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Spotlight-mode syntheqic aperture radar (SAR) produces complex Fourier data points on a

polar grid which is offset from dc in the frequency domain. To produce an image in the spatial

[donwsiin, it is necessary to invert this sampled Fourier data prior to extracting magnitude infor-

mation. However. the polar format of the data makes this difficult. since there is no known

polar FIT. An alternative is to interpolate the complex polar data to a Cartesian grid and then

perform the two-dimensional FFT. The magnitude of the resulting data array represents the

magnitude of the complex ground reflectivity of the terrain under illumination. The interpola-

tion process can be very computationally intense, with an order two to fifty times that of the

FFT. Reducing the computation in the interpolation stage. while maintaining reconstruction

quality is the focus of this work. Several 2D interpolation techniques are examined, including

nearest neighbor. bilinear, inverse-distance to the nth power. weighted sinc. chirp z-transform.

and the newest interpolation algorithm proposed for this problem - the cubic spline. It is found

[ that separable interpolation schemes outperform the more commonly used nearest neighbor and

inverse distance algorithms, and that the cubic spline is very competitive the weighted sinc

I interpolator in computation requirements and reconstruction quality. The chirp z-transform isr determined to be a good alternative to the classical interpolation-DFT approach.
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INTRODUCIION

Radar. or Radio Detecting and Ranging. has been used for decades to detect distant objects.

measure their velocity. and more recently, for terrain mapping. It was theorized in the early

1900s. and first demonstrated in the mid-30s. Subsequently. it was developed to detect airplane

bombers during WWII [1]. Since then. it has been refined and used in hundreds of applications

such as space exploration, airplane avoidance systems, insect and bird tracking, weather obser-

vation and prediction, and, of course, highway speed enforcement.

When radar is used to simply dcect the range to a distant object. a series of electromag-

netic pulses is transmitted in the direiaion of the object and the two-way time delay o. the

reflected pulses is measured., Knowing the pulses propagate at the speed of light, we can readily

calculate the range to the object. If we wish to measure the radial velocity of an object. we can

transmit a continuous wave (CW) electromagnetic signal (a simple sinusoid) and measure the

shift in frequency of the returned signal induced by the moving object. Again. it is simple to

calculate the velocity of the object from the frequency shift (Doppler shift) and the known

propagation velocity of the signal.

When the azimuthal position (perpendicular to range) is also desired, the transmitted sig-

nal must be sent as a narrow beam which is no wider than the desired azimuthal resolution. It

is easily shown that at a range R and carrier frequency w,. an antenna with an aperture size D

will have an azimuthal resolution of order Roa,/D meters. For radar operating at conventional

microwave frequencies (109 Hz). this implies that very small resolution requirements dictate a

physical antenna of gigantic proportions - several thousand feet across! For an airborne

antenna. this is impractical; however, very high azimuthal resolution can be achieved by syn-

thesizing a large phased antenna array in an imaging system called synthetic aperture radar.

Synthetic aperture radar (SAR) is a means of obtaining high resolution terrain maps (coin-

plex reflectivity maps) by coherently processing the backscattered radar signal's phase (referred
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to as "'phase history '. In 1953. the University of Illinois experimentally demonstrated Ftrip

mapped SAR[2]. This was the earliest form of SAR in wffich the airborne radar antenna is held

at a fixed squint angle relative to the terrain patch of interest. Coherent processing of the

returned radar signal produces an effective aperture many times the size of the physical

antenna, thus creating an azimuthal beamwidth proportionally narrower, resulting in finer

azimuthal resolution.

A higher resolution form of SAR is called spotlight mode SAR. This mode requires that

the antenna be continuously positioned, or steei'ed. toward the center of the terrain patch dur-

ing the plane's flight. The same patch is effectively pictured from many different angles. and

when coherently processed. produces a much higher resolution image than could be obtained

from a single observation angle.,

Initially. SAR reflectivity data were processed optically. The phase histories were recorded

on film] and then rrocessed on an optical bench through a complex and bulky arrangement of

lenses and toherent light (3. 4]. The data were continuous in the range direction and sampled

in the azimuth coordinate (the discrete return pulses). An optical Fourier transform is thus

continuous in range and discrete in azimuth and computed almost instantaneously. Although

high resolution was achieved, the characteristics of the optical processing equipment made the

reconstruction procedure cumbersome in the laboratory and impossible during inflight data oul-

lection. The advent of very fast digital processors and inexpensive semiconductor memory

made real-time imaging feasible. i.e., the terrain maps could be (theoretically) generated in the

data gathering platform online and displayed during the flight. Digital processing of the signals

led to other problems, however, and such issues as polar sampling criterion and polar-to-digital

interpolation became the focus of much study. Stark [5] presents some polar sampling

theorems for the case of complete 21r sampling rasters such as those used in computer-aided

tomography (CAT): however, they are difficult to apply to the case of spotlight mode SAR

'A light source, modulated by the return signal, i• mechanically moved over film at a speed proportional to the
sweep rate of the chirp radar.

t ! I I I I I I I I I I I i | j i
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where the recorded data region is a small slice of a toroid instead of the complete disk shaped

region of CAT.

In the polar format algorithm of recording the phase histories of the SAR data, the sam-

pled data (after coherent demodulation) are placed on a small section of a polar grid. If an

inverse discrete Fourier transform (IDF') for polar grids were available, then the radar data

could theoretically be inverse-transformed directly and the final image displayed on a polar

display device. Such an IDFT is not known, however, and the data must be interpolated to a

rectangular grid before the IDFT operation. Even if such an IDFT were possible. polar displays

are not readily available ( though work is being done in this area [6) ). and so interpolation in

the spatial domain would be required for display on a rectangular raster., There already exist

several fast Fourier transform (FFi') algorithms as well as special purpose FFT hardware avail-

able to perform the IDFr for rectangular sampled data arrays.

The most computationally intense task in generating the radar image involves two-

dimensional interpolation from the polar grid to the rectangular grid. While an N by N 2-D

FFT requires O(N 21og2N) operations, the 2-D interpolation step often requiret O(*N 2 ) where

K is a number ranging from log2N to as high as N4, depending on the interpolation algorithm

and order. Thus. the intr,,vlation step enormously overshadows the FFr step in computa-

tional complexity. i.e.. processing time. This makes the SAR imaging tool difficult to implement

in real time.

The interpolation requirements of SAR are very similar to those of the direct Fourier

reconstruction techniques used in CAT. Jenkins. Munson and O'Brien[7] have developed an

analogy between SAR and CAT which places projection data on the polar grid. There are two

main differences between SAR and CAT:

(1) SAR uses coherent imaging and retains the phase information from its complex targets

while CAT is non-coherent (this is not true of diffraction tomography which is a coherent

system that records magnitude and phase) and thus only the magnitude of the projection
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is recorded. The recorded CAT data are also strictly positive, while SAR data are complex

and may have negative real and imaginary parts.

(2) CAT Fourier data lie in a polar grid which usually spans the full 2wr in angle. and radially

from 0 to some r,,,, while SAR data lie in a polar annulus whose width is proportional to

the radar signal bandwidth, and which is far removed from the origin occupying only a

few degrees of angular width (typically 2 to 10 degrees).

For typical systems. the geometry of the SAR data grid is very close to a rectangular, or a

rotated rectangular grid. The polar grid in CAT does not share this property. Given the small

data record of collected phase histories, and the fact that the recorded Fourier section is offset

from the Fourier origin (no dc in azimuth). it is ourprising that one can obtain any azimuthal

resolution at all. Munson and Sanz [81 have demonstrated that it is the coherency of the SAR

system. together with the complex nature of ti: "spatial" targets. which allows such high

image quality from such a limited amount of Fourier data. Despite these major differences

between SAR and CAT imaging. many of the digital processing techniques from CAT can be

applied to SAR. Modifications to these algorithms are made in accordance to the geometric

differen'ce between them and some approximations can be made in SAR which are inappropriate

for tomography. but the basic results of sampling and windowing, as well as reconstruction.

and error analysis of the computed tomography problem are applicable to SAR.,

The reason that the interpolation requirements are so severe is due to the nature of the

transform operation. Every point in the Fourier domain contributes to the spatial reconstruc-

tion. Single errors in the Fourier domain, therefore affect the entire spatial domain. It is very

important. then. for the interpolator to be as accurate as posible. especially in the Fourier areas

where most of the energy is concentrated., Without a priori information about the spectral

energy distribution, it is thus imperative to be uniformly accurate throughout the region We

shall see that there is a trade-off between interpolator accuracy (and thus image resolution) and

computation. An important part of this research is dedicated to reducing the latter two while
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maintaining the former.

Multidimensional interpolation is also important in other problems where the data gather-

ing methods provide non-rectangular sampling geometries, e.g.. underwater mapping [9],

seismic mapping (9]. imaging the ocean and sea-ice [101. and three-dimensional medical imag-

ing [II. 12. 13] all gather data on sampling grids which may not be rectangular. Digital rota-

tion. magnification. and reduction of images may also require two-dimensional interpolation.

The focus of this thesis is on the effects that various two dimensional interpolation

schemes in the Fourier domain SAR data have on spatial domain reconstructions. A review of

the fundamental spotlight mode SAR equations is presented in Chapter 2. The tomographic

formulation of SAR is also reviewed and compared to the radar Doppler interpretation., Alter-

nate inversion techniques are also briefly mentioned. A more detailed discussion of the interpo-

lation problem in given in Chapter 3. Classical techniques are reviewed and extended to the

SAR geometry. Spline interpolants are then presented from a DSP point of view. and a

clarification of the term spmun is givep. The topics of windows. aliasing. spurious targets and

artifacts are discussed in Chapter 4. as well the formulation of alternate sampling rasters. A

rather lengthy set of empirical results for many different interpolator algorithms and sampling

strategies is given in Chapter 5. It was felt that morf. insight could be obtained by studying

these reconstructions rather than by producing complicated expressions for the spatially vary-

ing polar interpolators. Finally. a summary of the ideas and results presented in this work is

presented in Chapter 6. Topics of further research to be done in the area of digital SAR image

reconstruction is also discussed.
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CHAPTER 2

SYNTHETIC APERTURE RADAR: THEORY AND BACKGROUND

In order to understand the interpolation problem, it is useful to see how the specific

geometry developed. In the following sections, the SAR equations will be reviewed and the

polar/rectangular geometry will be studied. The relationship to tomography will also be exam-

ined.

2.1 Derivation of Exact Point Target Response

Schwartz (14] investigated three data formats for SAR and included much of the analysis

that was developed from Weis and Jenkins at Lockheed [1.5. The analysis that follows was

the basis for the original SAR simulation program. though it was later simplified to remove the

quadratic phase term that appears in the phase equations. The signal response phase equations

here shall be referred to as the exact point target respinse.

The coordinate system used is shown in Fig. 2. 1. The data gathering platform moves with

velocity V in the -x direction and at an altitude h. The ideal point target. P. is located at

(x,.y,) which is measured relative to the reference point Q. located at (x.,Y)2. Q is located at

(0.0) on the stationary axes x-y'. The terrain patch is assumed to be a square of size L by L.

Note that the position of Q changes from pulse to pulse. since the reference axes (x-y) are mov-

ing relative to Q. The range variables rl and r,, are the distances to Q and P. respectively, and

0,, is the squint angle in the ground plane during the nth pulse. The subscript n is used to

describe variables which change from pulse to pulse and so indicates the variable during the nth

pulse when the look angle is On. Later. n will be dropse. so that each variable is defined for an

arbitrary angle 0.

211 is assumed that the distano. from the data plattorm to the reference Q is known during the entire data collec
tion window. Errors in this distance measure can deoocus the reconstructed image. but can be corrected through a pro
cedure known as autofocus (I16b

ii
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Radar Platform With Velocity

h

Y'Y

V. o

I

Figure 2.1 Coordinate system for Exact Point Target Response Derivatiri.

The transmitted pulse is a high bandwidth chirp signal, i.e., a linearly modulated sinusoid:

€os(w),t + It') I t, I TT

s(t) 2 T (2.1)

0 otherwise

where w• is the carrier frequency. v is the linear FM sweep rate and T is the pulse duration.



8

The nth received pulse is

A cos(-(t-) +21 t-r t <)T/2 (2.2)

0 otherwise

where A is the free space propagation attenuation factor and r,, is the two-way travel time of

the nth pulse. If YO>>L. the propagation attenuation of the signal will he approximately the

same over all the pulses. A will be set to unity. Note the quadratic phase term in (2.2). This

will create problems later on. Note also that this particular analysis assumes that the aircraft

position is essentially constant during each pulse. The analysis of Munson et al, [7] showed

that the aircraft can have an instantaneous velocity of zero during each pulse. and that (classi-

cal) I)ppler processing is therefore not strictly required for SAR.

Now, we apply stretch processing. i.e.. pulse compression3. to the returned signal. This is

the technique of compressing the chirp pulse (and thereby increasing the range resolution of the

radar) by coherently mixing the return signal with a simulated return from the reference tar-

get. Typically. this signal is generated by the transmitter sweep oscillator and delayed accord-

ing to the distance to the known reference. If the distance to the reference is not known pre-

cisely. the simulated reference chirp signal will also be in error and will cause defocusing of the

image. i.e.. point targets will become smeared. The nth pulse reflected from the reference Q

will have the form

Ao+..(t-'r 1,) I t--.r,, I <T,/2 (2.3)

&J(t) =
0 0

where T, is the effective pulse width determined by the size of the terrain being imaged.

Multiplying g 0(t) and go(t). and low pan filtering (to retain only the difference fre-

quency). we obtain the phase function 0:

3 Stretch processing and pulse compression have seemingly opposite connotations, out refer to the same technique
of processing a stretched puihe and compressing the pulse-width through autocorrelation of a well-designed pulse signal.
e.g.. a linearly modulated chirp pulse. See Klauder et al. [17] for more information on chirp radars.

I
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Lowpass Filter { gn(t) • go.(t) } - cos(4.(t)) (2.4)

where

IN(t) = wd(t-7,x) + 2(t.-r".)2 -- Wt(t-r 0o) (t-7',)2 (2.5a)

- (,,-817,1)(w0 + Vt) - L.(, 2 -1.-2 ) (2.5b)

This phase function corresponds tl. the phase of the I 'in-phase) channel of the demodulator

(mixer and low-pass filter). To obtain the Q channel (quadrature) output, multiply the return

signal by a form of (2.3) with cos replaced by sin and then low pass filter to retain the

difference frequency.

I channel output: Real le J4Ot) = cos(o1~w)

Q channel output: Imag {e"-"*1') = sin(o,1(t))

We would like to now convert the ensemble of return signals into a two-dimensional

function and show that it is an approximation to the phase of the 2-D Fourier transform of a

point target. The two-way time delay T to a target at range r is 2r/c. where c is the propaga-

tion velocity of the radar signal in free space. Substituting for r in (2.5b). the phase function

becomes

.W(t) = 2(r.-ro0 )(w. + vt)- 2v (r 2-rJm) (2.6)

It is now useful to make a change in variables

I - 1 (2.7)

Note that for our geometries. I z, I << 1. Applying the Pythagorean theorem to Fig. 2.1 and

making the substitution x,= Yo tanO, we obtain

2r (xU + x,)2 + (Yj + yt)2 + h2
x ff 2 + Y I + h2 (2.8)
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r12 2x xt+2Y~yl+Xt+y1
2 (29

= 2 Y, xt cotO81 + 2 Y. y. + XI + y (2.10)

The change of variables equations in (2.71' can be rearranged to obtain

rl--ron , r),(4 1- ., - 1) (2.1 Ia)

and

r. - ro4 rd, zft (2.11 b)

Since I z,, I << I. the term 1 can be expanded into a power series

z,8  z2p z,

= I + - + -41 + L +
f 8 16

in which only the first 2 terms are retained. Thus

ron zn

ra - roe f T (2.12)

Substituting (2.12) into (2.6) results in an approximate phase function

fg( Z. + Pt - "---I (2.13)
2 C cj

Note that r.., and z. are each functions of n. as well as 0,. the angle at which the nth pulse is

transmitted. The n-tation can be modified to express these variables simply as functions of G.

This results in the specification of OO(t) as a function of t and 0.

4V(t,0) = rJ() Z(G) C + (2.14)

Now. is a two-dimensional function which can be mapped as a function of 0 and t. Note that

ro and z are explicitly shown as functions of 9. This notation is simply to emphasize this func-

tional relationship.

2.-

-,,,, . .m si• m mmmsnmmsauulsmn mm n nuannm uau. uums • s iI i mm u a a
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The variable t can be functionally translated into a range variable by defining R as a func-

tion of time

R(t) = Kv t + Koffst . (2.15)

where K, represents the waling in the radial (time) directicr inld Kofft is the offset from the

origin from which valid received data begin4.. Solving (2.15) for t and substituting the result-

ing expression into (2.14) yields an expression for 0 in terms of R and 0, which is a two-

dimensional function of polar coordinates.

r4(0) z0) + R-K11 f50 t 2 1 (2.16
2A = 2 K, (2.16)

A proper choice of the scaling factors Kv and Kolfset will simplify (2.16). Let

Kofset wc 2r(ff - -m (2.17)
K, v c

and substitute (2.17) into (2.16):

*(R.9) = R
CRA) ro(8)z(#) (2.18)

Substituting (2.10) into (2.18) gives

40(R.0) = 2/ Yt + xtcotR + p2  (2.19)

where p2 = xt2 + yt2. the squared radial distance of P to Q.

To eliminate K, and make (2.19) into a more useful form, choose K, such that

Kv Y4 sc (2.20)
2 r0I sinO

Nlielding

4 The received signal in (2.2) is only valid during a small time interval which is dependent on the nearest and
farthest points of the imaged terrain. The nearest (and farthest) point is that point which is the minimum (and max-
imum) distance Irom the data platform to the terrain patch over the entire data gathering interval.
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41(R.0) = (ytsinO + x~cosO + P 2sin2.21)
c2 2Y7,(221

And in rectangular coordinates where U=R cos(O) and V=R sin(O)

4(U.V) = -!(xtu + ytV + p.V ) (2.22)

C. 2y()

This has the same form as the phase function of the Fourier transform of an offset delta func-

tion. The difference between this expression and the ideal point target response is the addition

of an extra term - the quadratic phase term. This quadratic term is dependent on p2 which is the

squared distance of the poiit target to the image center (reference). As the targot is moved out

radially from the center, the quadratic term grows and causes a noticeable smearing of the

response, specifically, a point targen widens. Compare this to the inverse Fourier transform. F.

of a point target at (x1.yt):

F(U.V) F-1(8(x,.y,)} = f8(x,.y,)eJXU+Yv)dxdy =e't÷Y*) (2.73)

F(UMV e IX 2Y (2.24a)

SF(UV) (2.24b)

where I - . hns dimensions radians/meters2 .
c2

Recall that this is only an approximation to the exact point target response since the high-

order terms of z, were ignored. The exact point target response can be formulated by substitut-

ing (2.11 a). (2.11b). (2.14). (2.17). and (2.20) into (2.6):

' 2r?(O) I 2R sin + +z(O) c-I O) (2.25a)

r1,(0) Y4, csc29 + h2 (2.25b)
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2Y0(x~cotG + yt) + Xt 2 y2 (2.25c)z(0) - ____ _)_ _(___.25___)

And in rectangular coordinates:

$(U.2v) = ______V N 2V ;+2 1,/rl +z(UV) - 1" -z(U,V) (2.26a)

C2  4

r,2(U.V) = Y, 2 + h2  (2.26b)

2Y,,(xt-U + yt) + x2 + y1 (2 .26c)z(U ,V) " ...... ..- ( .2ZMV) rt2(u~v)

These equations relate the position of a point target at (xt.yt) to its continuous complex phase

function O(UV)., The data which are obtained from the imaging system consist of samples of

* on a polar grid.

1 The phase function relates the complex 2-D frequency pattern to the position of the point

11 targets. This means that a straightforward spectral analysis of the ensemble phase function

(though sampled) should lead directly to the positions of the point target. Superposition is also

applicable here. so that a continuous complex reflectivity map can be generated from the

Fourier transform n', the reflected and processed pulses.

2.2 The Tomographic Formulation of SAl

Munson. O'Brien and Jenkins (7) have developed the theory of SAR from a tomographic

point of view. They examine SAR as a narrow-band filtered tomography problem using the

projection slice theorem. Bernfeld [18) later develops the same sort of link between the two

areas, although many of the processing considerations seem to be lacking.

In the following development, spatial domain functions will be lower case. Fourier

domain functions will be upper case and functions of polar coordinates will have the subscript
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p; i.e.. f(xy) is a spatial domain function in rectangular coordinates and Fp(p.O) is a polar

representation of the Fourier transform of f(x.y). F(o(x.wOy) is given by

F(wxfWy) ffx,y) e-'("x f Y)dx dy (2.27)

and

f(x.y) f 4--. f F(wwyx,) e+ý-' + ' Y')dw, dw• (2.28)
4r2

A projection of a multidimensional signal is a new function with dimension one less than

the original signal. In effect, one of the dimensions is integrated out via a line integral. The pro-

jection of f(xy) at an angle 0 is given by

f(u:8) = ff(u cosG - v sin0,u sinO + v cosO)dv (2.29)

A projection is a function of one variable. u. with the second parameter, 0. indicating the angle

of the projection. The transform of p(u:G) which is a one-dimensional transform with respect
to u is

P(¢o;) f fp(u:G)e-Ji'udu (2.30)

The projection slice theorem can thus be succinctly stated as

P(w:0) = F'(W.G) (2.31)

The proof is found in a variety of sources. This particular statement of the theorem is given

in [13].

The projection slice theorem says that the Fourier transfornm of a projection of f(x.y) at

an angle 0 is equal to a slice of F(ox.wy) laken at the same angle 0 and passing through the ori-

gin. The consequence is that the original function can be reconstructed by ftling in the Fourier

data space with the transforms of the projection data and then inverse transforming the result,

The entire Fourier plane must be constructed with an infinite number of projections. since the

I
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projection operation is performed at discrete angles.

In computed tomography. f(x.y) is an attenuation coefficient, or density function, which is

to be constructed through non-invasive means. Collimated X-rays oriented at the projection

angle 0 perform the line integrals. i.e.. projections, of f(x.y). Unfortunately. only a finite

number of projections are taken. and each projection is sampled so that the resulting data set

lies on a polar grid equally spaced in 0 and R. This results in an ill-posed reconstruction prob-

lem [19]. Though the previous paragraph describes a method of reconstructing the original

function f(x.y) from the sampled Fourier data (called Direct Fonurier Reconstruction), there are

other techniques such as Convolutional Back-Projection (CBP) and Algebraic Reconstruction

Techniques (ART) which produce very good images. Current state-of-the-art systems have

sub-millimeter resolution. Convolutional Back-Projection has the greatest favor in CAT recon-

struction because it has the lowest computational burden for the required image quality.

Direct Fourier reconstruction suffers from the same geometric difficulties as the spotlight

SAR problem. The output data set is presented on a polar grid and must be interpolated to a

rectangular grid prior to the transformation step. Currently the computational requirements

and resulting images are not competitive with CBP.

