the time taken to determine into which interval (between
which two knots) the output point falls prior to polynomial evaluation. With non-uniform
spacing in azimuth, a binary search is performed to determine the interval, but with equally

spaced data, the interval is again found with one real multiply.

5.6 Keystone Grid

Since the keystone grid provides data along vertical lines, the interpolation procedure need
act only in one dimension. It is much like beginning with the second stage of the w-sinc out-

put, but from an exact first stage interpolation. Thus, a better reconstruction should be

¢
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SEPARABLE RECTANGULAR WINDOW
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ERIM RSIZE: 10.0 ASIZE: 10.0

FOURIER: ( 2. 8)  TARGET: -23.0@. 24.00 MRGITUDE: 1.0

Figure 5.25a Uniform Window After 10th Order W-Sinc Interpolator.
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POLAR: WEIGHTED SINC: 10 ]

et by e remen,

WINDOW: HRMMING
MNR (IN DB) : -42,6476)

INTERP: ERIM R-S126:10.00 R-SIZE:10.80

FOURIER: ( 2, B} TARGEM1 -23.00. 24.8@ MRGITUDE: 1.0

Figure 5.26a Interpolated Data With Separable Hamming Window.

" CIRCULAR HAMMING WINDOW

MR -28.12
WINDOW: HAMMING 2

ERIM RS]ZE: 10.0 ASIZE: 10.0 |
FOURIER: '( 2, 8) TARGET: -23.8@. 24.88 MRGITUDE: 1.8

Figure 5.26b Interpolated Data With Circular Hamming Window. |
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SEPARABLE HANNING WINDOW

MR : -40.59

WINDOW: HANNING 1

ERIM RSIZE: 10.0 RSIZE: 10.0

FOURIER: ( 2. 8)  TARGET: -23.00. 24.00 MAGITUDE: 1.0

Figure 5.27a Interpolated 1Data With Separable Hanning Window.
CIRCULAR HRANNING WINDOW

MNR : -33.70

WINDOW: HANNING 2

ERIM RSIZE: 1.8 ASIZE: 10.8

FOURIER: ( 2, 8)  TARGET: -23.80. 24.00 MAGITUDE: 1.0

Figure 5.27b Interpolated Data With Circular Hanning Window.
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Figure 5.28 Equi-prf Grid with Nearest Neighbor Interpolator (2.8). b

EQUIPRF: [NVERSE (2.1)

SR I i
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2 3IZE: 3 CRCER: :
FOURIER: (16. 8]  TARGET: =23.2Q. 24.20  MRONITLDE: 1.3 )
Figure 5.29  Fqui-prf Grid with Inverse Distance Interpolator (16,1).
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observed (Figs. 5.30 through 5.41). The results substantiate this theory as seen in Tables C.9 10
C.12. Every MNR value is noticeably better with the keystone data format than for the polar
or equi-PRF format. It is interesting to note that the w-sinc interpolator MNR values for the
keystone grid converge much [aster to a minimum than the polar format data. This is particu-
larly true for the (16.1) subarray where the spurious targets account for poor MNRs. Flimina-
tion of the range line interpolation step has removed the error introduced into the azimuthal
interpolation stage. In the polar data format. this error could only be minimized by increasing
interpolator order, and thus processing time, to obtain the same MNR as the keystone data for-
mat. The interpolators also run much faster hecause the spatial position calculations are
significantly reduced (only one dimensional calculations) and the two-stage algorithms now

only operate in one stage.

The keystone geometry permits the use of the chirp-z algorithm along the azimuth data
lines as described in Chapter 4. This combines both interpolator and FFT sections into one
stage. Since Lhe available input array was 94 by 94 samples, the azimuth input vector size was
94 with an output vector size of 64 (in the spatial domain). The results of the chirp-z algo-
rithm are shown in Figs. 5.35 and 5.41 for subarrays (2.8) and (16.1), respectively. The MNR
values of -1.32 dB for (2.8) is surprisingly poor compared to the other keystone interpolators,
while its performance in the (16,1) region was similar 1o a w-sinc interpolator with order 12
(in speed and MNR). The processing lime is high because the FFT included in the algorithm
must be zero padded to perform a non-cyclic convolution. This padding increases the FFT size

from 64 to 256 (for 94 input points, 256 is the first power of two greater than 94+64).

Note in Fig. 5.41 that the spurious side lobes are significantly lower than the w-sinc order
16 for the same subarray. This is because the chirp-z algorithm interpolates/transforms in
such a manner that the spurious target analysis of Chapter 4 is not applicable. The high spuri-
ous target seen in Figs. 5.19 and 5.20 disappears in 5.41, because the sampling rate is not

changed in the Fourier domain, but rather, the transform is calculated directly from the input

oot et arnem - %
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Figure 5.30 Keystone Grid with Nearest Neighbor Interpolator at (2.8).

KEYSTONE: LINERR

AINDOW: HAMMING
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LINEGR
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Figure 5.31 Keystone Grid with Linear Interpolator at (2.8).
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KEYSTONE: WEIGHTED SINC: 4

e

e

VA

WINOOW: HAMMING
MNR LIN DB) -26,95323

WEIGHTED SINC, R-SIZE: 4,20
FOURIER: 1+ 2, 8

TRRCET: ~23.00. 24.0p MRGNITUQE: ;.2

: Figure 5.32  Keystone Grid with W-Sinc Order 4 at (2.8).

MEYSTONE: WEIGHTED SINC: g

AINOCW: HAMMING
“NR 1IN 08) ; ~43,13832

WEIGRTED SiNC, A-SiZE: 10,20
FOURIER: 2, a)

TARGET: -23.00. 24.00  MAGNITUDE: 1.3

Figure 5.33  Keystone Grid with W-Sinc Order 10 at (2.8).
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KEYSTONE: SPLINE (IMSL)

WINOOW: HAMM]NG

MNR {IN OB) @ -34,80577 ;
SPLINE (INSL) (NQT-R-KNOT} i
FOURIER: ( 2. 8)  TRARGET: -23,00. 24.08 MAGNITUOE: 1.0

Figure 5.34 Keystone Grid with Cubic Spline Interpolation at (2.8) .

