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THERMAL AND OTHER NON-CAVITATIONAL
MECHANISMS

William D. O’Brien, Jr.

ABSTRACT

Ultrasonic biophysics is the study of mechanisms responsible for how ultrasound and
biological materials interact. When ultrasound affects biological materials, this can be
viewed as a bioeffect, a therapy study and/or a risk. On the other hand, when biological
materials affect the ultrasonic wave, this can be viewed as the basis for diagnostic
ultrasound. Thus, an understanding of the interaction of ultrasound with tissue provides
the scientific basis for understanding the range between risk assessment and image
production. Relative to the former, that is, the mechanisms by which it is believed, or
known, that ultrasound affects biological materials, ultrasonic bioeffects/therapies are
generally separated into thermal and non-thermal mechanisms. The theme of this chapter
deals with thermal and other non-cavitational mechanisms of ultrasound, that is,
ultrasound-induced effects that are not believed to be bubble related.
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1. ULTRASONIC BIOPHYSICS

Ultrasonic biophysics (Dunn and O’Brien, 1976; O’Brien, 2007) is the study of
mechanisms responsible for how ultrasound and biological materials interact (Figure 1). The
study of how ultrasound affects biological materials can be viewed as bioeffect studies that




i

e e o

!

William D. O’Brien

can lead to an understanding of therapeutic applications and risk assessments. On the other
hand, the study of how tissue affects the ultrasound wave can be viewed as the basis for
diagnostic ultrasound. Thus, an understanding of the interaction of ultrasound with tissue
provides the scientific basis for understanding image production, therapeutic applications and
risk assessment.

Ultrasonic dosimetry (O’Brien, 1978, 1986, 1992b, 1998, 2007) is concerned with the
quantitative determination of ultrasonic ¢x=rgy interaction with biological materials, that is,
defining the quantitative relationship between some physical agent and the biological effect it
produces. To better understand ultrasonic dosimetry and ultrasonic interaction mechanisms, it
is appropriate to first introduce basic ultrasonic quantities, and then develop common
nomenclature. Then, general dosimetric concepts can be presented because a large body of
literature and history exists to quantitate the interaction of various propagated energies and
biological materials. This chapter will focus on the noncavitational ultrasound mechanisms,
and their corresponding bioeffects, that is, the generation of heat in the context of the
therapeutic application of ultrasound and other mechanisms that are not believed to be
microbubble or cavitation related. The following chapter (Acoustic Cavitation, Chapter 3)
will deal exclusively with cavitation and the various phenomena associated with it.

2. BACKGROUND

More than three decades after the 1880 discovery of the piezoelectric effect by the
brothers Paul-Jacques and Pierre Curie (Curie and Curie, 1880), a discovery that
revolutionized the production and reception of high-frequency sound, the French scientist
Paul Langevin developed one of the first uses of ultrasound for underwater echo ranging of
submerged objects with a quartz crystal at an approximate frequency of 150 kHz (Hunt,
1982). Langevin was, perhaps, the first to observe that ultrasonic energy could have a
detrimental effect upon biological material wherein he reported (Langevin, 1917) “fish placed
in the beam in the neighborhood of the source operation in a small tank were killed

immediately, and certain observers experienced a painful sensation on plunging the hand in
this region.”

Affects
Imaging
Ultrasound Tissue
Bioeffects /7
Affects

Figure 1. Conceptual diagram of ultrasonic biophysics.

Langevin also reported observing incipient cavitation in water when the source was
active, however, he was not the first to propose echo ranging. Incidently, Pierre Curie was
Langevin’s doctoral thesis advisor. Richardson, in 1912 in response to the Titanic disaster,
suggested both airborn (Richardson, 1912a) and underwater (Richardson, 1912b) echo-
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ranging schemes, and, in 1914, Fessenden (1914) experimentally demonstrated echo-ranging
underwater detection of an iceberg.

Another decade passed before a more detailed, experimental study was conducted (Wood
and Loomis, 1927) to investigate Langevin’s 1917 observation [A fascinating early history of
ultrasound and Alfred Lee Loomis can be found in Jeannet Conant’s book Tuxedo Park: A
Wall Street Tycoon and the Secret Palace of Science That Changed the Course of World War
II (Simon and Schosier, 2002)]. Although the ultrasonic levels were not specified, their
experimental studies showed that ultrasonic energy had a range of effects from rupture of
Spirogyra and Paramecium to death of small fishes and frogs by a one- to two-minute
exposure; the latter also observed by Langevin with a Poulsen arc oscillator. Considerable
work followed and in the earliest review paper on this subject, Harvey (1930) reported on the
physical, chemical, and biological effects of ultrasound in which alterations were produced in
macromolecules, microorganisms, cells, isolated cells, bacteria, tissues, and organs with a
view towards the identification of the interaction mechanisms. The ultrasonic exposure
conditions of these early works were neither well characterized nor reported, but the exposure
levels were undoubtedly high.