In the Munson-O'Brien-Jenkins formulation of SAR[7). the approach to the analysis is

different from that of Weis[1S]. It is simplified because the altitude of the aircraft is zero

(though this is corrected later in the paper), and the ground patch is circular (leading to a

simplified expression for determining what part of the return signal is valid). The

simplifications. however, lead to great insight into the imaging process. The following analysis

is taken from [7] and the geometry of the problem is in reference to Fig. 2.2. in which the

radar is imaging a circular patch of radius 1. at a distance R from tile patch center. The signal

transmitted is as before in (2.1):

I
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s oit)=t 2 tI 2 (2.32)1
0 otherwise .

which can be thought of as the real part of a complex exponential

s(t) = Re leJ -21 (2.33)

The return signal from a small differential patch dx.dy centered at (xo,Yo) and having a com-

plex reflectivity g(xo.Yo) is i

11
FyA

Figure 2.2 Geometry of Tomographic Derivation of SAR.
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r g.= A .I cos c(t--"- + )2 + arg2gcxo.Y )J (2.34)

Again. just as in the previous analysis, the return signal contains a quadratic phase tern., The

attenuation constant A can again be set to unity since it will be approximately the same for all

pulses if R >>L., Equation (2.34) can be simplified to

r,, = Re (x,.Y,).s(t- 2R))dx dy (2.35)

This is the return from a small differential element at a distance RI from the transmitter. For

the geometry of Fig. 2.2, the locus of points at a distance R, from the data platform is an arc

centered at the radar system. The return signal corresponding to the superposition of all

differential patches at distance R,, is the line integral along the same arc. lHowever, if R>>L,

then the circular (spherical) radar waves can be approximated by a plane wave normal to the u

axis (the axis of transmission for an angle 0). This line integral ,is the value of the projection of

g(x.y) onto the u-axis at u,). Equation 2.35 can be thus rewritten as

i I 2(R + ui,)
-W Re p(u 1).s It - u (2.36)

where Ro has been rewritten as R. the distance to the terrain center plus uo. Note that these

quantities are dependent on 0 since R is changing as the plane flies past the patch. The return

signal from the entire terrain patch is given by integrating iu(t) over the entire area (here the

assumption that the terrain is circular simplifies the integration a great deal. though we could

assume that a square patch is circumscribed by the circle, and the terrain between the circle and

square has reflectivity zero.)

L 2( +u
rVt) Re fp"(u) s it - c(R du (2.37)
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Because the transmitted signal is a chirp pulse, stretch processing is applied as before,

which essentially translates positional information into frequency information. This is done by

mixing (multiplying) this return r'9 signal with a reference chirp from the ground patch center

Co,[4V'(t-7o) + 2(t-.",,)2] (2.38)

2

where i, 2R. the two-way travel time to the terrain center. This is low-pass filtered to€

obtain

rj(t) = 2 f pdu)-.(t).Y(t)du (2.39)

where

2vu2

(2.40a)

is the quadratic phase term. and

Y(t) miexp J24%O~ + .(t---r.,))uI (2.40b)

The quadrature component is obtained by multiplying by the phase shifted reference chirp

sin[w,(t-rj) + .(t-ro)1] (2.41)

and low pass filter, giving the imaginary portion

of a complex signal

C,(t) = (2.43)L I
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If the quadratic phase term. 'l(t), can be removed, Cq(t) resembles the Fourier transform of

pOt) in the u coordinate plane. evaluated at ['W' + 2(t-¢o).

C0 (t) = •-P0[wa + !(-T)](2.44)

If the transmitted chirp pulse had an infinite bandwidth, then CO(t) would represent a

continuous sample (slice) of the Fourier transform of the ground patch reflectivity, g(x.y).

(Note that if the terrain reflectivity is isotropic i.e., g(x.y) is not a function of the radar look

angle. then the projection is symmetric about the origin.) However. the pulse is only of finite

width. thus finite bandwidth. and %o the processed return represents only a small section of the

Fourier slice. The return pulse is only valid for the interval

2(R+L) T 4t 2(R-1.) + T (2.45)
c 2 c 2

This interval represents the two-way time for the beginning of the pulse to travel to the nd of

the terrain patch until the en of the transmitted pulse reaches the beginning of the terrain

patch. These calculations are based on minimum and maximum distances. which, for a rec-

tangular patch. change from pulse to pulse (L would change non-linearly with 0). Again. the

round patch has simplified the calculations. Substituting t of (2.45) into (2.44) yields an ine-

quallity for the range of the argument of Po

2.(w, - PT + 2-L) 4 R. 4 (2w + PT - 2YL) (2.46)
T c C c

For a typical transmitted chirp pulse where P.vT>> 2Y1./c. (2.44) reduces to

c c 2 (.7

R, is bounded by the inner and outer radii of the slice of the Fourier transform of the terrain

reflectivity represented by the processed return signal.,

Thus. as before, the coherently processed signal is a section of a slice of the Fourier

transform. This signal is also sampled uniformly in range %o that the collection of sampled
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returns assumes a polar grid, offset from the origin and having an angular sweep width of 0 M.

Many issues not covered, such as the quadratic phase term, modification for non-zero plat-

form height. curvature of the radar signal and the effects of plane movement (inducing a

Doppler term) are not included here, but can be found in[71. As before, the quadratic phase

term has the effect of smearing targets which are distant from the patch center., This is obvi-

ous. since the u2 term represents the square of the radial distance of a target from the terrain

origin. It is the same quadratic phase term found in the Weis analysis [15] and is difficult to

remove during processing. It can be shown that this term limits system resolution and terrain

patch size.

2.3 Comparison of CAT, SAJ, and Analyses

Munson et al. !7] compare CAT and SAR and note important differences:

(1) As a result of stretch processing, the proces.ed SAR signal is the Fourier transform of the

projection. In CAT. the projection is still part of the spatial domain.

(2) The processed SAR signal gives only a small part of the projection transform devoid of dc

compone,'ts. which can result in the loss of edges and sections of constant reflectivity.

(3) In SAR. the projection is taken normal to the axis of imaging rather than parallel to the

axis (as in CAT).

These two different ways of looking at the SAR problem lead to essentially the same

result: the collected data are approximotely samples of the Fourier transform of the terrain

reflectivity function. With Doppler interpretation (Weis). the image is obtained by spectral

estimation. i.e.. a forward 1'7, to translate sinusoids into discrete range bins. In the tomo-

graphic formulation. the data represent samples of the Fourier transform of the complex

reflectivity which must be inverse transformed to obtain samples of the complex reflectivity.

Both interpretations are correct, but can lead to confusion about the role of Doppler processing

and the direction of the Fourier transform. In practice. it is of little concern, since the phase is

tI
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I. discarded in the final displayed image and forward or inverse transforms result in the same

(though inverted and scale) magnitude map.

It should be pointed out that the Direct Fourier Reconstruction approach is but one algo-

[ rithm for the terrain mapping. E'arlier versions of strip mapped SAR. based on the same princi-

ple used the concept of multiple correlators to perform the stretch processing. The correlators

performed the job of match.d Alters, which were tuned to point targets in each range bin. hav-

ing the impulse response. which was the complex conjugate of the response of a point target of

that range bin. This. however. involves much more processing than the FFT approach. though

I hardware implementations have been designed and built which can reduce the processing time

through a pipelined architecture [201.

2.4 Other Inversion TechniquesI
The two-dimensional interpolation scheme is the most direct method for the SAR image

I" reconstruction problem. Since a relationship was formed between SAR and CAT. it can be

I theorized that some of the tomographic reconstruction algorithms may be used in SAR. Unfor-

tunately. many of them depend on the full set of projection data (9M = 2w) and thus are

[ difficult to apply to SAR. In particular. the algorithms that may be of use are convolutional

back-projection (CBP) and the Hankel transform.

2.4.1 Convolution beck projection and the Hwakel transform

Quite a bit of research has been done in the area of tomographic reconstruction algorithms

and their computational burden versus image quality (similar to the work presented here for

SAR). A celebrated paper by Pan and Kak [211 details the tradeoffs of direct Fourier inversion

with interpolation and CBP. but only very simple inteipolators are used. notably the nearest

neighbor and bilinear (used with a modification of the zero-padding-FIT technique described in

Chapter 3). Interpolation via the circular sampling theorem (see Stark [5. 221 and Fan [23] for

further discussion about this theorem) is presented. but again, this requires a periodic data set

U
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(complete circular arcs) to be useful. Heffernan and Bates (24] also compored the very low-

order interpolator methods. but applied them to the projection data prior to back-projection.

rather than 2-D direct inversion. Similar work has been done by Mersereau (13]. Desai and

Jenkins [25. 26] have researched the use of the CBP algorithm for the SAR problem and have

achieved image quality comparable to the direct inversion technique. although at the expense of

additional computation order. Even if the SAR problem could be considered a limited view

tomography problem. the reconstruction techniques of bandlimited extrapolation to supply the

rest of the Fourier data set would be far too costly for real time reconstruction.

The llankel transform allows for direct polar-to-polar image reconstruction from the

sampled Fourier data by expanding the two-dimensional image into a Fourier series and then

performing a Hankel transform on these coefficients to obtain the Fourier series coefficients of

the image. The use of the Hlankel transform to invert the polar Fourier data set directly has

been met with limited success [271 due to the cost of computing the needed transforms. Work

is being done to develop a Fast Hankel Transfirm [28]. but this transform still requires a full

circular data set.

242 Spectral analysis of nonftlor ly sampled data.

Hostetter [29.30] developed a control systems approach to spectral observation of data

which is irregularly sampled. The algorithm is not practical for large data records, however.

because it is of order N2 for N input points. For an N by N. 2-D array. this would require

O(NW) calculations. which is not competitive with even the most sophisticated 2-D interpolator.

2.5 Polar-Rectangular Geometry for Interpolation

The first two sections of this chapter demonstrated how the spotlight mode SAR data set

falls on a polar grid of limited size. The major thrust of the work here is to use the Direct

Fourier Reconstruction algorithm to generate the complex reflectivity map of the imaged terrain

and to study effects of different two-dimensional interpolators available. Fig. 2.3 details the

I
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polar-to-rectangular grid relationships and the parameters needed to specify the relative

geometry between the two rasters. The input polar grid is specified by

(I) Rm... the inside radius of the torus of known Fourier data.

I (2) OM. the maximum look angle of the SAR system.

I4 t

FPeGAt

Figure 2.3 Polar-to-Rectangular Grid Geometries.
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(3) Ar. the radial sampling increment.

(4) AO the angular sampling increment.

The output rectangular (square) raster is specified by

(I) uO,vO, the bottom-left coordinate of the square grid.

(2) Au.Av the sampling increments for each of the u and v dimensions. Typically, these will

be equal. .1

The resolution of the system is governed by the width of the Fourier section in each

dimension. These widths, in turn. are determined by the radar carrier frequency toc. chirp

sweep width, and the maximum look angle. OM. In the range direction. the width is

R,.Ax - R,,,,,,. the bounds on the range variable given above determined by the radar chirp sweep

width. From (2.47) above, the resolution is given as approximately 2._.T In the azimuthal
c

dimension, the v-width is approximately that of the azimuthal extent of the annuluar section,

approximately 4%i sinM M. If the processed response signal represented the Fourier space exactly

(no quadratic phase term). then a point target placed at (x,.Yj) would yield a two-dimensional

sinc due to the limited extent of the Fourier space available. The resolution of the system can

be defined as the width of the sinc mainlobe divided by 2 since, theoretically, this represents

the separation of two resolvable point targets. In practice. the resolution is degraded though

constructive and destructive interference of the phase function.

To achieve maximum resolution, it is important to interpolate from the polar grid to the

largest square which inscribes the angular section (geometry shown in Fig. 2.4). The range 1
resolution is determined by the chirp sweep width (time-bandwidth product). and the azimu-

thal resolution is determined by the center frequency wc and the look angle 0 M., These parame-

ters specify the annular section location and size in the Fourier domain. The parameters used in

the simulations were wo and the look angle 0 M. from which the chirp sweep width and square's

size and position are determined. The solution in this case is straightforward trigonometry.

It~l l I I III I II III Il~lI
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Let W be the width of the square to be determined. Rijng, and Rmax are also to be found - relat-

ing back the chirp sweep width of the radar.

2q a - R,, + Rmax (2.48)

- c 2

Note that q,, is exactly halfway between R,,,in and Rmax. but is not exactly the square's center.

L[

%Q!

FS

Figure 2.4 Determining the Largest Square Constrained by a% and 0N.
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There is a very slight gap between the right edge of the square and the torus on the v-O axis.

Rsiaax is given by

RMAax = r,, + W) 2 + ( 2 (2.49)

since the square must touch the outer radii for maximal size. W Is related to Rn111 by

W = 2R 1 tan-•(20

Substituting (2.50) into (2.49) gives

OM )2 + R,,a M 251

Max = (Rj11 jj1 + 2R,,,tan-T-) + ( .tanT)2 (2.51)

But from (2.43). Rm.x = 2qo - R,,i,,. Substituting this into (2.51) results in

(2qq - R11. 111)2 = (Rn.111 + 2K11n.1tan y- + (R,.iltan-2 (2.52)

Finally, solving for R,,11 yields a quadratic equation which has two roots:

4q4)* 4q,10 + 2tan-y )P + tn
R T(2.53)

min 2(1- +2tanOM)2 + tan )

2 Y

The positive solution yields the correct result and R,,.x and W can be obtained via (2.48) and

(2.50).

In this way. the sweep width of the radar system can be determined for a given look angle

(assuming the center frequency remains constant). If the chirp bandwidth is less than that

given above, the range resolution will deteriorate: if it is more. then the extra data are not used.

2.6 Oversampling and Presumming

A typical SAR system samples the demodulated output at a much higher rate than would

be necessary. based on the Nyquist rate for the recorded signal. This is because the antenna

pattern is not an ideal step function which is limited to the terrain being imaged. Rather. it has

--I
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a transition band and sidelobes which can detect targets outside the desired patch. These tar-
Sget are aliased back into the processed image and result in fal, targets. By sampling at ahigher rate. and then digitally filtering the data prior to interpolation, these outside targets can
be suppressed. Sampling in the azimuth direction is done for the same reason, though it is
referred to as Doppler, oversampling. since the azimuth antenna pattern is obtained through
Doppler methods [31]. The oversampled range lines are then low-pass filtered in the azimuth
direction to narrow the antenna beamwidth and also to reduce the system noise (coherently
summing several range lines into one), It would seem that the prefiltered, highly overampled
data would be better input to the interpolation stage. since the closer spaced data would reduce
the interpolation error. This is not done because the storage requirements for such volumes of
data are prohibitive. This topic is treated by Brown et at. in designing optimal presumming
filters which retain azimuthal resolution and allow for limited data storage [32]. Hayner [33]
uses the azimuthal oversampling on a keystone grid to analyze the noise effects of a one-
dimensional nearest neighbor interpolator and to propose an adaptive presumming filter in the
azimuthal direction.

a
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CRAP'rER 3

THE INTERPOLATION PROLM

Before discussing two-dimensional interpolators. it is useful to examine the one-

dimensional case and see what can be extracted from there. Past experience has shown, how-

ever, that generalizing from one to multiple dimensions in signal processing algorithms is not as

simple as adding a subscript. The problem worsens when the input grid is non-rectangular, and

becomes still worse when it is irregular (the sample spacing cannot be parametized). First. we

will look at what approximation theory can give us and then some classical interpolation con-I

cepts. Local versus global interpolation is discussed, as well as separable versus non-separable

interpolation. Then the DSP approach to interpolation will be reviewed. Most classical

approximation/interpolation theory texts deal with real data only. although most algorithms

can be expanded to the complex domain without loss of functionality.

3.1 Clasuical Interpolation

Classical approximation theory attempts to solve the following problem [34] .

If V is a normed linear space and W is a subset of V. then given a v C V. find a

w* C W such that

llv--wOll 4 llv--wl

for all w C W. where II. II is a linear norm on the space V

The norm is typically the Chebyshev norm (0 ) or the Euclidian norm (LW). In our case, V is

the set of two dimensional functions, and W is the set of spatially limited functions, e.g., the

ideal low-pass filter (bandlimited) is approximated with a truncated or tapered sinc function

(spatially limited, but not bandlimited due to the truncation).,

Classical inter puation theory sets out to solve the following problem:

St A - ,
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Given an m partition on the interval l'a.bJ with partition set X X=1.2.- .A.

such that a=114x2• --- •x=b. Let y = f(xi). Find a function g(x) such that

Id g =( )yi 1L4i4m

andii
IIf(x)--g*(x)II 1 ilf(l)--g(x)ll for x, 4x 4 xN.

This allows for a very general specification of g(x) which gives rise to the use of piecewise

functions in representing g(x). i.e.. piecewise polynomials and splines5 . If the .ubspace W and

V are the same, then an exad interpolant can be found. i.e., the function can be reproduced

exactly.

It is worth noting a few points about approximation and interpolation for DSP applica-

tions. With interpolation theory. we are required to obtain a function which passes through

each of the original datum. This has the disadvantage that a noise corrupted signal will be

reconstructed with a function passing through each noisy sample. rather than smoothing it out.

If the condition that g*(t)=yi is relaxed, then we can produce an approximating function g*(t)

which minimizes the mean squared error between gl(t) and the known data points. Let the sam-

ple error e, be defined as

Se, , y,- g(x,)

Find a function g'(t) which minimizes

Eg(x) = L e, 12

The minimizing function g*(t) is our interpolant. In this case, however, g*(x,) • y, in general,

and the original data will not be reproduced by g.

s Throughout this chapter, the interpolating functions will be written with its argument as t or x interchangeably
because x is borrowed f rom the mathematics area and t from the engineering area.
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For approximating a continuous function (signal). we are usually required to approximate

it only within a finite interval. This means that our data record is necessarily a fixed length

record. i.e.. it is time (spatially) limited. If our sequence is of infinite length. as in sample rate

changing a voice or communications signal. then it must be processed in blocks. Also. for a

fixed length .ecord (such as our SAR problem) and without the use of signal extrapolation, the

interpolated reconsA ruction will be only an approximation to the sampled bandlimited function.

The problem of processing a time-limited signal as if it were also bandlimited is ever present.

Recall. too. that these interpolation concepts are presented in the time or spatial domain, but are J
actually applied in the SAR frequency domain where duality is used to justify assumptions

about the signal.

3.1.1 One-dimensional DSP interpolators

The following section deals with interpolation from a DSP approach [35]. It demonstrates

that interpolation (by a rational factor) is really a filtering operation. The analysis is also car-

ried out assuming that the interpolation is done in the time domain.

Assume that a continuous time function f(t) has finite energy and is a' bandlimited. i.e.,

1. If(t)1 2  < cc (3.1a)

and

F(ca) = 0 IWol >Cr ,(3. 1b)

where F(co) represents the usual Fourier transform of the function f(t):

F fo) f(t).ie-J t dt (3.2)

If f(t) is sampled to produce the infinite sequence x(n) (n. an integer),

x(n) = f(nT) -co < n < co (3.3)

where T is the sample period and T < ir/o', then the function f(t) can be exactly reproducedLI
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with the infinite sum

II
[ sin I(t-kT)

f(t) M T. x-k (3.4)
i ~k-- 7r •- (t-kT)

Equation (3.4)can be recognized as the clasical reconstruction theorem for bandlimited signals.

It is customary to refer to the interpolation kernel in (3.4) as the function sinc() _sin() so1*

that (3.4) becomes

f(t) - • x(k) sinc(T!(t-kT)). (3.5)
k T

The reconstruction described by (3.5) is equivalent to passing the impulse sequence x(n)

through an ideal low-pass filter with cutoff frequency w = 7r/T. The low-pass filter removes

the copies (aliases) of F(w) which are replicated every 2w/T by the sampling operation.

Schafer and Rabiner (36] showed that in the realm of digital signal processing. interpola-

tion is a type of filtering operation. Interpolating by an integer factor L=T/T* is accomplished

through first forming a new sequence. v(n). by inserting L-I zeros between the input data

points. x(n) from (3.3), and then filtering this resulting sequence with an ideal low-pass (LP)

filter (appropriately scaled).

x(n/L) n a O.*L.*2L... •
v(n) =(3.6)

0 otherwise

y(n) = . v(k).h(n-k) (3.7)

where h(n) is the impulse response of an ideal low-pass filter.

The output sequence y(n) will be exact samples of the original function f(t) Fampled at T'

where T' = T/L. When the input sampling rate T is greater than the Nyquist rate W/cr, the

requirements of the LP filter are relaxed so that all that is required is an LP filter in which the
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passband is approximately unity for wr/T < I w I and approximately 0 for I W i >0'. Optimal

FIR filters can easily be designed which meet these criteria [371. however, there may be an

additional requirement that the original samplp values remain undisturbed by the filtering

operation. This additional constraint may degrade the filter a bit by causing less attenuation in

the stopband [351.

If the input sequence is sampled close to the Nyquist rate, the LP filter must then be very

close to the ideal in order to avoid aliasing. This usually necessitates a high-order filter which is

very costly. This has the same effect as applying (3.5) and then sampling the continuous out-

put f(t) with a sampling period T (although the continuous function f(t) is of course never

really formed in a finite state digital computer). When T/T' = L/M is rational, then we can

convert to the new sample rate by first interpolating by a factor of L. low-pass filtering. then

decimating by NI (retaining only every Mth point).

A difficult problem occurs when T/1" is irrational. In this case. we may never have a

point at which x(n) and y(m) coincide, and so the above algorithm cannot be implemented. We

must resort to (3.4) for each point y(m) (see Fig. 3.1). The infinite sum. however, is impracti-

cal. and thus we form a suboptimal interpolation kernel h(t) which has finite support.

y(n) = f(nT) - x(k) h(nT-kT) (3.8)
kw-K

The notation f indicates that the reconstruction is approximate. In the more general case where

y(0) occurs at some tons,, such that y(O) a f(t05 s.t), then (3.8) becomes

y(n) f(tot,,+nT) (3.9a)

K
-- x(k) h(t0 5f 1t+nT'-kT) (3.9b)

k=-K

This suboptimal filter may not remove all of the energy at frequencies above a. and will conse-

quently generate errors in the continuous reconstruction f(t), and so. in the sequence y(m).

i 1
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Figure 3.1 Irrational Rate Change with Output Offset.