KEYSTONE: CHIRP-Z TRANSFORM

WINDOW: HAMMING
MR (IN DB) : -1,32189 ;
CHIRP-2 f

FOURIER: € 2, 8)  TARGET: -23.00, 24.08 MAGNITUDE: 1.0
Figure 5.35 Keystone Grid with Chirp-Z at (2.8). |




KEYSTONE: NERREST NEIGHBOR

o i

I‘l« "”’”/ h’ \\\\r

M 'l!.,.\w "'
\';‘qw‘v'

,....«w f). b‘-’ .M\I 'lx‘ “\ l

N ‘:”0
': .5 Fo ""‘: o ,_D\“V
u,
.,'-’4 \:_‘r

~NINDCA: 9RMMING
“WROVIN DB -2,1384
E37T \Elg-aCR

R
SRS s v TaRceT: ~23.80. 24.00  MAGN]TUDE: 1.3
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KEYSTONE: WEIGHTED SINC: 2

WINOOW! HRMMING

MNR LIN BO) @ -4.36283

WEIGHTED SINC. R-S12E: 2.8@

FOURIER: (16. 1)  TARGET: -23.00. 24.00 MAGNITUDE: 1.9

Figure 5.38 Keystone Grid with W-Sinc Order 2 at (16.1).
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Figure 5.39 Keystone Grid with W-Sinc Order 6 at (16,1).
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KEYSTONE: SPLINE (IMSL)

WINGCH: HAMMING
MNR (IN 0B) : -15.38

SPLINE UIMSL) INOT-A-KNOT)

FOURIER: (16, 1)  TARGET: -23.90. 24.00 MAGNITUDE: 1.9

Figure 5.40 Keystone Grid with Cubic Spline Interpolation at (16,1).

KEYSTONE: CHIRP-Z TRANSFORM

AIMOCW! HAMMING
MNROLIN DBY & -20,31813
Z4IRP-2

TOURIER: (iB, 1) TRRGET: -23.00. 24.00 MAGNITUDE: 1.9

Figure 5.41 Keystone Grid with Chirp-Z at (16.1).
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data. Theoretically, the chirp-z transform should behave as an ideal interpolator (for a limited

data record).

5.7 Complexity Analysis

Using the methodology for complexity analysis discussed above, an expression for each of
the interpolators was calculated. This was done for the polar and keystone grids. Complexity
measures for the equi-prf grid are similar 10 the polar format. but are minus the trigonometry
terms which are required for the data position calculations in the second stage of the separable
interpolators. Tor each algorithm, a general expression is presented which contains a break-
down of the software in terms of the basic cost units (Cys .Cyyan Cige etc.). This is then
reduced to an intermediate expression by making certain assumptions about the input array size
(number of input azimuth lines and N®>>N). Finally, a simplified expression is derived by
assuming properties of the data processor (computation times for a Cy,. Cyp. Cpya etc.). It
should be kept in mind that this simplified expression is only as accurate as the assumptions
made in the approximation. Recall that the FFT complexity is part of these expressions. It can
be identified as the 2Nlog,N term in the expressions. The variables N, 1, 1,, and K correspond
to the output grid size (N by N), the number of input range samples, the number of input
azimuth samples and the interpolator order (w-sinc only), respectively. Comparisons of the
complexity measures are done with N=1024 corresponding to the original image size. The

nearest neighbor complexity is given by (5.1a) through (S.1¢);

General expression for nearest neigh™r complexity:

Can = (SN2 + N 4 2N2ogaN)Cpa + (SN2 + N + 2N210gaN)C,y, (5.1a)

+ N7 Cypp + N2 Gy

Intermediate expression (N?>>N\):

P




e =

Can = (5 + 21.0g2NIN?Cya + (5 + 210g;NIN2 C,

+ \N2Cyy + N2Cyn
Simplified expression (C,=C,(,,=Csyn=C. C,q=5C):

(:NN = (32 + 12]0g2N)N2 C
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(5.1b)

(5.1¢)

Equation (5.1c) shows that despite the simplicity of the nearest neighbor algorithm, it is

still relatively expensive compared to the FFT times. This is primarily due to the square root

and trigonometric calculations required to locate the rectangular output points in polar space.

Since the 1D? interpolator outperformed 1D in both speed and MNR, it was the only 1D

type of algorithm analyzed. It is given in 5.2a through 5.2c.

General expression for Inverse Distance squared (ID?) complexi*.. -

Cipe = (32 + 210gaN) N2 Cpyg + (29 + 210g,NINZC,s + N2Cy,,
Intermediate expression for ID? (1, = 1, = N)

Cih = (32 + 210g2NINC,y 4 + (29 + 210g;NIN?C, s + N2C,,,

Simplified expression for ID? (C,/=C,,,®Cs4=C. Cp1g=5C)

General expression Weighed Sinc Interpolaior of Order K.

Swsme = (41, + ANI, + 3KNL, + N + 2NL + 3N? + 2K N? 4 2N210gaN)Cyya
+ (41, + 5NI, + 2KNI, + N + NI, + 6N? + 3KN? + 2N?log,N)C,

+ (I, + NI, + 2N)C,,,, + (KNI, + KN?)Cy
Intermediate expression with I, = N

CWsmca(() + 210g3N + 51\) NJ Cm/d

+ (12 + 21082N + SK) "\'2 Ca/s

(5.2a)

(5.2b)

(5.2¢)

(5.3a)

(5.3b)
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+(3)N2Cyy
+ 2K N? Cpc
Simplified expression (Cy,=C 1y =Cyyn=C. Cinya=5C)
Cwene=(62 + 12logN + 30K) N> C (5.3¢)

General expression for Cubic Spline Interpolator:

Csptne = (41, + 10N, + 10N, + N + 8NI, + 6N? + 14 N? 4+ 2Nlog,N)Cyq (5.4a)

+ (41, + 10NI, + 16NL, + 2N + 4NI, + 10N2 + 20N? 4 2N21ogoN)C, et (I, + N) €y
Intermediate expression:

Copnne=(48 + 210g:N) N2 Cp (5.4b)
+ 160 + 21og2N) N2 C,

+2NC,,,
Simplified expression:
Copine=(300 + 1210g;N) N C (5.4¢)

The cubic spline interpolator has a very high order of complexity due to the matrix solution
step. It has an interpolator complexity which approximates that of the w-sinc of order 8.