It is not known when scientists initially recognized the two principal biophysical
mechanisms that are currently invoked, viz., thermal and cavitation. The application of
ultrasound to therapeutically heat tissue was suggested in the early 1930s (Freundlich et al,,
1932) and reported to be used as a physical therapy agent in 1939 (Pohlman et al., 1939).
Ultrasound-induced tissue heating was applied extensively as a therapeutic agent in the 1930s
and 1940s. However, while it was clear that ultrasound could effectively heat tissue, and
excess enthusiasm resulted in numerous clinical applications being proposed and tried, the
inferior clinical experience caused this modality to fall into disfavor (see discussion of 1949
Erlangen resolution (Kremkau, 1979)).

Also, during the 1930s and 1940s, with an understanding that ultrasound at sufficient
levels could have a dramatic effect on tissues, and produce large temperature increases, the
potential for ultrasonic surgery was proposed. This ability to noninvasively burn focal tissue
volumes deep in the body using ultrasound was first proposed in 1942 (Lynn et al., 1942,
1944) as a neurosurgery technique. Ultrasound surgery and its biophysical mechanism
(heating) were further developed in the late 1940s and early 1950s (Fry et al., 1955). Also
proposed in 1948 and applied in 1952 was the application of ultrasound surgery to destroy the
vestibular function to treat the symptoms of Meniére’s disease (Sjoberg et al., 1963).

While ultrasonic exposimetry was inferior in these early times to that possible today, the
early bioeffect studies clearly demonstrated that ultrasound, at sufficient levels, could easily
destroy biological material. From the earliest considerations that ultrasound might be a
feasible energy source for producing images of the human body, it was known that high
ultrasonic energy levels had the potential to be therapeutic and/or hazardous.

There have been early ultrasonic dosimetric quantities that are noteworthy of comment in
that they represent, in concept, the basic approach to dosimetry. It should be noted that even
today there is no adequate dosimetric quantity of therapeutic ultrasound. The cataract-
producing unit, CPU, was a quantity defined as the length of exposure necessary to produce a
grossly observable cataract and expressed in units of seconds (Purnell et al.,, 1964). The
dosimetric concept damage ability index with the unit second is a quantity intended to
describe the effect of ultrasound on spinal cord hemorrhage (Taylor and Pond, 1972). It has
been suggested (Johnston and Dunn, 1976) that a universal dosimetric response to ultrasonic
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exposure may exist for different tissues but the response has only been demonstrated, in a
limited manner, in mammalian brain tissue. The response was in terms of energy absorbed
per unit volume for histologically observable lesions at superthreshold levels as a function of
the delivered intensity. It was shown that at two different ultrasonic frequencies, 3 and 4
MHz, identical constant volume curves resulted even though there were two different
threshold levels (Dunn and Fry, 1971). Later, a damage integral was defined to predict the
occurrence and dimensias of thermally induced ophthalmic lesions (Lizzi et al., 1984).

During the 1950s and 1960s, the ability to quantify ulirasonic fields improved but only to
a limited extent; there were still no national-based ultrasound measurement standards or
procedures. All of the improvements dealt with absolute procedures to quantify second-order
quantities, and consisted of ultrasonic intensity via thermocouple probe (Fry and Fry, 1954a,
1954b; Fry and Dunn, 1957; Dunn and Breyer, 1962) and electrodynamic method
(Filipczynski, 1967), and ultrasonic power via radiation pressure and calorimetry (Wells et
al., 1963) and radiation pressure balance (Newell, 1963; Kossoff, 1965).

This period saw only a few advances in our understanding of how ultrasound interacted
with biological materials. Perhaps the first major symposium on “Ultrasound in Biology and
Medicine” was held at the University of Illinois in 1952 to examine phenomena of how
ultrasonic energy interacted with and acted upon biological materials. Of the eight papers
presented, six were published and dealt with the effects of high-intensity ultrasound (Fry,
1953; Wall et al., 1953; Wild and Reid, 1953) or the thermal mechanism of ultrasound (Fry
and Fry, 1953; Herrick, 1953; Lehmann, 1953). Two additional symposia were held (June,
1955; June, 1962) to address similar issues (Kelly, 1957, 1965). This literature laid the basic
foundation for the biophysical mechanisms by which ultrasound is known to affect biological
materials, viz., thermal and cavitation.