In the simpler integer ratio rate conversion. h(,) is an FIR filter specified in the digital

domain as a sequence. Here, the function h(t) must be a continuous function defined within the

limits of the summation, rather than a discrete sequence. This is a consequence of convolving a

sampled sequence with a continuous function when the output samples do not match up with

the input sample spacings and the rate change is irrational. The continuous time filter must

have a transform. H(M.) which removes the periodic copies of F(M) which are above w/T. The

performance of the interpolator is determined by how closely the Fourier transform of h(t)

approximates the ideal LP filter. That part of the spectrum which is not removed above WIT

will not simply show up as high-frequency noise, but will be aliased back into the baseband in

the spatial domain when this continuous reconstruction is resampled. This will be discussed

more in Chapter 4.
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In theory, an arbitrary conversion rate R could be approximated by a rational rate change

L/M. but as L and M become large so as to approximate an arbitrary rate change. the filters

grow to a very high-order. As an example, a rate change of 1.045 requires L/M - 209/200. that

is. interpolating by a factor of 209 and then retaining only every 200th point. At the expense

of sample delay. processing can be broken into multiple stages, each of smaller order. Several

methods have been designed for breaking down a high-order LP filter into several low-order

stages where the decimation is reduced by factors of two (38. 39]. or reduced to two stages.

each of lowered order[40]. Rabiner and Crochiere present an optimization technique for break-

ing down the L/M interpolator/decimator (I-D) into a series of K smaller order FIR filters

where the optimization is done to minimize the total number of multiplies and adds per second

(MADS) [35. 41]. They have shown that by breaking down a high-order. single-stage I./M

interpolator/decimator (l-D) into several small order L/M I-D sections. a significant computa-

tional savings can be achieved. This notion can be generalized to design more efficient low-pass

filters through several interpolation and decimation stages (42]. It should be cautioned. how-

ever. that cases can arise in which there is no savings in breaking down the single stage [43].

Ramstad [441 has developed structures for conversion between arbitrary sample rates. He

discusses a hardware structtire which does real time calculation of the interpolator coefficients.

which is essentially a time varying filter. lie also presents a "hybrid" interpolator that does

rational sampling rate conversion, as previously discussed, followed by a nearest neighbor.

linear, or possibly LaGrange interpolator, to generate data which fall between those equi-spaced

output samples. The approach is hardware oriented with very specialized structures to gen-

erate the time-varying coefficients. While this may be less of 'i concern for current VSLI tech-

nology. ;t would be useful to have an algorithm that could be implemented in a readily avail-

able serial or par~llel processor or one of the commercially available DSP chips.

, I

iI
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3.2 Global versus Local Interpolators

Nearly all interpolators that are used have local support. That is, the interpolation ker-

nels are finite in length and use input data in only a small neighborhood of the output point.

The advantages to this class of interpolators are high speed and low cost. They are faster and

easier to implement because only a small, limited number of data points are involved in the

summation (convolution). The disadvantage, of course. is a poor signal reconstruction.

From the previous sections, we know that the ideal interpolator impulse response is the

sinc function which is of infinite length. This is called a global interpolator because it uses sam-

ple data (albeit with small weighting for distance samples) from the entire data space to recon-

struct the output function everywhere. Of course, for the limited data record such as in SAR.

j the global interpolator only uses data from the limited set (outside the set. samples are

assumed to be zero.) The advantage of the global strategy is the adherence to the fact that a

bandlimited signal is analytic (the function must be continuous and continuously

differentiable) and thus is determined everywhere by only a piece of the function. This means

that when interpolation is performed in the transform domain, every point in Fourier space

I contributes to the spatial domain reconstruction. It is this very reason that low-order interpo-

lators do so poorly in direct Fourier image reconstruction in SAR and tomography.

An example of global interpolation is the zero padding of a DFT sequence prior to per-

forming the inverse FF1' to obtain a finer resolution spatial response. This is often used in con-

junction with local interpolators to interpolate between rotated, rectangular grids. E.g.. to

increase image resolution, calculate that image DFI'. zero pad by a power of 2. then inverse

Drr the zero padded sequence. The resulting spatial domain resolution will be increased by the

padding factor. Nearest neighbor interpolation (to be discussed later in this chapter) is then

used to obtain samples on the rotated rectangular grid. Speed is gained by means of the FITT.

though at the expense of much more memory usage. In a 2-1) image of size 64 by, 64 pixels

(4090 data points), resolution can be doubled (in both x and y directions). but memory is
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"quadrupled to 16384 data points. For larger data arrays (increased resolution factor), the

memory required may be prohibitive. The FFT-zero pad algorithm necessitates that resolution

be uniformly increased everywhere so that we cannot simply increase the resolution in some

small neighborhood.

It is important to place the zero padding in the correct position of the DFT sequence. The . I
DFT represents uniform samples of the z-transform of the sampled signal where the z-

-Itransform of the finite sequence. h(n) is given by
N-1

H(z) = 1 h(n) z-1 (3.10)

Then, substituting z e we obtain

N-I ,1•k

II(k) = h(n)e- (3.11)

The dc component of H(k) is located at k-0 (z - 1) and the highest frequencies are at

k-N/2 (z - -1). The zero pad therefore, must be placed at both ends of the rotated sequence.

i.e.. in the miald of the sequence H(k). This is at the high-frequency folding point of 11(e0)..

Let the original (time domain) sequence be x(n). for On<N-1 (assume N even). We

wish to increase resolution by a factor of R where R is a power of 2. Assume also that N is

even. since most applications which use the FFT fix N to be a power of 2. The DFT of x(n) is

N-i 2T ka
X(k) = x(n).e (3.12)

The dc point lies at X(O). so we create a new sequence W(k) by splitting X(k) at the high-

frequency folding point and inverting 1, zeroes where I. = R'N:

X(k) 0 k N/2-1

W(k) 0 N/2 45 k 4 N/2+L-1 (3.13)

X(L-k) N/2 + L I<k k N+L-1

I

II II II "III I If I IIIIII IIII I I I I II I H I
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The inverse DFT of W(k) will yield a high resolution version of x(n)

N+L-1 +j 2(3.14

Sw(m) = W(k) e N+L•1 (3.14)
k=0

This FFT-?zero pad algorithm can be very useful for determining the position of a peak in

a sampled signal when it falls between D1I' bins. It can be used to determine the movement of

a point target from one range (or azimuth) cell to another, to calculate the width of the (possi-

bly moved) peak. or to align sampled waveforms which may be out of phase [45]. As an

example. consider a sampled periodic sinc waveform (Figs. 3.2 and 3.3). The sinc peak is cen-

tered at 4.3. but the sampled sequence. having a resolution of 1.0. could be misinterpreted by

assigning the peak position at 4.0. The resolution can be doubled by calculating the DFT of the

sequence (Eq. 3.3). zero padding the sequence to 2N. then inverse transforming the result (Eq.

3.4). After this first resolution enhancement, the peak is resolved to 4.5. This can be bettered

by further padding the DI"T sequence to 4N. 8N. and 16N. each time, doubling the time domain

resolution (Figs. 3.4 and 3.5). In one-dimension, the memory usage is linear with the interpola-

tion factor, but quadratic in 2-D. When the zero-pad algorithm is used to interpolate one rec-

tangular grid to another prior to nearest neighbor sampling, the memory required may prohibit

more than a simple doubling of the sample frequency.

3.3 Separable versus Non-separable Interpolators

The ideal two-dimensional reconstruction kernel is a bi-sinc. or a separable sinc function

with the interpolation kernel

sin( lu ) sin(--•)

h(uTv) - " (3.15)7ru r'v

TU TV

This is easily derived from the one-dimensional case above, and like the one-dimensional inter-

polator. suffers from the same problem of infinite length which makes it difficult to implement,

U
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More important. the bi-sinc is only separable in U and V. not in R and 0. which is what is

required for the polar grid. Thus, what is normally called separable for the Cartesian grid is

really non-separable for the polar grid. The separable interpolator is one that can be decom-

posed 'into two stages. The first stage interpolates the polar data to an intermediate grid, from

which the second stage interpolates to the final rectangular raster. The first stage interpolates

the polar data to a keystone grid, and the second stage interpolates from the keystone grid to the

final rectangular grid. The keystone grid, as indicated by Fig. 3.6. is the intersection of the AO

spaced range lines and AU spaced azimuth lines. When the range lines are equi-spaced in 0. as

in a standard polar grid, the azimuthal spacing on the keystone grid is non-uniform., If the

pulse repetition frequency (PRF) of the radar is constant, then the azimuthal spacing is con-

stant for each azimuthal line (lines of constant U). The non-uniformity of the azimuth sam-

ples for the polar-keystone grids increase the amount of computation required during the

second stage of the interpolation.,

3.4 A Study of Interpolator*

It is clear that the performance of an interpolator is governed by its approximation to the

i•-el low-pass filter. It is important to have very high rejection in the stopband and be as fPat

"as possible in the passband. Because most of the well-known interpolators are of limited

(local) support. they must. by definition, be suboptimal. The following sections describe the

spatial domain impulse response and corresponding Fourier transform of several well-known.

but rarely characterized, one- and two-dimensional interpolators.

3.5 Nearest Neighbor

The simplest interpolator is the zeroth order, or nearest neighbor. It produces a piecewise

constant function (zeroth order polynomial) and is, in general, discontinuous at each break-

point. The impulse response of the nearest neighbor interpolator is a gate (rectangle) function

I

I
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Figure 3.6 Intermediate Keystone Grid.

which is I from -T/2 to +T/2 and 0 outside that region (Fig. 3.7).

hNN(t) = PT/.2(t) 
(3.16)

where

t It •<T/2

0 It I >T/2 (3.17)

As the gate function is convolved with the input data. exactly one input datum falls within the
gate and will be selected for the output, Convolution in the spatial domain implies multiplica-
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NEAREST NEIGHBOR IMPULSE RESPONSE
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Figure 3.7 Nearest Neighbor Impulse Response.

tion of the transforms in the frequency domain. The transform of this gate function is a sinc

waveform with very high sidelobes (Fig. 3.8) and a falloff rate of 3 db per octave.

IINN(W) = 2 sin~w T/2) = rsinc1 i (3.18)

It is these high sidelobes which fail to remove the high-frequency copies of the original func-

tion. It is. in fact, a very poor low-pass filter.

The nearest neighbor interpolator, as defined above, is also ill-posed for points lying

exactly half way between known data., The output there would be the sum of the two neigh-

bors. This can be averted by arbitrarily chosing only one of the points. To make the recon-

structed function right-continuous, we chose the left point when interpolating exactly at the

sample midpoints.
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Figure 3.8 Fourier Transform of Nearest Neighbor Interpolator.

In two-dimensions, the nearest neighbor interpolator is a 2-D gate-like function which has

a shape that is very dependent on the input data sampling structure. If the input sample spac-

ing is rectangular, then the nearest neighbor function is a spatially invariant rectangular gate

pulse (of possibly differing u-v dimensions). If the input array is not uniformly spaced. then it

becomes necessary to tessellate the input sample array into nearest neighbor regions (Fig. 3.9).

The interpolator then becomes spatially varying and analysis is nearly intractable (in the

transform domain) except possibly in a stochastic sense.

On a regular sample grid (e.g., a polar grid) it is possible to analyze this interpolator

because it is easier to parametize the 2-D gate. For a polar sample grid., the nearest neighbor

function is a spatially varying, rotated trapezoid which grows in size as we move away from

the origin, and which rotates with the 0 sample lines (Fig. 3.10). The Fourier transform of the

1 . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3.9 Tessellation of an Irregularly Spaced Data Array.

rotated, shifted trapezoid is a bit messy. but straightforward. The spatially varying nature of

the transform results in a transform with four rather than two parameters: u.v (frequency

coordinates) and r.0 (spatial coordinates)., The trapezoid is specified by three parameters: the 2

bases and the width as shown in Fig. 3.11. The Fourier transform of this trapezoid (which has

the value 1 inside and 0 outside) can be calculated as follows:

First we see that the trapezoid is really a linearly warped, shifted, and rotated square. The

linear warping is described by a simple transformation matrix

u 4 0 u

C (a 2 + b 2)' 
c

V c (a' + b2) C(a+b) (3.19)

T!
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Figure 3.10 Nearest Neighbor Interpolator Geometry for a Polar Grid.

V

_IL

Figure 3.11 Trapezoidal Region for a Warped Sinc Interpolator.
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This matrix transforms a square centered at the origin of width one to the trapezoid centered at

the origin and with dimension parameters (a.b.c). The trapezoid dimensions (a.b.c) are depen- .

dent on the spatial position of the trapezoid. We can now apply a linear shift transformation in

the +u direction with u' - u + A, which in the Fourier domain corresponds to

Pluv) = e+JAUF(u,v) (3.20)

followed by a rotation. The constant A represents the amount of spatial translation along the

U-axis. A is a function of the position

u casO sinG U,
S(3.21)

v -sinG cosO V

By combining (3.19).(3.20). and (3.21), the spatially varying trapezoidal impulse response and

Fourier transform can be determined, though it is extremely awkward to use and therefore this

formulation has only nominal value. If we convolve this spatially varying trapezoid with the

input polar grid, we end up with a 2-D function that is a piecewise constant surface that looks

like blocks of varying heights. This block-like reconstruction is then sampled on the rectangu-

lar grid.

A problem that occurs with this form of the nearest neighbor interpolator is the actual

implementation. Since it 's not easy to determine which trapezoid the rectangular sample falls

on. we make a small approximation by bending this shape into a section of an annulus (Fig.

3.12). It then becomes very easy to determine the nearest neighbor with simple integer round-

ing. The index of the angular coordinate is found by adding 0.5 of the angular sampling spacing

to 0. and then truncating to the integer value. The range index is found in a like manner with

the range sample spacing. For the particular geometries appropriate in spotlight mode SAR. this

is a very close approximation to the ideal. The Fourier transform of the nearest neighbor inter-

polator is shown in Fig. 3.13. I
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While the NN algorithm is the crudest of the interpolators presented here, it still requires

square-root and arctangent functions to locate the Cartesian point in polar space. The computa-

tion. however, can be reduced by expanding these functions in a Taylor series and truncating to

3 terms. The approximation is good enough to locate the point in polar coordinates, and the

error in position is usually negligible in effect, i.e.. choosing the nearest neighbor incorrectly. In

our simulations, the expansion method produced incorrect nearest neighbors in only 3 out of

4096 points - 0.073% error. Of course. the square-root/arctangent functions could also be gen-

erated through a lookup table combined with linear interpolation. As we shall see. these small

errors in the nearest neighbor coordinate approximations are usually outweighed by the error in

the algorithm itself.

When interpolating from one rectangular grid to another, which is merely displaced in U

and V (no relative rotation). where the input and output rasters have the same sampling fre-

quency. and are offset from one another by AU.AV. the nearest neighbor will merely replicate

the original data. In fact. if I Au I <,l./2 and I AV I <Tv/2. then the input and output

responses will be identical (Il].

While this is the fastest and easiest algorithm which can he used to produce Cartesian

samples from polar formatted data. it results in a badly distorted response for CAT

images (24] that are full of artifacts and false lines. In SAR. it produces many false targets.

3.6 Linear Interpolation

Probably the most widely used simple interpolator is the linear interp)latur. It is com-

monly used to "read between the lirnes" of tables or closely spaced samples. When a function is

expanded in a Taylor series about some known point f. and then truncated to two terms, the

resulting expression is a simple linear curve (straight line) through ., A signal which has been

reconstructed with a linear interpolator will be continuous, but may lack continuous first and

other higher order derivatives which make would it "smooth."

1.. U-'imi ml II~ l~l DiliiI III l
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The linear interpolator is usually thought of as a connect-the-dot interpolator. It is more

desirable for analytic purposes, however, to find its impulse response. This is the convolution

kernel h(t) in our original reconstruction formula t-n
YWx(n) h(. .- 2 ) (3.22)

where T is the input sample spacing. One formulation of the linear interpolator is given by

(3.23).

y(t) =. (xI - x()) + xO (3.23a)

I) + Xt (3.23b)= ,(- T)+x T

It is possible to use input data x,) and xi. because the impulse response is shift-invariant for a

constant input sample spacing. The subscripts are simply replaced with the points on either

side of the continuous variable t.

Comparing (3.23b) with (3.12) gives an h(t) of the form

I - Itl/T It0 4T

h(t) 39 (3.24)
0 Iltl >T

which is shown in Fig 3.14a. It is important to realize that this is the impulse response which

is convolved with the input data to get a linear interpolated (and continuous) output. The

transform of this function is

l~tjTeaj(C) 4 sin 2(WT/2) (3.25a)

STsinc (3.25b)

which is also referred to as the Fejer kernel [46). It is easy to see that this corresponds to con-

volving two nearest neighbor interpolators. where each is a gte of width T centered at 0

(extending to *T/2. The convolution of the gate pulses is equivalent to squaring their

L _
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Figure 3.14a Linear Interpolator Impulse Response.
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Figure 3.14b linear Inlerrolator Fourier Transform.
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transforms, resulting in a sinc squared Fourier transform (Fig. 3.14b).

The linear interpolator can also be formulated as an inverse distance interpolator where

y(t) is equal to the weighted sum of each of its nearest neighbors. The weights are the normal-

ized reciprocals of their distance to y(t). i.e.,

Xo X1

y t T-t (3.26a)
I + ,
t T-t

= x(1 - +.) X (3.26b)

which is identical to (3.23b). It will be shown that this relationship does not hold in two-

dimensions.

3.6.1 One-dimensional generalized inverse distance

The linear or inverse-distance algorithm can be generalized to the inverse distance to the N

(Nth power inverse distance) interpolator. Here. the distances to each of the two nearest data

points are raised to some power N. N;1. This results in weighting the nearer point more

heavily than the other. It also results in a continuous first derivative in the reconstructed signal

dt each interpolated point. The impulse response of the generalized inverse distance (GID-N)

interpolator is

h(t) 0 - d)N (3.27)
(I -d)N + dN

where

It:

T

This is obviously not a polynomial function, but rather a ratio of polynomials, which are

more difficult to analyze. The Fourier transform of a polynomial is easily calculated. but the

transform of this class of functions (defined only in the interval [-T.TJ) is difficult to
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formulate. However, an approximation of the GID-N transform is easily accomplished numeri-

cally with the I)FT.

In the limit as N approaches infinity. GID-N approaches the nearest neighbor. This is

obvious because the weighting of the nearer point approaches infinity (with N) and causes that

point to be selected as the output. With very higher order N. T must be scaled to prevent

numeric errors due to computer range problems.

3.7 Two-dimensional Generalized Inverse Distance

The linear interpolator can be extended to two-dimensions very simply for rectangular

input grids. For this case, the interpolator can be thought 3f as convolution with a separable

2-1) triangle signal (a quadratic shaped pyramid (Fig. 3.15a) shown with equal spacing in u and

v) having a half width equal to the u and v input sample spacings. The bilinear interpolator

has a Fourier transform which is a separable sinc squared and is shown in Fig. 3.15b. The

impulse response for the bilinear interpolator is given by (3.28).

h(u.v) ( - I u I/T) (0 - I v I/T,) I u I <T, I v I <T, (3.28)

However. when the input grid is non-rectangular, bilinear interpolation is difficult to for-

mulate since the data axes are not orthogonal. The most popular linear type of algorithm used

in this situation is the inverse distance interpolator. The output value at Q is the weighted sum

of the 4 nearest neighbors (Fig. 3.16).

Q 1=1i d (3.29)

The impulse response is given by

UI
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I Figure 3.15a Bilinear Interpolator Impulse Response.

Iy'
II

Figure 3.15b Bilinear Interpolator F ourier 1Transform.
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P3.

d3

- " l/d 2

II

P/ i (3Pd2

h(u.v) , 0 otherwise

where dF is the distance from (u.v) to (0.0).(0v± r).( e 1.0). and ( 1. ) with the sign depend-Gmr

ing on the quadrant in which (u.v) falls. If the summation in (3.30) is expanded and the

numerator and denominator are each multiplied by dtd-d3d4. h(uv) becomes

d2d 3d4  (
h(u,v) = d 2d 3d 4 + djd 3d 4 + dld~d4 + djd2d3  (3.31)

which avoids the problem of singularities when interpolating at an input data point. Notice

that h(u.v) has the value I at (0,0) and becomes 0 at the eight integer sample points around the

I
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origin (0,0).(0.= 1 ).( t 1.0),( ± 1.t 1). This is consistent with the constraint that the interpola-

tor should exactly reproduce the given data at the sample coordinates. The inverse distance

impulse response and corresponding Fourier transform are shown in Figs. 3.17a and 3.17b.

The term Generalized Inverse Distance actually sterns from generalizing the order of the

inverse distance weights and using additional local points in the summation. These points are

determined by extending the point set to include the next layer of points around the nearest

four, The first additional layer contains twelve more points (sixteen total), the second layer

contains eighteen points beyond that (twenty-five total). This admittedly heuristic point set

was used by Shepard [47] in contour plotting. It is used here in the computer results to deter-

mine the value of the enlarged point set.

It was demonstrated in the 11) case that the linear and inverse distance interpolators were

identical., In two-dimensions, this is obviously not the case. since (3.31) cannot be reduced to

(3.28). It is non-separable and difficult to analyze. even for the rectangular grid input set., A

comparison of the transforms for the bilinear and inverse interpolators. suggest that inverse

distance is inferior to the bilinear., It is easy to see (by examining the first derivative behavior

of h(u.v) about the (0.0) point) that the output function y(u.v) will not have continuous

derivatives. This is similar to the bilinear version. though more pronounced. due to the steeper

descent from (0.0). The problem with the first derivatives can be rectified by using inverse dis-

tance squared (GID-N. N-2). This choice has a very useful computational side effect.

The inverse distance squared interpolator has some very nice properties. First., the

sidelobes are very low (Fig. 3.18b). at the expense of a slightly wider mainlobe.

1=1 dl"(3.32)

d 2

For the SAR application, this is important because it is important to reduce the sidelobes in

order to reduce the artifacts created by the transform operation. Second. the inverse distance
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Figure 3.18a Inverse Distance Squared Impulse Response.

Figure 3.Ihb Inverse Distance Squared Fourier Transform,
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squared algorithm obviates the need to perform the square-root operation in calculating the dis-

lances to the nearest 4 points. This is quite a computational savings. as will be shown in the

computer simulaticns. Surprisingly. this algorithm has had little application in the image pro-

cessing field, but rather has been used more in such areas as contour and 2-D surface plotting

(graphics) [47]. Notice that. like the one-dimensional case, as N approaches infinity, the GID-N

interpolator approaches the NN interpolator (Figs. 3.19 and 3.20).

3.7.1 Arbitrary local point weighting

In the most general case, when interpolating to a point Q. the nearest 11 points. pi. are indi-

vidually weighted by a function w. a function of the Cartesian distance from Q to P,,..

d, [47. 48]. That is.

E'W(d,).p,

Q = P, (3.33)
I:W(d,)

The set of points p, is usually chosen to be the nearest P points, or a set of point within a

given circle (used in irregularly space data sets so that areas of sparse data do not used very

distance elements in the weighted sum.) w(d) can be any monotonically decreasing function

which satisfies (3.34a) and (3.34b).

lim w(d) 0 (3 34a)

lim w(d) oo (3.34b)d-o

This very simple constraint will reproduce the sampled data exactly and can lead to several

heuristic weighting functions such as

w(d) = d- (3.35)

which has an exponential weighting surface. In the previous section, w(d) = d". where n ; I

for inverse distance weighting and n = 2 for inverse distance squared.

||I
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Figure 3.19 Inverse Distance to the 10th Power.