Tables C.1 through C.4 show that the performance is similar to the w-sinc with an order

between 6 and §.

General expression for B-spline Interpolator:

("B—splme = (413 + 41\!;, + 12\']3 + \ + 21\13 + 3\2 + 8 N;’ + 2\:2'082\)(‘%“/(1 (553)

+ (41, + SNI, + 8NI, + N + NI, + 6N? + 12N? + 2N21ogoN)Cyp+ (1, + NL) Gy

Intermediate expression:

(73_91,1,,,02(29 + 21023\)\2 (jlll/(l (55!))
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+ (30 + 21082N) N2 C, 5
+ N2 Cyyg
Simplified expression:
Chospime=(176 + 1210g;,N) N2 C (5.5¢)
The B-splines have a complexity which is approximately half that of the complete cubic
spline, yet their performance is comparable. The complexity also approximates the w-sinc of

order 4. This is expected, since the fourth order w-sinc and B-spline interpolators operate the

same way: by convolving with 4 input points in 2 stages.

The keystone grid reduced the complexity measure by roughly a factor of 2. This is due
to the elimination of one siage of the separable interpolators and the 2D positional calculations
for the lower order algorithms. Equations (5.6) through (5.8) present the complexity expres-

sions for the interpolators used on the keystone grid.

General expression for complexity of NN on Keystone grid:
CHY = (3N? + 2N%og,N + N)Cpa + (3N? + 2N°log,N + NICyys + n2C,,, (5.6a)
Intermediate expression:
CHY = (3 + 210gaNINCpyyq + (3 + 210gaNINZC, s + N3Cy (5.60)
Simplified expression:

CEY = (19 + 1210g.N) N°C (5.6¢)

General expression for linear interpolator on keystone grid:
Cky, = (I, + 311 + N + 15N% + 2N210g;N)C,y/a (5.7a)
+ (I, + LI, + N + 14N? + 2N?10g,N)C, /s

+ (2[3 + Nz)ctng

Intermediate expression:
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Cler. = (18 + 210gaNIN?Cpyq + (15 + 210g;N)NCys + N°C,, (5.76)
Simplified expression:
Ckev = (106 + 1210g,N)N2C (5.7¢)
General expression for weighted sinc on keystone grid:
Cky. = (N + 2NI, + 3N? + 2N°K + 2N210g;N)Cpya (5.8a)
+ (N + NI, + 6N? 4+ 3IN’K + 2N°log;N)Cy)q
+ (Nlu + 2N2)Cmg + NzKCsmc
Intermediate expression.
C\ﬁ,‘;w =(5+ 2|OggN + ZK)NBC,“M +(7+ ZIogzN + ZK)N‘?Ca/s (5.8b)
+ 3N2("\r1g + Nzl\csluc
Simplified expression:
Ckar. = (35 + 12log,N + 13KIN?C (5.8¢)

Using Egs. (5.6¢). (5.7¢c). and (5.8¢c) with N=1024, and K=12. it is found that
CHY = 0.91 Cyn. CY, = 0.72 Cipy. and CE,c = 057 Cyegpee The complexity of the NN on
the keystonc grid has not improved much over the polar grid. This is because the FFT com-
plexity is dominating both expressions. The w-sinc interpolator, which is dominated by the

interpolation step, shows a noticeable cost improvement, owing to the removal of the range line

interpolations.

General expression for the cubic spline on keystone grid:

Cihe = (N + 3N? + 8N? + 2NlogaN)Cpya (5.9a)
+ (6N + 27NI, + 8N2 + 2N%1logoN)C

‘als

+ la Clug

Intermediate expression:

CLte = (11 + 210gaN)NCouyq + (35 + 210gaNINCy, (5.9b)

ot T b g
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i Simplified expression:
i Chie = (90 + 1210g2NINC (5.9¢)
General expression for the B-splines on keystone grid: i
2 %mme = (N + 2NI + 3IN? + 12N + 2N210goN)Coya (5.10a) %
+ (N + NI, + 6N? + 10N? + 2N?10g,N)Cy /s i
+ Ny
Intermediate expression:
‘\ C¥tine = (17 + 210g,NIN?Cpq + (17 + 210g2NINC, 4 (5.100)
t + NCyiy
Simplified expression:
i‘ C Ve = [ (102 + 1210gNIN2 + N JC (5.10¢)
[ General expression for chirp-z algorithm on keystone grid:
l Cczr = (41, + 19N + 121,Nlog,N + L(N/a)logaN)Cpa (5.11a)
+ (1, + 641N + 121,NlogoN + I,NlogaN)Cy/s
‘ Intermediate expression:
l Cezr = (41 + 1310g:NINCpya + (72 + 131082NINCyse (5.11b)
[ Simplified expression:
Cezr = (277 + 7610g.N) N°C (5.11¢)
i,

For a 1024 by 1024 input grid. the chirp-z algorithm has a complexity measure of
‘* 1037N*C which is comparable 10 a poiar grid w-sinc interpolator with K=29 (1052N°C) and a
keystone w-sinc interpolator with K=68 (1039). This apparently high complexity measure is

i chiefly due 1o the large number of compiex additions and multiplies in the chirp-z algorithm

and the increase in array size from the extensive zero padding.
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58 Summary