The 15-year period between early 1970s and mid 1980s witnessed the greatest
improvement to quantify ultrasonic fields. These improvements were driven, in part, by the
passage in the United States of the 1976 Medical Device Amendments to the Food, Drug and
Cosmetic Act. Perhaps the first intercomparison (between two universities) to assess the
absolute measurement of ultrasonic intensity was conducted (Breazeale and Dunn, 1974); the
comparison was conducted with the elastic sphere radiometer (Dunn et al., 1977). A major
breakthrough of earlier work (Brain, 1924; Fukada, 1968) occurred with Kawai’s discovery in
1969 (Kawai, 1969) of the strong piezoelectric effect in polyvinylidenefluoride (PVDF) to
measure the temporal characteristics of diagnostic ultrasound fields. Two types of PVDF
hydrophones were developed, viz., needle (Lewin, 1981) and membrane (DeReggi et al.,,
1981; Bacon, 1982; Harris, 1982; Preston et al., 1983). The US National Bureau of Standards
(now the National Institute of Standards and Technology, NIST) developed an ultrasound
power transfer standard (Fick et al., 1984), and the UK National Physical Laboratory
developed both a two-transducer reciprocity technique and an optical technique (Smith,
1986).

There have been long-standing national and international standards for “therapeutic
(physical therapy) ultrasound (Harris, 1992) dating back more than 50 years. Likewise, there
have been national and international standards for diagnostic ultrasound that date back to the
mid-1980s (Harris, 1992). No national or international standards have been adopted for other
therapeutic devices at this time.
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3. BASIC ULTRASONIC EXPOSURE QUANTITIES

Sound is the rapid motion of molecules. These molecular vibrations transport energy
from a transmitter, a sound source like our voice, to a receiver like our ear. Sound travels in
waves that transport energy from one location to another. When the molecules get closer
together, this is called compression, and when they separate, this is called rarefaction. This
izcchanical motion, the rapid back and forth motion, is the basis for calling sound a
mechanical wave or a mechanically propagated wave.

We have many perceptions of the nature of sound. The idea of pitch refers to our
perception of frequency, that is, the number of times a second that air vibrates in producing
sound that we hear. Voices are classified according to pitch in which the lowest frequency is a
bass voice and the highest frequency is a soprano voice. This description of frequency,
however, is limited to the frequency range, or spectrum, over which humans can hear sounds.
There are sound frequencies below and above what humans can hear. The acoustic spectrum
is shown in Figure 2a. The lowest frequency classification in the acoustic spectrum is
infrasound that has a frequency range below 20 Hz. Audible sound is what humans hear and
has an approximate frequency range between 20 Hz and 20 kHz. The ultrasound frequency
range starts at a frequency of 20 kHz. Examples of devices that emit frequencies at the lower
frequency end of the ultrasonic spectrum are a dog whistle and industrial ultrasonic cleaners.

Most medical ultrasound equipment operates in the ultrasonic frequency range between 1
and 15 MHz (Figure 2b). Therapeutic (physical therapy, HIFU and ablation) applications
operate around 1 MHz. Most imaging applications operate at frequencies greater that about 3
MHz because of the trade-off between spatial resolution and imaging depth.

The classical engineering trade-off of diagnostic ultrasound instrumentation is that
between resolution and the depth of the image (or penetration). Both are directly affected by
the ultrasonic frequency (f) and attenuation. As frequency is increased, resolution improves
and penetration decreases. Resolution improves because the ultrasonic wavelength (A ) in
tissue decreases (becomes a smaller number). Wavelength is inversely related to frequency;
increase one and the other decreases: ¢ = Af where the tissue’s propagation speed, c, is
typically assumed to be constant at 1540 m/s.

1{})3 ﬁgz-- 4 20 MHz L |
VI 4 , Ophth
A MHz L Ulrasound 10 MHz L I P
'i?g 312{1{2 ' 5 MH i}?v
] 1245 : Z.4 1Y
1 kHz.L 1 Audible fAi)diOb/Card
100 Hz.i. ! Sound 2 MHz.l.
10 Hz L : B Therapy
1 Hz | Infrasound i MHz ..
a) Acoustic Spectrum b} Medical Ultrasound Spectrum

Figure 2. General acoustic spectrum (a) and acoustic spectrum specific for medical ultrasound (b).