Figure 3.20 Inverse Distance to the 20th Power.
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3.7.2 Warped and spatially varying nature of GID

It should be pointed out that the Generalized Inverse Distance interpolator suffers from

the same spatially varying problem that the nearest neighbor algorithm does. For a polar grid.,

the base of the tent function (for simple inverse distance) grows larger and more warped. In

the Nearest Neighbor section, the frequency response was generated by warping (and rotating)

a square gate pulse. This could be done for the inverse distance. but little insight would be

gained by such mathematical manipulations. Rather. the very narrow look angle typical of

spotlight mode SAR allows us to approximate the warped, spatially varying impulse response

with those given above (shown for square input spacing) as a stationary function.

3.8 The Weighted Sinc Interpolator

A third interpolator. henceforth to be called the Weighted Sinc interpolator (also referred

to in the literature as the Windowed-Sinc. Standard Polar Format. and ERIM interpolator), w-

sinc. is a two-step algorithm. First. the polar samples are interpolated along the range lines to a

"keystone raster." that is. a sampling raster which has data on parallel azimuthal lines (Fig.

3.21). Note that this interpolation is implemented using one-dimensional algorithms on a range

line by range line basis. In a sense, it is separable. though not in the typical U-V coordinate

system. but rather in the R.0 coordinate space. In step two. the data are interpolated, again

using one-dimensional techniques, to the final rectangular grid. The computational complexity

of this algorithm is determined by the complexity of the I-D interpolator for each step.

It was shown earlier that the sinc function is the ideal reconstruction filter, although it is

impractical due to its infinte support., If we attempt to use a truncated version of the sinc. the

resulting transform displays the usual Gibb's phenomenon oscillations which result from high

sidelobes and poor passband response. This problem can be alleviated by truncating the sinc

function with a tapered window function.

I
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Figre 3.21 Interpolation to an Intermediate Keystone Raster.

har) (r w(t)" (3.36) i
'ft

where Tout is the .sampling interval of the output .sequence and w(t) is the windowing function. '

The sine function is specified in terms of thle output sample ,'pacing because it is actually doing

the job of low-pas.s filtering and signal reconstruction in one convolution. The cutoff frequen,'y ¶
of the low-passx filter is given by the output spacing so that when we interpolate to a sparser

array (T'>T). the filtering operation will prevent aliasing of high-frequency data into the low
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frequencies. In the first stage of interpolation from the polar grid to a keystone grid, the input

sample spacing. AR, is constant from range line to range line, but the output sample spacing

changes. i.e.. the sinc width changes very slightly for each range line interpolation.

Windows are most typically used to taper data records prior to applying a transform

(either DFT or IDFT) to reduce the sidelobes caused by truncating the infinite sample sequence.

Harris [49) has cataloged a large list of well-known windows and their spectrum shaping pro-

perties in conjunction with spectral estimation and spectral leakage. Although many windows

are candidates for the w-sinc interpolator, the Hamming window was chosen in the computer

simulations because of the ease of evaluation and familiarity. The IHamming w-sinc interpola-

tor becomes

sin( I L)
h(t) = 0.4 + 0.46 cos( 2,t ) Tout (3.37)

T 7t4 or more simply

h(t) = 04 + 0.46 cos( t) sinc( "-.t-) (3.38)
10 K Ij Tu

where K specifies the support of the sinc calculated in terms of the output sample spacing.

Because of this specification of K. the number of input samples that fall within h(.) may vary

by 1 between any two interpolator sums. This has negligible effects.

f The Hamming window is actually a modified Hlanning window which is a member of the

cos"(O) class (i - 2 for Ilanning). It can be formulated as the multiplication of a raised cosine

by a rectangular window - in the transform domain. it is the convolution of the sinc kernel

with three impulse% located at 0 (of height 2w1). and at * r/K of heights ii each. Its transform.

therefore. is the weighted sum of three sinc kernels [49]

"iT , T1

,(w) = 0.54.2w" sinc(-.1w) + 0.46-v sinc(!- + (a)) + 0.46.-w sine(Kr - wa)) (3.39)
K W T

The side-lobes of the two offset sincs cancel out the sidelobes of the main sine,, and thus. the
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overall transform has lower sidelobes at the expense of the wider main lobe.,

The Fourier transform of the Hamming windowed sinc is given as the rr of h(t):

H(ca) = FT sinc( 7-.. t) (0.46 + 0.54 cos( 7. t)) p5(t) (3.40)
K

which is the convolution of the transforms of' each term., The transform of the Hamming win-

dow is given in (3.41).,

llanawg,(W) = (1.08w7 - 0.I6K2w2)sin(ww) (3.41)

or" - KW2)

As we increase K. we take more terms into the summation. This has the effect of creating

a better low-pass filter. i.e.. better interpolator, but also of increasing processing time linearly

with K. Figures 3.22 and 3.23 show the impulse response and corresponding Fourier transform

of the w-sinc for K-4 and K-10. While it is obvious that the w-sinc shows the most promise

for an interpolation kernel, the drawback is the excessive amount of computation required in

the lengthy summation (direct convolution), the evaluation of the sine and cosine functions.

and the calculation of the input data positions. The data positions of an a priori known polar

grid could, in theory. be stored in a ROM: howtver. the data collection path of a maneuvering

aircraft precludes such a ROM. Hence. data positions must be calculated "on the fly - Appendix

II describes a novel method of reducing sinusoid computation. but the w-sinc iiterpolator is

still costly,

3.9 Splines

3.9.1 Polynomial interpolation

The use of polynomials for function approximation and interpolation is widespread

because polynomials are very easy to manipulate. differentiate, and integrate. They are ana-

lytic and well-behaved and are representable in a large number of ways. The Taylor expansion

of a function is given as a (possibly infinite) polynomial which is often approximated by trun-

1L~
-- U
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cating to a finite length polynomial, in computer applications, polynomials are easily

represented as an array of coefficients (or derivatives at a specific point). The linear interpola-

tor presented in a prior section is really a first degree polynomial6 . It is not surprising, there-

fore, that polynomials could be used for our frequency domain interpolation problem,

Given a set of data points Y1 ,Y2. ,YN at time samples x1.x2 , ,XN, it is well known

that an N-1 th degree polynomial, pN(X), can be generated such that PN(Xi) = yi. The Nth order

polynomial can be written as:

p(x) = a, + a2x + + a,,xi-i (3.42a)

= Iaj xj'' (3.42b)

where the coefficients a, can be generated by first forming the intermediate polynomials (called

the LaGrange polynomials)

N X--X)
l,(x -H" -- (3.43)

Jul X, - Xj

which have the property that

() i~j
I'(x,)) (3.44)

I i=j

The nth order polynomial is then generated through the sum of these LaGrange polynomials

1.4

p(x) = • 1,(x) y, (3.45)

Note. however, that this becomes rather unwieldy to work with for large N.' It is also computa-

tionally unstble on a finite precision computer.

'Some texts call it A second order polN.nomial because it is specified by two coefficients - it %pan% a two-dimensiondl
space. The terms degree and order shall be treated here as the highest power ol the polynomial, i.e.. a cubic is a third
degree pol*.nomial.
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Another problem with polynomials of increasing degree is convergence, As the number of

interpolating points is increased, the interpolating polynomial pN(x) is not guaranteed to con-

verge to the original function f(x). In fact, it can be shown that for any sequence of sets of

points x,. there is a function f(x). such that the sequence of interpolating polynomials will

diverge at these points [34). Finally. the multidimensional polynomial is not unique for a

given set of points. i.e.. a rectangular grid of sample points will not produce a unique polyno-

mial of the form

p(x.y) = a,, x"• + a,,-, xl'-y + a.._2 x n-2Y2 + + a, y" + a• . (3.46)

This means that it cannot even be used as a local 2-I) interpolator, precluding its use for the

SAR system.

Though there are various ways to represent a polynomial which can reduce the amount of

instability in computation (Newton's form with divided differences, for instance), these Nth

order functions tend to oscillate too much between the nodes. This. of course, is because of the

fact that an Nth order polynomial must have N roots. On a digital computer. the high-order

terms of the polynomial are very sensitive to small changes in x., This is sometimes referred to

as an ill-conditioned function. One well known technique to deal with these shortcomings is by

using different lower order polynomials in different regions of the curve. The result is the class

of polynomials called piecewise polyw)mials or pp functions. Another name for pp functions is

splines.,

The term spline has a rather broad definition that is frequently misused in the literature.

NMost simply. a spline is a piecewise polynomial without constraints. i.e.. nothing is said about

continuity of the spline or continuity of any of its derivatives. Typically. however, the spline

is constrained to be at least continuous, and m derivatives of the Nth order spline are to be

continuous, where m !< N-1. The linear interpolator can be referred to as a first-degree spline

which is continuous, but lacks any continuous derivatives. A parabolic spline is a piecewise

quadratic function which has a continuous first derivative. A cubic spline is continuous and has
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continuous first and second derivatives everywhere on the interval.

Spline functions are often used in mathematical and curve-fitting applications, because

they can generate smooth interpolating functions with continuous derivatives at the known

data points (also called "knots," "joints.'" and "breakpoints-) (50.51.52]., More recently.

splines have been used in computer graphics to generate smooth curves from discrete edge

points of objects, and thus reduce the number of points required for an irregular curve.

Splines have also been used in typesetting applications where enlargement and reduction

of character sets are more easily accomplished with pen (plotter. laser, light) strokes than with

binary digitizations [53]. By storing character sets as a combination of straight lines and spline

curves, they can be arbitrarily scaled without degradation.,

3.9.2 Cubic spline interpolation

To see how splines can be constructed to be smooth, i.e.. to possess first and second deriva-

tives at each knot. we construct a simple case with only two knots with known values and

derivatives. The following is taken from Rivlin [34].

If a< . and

|P(a) = U1 PW) = U2 (.7(3.47)
p'(a) = u'1  p'(P) = u'2

then

p =UI(X-p)2 + 2 (x--a)(x--p)2( ) (3,48)

+ (x -a) 2 - 2(x - O)2

+ U_ _ (x-o )2 (-0 +U
(B - a)2 pao t a)l

Because a cubic polynomial has 4 degrees of freedom,, the polynomial can be forced to have a
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given value and derivative at each of 2 points.

If the spline is constrained to have a continuous second derivative, then it can be shown

that the entire spline, s(x). which consists of the cubic polynomial sections,

s1(x) for xx(x 1 1x,., can be uniquely specified by the given breakpoint.- xi, the sample values y,.

and the boundary conditions u', and u'N., The system of equations thus depends on the initial

and final derivative of the knot sequence. The end conditions can also be specified as second

derivati , or constraints on the first and/or second derivatives which simply increase the sys-

tern of equations which must be solved (by 2 more equations). It is interesting to note that

spline interpolation has a global nature., Each datum in the set of N points affects the entire

spline function, though in a much more subtle way than the Nth order polynomial interpolant.

Delloor showed that this system of equations forms a band symmetric matrix which can be

inverted by Gaussian elimination wilhout pivoting [54). The recursive solution is very fast and

is implemented in the IMSL mathematics programming library.

The various boundary conditions which can be imposed on the spline function are dis-

cussed here. Unfortunately. the names of the more popular ones are not wholly descriptive of

their effects. If the derivative of the original function is known at the end points, then we

select u'1 (x,) = f'(x1 ) and u'N((x) = f'(xN). The resultant spline is called tile complete cubic

spline of f. Most DSP applications do not have derivative values available, nor are they

estimated well due to additive system noise. If the second derivatives at the endpoints are

forced to be 0. then s(x) becomes the natural spline. This is a popular boundary condition in

available software, but is rather arbitrary and leads to only 0( I t I 2) convergence, which means

that as we decrease the spacing between the knots, the function s(x) converges to f(x) in a

squared fashion. By contrast, the complete spline interpolant converges in 0( I t 14) to f(x).,

Another possible boundary condition is called not-a-knot, In this case, the first and last

knots of the sequence, x, and XN. become inactive and sj(x) = s2(x) and SN-(x) SN,.2(X). This,

too. has 0( 1t I 4) convergence to f(x). It is the end condition used in the I\ISI math library for
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spline interpolation.

The cubic spline function is given by piecewise cubic polynomials of the following

form [54] ;

s,(x) = cl., + c2., (x- e) + c., (x- ,)2 + c4, (x - x, < f < x'+ 1  (3.49)

where the coefficients c,.j are chosen such that

s,(x,) = s,_1(x,) I 1 i (<N (3.50a)
s'1(x,) = s'i-.(x,) 2, i (N-I (3.50b)

The constant coefficient is set to cl, = y, so that the spline interpolates to the input data set at

the knot positions. Once these coefficients have been determined through the Gaussian elimina-

tion step. it is a simple matter to locate the interpolation point within the correct interval and

compute the cubic polynomial.- If many points are to be generated within an interval, this

method would be more preferable than the weighted sinc from a computational view.

The cubic spline interpolant has the unique property of maximal smoothness. That is, for

a given set of interpolation points, the cubic spline gives the smoothest curve over all functions.

The smoothness is defined as the integral of the square of the second derivative:

f[f"(t)]dt (3.51)
a

This integral is minimized over all f(t) by s(t). the spline interpolant. It is also termed the

roughness [55]. TPe smoothness integral is an approximation to the strain energy function

+[f"(t)]2dt (3.52)
a[1 + (f'(t))"]5'2

This is. in fact, where the term spline is derived. A spline was a thin rod used by draftsman to

fair curves through a set of data points. The curve naturally minimized its strain energy and is

approximated by the cubic spline function.
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Because the spline interpolating function is global and requires a matrix solution, it does

not possess a time invariant impulse response. Horowitz has determined the power spectral

density effects of spline reconstruction [56]. lie found that higher order splines are needed to

preserve the power spectrum of the original function, but that these higher order polynomials

require much more computation to generate and evaluate. A close cousin to the complete spline

interpolant is formed via the B-spline functions.

3.9.3 B-splines

Hou and Andrews [57] used cubic basis splines, or B-splines (sometimes called 0-splines).

for image enlargement and reduction, and for text magnification and minification. with the con-

clusion that the B-spline may prove more appropriate than a truncated sinc for finite length

data records.

The term B-spline comes from the basis formulation of the reconstruction function. If

f(t) is the original sampled function (to be reconstructed) at the points x(nT), then we con-

struct a set of basis functions, BW(t), and form the sum

K

i(t) = J, 1-(t) (3.53)

Note that the c, are not the original samples y,. but rather new coefficients calculated from y,.

For equally spaced data, the B-spline functions are shift invariant and the subscript i can be

dropped from B.

The cubic B-spline is formalhy defned as the convolution of two triangle (Chateau func-

tions) pulses, eacqh of width T and heig| t 1. The resulting function is given as two cubic poly-

nomials and is symmetric about the origin. The interpolation kei nel is given by::

t3/2 - t2 + 2/3 tI < 1

h(t) -t 3/f,+t?-2t+4/3 1 -z ItI < 2 (3.54)

0 ItI > 2
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This can be recognized as the Parzen window which has a Fourier transform (scaled so that

F(O)= fi ).

=sinc( (3.55).

This is expected since the convolution of two triangle waveforms corresponds to the product of

its transform, which are in turn resulting from the convolution of two gate pulses. The nth

order B-spline can be recursively generated by convolving the (n-1)th order B-spline with a

gate pulse of width T.,

This formulation of spline reconstruction is actually a different interpretation of the cor-

plete spline given above. The implementation is slightly different, but the dependency of c, on

y, is global., and thus while the 13-spline does have finite support. the IB-spline coefficients do

not. The interpolation function is generated by computing the c,'s and then filtering this

sequence with the B-spline kernel., The previous interpretation leads to a faster implementation

and is used in the computer analysis. A B-spline type of reconstruction can be done with a

slight modification to the basis function, which leads to an interpolation impulse response that

resembles a truncated sinc function.,

3.9.4 Cubic spline convolution

The complete spline interpolant is generated by solving a system of equations which come

about by the constraints on the interpolating points, the first and second derivative matching at

these points, and the boundary conditions. A more general cubic spline that does not have all

these constraints is given by the following piecewise cubic polynomial which is symmetric

about the origin [I1]:

h~t) a3t.3+ at2 +alt +a0 Itl <1 (.6
h(t) = (3.56) +b3t3 + b2t-" + bit + b4 1i( It I(•2
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To create an impulse response that interpolates the data exactly. f(x) must be 0 at t-1 and

t=2. Also, first derivative of each cubic should match at t-l, This gives seven constraints in

all, but the piecewise function has eight constants. This constant can be made a variable in the

function f(x) which can be modified to generate different cubic spline functions. It is important

to remember that this spline is different from the complete cubic spline interpolant presented

previously.

(c+2)t 3 - (c+3)t 2 + 1 1tI <1
h(t) - (3.57)

ct-5ct2 + ct-4c 1 4 Itl 4<2

When the constant c has the value -0.5. the interpolation error goes to zero with the third

power of the sample interval (() I T' I ). The second derivatives of the two polynomials are

forced to be equal if c - -0.75. This same result was used by Keys [58) who demonstrated that

the accuracy of the interpolation is between the linear and complete spline interpolant. This

form of cubic spline convolution is studied in the computer analysis of Chapter 5. The impulse

response of the modified B-spline with c - -0.5 is plotted against the w-sinc of order 4 in Fig.

3.24a. Note that this B-spline is remarkably similar to the w-sinc. Similar performance is

expected. The Fourier transform of the B-spline (c - -0.5) is presented in Fig. 3.24b.
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CHAPTER 4

WINDOWS, SPURIOUS TARGETS AND ALTERNA tIVE SAMPLING GRIDS

This chapter presents a number of topics that are important in SAR processing. Window

design for SAR data arrays is discussed. and the usefulness of optimal windows is examined.,

Spurious target generation resulting from the Fourier domain interpolation stage is presented.

and some one-dimensional examples are shown., Finally, alternate sampling grids are proposod

which can reduce the computation and even the complexity of the sampling hardware.

4.1 Windowing the Data Array

It has been demonstrated that spotlight mode SAR can generate a data set which is

approximately the Fourier transform of the complex reflectivity map. This is inverted with the

DI"T (0T1). The same procedure is used for the tomographic reconstruction problem as well as

remote sensing arrays (ground-based aeronomy SARs). However. when using the DFT as an

approximation to the Fourier integral, errors occur due to the limited oze and particular shape

of the recorded data. It is well-known that strict truncation (uniform windowing) of a signal

results in Gibb's oscillations. or sidelobes. which can obscure weak signals. These sidlobes can

be reduced through the use of a weighting function. or window which tapers to zero nmar the

ends of the sampled data set. In addition, this tapering smooths out discontinuitie:s at the end

points (the DFT assumes that the data represents one period of a periodic signal, so x(O) follows

x(N-1)) which can result in sidelobes as well. The type of window used dramatically affects

the resulting output spectrum. often reducing the high sidelobes at the expense of a wider

mainlobe. The disadvantages of windows is the loss of inlormation from the tapered spectral

shaping which may not be representative of the signal spectrum, and a more difficult evaluation

of the output image. i.e.. the MSIF" cannot be used as a good measure of image quality, Win-

dows have also been used successl ully i the design of FIR filters [59). Indeed, the weighted

sinc interpolator of Chapter 3 was essentially a filter designed by tapering the sinc function



76

with a Hamming window.

Harris [49] has examined a number of windows and cataloged them according to peak

sidelobe levels., mainlobe width, energy leakage,, and several other parameters. The windows are £

also presented graphically. and examples of using windows in spectral estimation are given.,

Additional window designs and measurements are given by Geckinli and Yavuz [60] which

favor the Hamming and Kaiser-type windows for spectral analysis and demonstrate the

optimality of the truncated sinc window for an energy maximization criterion. Because SAR

can be viewed as a spectral estimation problem. windows are examined which can improve

sidelobe reduction and resolve point targets.

In this section. we briefly examine some of the windows which were used in the computer

evaluations of 2-1) interpolators. Previous work in optimal window design for irregularly

shaped data set is also discussed.

4.1.1 Separable versus circularly symmetric windows

Probably the most common windows used in two-dimensional signal processing are separ-

able. That is. they can be represented as

w(x.y) = wj(x) -" 2(y)

where typically, w1 and w, are the same function, which is a good. one-dimensional window.

Huang [61] has shown that good circularly symmetric filters can be designed by rotating

good one-dimensional windows. i.e..

w2-. ,(x.y) = wjr,(lX2 + Y2)

The circular weighting function has been using in optical SAR processing due to the nature of

the spherical lens. It was also the weighting function chosen by ERIM for their processing of a

rotating platform imaging system [621.
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Unfortunately, when using windows with the DFF for spectral analysis. a window which

is non-zero (although equal) at the endpcints will generate discontinuities when rotated, and

thus produce higher sidelobes than the one-dimensional case. A Hamming window is one exam-

ple. The two-dimensional circularly symmetric Hamming window shown in Fig. 4.1b displays

the discontinuous boundary.. This is an example of a window which is good for the one-

dimensional and separable 2-D cases, but possesses a poor circular response. Experimental

results in the next chapter demonstrate the inferior image quality. This may be corrected with

a zero taper window such as the lianning window which displays no such discontinuities (Fig.

4.2). The additional problem with the rotated window is the great information loss due to the

relatively large area of zero weighting near the high frequency "corners." If the energy concen-

tration is approximately zero for x2 + y2 ,• r2. then a circularly symmetric window may be

appropriate. 11 would work very well if the Fourier transform data had a circular region of

support. However, spotlight mode SAR. in general. does not.

4.1.2 Optimal windows for SAR

Windows can also be designed which ere optimal in a given sense. In [63]. Papoulis listed

several optimization criteria such as maximum energy concentration. specified zero crossings.

minimum energy moment. and the minimum amplitude moment. The maximum energy con-

centration criterion generates a window which has maximal energy in a given range (--a to o')

and is solved via the prolate spheroidal wave functions (PSWF). Solutions. both continuous

and discrete, of the PSWF are discussed by Slepian [64. 65. 66]. The specified zero crossings

criterion is a generalized window of the form

w(t) k(I + 2* cos(at))p,(t) (4.1)

where

-2 sin(at) (4.2)
2aT + sin(2aT)

where the zero crossings are specified by a.. The Hamming window is a special case where the

----
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Figure 4.1a A Separable Hamming Window.

Figure 4.lb A Circularly Symmetric Hlamming Window.,
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Figure 4.2a A Separable Ilanning Window.

Figure 4.2b A Circularly Symmetric Hanning Window,~
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discrete window transform has zero crossing on the DFT sample points. This property makes

the Hamming window useful for the interpolation evaluation problem since, a properly placed

and sampled Fourier domain Hamming window will result in an image sampled in the nulls of

the image domain sinc function. In this way, the interpolation error can be calculated indepen-

dently of windowing effects. Several examples of circularly windowed data records are given

in the experimental results.

The previous sections demonstrated the design of two-dimensional windows via a rather

heuristic algorithm ( i.e.. take a good one-dimensional window and transform it into a two-

dimensional window). However, neither method takes advantage of the shape of the region of

known data. O'Brien [67] and Staehling [681 examine the question of optimizing the design of

windows for irregularly shaped data regions, Since the spotlight mode SAR data lie on a

toroidally shaped region, it is worthwhile to examine how these windowing strategies can be

used prior to the FFT operation.