This chapter has presented several evaluations of the interpolators described and analyzed
in Chapter 4. The required interpolator accuracy is dependent upon the acceptable reconstruc-
tion accuracy, measured here as a multiplicative-noise-ratio, and on the subarray location
within the toroidal slice. The more radially distant subarrays require a higher order algorithm
to reduce the MNR, sidelobes, and spurious targets. while the subarrays closer to the origin are

nearly rectangular and require relatively little computation to produce a good reconstruction.
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

The problem of SAR data interpolation in the Fourier domain was examined, and several
types of interpolator algorithms were discussed. analyzed. and evaluated experimentally. A
true analysis of the polar to rectangular interpolation problem seems intractable, so the prob-
lem was reduced to a rectangular-rectangular problem and finally a one-dimensional problem
of interpolation in the Fourier domain. Originally. much work was done to simulate an exact
target response, but this obscured the effects that were being studied. The entire SAR and tomo-
graphic grid interpolation problem is that of finding an interpolator that is reasonably fast and
vel has a transform that is close to an ideal low-pass filter. The various two-dimensional inter-
polators that were in current use [21] were more carefully studied, and some new interpolators

for Fourier space were proposed for the SAR problem, i.e., inverse distance squared, windowed

sinc, and cubic splines.

The inverse distance squared interpolator has not been seen in the recent DSP literature,
but proved to generate good reconstruction at a lower cost than the more heavily used inverse
distance algorithm. All of the known examples which examine DSP interpolators compare a new
kernel with a sinc or truncated sinc. It seems that this comparison is unfair, since the win-
dowed sinc has a much better response and is not too difficult to compute. Spline interpolation
has also been successfully used in the area of Fourier domain reconstruction. This work helps

sort out the meaning of spline in the current literature.

It is unlikely that an interpolation kernel will be discovered which is both easy to imple-
ment (fast) and has the desired spectrum (ideal low-pass filter) since the two criteria work
against each other, Classical optimization procedures are ineffective here because the algorithm
cost function is too difficult to parametize well. The weighted sinc is the best example of an

interpolation algorithm whose order can be adjusted to reduce interpolation error below a given

specification, though at the expense of processing tme. The optimal Fourier domain interpolator




prohibitive memory usage and computation times. Betier methods exist for producing better

image quality, such as iterative techniques. hut these are far and away oo expensive for the

type of real-time processing that is desired.
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is global in nature, taking all the known data into account. However, this usually leads to
i# A new method of evalualing the windowed point targel response was presented as an

alternative to the MSE criterion often used in image processing - the MNR and MNR/CPU ratio.

These figures of merit proved useful in rating the interpolator image quality and in making

algorithm comparisons.

A novel approach to the interpolation-inversion stage was presented via the chirp-z

) transform. Although it did not seem competitive with the weighted sinc interpolator, it has

promise as a good alternative,

The alternative sampling grids reduced the interpolation error dramatically and were

much faster to implement, due to the one-dimensional nature of the reconstruction. It is sug- ]

gested that these raster designs be used in actual hardware designs due to the tremendous CPU

cost savings they offer. *

In short, the algorithm which produced the worst reconstruction was the nearest neighbor.
* followed by the inverse distance squared, and then inverse distance. These algorithms were not
competitive with the separable interpolators: the weighted sinc and cubic splines. The weighted
sinc had the advantage of having an adjustable parameter (order) which could be increased to
improve reconstruction to acceptable levels, while the cubic spline was easier to implement for

the same level of image quality. The chirp z-transform produced a good reconstructed image,

yel was not very cost competitive with the separable algorithms due to the extended FFT size

in the convolution stage. ]
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6.1 Further Work

The advent of digital processing of SAR signals has opened a whole area of research. The
interpolation problem examined in this work is useful in the direct inversion of the Fourier
data set; however, there are other inversion algorithms which may lead to faster reconstruc-
tions if they in turn are made faster, specifically, convolutional back-projection. The work here
has also led to many other questions concerning 2D interpolation and SAR. Addiiional research

topics are presented below.

6.1.1 Full data array evaluations

The computer evaluations in this work were done on a relatively small data set. This had
the advantage that the effects of the interpolator in different Fourier regions could be studied.
However. an actual implementation of a 1024 by 1024 (or larger) data array would generate an
image which is the coherent sum of all the small sub-arrays. It would be very useful to work
with the large polar grid interpolation problem and examine the results for any new

phenomena which may appear. The use of the newer generation supercomputers seems ideal

for this higher order problem.

6.1.2 Oversampling

As mentioned in Chapter 4, the true input data of a working system is sampled at a rate
much higher than required for the given system resolution. Work should be done to see how

this higher volume of data. and hence finer sample spacing, could be used prior to prefiltering to
reduce interpolation error.
6.1.3 Spline approximation to the sinc

Splines have been increasingly popular in DSP. Though the usual Fourier domain interpre-

tation is lacking. they are easy to evaluate and have some nice mathematical properties. Since it

was shown that the weighted sinc provided the best reconstruction, it may be useful to see if a
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cubic spline approximation to the sinc would prove to be as accurate.

6.1.4 Spatially varying interpolation order

It was seen that different parts of the Fourier data set require different degrees of interpo-
lation accuracy based on the sample spacing and angular orientation to the output grid. It is
suggested that the interpolator order be made spatially dependent to minimize the amount of
computation required, i.e., a low-order sinc could be used in the (1,1) region of the torus and a
higher order interpolator could be used in the more (radially) distant parts of the polar grid
(16.8). Empirically. it seems that the required interpolator order is more dependent on sample

rate changes. resulting in spurious targets, than the degree of grid rotation.