As frequency increases, the ultrasonic attenuation also increases. Penetration is directly
affected by tissue attenuation because it is approximately linearly related to frequency. At an
ultrasonic frequency of 1 MHz, the attenuation coefficient is approximately 0.7 dB/cm
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whereas at 2 MHz, it is 1.4 dB/cm. Thus, attenuation coefficient is related to frequency;
increase one and the other increases. The attenuation coefficient (also called attenuation
slope) can be expressed mathematically by the expression 0.7 dB/cm-MHz, a value that
approximately represents soft tissue.

Many of the imaging concepts also apply to therapeutic ultrasound, and thus are
introduced here.

4 necessary concept to understand axial (or range) resolution is the distance one cycle
(and hence one pulse) occupies in a mediuin. The distance one cycle occupies in a medium is
the wavelength. For a pulse waveform, the distance one pulse occupies in a medium is called
the spatial pulse length (SPL), that is, the number of wavelengths per pulse (N A ) where

SPL=NA. 6]

Axial resolution is the ability to resolve discrete structures along the beam axis.
Quantitatively, it is represented as the minimum distance between two structures at different
ranges at which both can just be discretely identified as two separate structures. The best axial
resolution is represented by the expression

. ) SPL. N
best axial resolution = —— = — . )

2

The transducer design affects the minimum number of cycles. More highly damped
transducers (also referred to as low Q transducers) produce very few cycles of ultrasound
when excited by the pulser voltage. As the frequency increases, and other quantities remain
constant, axial resolution improves. The term “best axial resolution” has been employed
because, in practice, the receiving and processing electronics affect axial resolution as does
the quality of the video monitor. The electronics and monitor are often lumped into the term
“system Q.” Low-valued system Qs provide better axial resolution than do high-valued ones.
As a “rule of thumb,” there are Q/2 cycles of pressure contained in the pulse, that is, N = Q/2,
which yields

best axial resolution = M = ﬁﬁ = 93 = L,
2 2f 41 4Af

3)
where the quality factor Q is defined as the ratio of the center frequency, f, to the system
bandwidth, Af . For a propagation speed of 1540 m/s,

77
best axial resolution (in mm) = 077 , 4)

Af

where Af is in MHz.
However, ultrasonic images are speckle images and therefore a more representative
expression for axial resolution is (Greenleaf and Sehgal, 1992)
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1.37

FWHM, (i =— 5
4 (In mm) AT (5)

where FWHM, is the axial full width half maximum length of the pulse in millimeters and Af
is in MHz. This expression is also only a function of the system bandwidth but yields a
numerical value for axial resolution about 1.8 times greater than the best axial resolution.
Thus, the axial resolution improves (its numerical value decreases) when the bandwidth
increases.

Lateral resolution is the ability to resolve discrete structures perpendicular, or lateral, to
the beam axis. Quantitatively, it is represented as the minimum distance between two side-by-
side structures at the same range at which both can just be discretely identified as two
separate structures. The best lateral resolution is equal to the minimum beam width; the best
lateral resolution term is employed here for the same reasons as that of the term best axial
resolution. For a focused ultrasonic field, the beam width (BW) is

BW=1.47LR,$:1.4M#, (6)

where ROC is radius of curvature (in measurement practice ROC is the distance between the
source and the center of the focal region, the focal length) and D is the diameter for a circular
source or linear end-to-end lengths for a rectilinear source. In imaging terminology, the term

“f-number” or “f* « is often used to quantitate focusing where the lower the f-number value,
the better is the focusing. In terms of the full width half maximum length, the beam width at
the focus is (Greenleaf and Sehgal, 1992)

A
FWHM, (inmm)= ——51, @)

where FWHM|, is the lateral full width half maximum length and L is the focal length
(basically the same as ROC.

There are many buzz words to describe a general class of events such as the terms first-
order quantity and second-order quantity. Quantity represents what is measured and unit
represents the amount (Table 1).