O'Brien investigated the use of an energy maximization criterion to generate windows

which can be used on spatially limited images of irregular shapes. e.g.. an L shape. a duel cone.

and a circle., The solution is based on an iterative application of the time and frequency limit-

ing operations found in the Papoulis extrapolation procedure [69]. The window design is for-

mulated as an eigenvalue problem.

X f(n.m) = B T f(n.m) (4.3)

where

B = W-'BW is the bandlimited operator.

T is the spatial truncation operator.

B is the frequency-limited operator, and

W is the DFIT matrix.,

O'Brien goes on to demonstrate the convergence of the algorithm., and gives several examples
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which show the types of windows designed for the simple geometric shapes given above.,

Staehling used the Hamming window applied in directions orthogonal to the edges of the

given data set (Fig. 4.3). The individual window arcs were expanded to meet the edge of the

kno,,r data region. His results demonstrated better sidelobe control than the separable or cir-

cular case. This may be expected since the windowed data record becomes a function which

gradually approaches zero.

The limitation of these algorithms is due to the lack of knowledge of the shape of a gen-

eral data set. Also, the algorithms are numerical optimization procedures. Specifically, the data

region shape must be known before design or applization of the adaptive window design. If

this a priori information is unavailable, then the separable window (somehow optimized for the

full region) is the better and (computationally) simpler alternative. In the case of the toroidal

At~ R

Figure 4.3 Application of the Hamming window to Orthogonal Edges.
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data set, the previous strategies could be used only if the toroid were sampled on a rectangular

raster prior to windowing with zeros surrounding the data record (Fig. 4.4). This. however, is

precisely the problem faced in the interpolator., After the interpolation step, the window boun-

dary is a moot point since the data are now on a rectangular raster and standard windows can

be applied., Because the Hamming window allowed the placement of zeros at the image sinc

zeros, it was used after the interpolation stage for the sidelobe reduction.,

" n0

"•-. . . • . . . . 0

, ,

*~ 9

Figure 4.4 The Toroidal SAR Data Set on a Rectangular Raster.,
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4.2 The Limited Data Record and Extrapolation

This section briefly discusses the effects that a limited data set in the Fourier domain has

on the image reconstruction. This is a ubiquitous problem for signal processing and is covered a

great deal in the area of extrapolation., The data set that we are given extends over only a very

small part of the Fourier domain - a piece of a torus. Outside this region. the data are non-zero

(for spatially limited images, it cannot be zero), but in interpolating from one grid to another.

it is often assumed to be so. Bandlimited extrapolation of the known signal set would seem to

be worthwhile in SAR for two reasons: I) the resolution of the system is proportional to the

size of the Fourier piece so that by extending the data set. we can increase the system resolu-

tion: 2) when interpolating from one grid to another, the high-order interpolators will not "fall

off" the sample grid near the edges. In practice. (2) is not as much a problem as would appear.

because the size of a real system raster is several orders of magnitude larger than the interpola-

Stor kernel anci errors would only occur near a few corners of the grid (Fig. 4.5). O'Brien [67]

briefly examined the possibility of extrapolating the Fourier data set beyond the recorded

region. but concluded with results consistent with Abend [70]. who notes that bandlimited

extrapolation has only limited use in spectral estimation.

4.3 Spurious Targetsj
It is well-known that interpolation errors in the Fourier domain lead to a noisy response

in the spatial domain. The very nature of the transform operation predicts a global error in the

spatial domain for singular errors in the Fourier domain. The following sections review and

attempt to qualitatively characterize this interpolation error effect for tomography and SAR,

4.3.1 Munson-O'Brien analysis In [67] O'Brien examined the effect of interpolation in one

domain on the transform domain, specifically looking at sample rate changes during the inter-

polation stage. The results help explain the presence of spurious targets in the output image.
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Figure 4.5 Areas where the Interpolation Kernel Falls Off the Edge.

In[16]. Munson clarifies O'Brien's analysis of spurious targets. The result of[16]. are presented

briefly here for completeness.

The analysis can be simplified if the Cartesian-to-Cartesian (C-C) interpolation problem is

reduced to one-dimension. Though the SAR interpolation problem 'is polar-to-Cartesian (P-C)

rather than the simpler C-C geometry. the analysis can be used to predict where spurious tar-

gets may appear. since the section of the polar grid is approximately rectangular. This type of

approximation may not be useful in the tomographic setting where the grids have markedly

different shb pes.

The sample rate conversion problem can be viewed as an analog interpolator followed by

a sampler with the new period T', In the case where the interpolation is performed in the

Fourier domain, the process can be viewed as shown in Fig. 4.6, with the input sample set
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available after the initial transform operation., The case and hat 'notation here is like that

defined in the Chapter 2 discussion on the projection slice theorem. The imaging process per-

forms the Fourier transform of f(t). into F(M). F(o)) is then sampled at times nT to form

F(nT). The sample rate conversion step can be thought of as a two step process of analog inter-

polation followed by a resampling operation. Because the interpolation step is inexact, it pro-

duces the continuous function F(w) which contains aliased copies of f(t). This is resampled as

'(mT') and converted back to the time (spatial) domain as f(k) via the FFT operation. We

would like to determine the relationship between f(k) and f(x). Note that f(k) is a sampled

function. and the original function f(x) is continuous. The continuous interpolation kernel is

h(t) with transform H(w). It will be convenient to define the infinite sampling sequence

)= 8(x-k'lT) which is used in both the time and frequency domain. It is important to

remember that the operations normally performed in the time domain (sampling, convolution.

etc.) are now being done in the frequency domain, but the duality property of Fourier theory

can be used to understand what is happening in the image (time) domain.

The output of the initial sampler (after the Fourier inversion step) is

F(nT) = F(w). S-r(w). This has the effect of convolution with the infinite impulse sequence

S 2,,(t) in the time domain. Aliasing can result if T is insufficiently small. The sampled Fourier

sequence is convolved with the continuous interpolation kernel. 11( omega ) to reconstruct an

approximation to F

lk(•) = 1. F(nT) H(o - nT) (4.4a)

= {F(w)'ST(wf} * I1(O) (4.4b)

In the time domain, this becomes

f()*S2 ) h(t) (4.5)
Y

S~The final sampling step multiplies the reconstructed function with the infinite sampling
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K~n) F(W) ZFfn)h(wh-nT) FtnT')

I ;ne,#

FCDigital f urnverseImaging System Interpolator / iTransform

IF()'r(w)} * H(c)"S(I ) _ _

• and in the time domain

It is precisely this second convolution after the h(t) windowing which accounts for spurious

(aliased) targets to appear in the reconstructed image, It was shown in the interpolation

chapter that the interpolation k,'rnel must have a trarnsform, h(t), which removes the2_

spaced copies of the spectrum (hI this case,, the copies are of the image.) If h(t) were bandlim-

i~ed. the spurious targets would not appear.. This would., of course, create an infinite length!

interpolation kernel.
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4.3.2 Analysis for the nearest neighbor interpolator

Stark analyzed the nearest neighbor algorithm in terms of random jitter noise in the

polar-rectangular interpolation stage to explain streak artifacts and high-frequency noise

induced into a direct-Fourier reconstructed tomographic image [22]. lie generates a noise

model of the positional error in the transform domain as a uniformly distributed variable

between -1/2 and +1/2., This corresponds to the position error induced from using the nearest

neighbor which must be within 1/2 a sample point away (sample period T normalized to 1).

This positional error "noise" is uncorrelated with the signal, Stark showed a relationship

between the positional error noise, the Fourier transform of the original signal and the Fourier

transform of the interpolated signal which demonstrates that the positional error generates

noise which is correlated with the signal. He concludeed that the correlated noise translates into

streaking artifacts in the spatial domain, as well as producing high-frequency amplification.,

The streak artifacts are also found in the SAR interpolation problem as smearing across the

reconstruction..

Some insight into what is occurring can be gained by looking at the u.v error terms of each

interpolated point for the nearest neighbor algorithm. Let Eu be the amount of error in the u-

direction and E, be the error in the v-direction (Fig. 4.7) in the Fourier plan!. In general. Eu

and E, will both be functions of u and v. Let there be a point target at (uF . vJ). The Fourier

transform is

I

I IF j8(uuV..vhvj) .F(U.V)= = J(1UO+. V'i (4.8)

Let (UN) be the nearest neighbor to the polar sample (U.V). Thus. F(Lv is used instead of

the true F(UNV),., Define the transform relationship

f(u.v) = F-1i(( ,V)} <=> F(U.V) = F(•,.) (4.9)

Now. expaniding F(U',V) in a 2-D Taylor series
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U.

V/ -- 0.0

Figure 4 .7a, Nearest Neighbor Position Error in U Direction.

Figure 4.7b. Nearest Neighbor Position Error in V Direction.
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(C.,) = l(U.V) + OF(U.V) (U - U) (4.10)

+ MF(UM) (V-V)Ov

+ higher order terms.

But

Eu(U.V) = (U - U) = F2_Deu(uv)} (4.11a)

EV(U.V) = (" - V) = F2_Dle,(u.v)l t4.1 lb)

is the transform of the positional errors for each coordinate which depends on (uv). The par-

tial derivatives of F are

- , jv, F(U.V) (4.12b)

8v

Thus. (4.10) becomes

F(U.V) = = F(U.V) + ju4, F(U.V) EJ(U.V) (4.13)

+ jv. F(U.V) EV(U.V)

where the higher order terms have been dropped. The spatial domain equivalent is

f(u.v) - f(u.v) + juo f(uv) ** eu(u.v) (4.14)

+ jVvo f(u.v) ** e,(u.v)

Equation (4.14) shows that the point target position and 2-D error surface are related to the

image reconstruction though a 2-D convolu,.ion. and that the error surface is proportional to the

position of the point target ul, and vil.

Now as a special case. suppose L•u(U.V) and I'E(U'.V) are 2-D periodic with fundamental fre-

quencies (nu. 1u) and (,.u v). Then.',
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Eu(UV) = aiak ej(2oU + ka'V) (4.15a)
i k

EV(U.V) = . bk eJ('0ut + kpvV) (4.15b)i k

and

f(uv) • f(uv) + ju,, l alk f(u + iau.v + kv) (4.16)
i k

+ jvo • bik f(u+iOu,V+kav-)
i k

Equation (4.16) represents the special case when the error surfaces in Fourier space are

periodic. If the sampling frequencies in the input sampling array are approximately constant.

as in the case where only sub-patches are used in the reconstruction. then the interpolation will

be from a near-rectangular grid to an exact rectangular grid, which is perhaps rotated., The

error surfaces in this case are periodic triangle waveforms with iin orientation that determines

a and A3 (Figs. 4.7a and 4.7b). By knowing the relative geometric orientations of the grids, the

resultant smear pattern may be predicted..

Equation (4.16) also shows that the smear magnitude is proportional to the displacement

of the point target from the origin. Points farther away from the patch center will cause

greater smear. This is similai to the effect caused by the quadratic phase term in the SAR phase

equations (Chapter 2).

The error surface directional vectors defined as 5 = (a.A.) and • - (1u.13) describe the

smearing direction and depend on the error surface orientation. The input polar grid displays a

spatially varying period and orientation which is slowly modulated with respect to the rec-

tangular grid. Although these error surfaces may not exhibit 2-D periodic behavior in the gen-

eral case. for the near rectangular SARZ geometry, and rectangular to rotated-rectangular grid

geometries, they are approximately periodic.
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4.4 Alternative Samapling/PRF Strategies

SThe previous sections have dealt primarily with the standard polar input raster,

Modifications to the sampling and/or radar pulsing mechanism allows other sampling rasters to

be used with greater efficiency and reduction of error. This concept was presented in a tomo-

graphic setting by Mersereau and Oppenheim [71] through the use of concentric square sam-

piing. The resulting image reconstruction is significantly improved because interpolation is

only done in one direction. Simplifying the interpolation geometry to one-dimension also

reduces the computation of the interpolation stage. both in locating the grid points and per-

forming the filtering/sample rate changes. Of course, this type of sampling strategy requires a

much more sophisticated sampler. In SAR. alternate grids may be designed to take advantage

of a smart sampling device.as well us a programmable pulse repetition frequency (PRF) genera-

tor. The keystone grid is rather well-known, but more as an intermediate interpolation grid

rather than an input raster. Another. is a polar-like grid with equi-PRF spacing. The range

samples are uniformly sampled for each return signal. and the pulses are transmitted at a uni-

form rate (the PRF is constant) as the radar moves past the terrain at a constant velocity. This

results in a range lines which are unequally space in O, Hlowever. the intermediate (keystone)

grid produced by the separable algorithms will have equally spaced samples in the azimuthal

direction.

4.5 Keystone with Smart PRIF

If the incoming signal is sampled on the keystone grid shown in Fig. 3.6. then the complex

two-dimensional interpolation reduces to one-dimension. This greatly reduces interpolation

error and computation time as shown by the computer simulations of Chapter 5. It also allows

for a novel interpolation-Fourier transform operation in one step - the Chirp Z-transform.
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4.5.1 The chirp z-transform algorithm

An N-point D)11' of a sequence can be thought of as sampling the z-transform of a

sequence uniformly around the unit-circle in the z-plane. The chirp z-transform is widely

known as a generalized DFT algorithm that computes M samples of the z-transform along an

arbitrary spiral contour in the z-plane. Once more. N and M need not be the same as in the

DFr. nor do they have to be highly composite for implementation with an FFT. The chirp z-

transform is based on using the FFT to perform fast convolutions of the input sequence with a

chirp. or frequency ramped, signal. The algorithm is explained in its entirety by Rabiner et al.

in [72] of which a distilled version is found in [73]. It is used in pole enhancement. narrow-

band frequency analysis. bandlimited interpolation, and arbitrary radix DIFT computations.

Although the most general form of the chirp z-transform allows for computation on an arbi-

trary spiral contour in the z plane. this application uses it to sim'ly perform an M point DFT

with an N point sequence, M and N being different. This means that the contour reduces to the

unit circle in the z-plane with the output sequence beginning at a non-zero phase angle.

The M point chirp z-transform of the N point sequence x(r) is given by

I N-1

X(m) 1 : x(n) AVW"m  (4.17)

where A = Aoe j'0. specifies the output start angle and radius. and W = Woe1 /1 specifies the

contour curvature, and output sample spacings as shown in Fig. 4.8., In the SAR case. the out-

put contour is still on the unit circle, although it may be located at the arbitrary angle 2irOo

and extend to 2r(M-I)Oo where •O is the output sampling angle ( :ig. 4.9).

Through some algebraic manipulotion. (4.17) can be reduced to a 3-step process of

(1) Ramping (multiplying by a frequency swept sequence) the N point input sequence by

A-" W02/2.

(2) Convolving this result with W- 202.,
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Figure 4.8 The Contour Represented by A and W in the Z-plane.

F g r 41-T 
C o y

Figure 4.9 The Chirp-Z Transform Contour Lying On The Unit Circle.
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(3) Deramping the convolved sequence with W 212./2

This is illustrated in Fig. 4.10.

The normal convolution can be done with an FFT' if the sequences are properly padded j
with zeros to avoid wrap around (circular convolution). Unfortunately, the zero padding

increases the PFT size to N' which is the first power of two greater than N + M. This can lead j
to much higher computation time for small N. and make the chirp-z algorithm complexity

disproportionately high compared to the other interpolation algorithms. It must be remem-

bered. however, that the chirp-z approach folds the Fourier domain inversion step into the

interpolation stage so that comparisons must be made with the 2-D IFFT step added to the com-

plexity measure. This becomes less of a problem as N is increased, since the FFT time is order

Nlog2N.

h(n)

A-3h~on) il~n

h(n) = W-0•2 i

"I

t'igure 4.10 The Chirp 7-transform as a Pre- and Post-Multiplied Convolution.

i,
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In the SAR geometry, the Keystone sampling and smart PRF place data points on straight

azimuth lines with sample points equi-spaced on any particular azimuth line (though the spac-

ing changes from azimuth line to azimuth line). The chirp-z algorithm is applied to each key-

stone azimuth line placing the output points on the rectangular grid., A standard FFT is per-

formed in the orthogonal direction, Hlere., A = exp(j0O) and W = exp(-jO,,). where 0O, is the

angle of the first spectral sample and 0, defines the output sample spacing.

The number of input points N for the chirp-z algorithm is arbitrary. and the number of

output points NI is equal to the rectangular raster size - 1024 for the total image. 64 for the

computer simulations. Fach azimuthal input line is windowed (Hamming) prior to the chirp

z-transform. Note that as the azimuth line index increases with range, the input sample spacing

increases and the window size will increase. This is a modification of the warped windows dis-

cussed by Staeling and O'1rien. The range line window is applied prior to the secondary FFT

stage.

The input data set lies on a trapezoidal raster and the output of each chirp z-transform

must be correctly phased between azimuth lines. This catn be done by multiplying each output

point by a linear phase term that changes from azimuth 1-ne to azimuth line

expljv (u tanO)}

Because the chirp z-transform is a forward transform (which is followed by a forward

FFT) and the data set is already in the Fourier domain. the resulting image must be time

reversed. i.e.. rotated 180 *. to correct the effeti of a double forward transform since

FT IFM f(x.y)I 1= f(-x.-y)

4.6 Polar Format with Equi-PRF

A slight modification to the PRY will place the samples on an equi-PRF grid which appears

like a polar grid, but with angular increments that are not constant (Fig. 4.11). This has the
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advantage that the separable algorithms in Chapter 3 which generate an intermediate keystone

grid will have equi-spaced sample points along the azimuth lines (just as the smart-PRF key-

stone grid in the previous section). This simplifies the interpolation step in the second stage of

the separable algorithms (weighted sinc. spline) and thus reduces computation. I

Figure 4.11 Equi-PRF Polar Grid.

I

I
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CHAPTER 5

EXPERIMENTAL EVALUATIONS

The previous chapters presented the theory of interpolation for signal reconstruction in

both spatial and frequency dtomains. This chapter applies this developed theory to the original

problem of image reconstruction in synthetic aperture radar.

The following sections describe the approach taken for the computer experiments, the

simplification to the SAR model used, and the results of the various interpolators. A novel

measure of image reconstruction is also presented here. Becau.e the number of parameters is

large (Fourier section of interest, point ta.get location, data record window, interpolator type.

and interpolator order) only a subset of imagz rlot i.* Jiven. A more complete set of interpola

tor performance results are given in tabular form (Tables C.A to C.12) in Appendix C.

5.1 Interpolation Model

In the evaluations, we assume a look angle. G.,.x of 3'. This is the angle over which all of

the data are collected. The rectangular array to be interpolated onto is inscribed within the two

arcs Rmtl and Rn.x, which are proportional to the chirp bandwidth defined in Chapter 2. The

input polar sample array is assumed to have a sive of 1024 by 1024 points with 1024 equally

spaced samples along each range line Rm.. to R., and 1024 samples along arcs from -0,,ax/2 to

+OMBX/2.

A program to generate SAR data from the equations of Chapter 2 was written, allowing

each of the many geometric and system parameters to be adjusted. While (2.26). represented

an exact point target response. the smearing caused by the quadratic phase term obscured the

effects of the interpolator, and thus were abandoned for a newer, simpler model' the Fourier

transform of a spatially offset impulse function. A single. ;deal point target was placed at

(x4i.y) and the corresponding Fourier transform. e-t X°+ v.yo was sampled on the uniform

polar grid. Allowable target positions which did not produce aliasing ranged from -32 to +31



98

in the spatial domain. We used (-23.24) as the point target position in the evaluatidns

presented here. This stressed the interpolator by including high-frequency components while

allowing the filter response to have a finite-width transition band. High frequenciex stress the

interpolator because a higher degree of variation is more difficult to reproduce with simple ker-

nels.

Because our computer resources did not permit processing such a large array, we chose to

examine interpolator effects on various 64 x 64 subarrays of the full 1024 by 1024 grid. EFch

64 x 64 subarray is numbered from I to 16 along the U-axis. and from 1 to 8 along the V-axis. j
For example. subarrays (2.8) and (16.1) are shown in Fig. 5.1. Symmetry about the U-axis

eliminates the need to study the interpolator for v < 0. The subarrays (2.), (10,5). (16.1) and

(16,8) were studied. since they represented various sections of the full array thac would have

unique properties. i.e., rotation. maximal sample rate change. average performance. etc. The

input data region cGf each subarray was extended in both range and azimuth by 15 sample

points in each direction (making the available data 94 by 94 samples) so that the higher order

interpolators did not "fall off the edge of the input. Since the original 1024 by 1024 grid had

only a very small set of points where this occurs. this data extension was justifiable for the

subarrays.

5.2 A Novel Figure-of-Merit

Evaluation of the interpolators is a difficult task. especially since radar data interpretation

tends to be subjective. The figure of merit that we have used is called the Multiplicative Noise

Ratio (MNR). which is very similar to the more commonly kaown "'imegrated sidelobe ratio-

frequently used for one-dimensional radar evaluation [1]. Because the rectangular grid is j
weighted with a serarable Hamming window, an ideal point target is spread 3 samples in each

dimension U and V. In the following experiments, the mainlobe of the response is defined as

the 5 x 5 square centered on the peak response., The NINR for the reconstruction is then defined
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N x N subarray 
(28)

.4.

N x N subarray (16,1)
Figure 5.1 Geometry of Fourier Domain Subwray Locations.

EXACT RECONSTRUCTION

X

MNR ,,IN 08) -48.1311h

AIPNOOW: HAMMING
FCORIER PIECE (2.81 RECTANGULAR OATA FORMRT

Figure 5.2 Exact Reconstruction for a Target at (-23.24).

1~t



100 .1'
as MNR 0lg (magnitude of the points outside mainlobe)-

MNR = 10.1og T(magnitude of the points inside mainlobe) 2

Figure 5.2 shows a perfectly reconstructed ideal point target at (-23.0.24.0) with a calculated

MNR of -48.13 dB. It was produced by generating target data directly on a rectangular grid

and bypassing the interpolating stage during reconstruction. The floor for all point target

response plots has been set to -60 dB relative to the peak value. Note, in Fig. 5.2. the effect of

the Hamming window on the ideal response., The point target has widened and the rest of the

samples fall on the nulls of the sinc (the response for a point target on a limited record). If the

target is moved to a position halfway between sample coordinates, the sinc response is then

sampled on the peaks of the sidelobes. resulting in a badly distorted response and an MNR of

-28.5 (Fig. 5.3). This demonstrates that the MNR calculations are valid only for targets which

are positioned directly on the sample points. If the interpolator caused the target to move only

slightly, the sidelobes become visible and the MNR increases misleadingly. It is interesting to

note that the MNR can produce values which apparently differ from a subjective view. Some-

times. one reconstruction will Look better than another, but the MNR value is worse (more posi-

.ive). This is usually the result of a very wide target response in which the samples directly

outside the true 5 by 5 mainlobe are summed in the denominator, causing an increase (more

positive) in the MNR. The results are thus obtained as follows:

(1) Generate a sampled polar array by sampling the Fourier Transform of the ideal target.

(2) Interpolate to the rectangular grid of interest (1.1) to (16.8).