The order of the separable sinc interpolator studied here was always the same in both
radial and azimuthal directions. This may not be needed. as the azimuthal rate change demands
a higher order interpolator Lthan the range lines. FFurther computational savings may result if

the range and azimuth interpolator orders are minimized to correspond Lo a prescribed accuracy

for each dimension.
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APPENDIX A

A FAST EVALUATION OF A PERIODICALLY SAMPLED SINE

A major obstacle in the use of the weighted sinc kernel is the cost of evaluating the two
transcendentals within the kernel function:

(.54+.46¢0s(x*c;) M*sin(x*c,)

h(x) = i (A1)
X'y

where x/c; = m and ¢, determines the extent of the Hamming window (the interpolator order).

This can be approached in many ways. First is the direct evaluation method. The inter-
polation kernel g(x) is a simple evaluation vsing floating point sine and cosine libraries. While
this produces very accurate results. it is the most time-consuming, because the transcendenials

are usually computed with a power series expansicn with many terms.

An alternative to the direct method is with a table lookup. Here, the sine function is
stored as a finely sampled array stored in a ROM. and the values of the transcendentals are cal-
culated by finding the closest value in the table. A finer evaluation may be obtained by linearly
interpolating between the two nearest table entrizs. This. however, can produce additional error
in the kernel. Also. the error in the sinc function greatly increases as x approaches zero. This is.
of course, due to sin(x) and x approaching zero at the same rate. Machine precision begins to
cause errors in the quotient. To correct this, we can store the sinc(x) as one table and the
weighted cos(x) as another. Note. 100, that for storage savings. only the positive half of sinc(x)

needs 10 be stored. and only one-fourth of the cosine function must be tabled. Half-angle for-

mulas may be used to index to the correct table value.

If the data are equally spaced. a third. recursive. method may be used. Because we are
computing a sinusoid at conslantly spaced points, we can take advantage of the complex
exponential 10 recursively yield successive sine values. We wish to calculate sin(n*8 + a) with

n being the order of the interpolator. 6 and a are determined by the position of the kernel func-

tion relative to the known data. We know that



gy

Imagle} = sin(a)

Using this identity, we can compute

S, =sin(n*0 +a) For n=0....N-1

sin(n*0 + &) = Imag{e/™?+ )}

= Imagleer)

Let
f = eﬁ

and
Co= eJ“

Then o, is recursively defined as

o,=0,*¢ i=1.\N-1
Then:.

S, =Imag{0) i=1..N-1
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(A.2)

(A3)

(A.4a)

(A.4b)

(A.5)

(A.6)

(A.7)

(A.8)

This is a significant computational improvement over the standard power series expansion

which is computed for each evaluation. The cosine term of A.1 may be computed in the same

manner.

prase—
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APPENDIX B

PLACING THE DC POINT IN THE IMAGE CENTER

The final stage of the SAR processing includes a circular permutation of the 2D data set to
place the dc point in the center. Since this is actually the spatial domain. this corresponds to

the terrain center. This step may also be performed in the Fourier domain with a slight compu-

tational savings.

As shown by Rosenfeld and Kak [74] the output of the FFT will be rotated by one-half
the image size in both coordinates if it is first multiplied in the frequency domain by (—1)™*",

That is. given the original Fourier data array F(m.n), define F(m.n):

F(m.n) = F(m.n)(=1)m*n (B.1)

then the inverse transform of F(m.n) becomes

. ~1 N=1 )2"’"'+1“-’
(k)= 5 ¥ Fma)(=)mne 1M N (B.2)
0 k=0
but we can rewrite (=1)"*" as
-pw( m+n
("1 )m*u =e 3 (830)
= o=12% (m/2 4 n/2) (B.3b)
(MI2Im _ (N12)
e[ 30
e
substituting (B.3c) into (B.2) and gathering terms yields
. MoiNol g |‘_"_'“i'~’i“ o Uz
f(jx)= X X F(m.n)e b N (B.4)
=20 k=0

= {(j=M/2. k—=N/2) (QED)

- o o ——
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APPENDIX C

EVALUATION RESULTS FOR THREE GRID FORMATS

TABLE C.1. Evaluation Results for Fourier Piece (2.8) on Polar Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position _ (seconds)
-23,24 NN -5.64 3.28 1.72
-23.24 G-ID (0,1) -14.56 19.82 0.73
1 -23.24 G-1D (0.2) ~-18.41 5.75 3.20
-23.24 G-ID (0.3) -17.00 22.57 0.75
-23.24 G-ID (0.4) -14.94 21.17 0.71
-23.24 G-1D (0.5) -13.37 19.37 0.69
-23.24 wsingc 2 -18.92 17.7 1.07
: -23.24 wsinc 4 -24.50 284 0.86 l
-23.24 wsinc 6 -30.37 41.3 0.74 '
-23.24 wsing 8 -36.53 53.0 0.69 ‘
-23.24 wsinc 10 -42.65 61.7 0.69 f(
-23.24 wsinc 12 -46.88 70.6 0.66 !
-23.24 wsine 14 -48.06 82.7 0.47
-23.24 wsinc 16 -48.24 94.7 0.51
-23.24 wsinc 18 -48.27 102.5 0.47
-23.24 wsinc 20 -48.27 1129 0.43
-23.24 wsinc 22 -48.30 126.0 0.38
-23.24 wsine 24 -48.38 134.0 0.36
-23.24 B-spline -0.25 -23.01 17.22 1.34
-23.24 B-spline -0.50 -25.17 17.22 1.46
-23.24 B-spline -0.75 -27.62 17.22 1.60
] -23.24 B-spline -1.00 -30.46 17.22 1.77
-‘ -23.24 | Spline (IMSL) -32.41 27.7 1.17
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TABLE C.2. Evaluation Results for Fourier Piece (10.5) on Polar Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU | !
Position __| (seconds) %
-23,24 NN -5.31 3.28 1.62 i
-23.24 G-ID (0.1) -8.83 19.82 0.45 i
-23.24 G-ID 0.2) -9.02 5.75 1.57 ;
-23.24 G-ID 0.3) -8.78 22.57 0.39 "
| -23.24 G-ID (0.4) -8.48 21.17 0.40
-23.24 G-ID 0.5) -8.17 19.37 0.42
-23.24 wsinc 2 -9.27 17.7 0.52
1 -23.24 wsine 4 -14.42 28.4 0.51
-23.24 wsinc 6 -19.57 41.3 0.47
J -23.24 wsinc 8 -24.65 53.0 0.47
-23.24 wsinc 10 -29.75 61.7 0.48
-23.24 wsingc 12 -35.10 70.6 0.50
-23.24 wsinc 14 -40.82 82.7 0.49
1 -23.24 wsinc 16 -45.88 94.7 0.48
-23.24 wsinc 18 -47.88 102.5 0.47
-23.24 wsine 20 47.99 1129 0.43
-23.24 wsinc 22 -47.96 126.0 0.38
-23.24 wsine 24 -47.96 134.0 0.36
-23,24 B-spline -0.25 -14.10 17.22 0.82
-23.24 B-spline -0.50 -16.30 17.22 0.95
-23.24 B-spline -0.75 -18.70 17.22 1.09
-23,24 B-spline -1.00 -21.40 17.22 118
-23.24 | Spline (IMSL) -24.19 21.7 0.87