First-order quantities are known as amplitude quantities and second-order quantities as
energy-based quantities (Table 2). The basic ideas of first-order and second-order quantities
are (1) both first-order and second-order quantities deal with the transport of energy, (2) all
first-order quantities are directly proportional to each other, (3) all second-order quantities are
directly proportional to each other, and (4) the product of any two first-order quantities is
directly proportional to any second-order quantity.
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Table 1. Typical ultrasonic quantities and units Equa
Quantity Unit
charge coulomb (C) p=:
current ampere (A = C/s)
displacement meter (m)
energy joule (J=Ws)
energy density joule per meter cubed (J/m3 = N/m2) p=
force newton (N)
frequency hertz (Hz)
intensity watt per centimeter squared (W/cm2) Cont
length meter (m) P—p—
mass kilogram (kg) Dt
power watt (W)
speed meter per second (m/s) _(?E i
temperature degree celsius (°C) ot
time second (s)
ultrasonic pressure pascal (Pa = N/m2) Mon
voltage volt (V) ,
wavelength meter (m) D
p—
Di
Table 2. List of first-order and second-order quantities used in ultrasound
P
First-order Second-order Po E
quantities quantities
current energy The |
particle acceleration energy density
particle displacement intensity Dq
particle velocity power Dt
ultrasonic pressure
voltage where th
. . . . would es
Acoustic wave propagation, and the development of its wave and other equations (Morse change ¢
and Ingard, 1968; Nyborg, 1978; Pierce, 1981; Kinsler et al., 1982, 2000; Hall, 1987;
Ensminger, 1988; O’Brien, 1992a; Blackstock, 2000), can be approached from the Equation pressure
of State which describes the change in density to the change in pressure, the Continuity the coel
Equation which relates particle motion to the change in density by invoking conservation of fractiona
mass and the Momentum Equation (becomes Euler’s Equation for a lossless medium at rest) Pros:
which compares the change in pressure to particle motion through Newton’s Second Law of
Dynamics by invoking conservation of momentum. These equations and their various forms p-

are:
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Equation of State:

B &,k C fﬁp\

=c28pql+— +L 8
PO Sk, (8a)
p=c’ 6pll+———s+—c—s 4L (8b)
21A 31A
Continuity Equation:
Do, ovdizo (%)
Dt P
%, Vg(pﬁ)= 0 (9b)
ot
Momentum Equation:
Du
—+VP=0 10
P (102)
ou , .
P, ™ +Vp =0 (linear Euler’s equation) (10b)
The total or material derivative is
Dq _&q
e e , 11
Dt - o 19vq an

where the first term on the right-hand side is the time rate of change of q the fluid particle

would experience if it were at rest (11 =0), and the second term is the additional rate of
change caused by the particle’s movement. Also, p is the acoustic pressure (instantaneous

pressure P =P +p), 3p is the excess density (instantaneous density p=p_ +8p), B/A is
the coefficient of the first nonlinear parameter (Beyer, 1997), s is the condensation, the
fractional change in density (8p/p, ) and U is the particle velocity of a fluid element.

Pressure P, velocity U, density p can be expressed as
P=P +p, +p,+L, (122)

- ! I
i=u+u, +L ,
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p=p0+p1+p2+L ; (12¢)

where the subscripts indicate the order. For example, P, is the zero-order contribution to
pressure, p; is the first-order contribution that varies sinusoidally for a harmonic (CW) wave

at frequency ®, and P, is the second-order contribution that has both a temporal-dependent

component at frequency 2® and a temporal-independent component. Because the fluid is
assumed to be at rest, the zero-order contribution to U is zero.

The Equation of State, the Continuity Equation and the Euler’s Equation for first-order
contributions become, respectively,

0s ,
=Bs, + 1, — 13
b, 1 ﬂsat (13)
Os r
5 =V (14)
ou
pojat—‘=—Vpl (15)

0Os
In water and tissue, Mg El << Bs, . Thus, the Equation of State becomes p, = Bs,.

. d P
Eliminating the order 1 subscripts and noting that U = .d% where & is the particle

displacement, by combining these equations for a one-dimensional wave propagating in the
positive x direction yields the one-dimensional lossless wave equation

ot 0%

e S (16)

The one-dimensional lossless wave equation can be described by the particle
displacement §(X,t), or can likewise be described by the particle velocity u(X,t), the

particle acceleration a(x,t), or the acoustic pressure p(x,t). In terms of the particle

displacement, the one-dimensional lossless wave equation traveling in the positive x direction
is represented as

é(x,t): £,Cos (cot - kx), (17)

where & is the particle displacement amplitude, o is the angular frequency, t is time and k
is the wave number (also called the propagation constant).
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For plane waves, particle velocity, particle acceleration and acoustic (ultrasonic) pressure
are determined, respectively, from

()= 28D,

(18)
a(x,t)= 2t au(x 3 (19)
p(x,t)=—pc? —ai(x’—t), (20)

ot

where Eq. 20 is determined by combining the Equation of State and the Continuity Equation

to yield p= poczs. All first-order plane wave ultrasonic amplitude quantities are directly
proportional to each other. These quantities are

4] s}
s o @ opc,

where U, A, and p, are the particle velocity amplitude, particle acceleration amplitude
and acoustic (ultrasonic) pressure amplitude, respectively.