(3) Window the resulting 64 x 64 rectangular data subarray with a separable Hamming win-

dow.

(4) Calculate the IFFT.
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POINT TARGET HT (-22.5,23.5)

MNR tIN 081 : -28.58

EXACiT RESPONSE

WINDOW: HAMMING ISEPARAOLEI
FOURIER PIECE: 2.8

I Figure 5.3 Exact Reconstruction for a Target at (-22.5.23.5).

i• POLAR: NEAIREST NEIGHEOR
l

I

w l,40OW w"INGG

WIR uIN 08) : -42.12410

INTERPOLATOR: NEAREST NEIGOJ4OR
FOURIER: I 1. t1 TARGET: -2?..G. 24.00 MAGITUCE: 1.4

Figure 5.4 Nearest Neighbor Interpolator at (I .1).
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(5) Calculate the MNR of the spatial domain image.

(6) Display the loglo of the squared magnitude of the reconstruction (the power) with a floor

of -60 dB.

The program evaluate calculates the image MNR and locates the largest (magnitude)

twenty points on the grid to determine the positions of the spurious peaks and false targets.

The dB levels af these points relative to the detected peak are also calculated.

53 Algorithm Complexity

This work focused on improving the SAR reconstruction 4uality. while reducing the

interpolation processing time. i.e.. reducing the computational resources required to perform the

algorithm. The required resources are specified by what we have termed "complexity" - a

measure of how complex (in terms of mathematical operatations) the algorithm is to perform.

Algorithm complexity is a difficult issue. because the algorithms presented do not offer an order

of magnitude increase in processing speed. but typically improve speed by a factor in the range

of 2 to 10. Also. the results are dependent on the order of the interpolator.

Crochiere and Rabiner[35] use the notion of Multiply-ADditionS or MADS/sec when

optimizing the decimation/interpolation stages for a sample rate converter. This was used

because the final design was a simple time-invariant FIR filter with real coefficients which has

only multiplies and adds. Neither complex arithmetic or divisions are required. nor transcen-

dental function evaluation (sine. square root. etc.). They also make the assumption that an add

takes the same amount of time as a multiplication. This may not be totally unfounded. as in

the case when all arithmetic (necessarily integer) is done with a look-up table and requires only

one clock cycle. Real multiplies, however, typically require more time than real adds. and real

divide operation is more expensive than a real multiply (although no divides are performed in

the simple 1D FIR filters).

I
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Here, the algorithm complexity is calculated by computing the number of operations of a

given type that occur in the interpolation software. Though this measure would seem to be

based on the particular programming practice, it takes into account many of the operations nor-

mally ignored by "order of complexity analyses," such as calculation of the coordinate spatial

position and the evaluation of trigonometric functions. The complexity was determined by

diagramming program loops and generic operations and identifying function calls. Tri-

gonometric and transcendental function calls were given their own unit of cost measure so that

the complexity would not be skewed by a particular implementation. such as look-up table.

power series expansion, or a table-interpolation scheme. Thus. the cost to evaluate the sin

function is represented as Ctrii. the cost to compute a square root is Czqrt. the cost to compute a

complex exponential is C,,,. and the cost to generate a sinc value is CS1A. The cost of a real add

or subtract is C.1, and the cost of a real multiply or divide is Ca.. Although it may seem that

this is a crude estimate of algorithm complexity. it has been found through our experience to be

reasonable. The complexity calculation was based on the inteipolator alone, and did not

include the windowing, file reading/writing, or post processing times (array permuting. magni-

tude detection. etc.). The FFFT stage has been included in the complexity analyses because the

chirp-z algorithm performs both interpolation and FFT as one. inseparable operation.

The computation time for the interpolation set was measured for each algorithm with

varying orders and different input grids. Because the VAX CPU timing facility is sys!em load

dependent (the measured cpu time is a function of the load of the system), an average run ti.-e

value was computed over all of the runs for a particular grid and interpolator. This value is

used to plot the algorithm times and to compute another performance measure - the

I.MNRI/CPU ratio. This ratio is useful to describe the quality/cost of an interpolator. Higher

ratios indicate i better reconstruction for the amount of computation used. It is only useful to

compare interpolators within a given subarray. since the MNR ratios vary dramatically

between subarrays with similar order interpolators.
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_1
5.4 Polar Grid .1

The polar grid input array represented the most well known data geometry. The Fourier

piece (1.1) is the subarray which is closest to the output grid in both sample spacing and orien-

tation. This leads one to believe that the nearest neighbor interpolator should perform quite

well here. In fact. it does very well, as shown in Fig. 5.4 with an MNR of -42.12. This is only 6

dB away from the ideal response. J
In subarray patch (2.8). the nearest neighbor does not perform nearly as well (Fig. 5.5).

With an MNR of -5.64. the reconstruction is extremely noisy and contains many streaky

artifacts. It is interesting to note that the nearest neighbor prod-,ces a streak pattern which is

similar to the artifacts described by Stark [22] in his nearest neighbor analysis. It can also be

explained in terms of the nearest neighbor analysis presented in Chapter 4. The rotated grid in

(2.8) generates an almost periodic positional error surface which has an orientation related to

TABLE 5.1 Evaluation Results for Fourier Piece (2.8) on Polar Grid.

Target Interp. Parameter MNR (db) CPU time I MNR/CPU I
Position ... .. (seconds)

-23.24 NN -5.64 3.28 1.72
-23.24 G-ID (0.1) -14.56 19.82 0.73
-23.24 6-lI) (0.2) -18.41 5.75 3.20
-23.24 G-ID (0.3) -17.0() 22.57 0.75
-23.24 wsinc 2 -18.92 17.7 1.07
-23.24 wsinc 4 -24.50 28.4 0.86
-23.24 wsinc 6 -30.37 41.3 0.74
-23.24 wsinc 8 -36.53 53.0 0.69
-23.24 wsinc 10 -42.65 61.7 0.69
-23.24 wsinc 12 -46.88 70.6 0.66
-23.24 wsinc 14 -48.06 81.7 0.47
-23.24 wsinc ib -48.24 94.7 0.51
-23.24 B-spline -0.25 -23.01 17.22 1.34
-23.24 B-spline -0.50 -25.17 17.22 1.46
-23.24 B-spline -0.75 -27.62 17.22 1.60
-23.24 B-spline -1.00 -30.46 17.22 1.77
-23.24 Spline (IMSL) -32.41 27.7 1.17
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POLAR: NEAREST NEIGHBOR

1
WINOOW: HMAMIING I

I MNR (IN 08, -5.64368
FOURIERi ( 2. 81 TARGET: -23.H. 24.W MAGITUOE: 1.0

Il Figure 5.5 Nearest Neighbor Interpolator at (2.8).

POLAR: NEAREST NEIGHBOR

[
II 

.

I

W WI PON: 11AMMI W,,~

MWNR (N O8. . -5.31101

INTERPOLATOR: NEAREST EIGH8CR

FOURIER: tl@. 51 TARGET: -23.00. 24.W9 ,AGITUOE: !.3

Figure 5.6 Nearest Neighbor Interpolutor at (10.5).
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the relative input/output grid angles. The same type of smearing is present when the target is

moved to (15-i5) (Fig. 5.7). The MNR is a little better at -10.63. because the Fourier data is

more slowly varying, but the reconstruction noise obscures the image. Finally, in the (16.1)

subarray. the nearest neighbor interpolator generates many spurious targets due to the change

in sample rate (Fig. 5.8). The azimuthat rate change al this position in space is approximately

1.05, and the Munson-O'Brien equations [16] predict spurious targets along the axis of rate

change (the predicted position is 27.2, the measured position is 27) with magnitudes propor-

tional to the interpolator frequency response beyond the cutoff frequency. Since the nearest

neighbor interpolator transform is a sinc, the sidelobes are very high, and thus. produce the

great numbers of high spurious targets. It is difficult to measure the angular orientation of

these error surfaces (they are not at the polar grid angle) but the angled smearing is quite clear

(Fig. 5.5). The same type of smearing is present in the nearest neighbor reconstruction of

subarray (10.5); however, it is in a different direction (Fig. 5.6).

Figure 5.7 also shows that the use of the FFT as an approximation to the Fourier

transform has produced a reconstruction which is apparently one period of a 2D periodic signal.

The other reconstructions reflect the same conclusion. This is. of course, expected, since the

finite record sampling operation implicitly creates a periodic signal.

The inverse distance (ID) interpolator performed better than tht nearest neighbor (NN) in

all subarrays, based on the MNR values. In (2.8) (Fig. 5.9). there is a marked decline in the

MNR: -14.56 dB (ID) compared to -5.64 dB (NN). Compare this with the inverse distance

squared (ID2) reconstruction of Fig. 5.10. The MNR of -18.42 suggests that the ID2 Is slightly

better than ID, and furthermore, the interpolation time is 3.45 times faster. This is a significant

improvement overall as seen by the IMNRI/CPU ratio in Table 5.1.

If the generalized inverse distance interpolator is used by including the next 16 nearest

data points, both ID and IDW reconstructions are poorer (Figs. 5.11 and 5.12. and Tbl. 5.1).

Increasing the order of the inverse distance interpolator beyond 2 did not seem to improve the
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POLRR: NERREST NEIGHBOR

WINDOW: HAMMING
MNR (IN DO) : -10.62914

NERREST NEIGHBOR

FOURIER: I 2. 8) TARGET: 1.00,-15.00 MAGITUDE: 1.0

Figure 5.7 Nearest Neighbor Interpolator at (2.8), target at(1,-15).

POLRR: NEAREST NEIGHBOR

W!NOOW* HAMMING
MNR (IN 08) : -I.97431

INTERPOLATOR: NEPREST NEIGHBOR
FOURIER: (IS. Il TARGET: -23.20. 24.00 MAGI T UOE: 1.0

Figure 5.8 Nearest Ne-ghbor Interpolator at (16.1).
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response (see Table 5.1). This is verified by comparing the respective MNRs.

The ID and ID2 interpolators performed only 3 dB better than NN in the (16.1) subarray

(Figs. 5.13 and 5.14). Subjectively, the NN reconstruction at (16.1) (see Fig. 5.8) is extremely

poor compared to I1) and ID2 , and yet the MNR differ by only a few dB. Part of the reason for

this lies in the fact the images are plotted with log scales where the floor is at -60 dB. This is

only one-thousandth the height of the peak and so contributes negligibly to the image MNR.

However, the eye views image intensity logarithmically. so the plot was scaled as such. despite

the misleading MNR valut:..

The spurious targets ate also present in the ID and 11)2 images. and there is little that can

be done with these low-order aigorithms to reduce their height. With this in mind, we turn to

TABLE 5.2 Evaluation Results for Fourier Piece (16.1) on Polar Grid.

Target Interp. Parameler MNR (db) CPU time I MNR/CPU I
Position (seconds)
-23,24 NN -1.97 3.28 0.60
-23,24 G-Il) (0,17 -4.41 19.82 0.22
-23.24 6;-I) (0,2) -4.45 5.75 0.77
-23.24 (;-]1) (0.3) -4330 22.57 1 0.19
-23.24 wsinc 2 -4.13 17.7 0.23
-23,24 wsinc 4 -7.45 28.4 0.2b
-23.24 wsinc 6 -10.62 41.3 0.26
-23.24 wsinc 8 -13.76 53.0 0.26
-23.24 wsinc 10 -17.01 61.7 0.28
-23.24 wsinc 12 -20.53 70.6 0.29
-23.24 wsinc 14 -24.48 82.7 0.30
-23.24 wsinc 16 -29.10 94.7 0.31
-23.24 wsinc 18 -34.66 102.5 0.34
-23,24 wsinc 20 -41.35 112.0 0.37
-23.24 wsinc 22 -47.10 126.0 0.37
-23.24 wsinc 24 -47.91 134.0 0.36
-23.24 ll-,pline -0.25 -7.67 17.22 0.45
-23.24 B-spline -0.50 -9.29 17.22 0.54
-23.24 B-spline -0.75 -11.06 17.22 0.64
-23,24 B-spline -1.0) -13.07 17.22 0.76

-23.24 Spline (IMSL) _ -15.35 27.7 0.55

I
I
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II POLAR: INVERSE (0,1)

WINOOWU HAMfIING I
MNR (IN 081 s -14.56597

OOURIERt ( 2. 8) TARGET: -23.23. 24.09 MAGITUOE: 1.8

Figure 5.9 Inverse Distance Interpolator at (2.8),

POLAR: INVERSE (0.21

WINDOW": HAMWING I

MNR [IN 081 : -i8.41627

FOURIER: I 2. 8) TARGET: -23.M8. 24. 0 MAGITUOE: 1.0

Figure 5.10 Inverse Distance Squared Interpolator at (2.8).
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POLAR: INVERSE (1.1

WINOOW1 HAMMING I

MNR IIN 081 • -10.33151
FOURIER: 2. 81 TARGETs -23.U. 24.00 MAGITUOE: 1.0

Figure 5.11 Generalized Inverse Distance Interpolator at (2.8).

POLPR: INVERSE (L.]

Ii

WINDOW: IHAM4MING 1

MNR (IN 08) : -16.97963

FOURIER: 1. 9) TARGET: -23.00. 24.00 MAGITU0E: 1.0

Figure 5.12 Generalized Inverse Distance Squared Interpolator at (2.8).
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POLAR: INVERSE (0,I1

WINDOWi MAMMING

MNR (IN 05) : -4.4103Z
INTERP: INVERSE OISTANCE SIZE, 0 ORDER: I.3

FOURIER: (1S. I) TRRGET:,-23.00. 24.00 MGITUOE: 1.0

Figure 5.13 Inverse Distance Interpolator at (16,1).

POLAR: INVERSE (0.42

WINOOW: HAMMING

MNR (IN 05) ; -4.55232
INTERP: !NVER5E OISTANCE SIZE: 0 ORDER: 2.0FOURIER: 116. 1) TRRGET: -21.00. 24.00 MRITUDE: 1.0

Figure 5.14 Inverse Distance Squared Interpolator at (16.1).
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the more sophisticated weighted sinc interpolators.

It was shown in Chapter 3 that the sine kernel would exactly restore a bandlimited signal

which was properly (Nyquist rate, infinite length) sampled. The weighted sinc is the spatially

limited approximation and the image reconstructions presented here demonstrate that even a

very narrow part of the sinc performs remarkably well. Figures 5.15 and 5.16 show the results

of interpolating with a windowed sinc of orders 2 and 6 in the (2.8) subarray.. Even for a win-

dow of only 2 samples wide, the w-sinc produces an MNR of -18.9 dB which is much better ]
than the ID interpolator. The CPU time is even lower for the w-sinc because it is implemented

separably., If the window is widened to 6 samples. the reconstruction improves, and the MNR

drops to -30.4 dB. The w-sinc size can be increased further to 10 and 14 to improve the MNR

still more (Figs. 5.17 and 5.18). but soon a point is reached where the MNR fails to drop (see

Table 5.2), The reconstruction is approaching the exact point target of Fig. 5.2. and so added

terms to the w-sinc interpolator simply increase the algorithm cost without a noticeable perfor-

mance improvement.

If the w-sinc interpolator is used in the (16.1) Fourier subarray. the order can be adjusted

to reduce the spurious peak to an acceptable level. In Fig. 5.19. the w-sinc interpolator of order

6 produces an image with a secondary peak at -10.2 dB below the peak. If the order is

increased to 16 (Fig. 5.20). the peak drops to -28.6. Of course, the processing time rises propor-

tionately from 41.3 seconds to 94.7 seconds. the ratio of which, 0.44. is roughly 6/16 (0.38).

i.e.. the algorithm processing time is approximately linear with interpolator order. If the order

is increased to 20. the secondary peak disappears from the image (it is below 60 dB).

The processing time of the NN and GID interpolators is relatively small compared to the

w-sinc of any order greater than 2. The strength of NN and GI) lies in speed, though, rather

than high quality image reconstruction., The processing times for each of the various interpola-

tors are plotted against interpolator order in Fig. 5.21., The NN algorithm is referred to as

zeroth order, and the GID order refers to the power of the inverse distance., i.e., 11) is first order

I
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POLAR: WEIGHI-TEO SINC: 2

MNR tIN 01-)
INTERP: EPRM R-SIZE- 2.0 M.SIZ~t Z.0

FOURIERs i Z. 8) TARGET: -Z3.•0. 24.0• MAGITUDEt 1.0

Figure 5.15 W-Sinc Interpolator of order 2 at (2,8).

POLAR: WEIGHTED SINC: 6

WiNDOW: HQMMI NG
MNR 'IN o1e --0.37277
:NTER•P: ERIM R-SHIZ: 6.00 P-SIZE. 6.00
FOUP!ER: ( 2. 8) rARGET: -23.30. 2q2•0 MAG;IUDE: 1.3
Figure 5.16 W-Sinc Interpolator of order 6 at (2.8)..



114

II
POLRR: WEIGHTED SINC: 10

WtNR 3iN -4 :2.641

INTERP: ERIM R-5IZE1Io.01 ;-SIZE, I.n
FOURIER: 2 $1 tARGETt -23.Ne. 2i.8g -MRGITUDE:

Figure 5.17 W-Sinc Interpolator of order 10 at (2.8).

POL.R: WEIGHTED SINC: 14•

INR [IN 08] - 48.35884
114TERP: ER!M R-SIZE14.00 4-SIZI4..
,ý'uRIER,- 1 2. 8) TARGET: -Z3.00. Mq.O MPGITUOE: !.3

Figure 5.18 W-Sinc Interpolator of order 14 at (2.8).



115

POLAR: NEIGHTEO SINC: 6

WINCOWs HAMI•ING

MNR tIN 08) : -10.61719
INTERP: ERIM R-SIZE: 6.80 A-SIZE: 6.86
FOURIER: 116. II TARGET: -23.8N. 24.0 MIRGITUDE: 1.9

Figure 5.19 W-Sinc Interpolator of order 6 at (16.1).

POLAR: WEIGHTED SINC: 16

WINOOW0 " IR ING

MNR !N 06) : -29.39685
!P4TERP.: ERIm R-SIZE:t6.30 R-SIZE:I6.n
FOURIER: (!6. 1) TARGET: -23.'M. 24.00 MPGITULE: !.a

Figure 5.20 W-Sinc Interpolator of order 16 at (16.1).
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and lDY is second order.,

The IMNRI/CPU ratio is plotted in Fig. 5.22 for the w-sinc interpolator as applied to

several of the subarrays. Several observations can be made by studying this family of curves.

First., the w-sinc curves all converge to the value 0.36 dl3/s. We would expect convergence to

this ratio since each w-sinc can become arbitrarily close to the exact response MNR. and the

processing time of w-sinc is independent of the subarray. Notice that the ordering of the

curves from top to bottom corresponds to the increasing value of the range subscript of the

subarray coordinate pair. This indicates that the more distant subarrays require higher order

w-sinc interpolators to achieve the same MNR values. This is due to lhe increasing sample

spacing which generates the spurious targets. These targets can only be removed by increasing

interpolator order at the ,xpense ol processing time.

The IMNRI/CPU value can be thought of as a benefit/cost ratio. A higher ratio indicates a

better reconstruction for CPU resources used. The slope indicates the amount of improved

MNR for the amount of additiw•id CPU time used. Since CPU time is proportional to interpola-

tor order, a more negative slope corresponds to a decrease in the amount of MNR improvement.

Ultimately. this means that the size of the interpolator can be varied as it is moved out in the

radial direction to achieve the same MNR for each subarray., This concept is discussed in

"Chapter 6 under Further Research.

The last algorithm shown here for the polar grid is the cubic spline and B-spline interpola-

tors described in the last section of Chapter 3. The first ,ersion of the splines. the complete

cubic spline. is implemented much like the w-sinc algorithm. The data are first interpolated to a

keystone grid by calk.ulating the spline coefficients for each interval and then evaluating the

corresponding cubic polynomial at the interriediate (keystone) points., The bulk of the process-

ing is consumed in calculating the coefficients via the matrix solution step. Evaluation of the

cubic polynomial is relatively fast compared to the calculation of the polynomial coefficients.

Next. a cubic spline is generated in the azimuth direction and evaluated along the rectangular
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CPU TIME VS INTERPOLATOROROER

. .//

h7

1. /

. /

NW

|| * * p , p * .* i* i p * p , *

S 4 6 1 i s of 14 is Is 6 I a
INTERPOLATOR ORDER

Figure 5.21 CPU Time Versus Interpolator Order at (2.8).
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F'igure 5.22 IMNRI/CPU ratio for W-sinc in Different Subarrays.
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grid coordinates. As shown in Table 5.1 for the subpatch (2.8), the MNR ii roughly that of a

windowed sinc of an order between 6 and 8 (the interpolator order need not be even, nor must

it be an integer), yet processing time is close to the w-sinc of order 4. The cubic spline recon-

struction is shown in Fig. 5.23., The I.MNRI/CPU ratio is much higher for the cubic spline than

it is for the w-sinc, since it performs so much better for the equivalent processing cost.

The modified B-splines also do quite well compared to the w-sinc interpolator. They were

implemented the same way as the w-sinc. i.e.. with the intermediate keystone grid. Four

different values of the parameter in FEq. (3.52) are used, -0.25. -0.50. -0.75. and -1.0X). with

-1.0 providing the best reconstruction, The MNR of -30.46 is only 3 dB worse than the com-

plete cubic spline. and the processing time is much lower (driving the 1MNWR/CPU ratio up). It

is shown in Fig. 5.24.,

Chapter 4 described several windows which may be applicable for SAR data. The effects

of different windows may be seen by examining the image reconstructions from a typical inter-

polator' for example. a 10th order w-sinc. If a uniform window is applied. i.e.. no weighting

function. then the reconstruction is a very narrow spike surrounded by some low sidelobes

(Fig. 5.25a). This is a result of proper target placement so that the output sinc is sampled in

the nulls. The sidelobes are a result of interpolator error. If the Fourier data is windowed with

a disk shaped 1-0 weighting function. then the NINR is dramatically worsened to -4.87 dB and

the image looks very much like an NN interpolation (Fig. 5.25b).

The separable Hamming window, the standard used in the evaluations, has an image

reconstruction of the same data shown in Fig. 5.26a. The MNR is a very low -42.65 dB. The

output of a circular Hlamming window is much noisier in appearance (Fig. 26b) and has an

NINR of -28.12 d1i. It is apparent that the discontinuity at the Hlamming edge is causing some

problems. There is an additional, more subtle effect occurring as a result of using tfle circular

Hamming window. The zeros of the circular Hamming Fourier transform do not fall on the

Cartesian grid sample points. Thus. even an exact target reconstruction will display sidelobes

S ! llIll I I I~llMllIH IEM
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POLAR: SEPARABLE SPLINE

MNR ••N 081 : -33.3,1567

SEPRP•.LE 5PLINE IIMSLI
FOURIER: 1 2. 8j TARGET: .23.00. ZI.20 MRGITUOE: 1.A

Figure 5.23 Complete Cubic Spline Interpolator at (2.8).