TABLE C.3. Evaluation Results for Fourier Piece (16,1) on Polar Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

-23,24 NN -1.97 3.28 0.60
23,24 G-ID ©.1 441 19.82 0.22
2324 G-ID (0.2) -4.45 5.75 0.77
-23.24 G-ID (0.3) -4.30 22.57 0.19
2324 G-ID (0.4) -3.95 21.17 0.19
-23.24 G-1D (0.5) -3.66 19.37 0.19
22324 wsinc 2 WRT) 17.7 023
-23.24 wsinc 4 -7.45 28.4 0.26
~23.24 wsing 6 -10.62 413 0.26
-23.24 wsinc 8 -13.76 53.0 0.26
-23.24 wsinc 10 -17.01 61.7 0.28
-23.24 wsinc 12 -20.53 70.6 0.29
-23.24 wsinc 14 -24.48 82.7 0.30
-23.24 wsinc 16 -29.10 94.7 0.31
-23.24 wsinc 18 -34.66 102.5 0.34
-23,24 wsingc 20 -41.35 112.0 0.37
-23.24 wsinc 22 -47.10 126.0 0.37
-23.24 wsinc 24 -47.91 134.0 0.36
-23.24 B-spline -0.25 -1.67 17.22 0.45
-23.24 B-spline -0.50 -9.29 17.22 0.54
-23.24 B-spline -0.75 -11.06 17.22 0.64
-23.24 B-spline -1.00 -13.07 17.22 0.76
~23.24 | Spline (IMSL) 15.35 277 0.55
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TABLE C.4. Evaluation Results for Fourier Piece (16,8) on Polar Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

-23.24 NN -0.97 3.28 0.30
-23.24 G-ID (0.1) -6.18 19.82 0.31
-23,24 G-ID (0.2) -4.93 5.15 0.86
-23.24 G-ID {0,3) -4.50 22.57 0.20
-23.,24 G-ID (0.4) -4.24 21.17 0.20
-23.24 G-ID (0.5) -4.01 19.37 0.21
-23.24 wsinc 2 -3.99 17.7 0.23
-23.24 wsinc 4 -7.56 28.4 0.27
-23.24 wsing 6 -10.74 41.3 0.26
-23.24 wsine 8 -13.80 53.0 0.26
-23,24 wsinc 10 -16.97 61.7 0.28
-23.24 wsinc 12 -20.42 70.6 0.29
-23.24 wsinc 14 -24.36 82.7 0.29
-23.24 wsine 16 -29.03 94.7 0.31
-23.24 wsinc 18 -34.75 102.5 0.34
-23.24 wsinc 20 -41.90 1129 0.37
-23.24 wsinc 22 -47.88 126.0 0.38
-23.24 wsing 24 -47.44 134.0 0.35
-23.24 B-spline <0.25 -7.19 17.22 0.42
-23.24 B-spline -0.50 -8.67 17.22 0.50
-23.24 B-spline -0.75 -10.26 17.22 0.60
-23.24 B-spline -1.00 -12.01 17.22 0.70
-23.24 | Spline (IMSL) -14.72 2717 0.54
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TABLE C.5. Evaluation Results for Fourier Piece (2.8) on Equi-PRF grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

-23,24 NN -5.64 3.58 1.58
-23,24 G-ID (0.1) -14.67 19.02 0.77
-23.,24 G-1ID (0.2) -18.01 5.67 3.28
-23.24 G-1D (0.3) -17.12 18.75 0.91
-23.24 G-ID (1.1) -10.38 63.62 0.16
-23.24 G-1D (1.2) -17.15 11.13 1.54
-23.24 G-ID (1.3) -17.36 70.37 0.25
-23.24 G-ID (2.1) -8.18 151.82 0.05
-23.24 G-ID (2.2) -16.24 30.48 0.53
-23.24 G-ID (2.3) -17.44 207.55 0.08
-23.24 wsinc 2 -19.10 11.98 1.59
-23.24 wsinc 4 -24.58 22.57 1.09
-23.24 wsing 6 -30.40 32.70 0.93
-23.24 wsinc 8 -36.54 41.10 0.89
-23,24 wsing 10 42.64 50.713 0.84
-23.24 wsine 12 -46.80 59.7 0.78
-23.24 wsingc 14 -48.06 69.53 0.69
-23.24 wsinc 16 -48.16 79.20 0.61
-23.24 wsing 18 -48.19 88.93 0.54
-23.24 wsing 20 -48.22 99.03 0.49
-23.24 wsine 22 -48.19 110.03 0.44
-23.24 wsinc 24 -48.24 122.02 0.40
-23.24 B-spline -0.25 -23.84 22.13 1.08
-23.24 B-spline -0.50 -26.00 22.13 1.17
-23.24 B-spline -0.75 -28.03 22.13 1.27
-23.24 B-spline -1.00 -31.17 22.13 1.41
-23.24 | Spline (IMSL) -29.63 26.15 1.11
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TABLE C.6. Evaluation Results for Fourier Piece (10.5) on Equi-PRF grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