POLPR: 20 OSPLINE A= -1.0

W4INCOWz HMINMrG
"WNR [IN 081 : -30.46503

%CURIEP: 1 2. 8) TARGET: -23.0@. 2-.Yi MRGITUDE: !.0

Figure 5.24 B-Spline Interpolator with Parameter = -1.00.
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which could be misleading. This can be corrected slightly through the use of the Hanning win-

dow which goes to zero smootnly. The Hanning window causes faster sidelobe decay. while j
having a slightly higher first sidelobe than the Hamming. Figures 5.27a and 5.27b display the

results of the lBanning window, both separable and circular. Note that the separable Hanning -]

window comes very close to matching the separable Hamming window with an MNR of -40.59

dB.

5.5 Equi-PRF Grid ]1

I
The equi-PRF grid gained little in the way of performance, Figures 5.28 and 5.29 are

examples of thc nearest neighbor algorithm applied to the equi-PRF grid in the regions (2.8) and

(16,1) which may be compared to Figs. 5.5 and 5.8 for the standard polar format. (Tables C.5

to C.18 show processing time and MNR values for each of the equi-PRF algorithms.) The pro-

cessing time was slightly improved for the w-sinc algorithm because the azimuth pass (interpo-

lation on the intermediate keystone grid) calculations were simplified., With the standard polar

grid, the keystone samples were unevenly spaced in azimuth, resulting in excessive coordinate

positional information involving trigonometric functions. With equally spaced data, positional

information is calculated as a simple real multiply. For splines and 8-splines, the differences

were very slight, corresponding to the time taken to determine into which interval (between

which two knots) the output point falls prior to polynomial evaluation. With non-uniform

spacing in azimuth. a binary search is performed to determine the interval, but with equally

spaced data, the interval is again found with one real multiply.,

5.6 Keystone Grid

Since the keystone grid provides data along vertical lines, the interpolation procedure need

act only in one dimension. It is much like beginning with the second stage of the w-sinc out-

put. but from an exact first stage interpolation. Thus. a better reconstruction should be
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SEPARABLE RECTANGULAR WINDOW

INR -27.43

WINDOW: RECTRNGULRR 1

ERIM RSIZE: 10.0 RSIZE: 10.0
FOURIER: ( 2. 8) TARGET: -23.00. 2q.00 MAGITUDE: 1.0

Figure 5.25a Uniform Window After 10th Order W-Sinc Interpolator.

CIRCULAR 1-0 WINDOW

MNR -4,87
WINDOW: RECTANGULRR 2

ERIM RS]ZE: 10.0 AS'ZE: 10.0
FOURIER: ( 2. 8) TARGET: -23.00. 24.00 MAGITUOE: 1.0

Figure 5.25b Circularly Symmetric Uniform Window (a Disk).
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POLAR: WEIGHTED SINC: 10 .1

WINDOWi HAMMING
MNR IN 081 : -42.64761

INTERP: ERIM R-SIZE0 0.N R-SIZE; 18.N
FOURIER: I 2. 8) TARGEti -23.N. 24.00 MGITJUOE: 1.0

Figure 5.26a Interpolated Data With Separable Hamming Window.

CIRCULAR HAMMING WINDOW

,NR : -28.12
WINDOW HAMMING 2

ERIM RSIZE: 10.0 A5IZE: 10.0
FOURIER:'( 2. 8) TARGET: -23.00. 24.00 MAGITUDE: 1.0

Figure 5.26b Interpolated Data With Circular Hamming Window.
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SEPRRRBLE HRNNING WINDOW

j{

MNR -40.59

WINDOW: HANNING 1
ERIM RSIZE, 19.0 ASIZE: 10.9

FOURIER: ( 2. 8) TARGET: -23.00. 24.90 MRGITUOE: 1.0

Figure 5.27a Interpolated l)ata With Separable Ilanning Window.

CIRCULAR HRNNING WINDOW

,KR -o33.70

WINDOW: HANNING 2
ERIM RSIZE: 10.0 ASIZE: 10.0
FOURIER: ( 2. 8) TARGE1: -23.00. 24.00 MRGITUDE: 1.0

Figure 5.27b Interpolated Data With Circular Hanning Window.
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A
EOUIPRF: NEAREST NEIGHBOR I

I

WINDOW: HAMMING

MNR (IN 0DB ' -5.64513

NEAREST NEIGHBOR
FOURIER: 1 2. 81 TARGET: -23.08 24.00 MAGNITUDE: I.{

Figure 5.28 Equi-prf Grid with Nearest Neighbor Interpolator (2,8).

EQUIPRF: INVERSE f0.1)

fl'

*•itJOCW: HAMMING
'INR tIN OB :-6.20923
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Figure 5.29 Fqui-prf Grid with Inverse Distance Interpolator (16.1).
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observed (Figs. 5.30 through 5.41). The results substantiate this theory as seen in Tables C.9 to

C.12. [-very MNR value is noticeably better with the keystone data format than for the polar

or equi-PRI: format, It is interesting to note that the w-sinc interpolator MNR values for the

keystone grid converge much faster to a minimum than the polar format data., This is particu-

larly true for the (16.1) subarray where the spurious targets account for poor MNRs. Flimina-

tion of the range line interpolation step has removed the error introduced into the azimuthal

interpolation stage. In the polar data format. this error could only be minimized by increasing

interpolator order, and thus processing time, to obtain the same MNR as the keystone data for-

mat., The interpolators also run much faster because the spatial position calculations are

significantly reduced (only one dimensional calculations) and the two-stage algorithms now

only operate in one stage.

The keystone geometry permits the use of the chirp-z algorithm along the azimuth data

lines as described in Chapter 4. This combines both interpolator and FFT sections into one

stage., Since the available input array was 94 by 94 samples. the azimuth input vector size was

94 with an output vector size of 64 (in the spatial domain). The results of the chirp-z algo-

rithm are shown in Figs. 5.35 and 5.41 for subarrays (2,8) and (16.1). respectively. The MNR

j" values of -1.32 dB for (2.8) is surprisingly poor compared to the other keystone interpolators.

while its performance in the (16.1) region was similar to a w-sinc interpolator with order 12

S(in speed and MNR). The processing time is high because the FFT included in the algorithm

rmust be zero padded to perform a non-cyclic convolution. This padding increases the FFT size

from 64 to 256 (for 94 input points. 256 is the first power of two greater than 94+64),

Note in Fig. 5.41 that the spurious side lobes are significantly lower than the w-sinc order

16 for the same subarray. This is because the chirp-z algorithm interpolates/transforms in

such a manner that the spurious target analysis of Chapter 4 is not applicable. The high spuri-

ous target seen in Figs. 5.19 and 5.20 disappears in 5.41, because the sampling rate is not

changed in the Fourier domain, but rather, the transform is calculated directly from the input
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Figure 5.30 Keystone Grid with Nearest Neighbor Interpolator at (2.8).
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Figure 5.31 Keystone Grid with Linear Interpolator at (2.8).
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Figure 5.32 Keystone Grid with W-Sinc Order 4 at (2.8).
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FOURIER: 3 2, ae TqRGEGr: -23.00i 24.W 0 MOGNeTUrE: a. )Figure 5.33 Keystone Grid with W-Sinc Order 10 at (2.8).
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KEYSTONE: SPLINE (IMSL)
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Figure 5.34 Keystone Grid with Cubic Spline Interpolation at (2.8).
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Figure 5.35 Keystone Grid with Chirp-Z at (2.8).
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K•EYSTONE: NERREST NEIGHBOR

Figure 5.36 Keystone Grid with Nearest Neighbor at (16.1).

KEYSTCNE: LINEAP

Figure 5.37 Keystone Grid with Linear Interpolator at (16.1).
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KEYSTONE: WEIGHTED SINC: 2
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Figure 5.38 Keystone Grid with W-Sinc Order 2 at (16.1).
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Figure 5.39 Keystone Grid with W-Sinc Order 6 at (16.1).,

¶
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iiFigure 5.40 Keystone Grid with Cubic Spline Interpol at (16(1),
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Figure 5.41 Keystone Grid with Chirp-Z at (16,1),
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data. Theoretically, the chirp-z transform should behave as an ideal interpolator (for a limited

data record).,

5.7 Complexity Analysis

Using the methodology for complexity analysis discussed above, an expression for each of

the interpolators was calculated. This was done for the polar and keystone grids. Complexity

measures for the equi-prf grid are similar to the polar format, but are minus the trigonometry

terms which are required for the data position calculations in the second stage of the separable

interpolators. For each algorithm, a general expression is presented which contains a break-

down of the software in terms of the basic cost units (Ca/s .Cm/d ,, Ctrg, etc.). This is then

reduced to an intermediate expression by making certain assumptions about the input array size

(number of input azimuth lines and N2 >>N). Finally, a simplified expression is derived by

assuming properties of the data processor (computation times for a Ctrig. Ca. Cm/d, etc.). It

should be kept in mind that this simplified expression is only as accurate as the assumptions

made in the approximation., Recall that the FFT complexity is part of these expressions. It can

be identified as the 2Nlog2N term in the expressions. The variables N, Ir. I.. and K correspond

to the output grid size (N by N). the number of input range samples, the number of input

azimuth samples and the interpolator order (w-sinc only), respectively. Comparisons of the

complexity measures are done with N-1024 corresponding to the original image size. Tihe

nearest neighbor complexity is given by (5. la) through (5.1c):,

General expression for nearest neigh'or complexity:

C, = (SN2 + N + 2N 2 log2N)(C,, 1/ + (5N2 + N + 2N ,og 2N)C ,./ (5.1a)

+ N2 Ctrg + N2 Csqt

Intermediate expression "N >
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CNN =Z (5 + 21.og2N)N2 C,,,/d + (5 + 21og2N)N 2 Cas (5.1b)

i •" • NCtIIg + N2Cqr

+ N2:~~ + N Irt
Simplified expression (Ca/s=Ctr'g=C(rt =C Cn- /dSC):

CNN - (32 + 121og 2N)N 2 C (5.1c)

lEquation (5.1c) shows that despite the simplicity of the nearest neighbor algorithm, it is

still relatively expensive compared to the FFI' times. This is primarily due to the square root

and trigonometric calculations required to locate the rectangular output points in polar space.

Since the ID2 interpolator outperformed I1) in both speed and MNR, it was the only I)

type of algorithm analyzed, It is given in 5.2a through 5.2c.,

General expression for Inverse Distance squared (ID2) complexit .,

= (32 + 2log2N) N2 C .. + (29 + 21og 2N)N 2 ('/1 + N2(Cr.g (5.2a)

Intermediate expression for i1)2 (Ia = 1, = N)

• (32 + 21og 2N)N 2C,,,/d + (29 + 21og 2N)N 2Ca/5 + N2Ctri (5.2b)

Simplified expression for ID2 (C,/sCtring=Csqrt=C, Clmd=5C)

CIL - (190 + 121og 2N)N 2 C (5.2c)

General expression Weighed Sinc Interpolator of Order K.,

Cws.wc = (41., + 4Nla + 3KNIa + N + 2Nla + 3N2 + 2K N2 + 2N 21og 2N)Crn/d (5.3a)

+ (41a + 5N]a + 2KNl, + N + NI, + 6N2 + 3KN 2 + 2N21og 2N)Cas

+ (Ia + Nla + 2NV)Ctjjg + (KNIa + KN2 )C,1 ,,

Intermediate expression with 1a = N

Cws•,cc•(9 + 2log2N + 5K) N2 C111•/ (5.3b)

+ (12 + 21og 2N + 5K) N2 Ca/s

I
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+ (3) N2 C,.rg

+ 2K N2 (C"2 11

Simplified expression (C,/•='r,•Cs, tC. (' 1 /d5C)

C(w ..c(6 2 + 121og02 N + 30K) N2 C (5.3c)

General expression for Cubic Spline Interpolator:

CljY1IV = (410 + IONIa + 10NI + N + 8N&, + 6N2 + 14 N2 + 2N2 Iog2N)Cn,/d (5.4a)

+ (413 + IONI, + 16Nla + 2N + 4Nla + ION 2 + 20N2 + 2N 2log2N)(.,ft+ (1, + N) Ct',,

Intermediate expression:

( •(4N + 21og 2N) N2 C('i,/ 1  (5.4b)

+ (60 + 2log2N) N2 (,,/

+ 2N CUIX

Simplified expression.

Cspin(300 + 121og 2N) N2 C (5.4c)

The cubic spline interpolator has a very high order of complexity due to the matrix solution

step. It has an interpolator complexity which approximates that of the w-sinc of order 8.

Tables C.A through C.4 show that the performance is similar to the V.,-sinc with an order

between 6 and 8.

General expression for B-spline Interpolator,.

(CB-s-II, = (413 + 4NI. + 12NIa + N + 2NI, + 3N2 + 8 N2 + 2\•2 o N)C,7,11/ (5.5a)

+ (41a+ + + 8NW, + N + Nla + 6N2 + 12N 2 + 2N 2 log.-N)Ca•/+ (i, + NI,) Ct,•g

Intermediate expression:

('B-s;p)_mvh(2 9 + 21og 2N) \2 C,,1/d (5.5b))
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+ (30 + 2log2N) N2 C.as

+ N2 Ctirg

,', Simplified ex pression:,

ipifeepe(176 + 121og2N) N2 C (5.5c)

The B-splines have a complexity which is approximately half that of the complete cubic

spline. yet their performance is comparable. The complexity also approximates the w-sinc of

order 4. This is expected, since the fourth order w-sinc and B-spline interpolators operate the

same way: by convolving with 4 input points in 2 stages.

The keystone grid reduced the complexity measure by roughly a factor of 2. This is due

to the elimination of one stage of the separable interpolators and the 2D positional calculations

for the lower order algorithms. Equations (5.6) through (5.8) present the complexity expres-

sions for the interpolators used on the keystone grid.,

General expression for complexity of NN on keystone grid:

¶C• ffi (3N 2 + 2N2 1og 2N + N)C,11/d + (3N 2 + 2N 21og 2N + N)Cais + n2Ct,1  (5.6a)

Intermediate expression:

QV ft (3 + 21og 2N)N 2C./d + (3 + 2logzN)N2C /, + N'Ctr, (5.6b)

Simplified expression:

CQ,4' - (19 + 12log2N) N2 C (5.6c)

General expression for linear interpolator on keystone grid:

Cje'y = (Ia + 31a.r + N + 15N 2 + 2N 2log 2N)C./, (5.7a)

+ (lI + lai + N + 14N 2 + 2N 21og 2N)Ca.s

+ (21. + N2)Ctrig

Intermediate expression:
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MCI (18 + 21og 2N)N 2C,,l/, + (15 + 21og 2N)N 2Ca/s + N2Ctrig (5.7b)

Simplified expression: .

(-Ikv - (106 + 121og 2N)N2C (5.7c)

I
General expression for weighted sinc on keystone grid::

WS = (N + 2Nia + 3N2 + 2N 2 K + 2N210g 2N)Cni/d (5.8a)

+ (N + Nla + 6N: + 3N2K + 2N-log2N)Ca/,

+(Nia +2N2 )Ct,.g + N2KCs,.•

Intermediate expreK-;ion:,

"Ck1V, (5 + 2log2N + 2K)N, + (7 + 21og2N + 2K)N (5.8b)

+ 3N'(tr,f + N2kCMilt

Simplilied expression.

CkY _ (35 + 12log2 N + 13K)N 2C (5.8c)

Using Eqs. (5.6c). (5.7c). and (5.8c) with N-1024. and K-12. it is found that

ft 0.91 CNN- Cl,, - 0.72 C& and C . 0.57 Cw_,,,%, The complexity of the NN on

the keystotic grid has not improved much over the polar grid. This is because the FFT com-

plexity is dominating both expressions. The \%-sinc interpolator, which is dominated by the

interpolation step. shows a noticeable cost improvement, owing to the removal of the range line

interpolations.

General expression for the cubic spline on keystone grid:

C = (N + 3N2 + 8N 2 + 2N2log2,N)C,1 1/,t (5.9a)

+ (6N + 27Nla + 8N2 + 2N2log2 N)Ca/,

+ la Ct1,g

Intermediate expression:

C"'Y : (I I+ 2log2 N)N2 (',,,a + (35 + 2log2X)N2C,j, (5.9b)
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Simplified expression:

(ky • (90 + 12log2N)N 2C (5.9c)

SGeneral expression for the B-splines on keystone grid:

SY, = (N + 2NI, + 3N 2 + 12N 2 + 2N 21og 2N)C.,/d (5.1Oa)

+ (N + NI. + 6N 2 + ION 2 + 2N 21og 2N)Cla,

I + NCsr.g

Intermediate expression:

0 (17 + 21og 2N)N 2C1 ,,,d + (17 + 21og2N)N 2 (.,, (5.lOb)

Sim plified expression:' 
+ NC tri1

ft [ (102 + 121og2 N)N 2 + N ]C (5.10c)

I General expression for chirp-z algorithm on keystone grid:

SCZT a (41, + 191gN + 121.Nlog2N + l.(N/a)log2N)Cm.d (5.11a)

+ (i. + 641.N + 121aNIog2N + INlog2N)Ca,/

I Intermediate expression:

j CCZT ft (41 + 13Iog2N)N 2C./d + (72 + 131ogN)N2 C,/, (5.11b)

1 Simplified expression:

CUT L-; (277 + 761og 2N) N2C (5.11c)

For a 1024 by 1024 input grid. the chirp-z algorithm has a complexity measure of

1037N'C which is comparable to a poiar grid w-sinc interpolator with K=29 (1052N 2C) and a

keystone w-sinc interpolator with K-68 (1039). This apparently high complexity measure is

chiefly due to the large number of compiex additions and multiplies in the chirp-z algorithm

and the increase in array size from the extensive zero padding.
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5.8 Summary

This chapter has presented several evaluations of the interpolators described and analyzed

in Chapter 4. The required interpolator accuracy is dependent upon the acceptable reconstruc- - I
tion accuracy, measured here as a multiplicative-noise-ratio, and on the subarray location

within the toroidal slice. The more radially distant subarrays require a higher order algorithm

to reduce the MNR. sidelobes, and spurious targets. while the subarrays closer to the origin are

nearly rectangular and require relatively little computation to produce a good reconstruction.



139

CHAIPTIER 6

CONCLUSIONS AND FURTHER RESEARCH

The problem of SAR data interpolation in the Fourier domain was examined, and several

types of interpolator algorithms were discussed. analyzed. and evaluated experimentally. A

true analysis of the polar to rectangular interpolation problem seems intractable, so the prob-

lem was reduced to a rectangular-rectangular problem and finally a one-dimensional problem

of interpolation in the Fourier domain. Originally. much work was done to simulate an exact

target response. but this obscured the effects that were being studied. The entire SAR and tomo-

graphic grid interpolation problem is that of finding an interpolator that is reasonably fast and

t yet has a transform that is close to an ideal low-pass filter. The various two-dimensional inter-

polators that were in current use [211 were more carefully studied, and some new interpolators

for Fourier space were proposed for the SAR problem. i.e., inverse distance squared, windowed

j sinc. and cubic splines.

The inverse distance squared interpolator has not been seen in the recent DSP literature,

but proved to generate good reconstruction at a lower cost than the more heavily used inverse

distance algorithm. All of the known examples which examine DSP interpolators compare a new

kernel with a sinc or truncated sinc. It seems that this comparison is unfair., since the win-

Ii dowed sinc has a much better response and is not too difficult to compute. Spline interpolation

has also been successfully used in the area of Fourier domain reconstruction. This work helps

sort out the meaning of spline in the current literature.

It is unlikely that an interpolation kernel will be discovered which is both easy to imple-

ment (fast) and has the desired spectrum (ideal low-pass filter) since the two criteria work

against each other., Classical optimization procedures are ineffective here because the algorithm

cost function is too difficult to parametize well. The weighted sinc is the best example of an

interpolation algorithm whose order can be adjusted to reduce interpolation error below a given

specification, though at the expense of processing time. The optimal Fourier domain interpolator
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is global in nature. taking all the known data into account. However, this usually leads to

prohibitive memory usage and computation times. Better methods exist for producing better

image quality, such as iterative techniques, but these are far and away too expensive for the

type of real-time processing that is desired.

A new method of evaluating the windowed point target response was presented as an .
alternative to the MSI- criterion often used in image processing - the MNR and MNR/CPU ratio.

These figures of merit proved useful in rating the interpolator image quality and in making

algorithm comparisons.

A novel approach to the interpolation-inversion stage was presented via the chirp-z

transform. Although it did not seem competitive with the weighted sinc interpolator, it has

promise as a good alternative.,

The alternative sampling grids reduced the interpolation error dramatically and were

much faster to implement, due to the one-dimensional nature of the reconstruction. It is sug-

gested that these raster designs be used in actual hardware designs due to the tremendous CPU

cost savings they offer.

In short, the algorithm which produced the worst reconstruction was the nearest neighbor.;

followed by the inverse distance squared, and then inverse distance. These algorithms were not

competitive with the separable interpolators: the weighted sinc and cubic splines. The weighted

sinc had the advantage of having an adjustable parameter (order) which could be increased to

improve reconstruction to acceptable levels, while the cubic spline was easier to implement for

the same level of image quality. The chirp z-transform produced a good reconstructed image,

yet was not very cost competitive with the separable algorithms due to the extended FFT size

in the convolution stage.

i

I
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6.1 Further Work

The advent of digital processing of SAR signals has opened a whole area of research. The

interpolation problem examined in this work is useful in the direct inversion of the Fourier

data set: however, there are other inversion algorithms which may lead to faster reconstruc-

tions if they in turn are made faster, specifically, convolutional back-projection. The work here

has also led to many other questions concerning 2D interpolation and SAR. Additional research

topics are presented below,

6.1.1 Full data array evaluations

The computer evaluations in this work were done on a relatively small data set. This had

the advantage that the effects of the interpolator in different Fourier regions could be studied.

However, an actual implementation of a 1024 by 1024 (or larger) data array would generate an

image which is the coherent sum of all the small sub-arrays. It would be very useful to work

with the large polar grid interpolation problem and examine the results for any new

phenomena which may appear. The use of the newer generation supercomputers seems ideal

for this higher order problem.

6.1.2 Oversampling

F As mentioned in Chapter 4. the true input data of a working system is sampled at a rate

"much higher than required for the given system resolution. Work should be done to see how

this higher volume of data. and hence finer sample spacing. could be used prior to prefiltering to

reduce interpolation error.

6.1.3 Spline approximation to the sinc

Splines have been increasingly popular in DSP. Though the usual Fourier domain interpre-

tation is lacking. they are easy to evaluate and have some nice mathematical properties. Since it

was shown that the weighted sinc provided the best reconstruction. it may be useful to see if a
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cubic spline approximation to the sinc would prove to be as accurate.