-23.24 NN -5.56 3.58 1.55
-23.24 G-ID 0.1) -8.89 19.02 0.47
-23.24 G-1D (0.2) -9.18 5.67 1.62
-23.24 G-ID (0.3) -9.00 18.75 0.48
-23.24 G-1ID (1.1 -7.44 63.62 0.12
-23.24 G-ID (1.2) -8.40 17.15 0.49
-23.24 G-ID (1.3) -8.73 70.37 0.12
-23.24 G-ID .n -1.37 151.82 0.049
-23.24 G-ID (2.2) -8.20 20.48 0.40
-23.24 G-1D (2.3) -8.68 207.55 0.042
-23.24 wsinc 2 -9.44 11.98 0.79
-23.24 wsinc 4 -14.52 22.57 0.64
-23.24 wsinc 6 -19.64 32.70 0.60
-23.24 wsinc 8 -24.72 41.10 0.60
-23.24 wsing 10 -29.83 50.73 0.59
-23.24 wsine 12 -35.22 59.78 0.59
-23.24 wsing 14 -41.04 69.53 0.59
-23.24 wsinc 16 -46.15 79.20 0.58
-23.24 wsing 18 -47.96 88.93 0.54
-23.24 wsine 20 -48.02 99.03 0.48
-23.24 wsinc 22 -48.00 110.03 0.44
-23.24 wsinc 24 -48.04 122.02 0.39
-23.24 B-spline -0.25 -15.23 22.13 0.69
-23.24 B-spline -0.50 -17.12 22.13 0.77
-23.24 B-spline -0.75 -19.63 22.13 0.89
-23.24 B-spline -1.00 -22.99 22.13 1.04
-23.24 | Spline (IMSL) -37.60 23.82 1.58
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TABLE C.7. Evaluation Results for Fourier Piece (16.1) on Equi-PRF grid. ii
!

i

i
{

Target Interp. Parameter | MNR (dB) { CPU time | | MNR/CPU | )
| Position (seconds) } |
-23.24 NN -1.96 3.58 0.55
-23.24 G-ID (0.1) -4.38 19.02 0.23
-23.24 G-ID (0.2) -4.52 5.67 0.80 :
-23.24 G-ID (0.3) -4.27 18.75 0.23 . ‘
-23.24 G-ID (1.1) -1.40 63.62 0.022 '
-23.24 G-ID (1.2) -3.26 17.15 0.19
-2324 G-ID (1.3) -3.89 70.37 0.055
-23,24 G-ID (2.1) -0.15 151.82 0.001
1 -23,24 G-ID (2.2) -2.88 20.48 0.141
~23.24 G-ID (2,3) -3.82 207.55 0.018
-23.24 wsinc 2 -4.10 11.98 0.342
-23.24 wsinc 4 -7.42 22.57 0.329
-23.24 wsinc 6 -10.58 32.70 0.324 5
; -23.,24 wsinc 8 -13.72 41.10 0.334 ‘
-23,24 wsinc 10 -16.97 50.73 0.335
-23.24 wsinc 12 -20.47 59.78 0.342 |
-23.24 wsinc 14 -24.42 69.53 0.351 )
-23.24 wsinc 16 -29.03 79.20 0.367
-23.24 wsinc 18 -34.60 §8.93 0.389 ;
-23.24 wsinc 20 -41.31 99.03 0.417 t'
-23.24 wsinc 22 -47.00 110.03 0.427
-23.24 wsine 24 -47.53 122.02 0.390 ,
-23.24 B-spline -0.25 -8.89 22.13 0.04 !,
-23.24 B-spline -0.50 -10.23 22.13 0.46
-23.24 B-spline -0.75 -12.04 22.13 0.54
-23.24 B-spline -1.00 -14.88 22.13 0.67
4 -23.24 | Spline (IMSL) -16.43 26.75 0.614
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TABLE C.8. Evaluation Results for Fourier Piece (16.8) on Equi-FRF grid.

Target Interp. Parameter | MNR (dB) | CPU time | IMNR/CPU |
Position (seconds)

-23,24 NN -1.00 3.58 0.28
-23.24 G-ID (0.1) -6.21 19.02 0.326
-23.24 G-ID 0.2) -4.97 5.67 0.88
-23.24 G-ID 0.3) -4.55 18.75 0.24
-23.24 G-ID (1.1) -2.98 63.62 0.047
-2324 |+ G-ID (1.2) -3.38 17.15 0.20
-23.24 G-ID (1.3) -3.90 70.37 0.055
-23.24 G-ID Q.1 -1.28 151.82 0.008
-23.24 G-ID (2.2) -2.95 20.48 0.144
-23.24 G-ID (2,3) -3.79 207.55 0.018
-23.24 wsinc 2 -4.04 11.98 0.337
-23.24 wsinc 4 -7.62 22.57 0.338
-23.24 wsinc 6 -10.81 32.70 0.331
-23.24 wsinc 8 -13.89 41.10 0.338
-23.24 wsine 10 -17.07 50.73 0.336
-23,24 wsinc 12 -20.55 59.78 0.344
-23.24 wsine 14 -24.52 69.53 0.353
-23.24 wsinc 16 -29.24 79.20 0.369
-23.24 wsine 18 -35.04 88.93 0.394
-23.24 wsine 20 -42.30 99.03 0.427
-23.24 wsinc 22 -48.06 110.03 0.437
-23.,24 wsine 24 -47.44 122.02 0.389
-23.24 B-spline -0.25 -8.32 22.13 0.38
-23.24 B-spline -0.50 -9.03 22.13 0.41
-23.24 B-spline -0.75 -11.83 2213 0.54
-23.24 B-spline -1.00 -14.33 22.13 0.65
-23,24 | Spline (IMSL) -42.57 26.75 1.59
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TABLE C.9. Evaluation Results for Fourier Piece (2.8) on Keystone Grid.
)

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds) ")
-23.24 NN -1.26 0.67 10.83 .
-23.24 G-ID 1 -24.16 0.85 28.42 §
-23.24 G-ID 2 -22.23 1.42 15.66 i
-23.24 G-ID 3 -17.66 1.65 10.70

-23.24 G-1D 4 -15.15 1.47 10.31

-23.24 wsinc 2 -22.60 4.63 4.88

d -23.24 wsinc 4 -26.95 8.70 3.10

-23.24 wsinc 6 -31.86 13.2 2.41

-23.24 wsinc 8 -37.43 17.3 2.16

-23.24 wsinc 10 -43.14 21.90 1.97

-23.24 wsing 12 -46.97 26.00 1.81

-23.24 wsinc 14 -48.04 29.85 1.61

1 -23.24 wsinc 16 -48.12 34.52 1.39

-23.24 wsinc 18 -48.14 37.57 1.28

-23.24 Chirp-Z -1.32 26.50 0.05

-23,24 B-spline -0.25 -34.12 7.95 4.29
-23.24 B-spline -0.50 -35.88 7.95 4.51 '
-23.24 B-spline -0.75 -36.12 7.95 4.54

-23.24 B-spline -1.00 -36.98 7.95 4.65 ‘
-23.24 | Spline (IMSL) -34.80 12.06 2.89 ‘




TABLE C.10. Evaluation Results for Fourier Piece (16,1) on Keystone Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

e e — —
-23,24 NN -2.01 0.67 3.00
-23,24 G-ID 1 -7.68 0.85 9.04
-23.24 G-ID 2 -5.56 1.42 3.92
-23,24 G-ID 2.5 -5.03 6.68 0.75
-23.24 G-1D 3 -4.64 1.65 2.81
-23.24 wsinc 2 -4.36 4.63 0.942
-23.24 wsinc 4 -8.26 8.70 0.949
-23.24 wsinc 6 -12.38 13.2 0.938
-23.24 wsine 8 -16.91 17.3 0.977
-23.24 wsinc 10 -22.05 21.90 1.007
-23.24 wsinc 12 -28.10 26.0 1.081
-23.24 wsinc 14 -35.47 29.85 1.188
-23.24 wsinc 16 -44.05 34.65 1.271
-23.24 wsine 18 -48.25 37.57 1.284
-23.24 Chirp-Z -30.92 26.50 1.17
-23.24 B-spline -0.25 -15.53 7.95 1.95
-23.24 B-spline -0.50 -16.43 7.95 2.07
-23.24 B-spline -0.75 -16.89 7.95 2.12
-23.24 B-spline -1.00 -17.35 1.95 2.18
-23.24 | Spline (IMSL) -15.36 12.06 1.27

e i e e e S
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TABLE C.11. Evaluation Results for Fourier Piece (10.5) on Keystone Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

-23.24 NN -6.30 0.67 10.15
-23.24 G-1D 1 -17.39 0.85 20.46
-23.24 G-ID 2 -15.60 1.42 10.99
-23,24 G-1D 3 -13.71 1.65 8.31
-23.24 G-ID 4 -12.36 1.47 8.41
-23.24 wsinc 2 -14.87 4.63 3.21
-23.24 wsinc 4 -18.54 8.70 2.13
-23.24 wsinc 6 -22.86 13.2 1.
-23.24 wsinc 8 -27.85 17.3 1.61
~23.24 wsinc 10 -33.63 21.90 1.54
-23,24 wsinc 12 -40.25 26.0 1.55
-23.24 wsinc 14 -46.24 29.85 1.55
-23.24 wsine 16 -48.21 34.52 1.40
-23.24 wsinc 18 -48.32 37.57 1.29
-23.24 Chirp-Z -8.62 26.50 0.325
-23.24 B-spline -0.25 -16.43 7.95 2.07
-23.24 B-spline -0.50 -17.33 7.95 2.18
-23.24 B-spline -0.75 -17.93 7.95 2.26
-23.24 B-spline -1.00 -18.55 7.95 2.33
-23.24 | Spline (IMSL) -25.77 12.06 2.14
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TABLE C.12. Evaluation Results for Fourier Piece (16.8) on Keystone Grid.

Target Interp. Parameter | MNR (dB) | CPU time | | MNR/CPU |
Position (seconds)

-23.24 NN -1.97 0.67 2.94
-23.24 G-1b 1 -1.71 0.85 9.07
-23.24 G-ID 2 -5.57 1.42 3.92
-23.24 G-ID 3 -4.64 1.65 2.81
-23,24 G-1D 4 -4.09 1.47 2.78
-23,24 wsinc 2 -4.37 4.63 0.94
-23,24 wsinc 4 -8.23 8.70 0.95
-23.24 wsine 6 -12.41 13.2 0.94
-23.24 wsingc 8 -16 97 17.3 0.98
-23.24 wsinc 10 —. 21.90 1.01
-23.24 wsinc 12 -28.33 26.0 1.09
-23.24 wsinc 14 -36.04 29.85 1.21
-23.24 wsinc 16 -45.20 34.52 1.31
-23.24 wSine 18 -47.15 37.57 1.27
-23.24 Chirp-7. -14.75 26.50 0,557
-23.24 B-spline -0.25 -15.04 7.95 1.89
-23.24 B-spline -0.50 -15.73 7.95 1.98
-23.24 B-spline -0.75 -16.32 765 2.05
-23.24 B-spline -1.00 -17.03 7.95 2.14
-23.24 | Spline (IMSL) -15.41 12.06 1.28
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