6.1.4 Spatially varying interpolation order

It was seen that different parts of the Fourier data set require different degrees of interpo- I
lation accuracy based on the sample spacing and angular orientation to the output grid. It is -

suggested that the interpolator order be made spatially dependent to minimize the amount of -,

computation required. i.e., a low-order sinc could be used in the (1.0) region of the torus and a

higher order interpolator could be used in the more (radially) distant parts of the polar grid

(16.8). Empirically. it seems that the required interpolator order is more dependent on sample

rate changes, resulting in spurious targets. than the degree of grid rotation.,

The order of the separable sinc interpolator studied here was always the same in both

radial and azimuthal directions. This may not be needed. as the azimuthal rate change demands

a higher order interpolator than the range lines. Further computational savings may result if

the range and azimuth interpolator orders are minimized to correspond to a prescribed accuracy

for each dimension.
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APPENDIX A

A FAST EVALUATION OF A PERIODICALLY SAMPLED SINE

A major obstacle in the use of the weighted sinc kernel is the cost of evaluating the two

transcendentals within the kernel function:

h(x) = (.54+.46cos(x*c2) )*sin(x*cl) (A.1)

where x/c 1 = ir and c2 determines the extent of the Hamming window (the interpolator order).

This can be approached in many ways. First is the direct evaluation method. The inter-

polation kernel g(x) is a simple evaluation using floating point sine and cosine libraries. While

this produces very accurate results, it is the most time-consuming. because the transcendentals

are usually corr, puted with a power series expansion with many terms.

An alternative to the direct method is with a table lookup. Here, the sine function is

stored as a finely sampled array stored in a ROM. and the values of the transcendentals are cal-

culated by finding the closest value in the table. A fi;,er evaluation may be obtained by linearly

interpolating between the two nearest table entries. This. however, can produce additional error

in the kernel. Also. the error in the sinc function greatly increases as x approaches zero. This is.

of course, due to sin(x) and x approaching zero at the same rate. Machine precision begins to

cause errors in the quotient. To correct this. we can store the sinc(x) as one table and the

weighted cos(x) as another., Note. too. that for storage savings, only the positive half of sinc(x)

needs to be stored. and only one-fourth of the cosine function must he tabled. Half-angle for-

mulas may be used to index to the correct table value.

If the data are equally spaced, a third. recursive, method may be used. Because we are

computing a sinusoid at constantly spaced points, we can take advantage of the complex

exponential to recursivelv yield successive sine values. We wish to calculate sin(n*O + a) with

n being the order of the interpolator. 0 and a are determined by the position of the kernel func-

tion relative to the known data. We know that

I--IIII III i sIIII
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ImagleP) - sin(a) (A.2)

Using this identity. we can compute -

S1 =sin(n*O+a) For n0 .N-1 (A.3)

sin(n*O + a) = Image•eJ•(÷)}+ (A.4a)

- Imag(e#Jole) (A.4b)

Let

e? (A.5)
and

and = e p 
(A .6)

Then o', is recursively defined as

a ' =', _ * i = ... N - (A .7)

Then:

S, - lmaglO,j i = ..... N-I (A.8)

This is a significant computational improvement over the standard power series expansion

which is computed for each evaluation. The cosine term of A.1 may be computed in the same

manner.
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APPENDIX B

PLACING THE DC POINT IN THE IMAGE CENTER

1The final stage of the SAR processing includes a circular permutation of the 2D data set to

place the dc point in the center. Since this is actually the spatial domain, this corresponds to

the terrain center. This step may also be performed in the Fourier domain with a slight compu-

tational savings.

As shown by Rosenfeld and Kak [74] the output of the FFT will be rotated by one-half

the image size in both coordinates if it is first multiplied in the frequency domain by (-1)+I.

That is. given the original Fourier data array F(m.n). define F(m.n):

f'(m.n) = F(m.n).-0"1+" (B.l)

then the inverse transform of F(mn) becomes

M-1 N-1 j2V n+kP I,° -if(j.k) = • F(m.n).(_1)m~nef I1f N (B.2)

but we can rewrite ('- 1 )mln as

-•l M +9•._ n(B.3a)

Se-j2w (m/2 + n/2) (B.3b)

_ ,,/2),m + (.i'12,)11 ... 1 (B.3c)

substituting (B.3c) into (B.2) and gathering terms yields

•- +
M--1 N--i j27r L('f-M/.h (k-N/2jul

i(j.k) = i- N- F(m.n)e I R- (B.4)
j=0 jC=--

= f(j-M/2. k--N/2) (QED)

T
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APPENDIX C

EVALUATION RESULTS FOR THREE GRID FORMATS

TABLE C.1. Evaluation Results for Fourier Piece (2.8) on Polar Grid.,

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23.24 NN -5.64 3.28 1.72

-23.24 G-ID (0,1) -14.56 19.82 0.73
-23.24 G-ID (0.2) -18.41 5.75 3.20
-23.24 G-ID (0.3) -17.00 22.57 0.75
-23,24 G-ID (0,4) -14.94 21.17 0.71
-23.24 G-ID) (0.5) -13.37 19.37 0.69
-23.24 wsinc 2 -18.92 17.7 1.07
-23.24 wsinc 4 -24.50 28.4 0.86
-23.24 wsinc 6 -30.37 41.3 0.74
-23.24 wsinc 8 -36.53 53.0 0.69
-23.24 wsinc 10 -42.65 61.7 0.69
-23.24 wsinc 12 -46.88 70.6 0.66
-23.24 wsinc 14 -48.06 82.7 0.47
-23.24 wsinc 16 -48.24 94.7 0.51
-23.24 wsinc 18 -48.27 102.5 0.47
-23.24 wsinc 20 -48.27 112.9 0.43
-23.24 wsinc 22 -48.30 126.0 0.38
-23.24 wsinc 24 -48.38 134.0 0.36
-23.24 B-spline -0.25 -23.01 17.22 1.34
-23.24 B-spline -0.50 -25.17 17.22 1.46
-23.24 B-spline -0.75 -27.62 17.22 1.60
-23.24 B-spline -1.00 -30.46 17.22 1.77
-23.24 Spline (IMSL) -32.41 27.7 1.17

I
I
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TABLE C.2. Evaluation Results for Fourier Piece (10.5) on Polar Grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23,24 NN -5.31 3.28 1.62
-23.24 G-ID (0.1) -8.83 19.82 0.45
-23.24 G-ID (0.2) -9.02 5.75 1.57
-23.24 G-ID (0.3) -8.78 22.57 0.39
-23.24 G-ID (0,4) -8.48 21.17 0.40
-23.24 G-ID (0.5) -8.17 19.37 0.42

-23.24 wsinc 2 -9.27 17.7 0.52
-23,24 wsinc 4 -14.42 28.4 0.51
-23.24 wsinc 6 -19.57 41.3 0.47
-23.24 wsinc 8 -24.65 53.0 0.47
-23.24 wsinc 10 -29.75 61.7 0.48
-23.24 wsinc 12 -35.10 70.6 0.50
-23,24 wsinc 14 -40.82 82.7 0.49
-23.24 wsinc 16 -45.88 94.7 0.48
-23.24 wsinc 18 -47.85 102.5 0.47
-23,24 wsinc 20 47.99 112.9 0.43
-23.24 wsinc 22 -47.96 126.0 0.38
-23.24 wsinc 24 -47.96 134.0 0.36
-23.24 B-spline -0.25 -14.10 17.22 0.82
-23.24 B-spline -0.50 -16.30 17.22 0.95
-23.24 B-spline -0.75 -18.70 17.22 1.09
-23.24 B-spline -1.00 -21.40 17.22 j 1.18
-23.24 Spline (IMSL) -24.19 27.7 _0.87
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TABLE C.3. Evaluation Results for Fourier Piece (16.1) on Polar Grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position .....I (seconds)

-23.24 NN -1.97 3.28 0.60

-23,24 6-ID (0.1) -4.41 19.82 0.22
-23,24 G-ID (0.2) -4.45 5.75 0.77
-23.24 G-ID (0.3) -4.30 22.57 0.19
-23.24 G-ID (0.4) -3.95 21.17 0.19
-23.24 G-ID (0.5) -3.66 19.37 0.19
-23.24 wsinc 2 -4.13 17.7 0.23
-23,24 wsinc 4 -7.45 28.4 0.26
-23,24 wsinc 6 -10.62 41.3 0.26
-23,24 wsinc 8 -13.76 53.0 0.26
-23,24 wsinc 10 -17.01 61.7 0.28
-23.24 wsinc 12 -20.53 70.6 0.29
-23.24 wsinc 14 -24.48 82.7 0.30
-23,24 wsinc 16 -29.10 94.7 0.31
-23,24 wsinc 18 -34.66 102.5 0.34
-23,24 wsinc 20 -41.35 112.0 0.37
-23.24 wsinc 22 -47.10 126.0 0.37
-23.24 wsinc 24 -47.91 134.0 0.36
-23,24 B-spline -0.25 -7.67 17.22 0.45
-23,24 B-spline -0.50 -9.29 17.22 0.54
-23.24 B-spline -0.75 -11.06 17.22 0.64
-23.24 B-spline -1.00 -13.07 17.22 0.76
-23.24 Spline (IMSL) -15.35 27.7 0.55

I
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TABLE C.4. Evaluation Results for Fourier Piece (16.8) on Polar Grid.,

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23.24 NN -0.97 3.28 0.30
-23.24 G-ID (0.1) -6.18 19.82 0.31
-23.24 G-ID (0.2) -4.93 5.75 0.86
-23.24 G-ID (0.3) -4.50 22.57 0.20
-23.24 G-ID (0.4) -4.24 21.17 0.20
-23.24 G-ID (0.5) -4.01 19.37 0.21

-23.24 wsinc 2 -3.99 17.7 0.23
-23.24 wsinc 4 -7.56 28.4 0.27
-23,24 wsinc 6 -10.74 41.3 0.26
-23.24 wsinc 8 -13.80 53.0 0.26
-23.24 wsinc 10 -16.97 61.7 0.28
-23.24 wsinc 12 -20.42 70.6 0.29
-23.24 wsinc 14 -24.36 82.7 0.29
-23.24 wsinc 16 -29.03 94.7 0.31
-23.24 wsinc 18 -34.75 102.5 0.34
-23.24 wsinc 20 -41.90 112.9 0.37
-23.24 wsinc 22 -47.88 126.0 0.38

-23.24 wsinc 24 -47.44 134.0 0.35

-23.24 B-spline -0.25 -7.19 17.22 0.42
-23.24 B-spline -0.50 -8.67 17.22 0.50
-23.24 B-spline -0.75 -10.26 17.22 0.60
-23.24 B-spline -1.00 -12.01 17.22 0.70
-23.24 Spline (IMSL) 1 -14.72 27,7 0.54

i
I
I

I
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TABLE C.5. Evaluation Results for Fourier Piece (2.8) on Equi-PRF grid.

Target lnterp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds) __

-23.24 NN _____ -5.64 3.58 1.58
-23,24 G-ID (0.1) -14.67 19.02 0.77
-23,24 G-ID (0.2) -18.61 5.67 3.28
-23,24 G-ID (0.3) -17.12 18.75 0.91!
-23,24 G-ID (1.1) -10.38 63.62 0.16
-23.24 G-ID (1.2) -17.15 11.13 1.54
-23.24 G-ID (1.3) -17.36 70.37 0.25
-23.24 G-ID (2.1) -8.18 151.82 0.05
-23.24 G-ID (2.2) -16.24 30.48 0.53
-23.24 G-ID (2.3) -17.44 207.55 0.08
-23.24 wsinc 2 -19.10 11.98 1.59
-23,24 wsinc 4 -24.58 22.57 1.09
-23.24 wsinc 6 -30.40 32.70 0.93
-23.24 wsinc 8 -36.54 41.10 0.89
-23,24 wsinc 10 42.64 50.73 0.84
-23.24 wsinc 12 -46.80 59.7 0.78
-23.24 wsinc 14 -48.06 69.53 0.69
-23.24 wsinc 16 -48.16 79.20 0.61
-23.24 wsinc 18 -48.19 88.93 0.54
-23,24 wsinc 20 -48.22 99.03 0.49
-23.24 wsinc 22 -48.19 110.03 0.44
-23.24 wsinc 24 -48.24 122.02 0.40
-23.24 B-spline -0.25 -23.84 22.13 1.08
-23.24 B-spline -0.50 -26.00 22.13 1.17
-23.24 B-spline -0.75 -28.03 22.13 1.27
-23.24 B-spline -1.00 -31.17 22.13 1.41
-23.24 Spline (IMSL) I_ _ -29.63 26.75 1.11
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TABLE C.6. Evaluation Results for Fourier Piece (10,5) on Equi-PRF grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23.24 NN -5.56 3.58 1.55
-23,24 G-ID (0,1) -8.89 19.02 0.47
-23.24 G-ID (0.2) -9.18 5.67 1.62
-23.24 G-ID (0.3) -9.00 18.75 0.48
-23.24 G-ID (1.1) -7.44 63.62 0.12
-23.24 G-ID (1.2) -8.40 17.15 0.49
-23.24 G-ID (1.3) -8.73 70.37 0.12
-23.24 G-ID (2.1) -7.37 151.82 0.049
-23.24 G-ID (2.2) -8.20 20.48 0.40
-23.24 G-ID (2.3) -8.68 207.55 0.042
-23.24 wsinc 2 -9.44 11.98 0.79
-23.24 wsinc 4 -14.52 22.57 0.64
-23.24 wsinc 6 -19.64 32.70 0.60
-23,24 wsinc 8 -24.72 41.10 0.60
-23.24 wsinc 10 -29.83 50.73 0.59
-23.24 wsinc 12 -35.22 59.78 0.59
-23.24 wsinc 14 -41.04 69.53 0.59
-23.24 wsinc 16 -46.15 79.20 0.58
-23.24 wsinc 18 -47.96 88.93 0.54
-23.24 wsinc 20 -48.02 99.03 0.48
-23.24 wsinc 22 -48.0) 110.03 0.44
-23.24 wsinc 24 -48.04 122.02 0.39
-23.24 B-spline -0.25 -15.23 22.13 0.69
-23.24 B-spline -0.50 -17.12 22.13 0.77
-23.24 B-spline -0.75 -19.63 22.13 0.89-23.24 B-spline -1.00 -22.99 22.13 1.04

S-23.24 Spline (IMSL) -37.60 23.82 1.58
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TABLE C.7. Evaluation Results for Fourier Piece (16.1) on Equi-PRF grid.

Target Interp. Parameter MNR (dB) CPU time INNR/CPUI

Position (seconds)
-23.24 NN -1.96 3.58 0.55
-23.24 G-ID (0.1) -4.38 19.02 0.23
-23,24 G-ID (0.2) -4.52 5.67 0.80
-23,24 G-ID (0.3) -4.27 18.75 0.23
-23.24 G-ID (1.1) -1.40 63.62 0.022
-23.24 G-ID (1,2) -3.26 17.15 0.19
-23.24 G-1D (1.3) -3.89 70.37 0.055
-23.24 G-ID (2.1) -0.15 151.82 0.001
-23,24 G-ID (2.2) -2.88 20.48 0.141
-23,24 G-ID (2,3) -3.82 207.55 0.018
-23.24 wsinc 2 -4.10 11.98 0.342
-23,24 wsinc 4 -7.42 22.57 0.329
-23.24 wsinc 6 -10.58 32.70 0.324
-23,24 wsinc 8 -13.72 41.10 0.334
-23.24 wsinc 10 -16.97 50.73 0.335
-23.24 wsinc 12 -20.47 59.78 0.342
-23.24 wsinc 14 -24.42 69.53 0.351
-23,24 wsinc 16 -29.03 79.20 0.367
-23,24 wsinc 18 -34.60 88.93 0.389
-23,24 wsinc 20 -41.31 99.03 0.417
-23.24 wsinc 22 -47.00 110.03 0.427
-23,24 wsinc 24 -47.53 122.02 0.390
-23,24 B-spline -0.25 -8.89 22.13 0.04
-23,24 B-spline -0.50 -10.23 22.13 0.46
-23,24 B-spline -0.75 -12.04 22.13 0.54
-23.24 B-spline -1.00 -14.88 22.13 0.67
-23,24 Spline (IMSL) 1 -16.43 26.75 0.614

*1
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TABLE C.8. Evaluation Results for Fourier Piece (16.8) on Equi-PRF grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23.24 NN -1.00 3.58 0.28

t -23.24 G-ID (0.1) -6.21 19.02 0.326
-23.24 G-ID (0.2) -4.97 5.67 0.88
-23.24 G-ID (0.3) -4.55 18.75 0.24
-23.24 G-ID (1.1) -2.98 63.62 0.047
-23.24 G C-ID (1.2) -3.38 17.15 0.20
-23.24 G-ID (1.3) -3.90 70.37 0.055
-23.24 G-ID (2.1) -1.28 151.82 0.008
-23.24 G-ID (2.2) -2.95 20.48 0.144
-23.24 G-ID (2.3) -3.79 207.55 0.018
-2324 wsinc 2 -4.04 11.98 0.337
-23.24 wsinc 4 -7.62 22.57 0.338
-23.24 wsinc 6 -10.81 32.70 0.331
-23.24 wsinc 8 -13.89 41.10 0.338
-23.24 wsinc 10 -17.07 50.73 0.336
-23.24 wsinc 12 -20.55 59.78 0.344
-23.24 wsinc 14 -24.52 69.53 0.353
-23.24 wsinc 16 -29.24 79.20 0.369
-23.24 wsinc 18 -35.04 88.93 0.394
-23.24 wsinc 20 -42.30 99.03 0.427
-23.24 wsinc 22 -48.06 110.03 0.437
-23.24 wsinc 24 -47.44 122.02 0.389
-23.24 B-spline -0.25 -8.32 22.13 0.38
-23,24 B-spline -0.50 -9.03 22.13 0.41
-23,24 B-spline -0.75 -11.83 22.13 0.54
-23.24 B-spline -1.00 -14.33 22.13 0.65

-23.24 Spline (IMSL) -42.57 26.75 1.59

I
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_ITABLE C.9. Evaluation Results for Fourier Piece (2,8) on Keystone Grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)

-23.24 NN -7.26 0.67 10.83
-23.24 G-ID 1 -24.16 0.85 28.42
-23.24 G-ID 2 -22.23 1.42 15.66
-23.24 G-JD 3 -17.66 1.65 10.70
-23.24 G-ID 4 -15.15 1.47 10.31
-23,24 wsinc 2 -22.60 4.63 4.88
-23.24 wsinc 4 -26.95 8.70 3.10 1
-23,24 wsinc 6 -31.86 13.2 2.41
-23.24 wsinc 8 -37.43 17.3 2.16
-23.24 wsinc 10 -43.14 21.90 1.97
-23.24 wsinc 12 -46.97 26.00 1.81
-23.24 wsinc 14 -48.04 29.85 1.61
-23.24 wsinc 16 -48.12 34.52 1.39
-23.24 wsinc 18 -48.14 37.57 1.28
-23.24 Chirp-Z -1.32 26.50 0.05
-23,24 B-spline -0.25 -34.12 7.95 4.29
-23.24 B-spline -0.50 -35.88 7.95 4.51
-23.24 B-spline -0.75 -36.12 7.95 4.54
-23.24 B-spline -1.00 -36.98 7.95 4.65

"-23.24 Spline (IMSL) -34.80 12.06 2.89
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TABLE C.10. Evaluation Results for Fourier Piece (16.1) on Keystone Grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23,24 NN -2.01 0.67 3.00
-23,24 G-ID 1 -7.68 0.85 9.04
-23,24 G-ID 2 -5.56 1.42 3.92
-23.24 G-ID 2.5 -5.03 6.68 0.75
-23.24 G-ID 3 -4.64 1.65 2.81
-23.24 wsinc 2 -4.36 4.63 0.942
-23.24 wsinc 4 -8.26 8.70 0.949
-23,24 wsinc 6 -12.38 13.2 0.938
-23.24 wsinc 8 -16.91 17.3 0.977
-23.24 wsinc 10 -22.05 21.90 1.007
-23.24 wsinc 12 -28.10 26.0 1.081
-23.24 wsinc 14 -35.47 29.85 1.188
-23.24 WsirsC 16 -44.05 34.65 1.271
-23.24 wsinc 18 -48.25 37.57 1.284
-23.24 Chirp-Z .... _ -30.92 26.50 1.17
-23.24 B-spline -0.25 -15.53 7.95 1.95
-23.24 B-spline -0.50 -16.43 7.95 2.07
-23.24 B-spline -0.75 -16.89 7.95 2.12
-23.24 B-spline -1.00 -17.35 7.95 2.18
-23.24 Splie(IMSL) -15.36 12.06 1.27



156

TABLE C.11. Evaluation Results for Fourier Piece (10.5) on Keystone Grid.

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds) -
-23.24 NN -6.80 0.67 10.15
-23.24 (-11) 1 -17.39 0.85 20.46
-23.24 G-ID 2 -15.60 1.42 10.99
-23.24 G-ID 3 -13.71 1.65 8.31
-23.24 G-ID 4 -12.36 1.47 8.41
-23.24 wsinc 2 -14.87 4.63 3.21
-23.24 wsinc 4 -18.54 9.70 2.13
-23.24 wsinc 6 -22.86 13.2 1.71
-23.24 wsinc 8 -27.85 17.3 1.61
-23.24 wsinc 10 -33.63 21.90 1.54
-23,24 wsinc 12 -40.25 26.0 1.55
-23.24 wsinc 14 -46.24 29.85 1.55
-23.24 wsinc 16 -48.21 34.52 1.40
-23,24 wsinc 18 -48.32 37.57 1.29
-23.24 Chirp-Z -8.62 26.50 0.325
-23.24 B-spline -0.25 -16.43 7.95 2.07
-23.24 B-spline -0.50 -17.33 7.95 2.18
-23.24 B-spline -0.75 -17.93 7.95 2.26
-23.24 B-spline -1.00 -18.55 7.95 2.33
-23.24 Spline (IMSL) -25.77 12.06 2.14
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TABLE C.12. Evaluation Results for Fourier Piece (16.8) on Keystone Grid.,

Target Interp. Parameter MNR (dB) CPU time I MNR/CPU I
Position (seconds)
-23.24 NN -1.97 0.67 2.94
-23.24 G-AD 1 -7.71 0.85 9.07
-23.24 G-ID 2 -5.57 1.42 3.92
-23.24 G-ID 3 -4.64 1.65 2.81
-23.24 G-ID 4 -4.09 1.47 2.78
-23,24 wsinc 2 -4.37 4.63 0.94
-23,24 wsinc 4 -8.23 8.70 0.93
-23.24 ws..nc 6 -12.41 13.2 0.94
-23.24 wsinc 8 -1" n17 17.3 0.98
-23.24 wsinc 10 -A. , 21.90 1.01
-23.24 wsinc 12 -28.33 26.0 1.09
-23.24 wsinc 14 -36.04 29.85 1.21
-23.24 wsinc 16 -45.20 34.52 1.31
-23.24 wsinc 18 -47.75 37.57 1.27
-23.24 Chirp-Z -14.75 26.50 0.557
-23.24 B-spline -0.25 -15.04 7.95 1.89
-23.24 B-spline -0.50 -15.73 7.95 1.98
-23.24 B-spline -0.75 -16.32 7.35 2.05
-23.24 B-spline -1.00 -17.03 7.95 2.14
-23.24 Spline (IMSL) -15.41 12.06 1.28

t
I

I
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