For the lossy wave equation, the medium’s attenuation coefficient is part of the solution
wherein

& (x, t) =& e *Cos (cot — kx), (22)

where A is the attenuation coefficient.

When an ultrasound wave propagates in tissue, a mechanical strain is induced, where
strain refers to the relative change in dimensions or shape of the body that is subjected to
stress. From the second-order contribution to the Momentum Equation, the gradient of P,
VP, a force quantity, is

. Du
F=p— 23
th (23)

where F is a temporal and spatial varying force per volume (in N/m®), the volume being a
fluid element.

Also, ultrasonic wave propagation transports and dissipates energy, and second-order
quantities are proportional to energy. Quantitatively, energy is represented in terms of energy
density (a scalar) and intensity (a vector). For a plane wave propagating in the x direction, the
instantaneous kinetic and potential energies are, respectively,
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2
Eg (x,t)= p—;— , (24)
pZ
E. (x,t)= , 2
PE(Xt) 2007 (25)

where u and p are the respective instantaneous values of particle velocity and acoustic
pressure.

To evaluate the temporal-average energy density, the one-dimensional, harmonically
vatying particle velocity is assumed to be

u(x,t)= U, Cos (ot - kx)+ U, Cos (ot + kx), (26)

where U0p and U are the particle velocity amplitudes for the positive and negative

directed components, respectively, and the one-dimensional, harmonically varying ultrasonic
pressure is

p(x,t)= p,,Cos (ot - kx)+p,,Cos (ot + kx), (27)

where Pop = pCUop and p,, =—pcU_ . Therefore, the average energy density is

(E)= % }E (x,t)dt = g(Uﬁp +UZ). (28)
0

Intensity is an extremely useful ultrasonic quantity that represents a measure of ultrasonic
power flowing (tempofal—averaged rate of flow of energy) at normal incidence to a specified
unit area. The intensity concept is generally applied in connection with a traveling plane
wave. Further, it is a vector quantity but, because the development herein is confined to an
isotropic fluid and to the one-dimensional wave equation, vector notation is not used; the
direction is known. The instantaneous intensity is defined as the dot product of the ultrasonic
pressure and particle velocity but because these two quantities are in phase, the dot product is
pu. Its temporal-averaged representation is given by

T
1= —;— Oj pudt = %(ng -UZ) (29)

2
on?

It should be noted that for a standing wave where Uip = U , the temporal-averaged

intensity (a vector) is zero whereas the temporal-averaged energy density (a scalar) is not.
For a progressive plane ultrasonic wave propagating in only the positive x direction,

2 . 2 2
U, =0, and Eqgs. 28 and 29 become, letting U, =U¢,

and

where (E
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P2 1 ,
EY=-Uf=—- 30
(E)=7Us 2507 D0 (30)
and
I___ESUZ___Lp?-:B.&, 31

2 ° 2pc 2

where (E ) is the temporal-average energy density (in J/m® or N/m®) and I is the temporal-

avergy intensity (in W/m® or, more conventionally in ultrasonic biophysics, W/cm?).
Combining these plane wave results yields

I
Ey=~
(E) = (32)

which is an extremely useful expression in terms of measuring ultrasonic intensity and
ultrasonic power with radiation force techniques.

The temporal-average energy density is equivalent to the radiation force (in N) for a
perfect absorber in that

F ==, (33)

F =—. (34)

For a perfect reflecting surface, the radiation force is twice that of an absorbing target.

If the medium is lossy, and the loss is assumed to be purely absorptive with an absorption
coefficient o, then for a one-dimensional wave propagating in the positive x direction, the
particle velocity (from Egs. 18 and 22) and temporal-average intensity can be described by

u(x,t)z U e ™Sin ((Dt - kx), (35)

I=1e>*, (36)

0

where |, is the intensity at x = 0. From these two expressions, and the temporal-average value

of F (Eq. 23), the temporal-average radiation force on the medium is
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4. ULTRASOUND-INDUCED HEATING

Whenever ultrasonic energy is propagated into an attenuating material such as tissue, the
amplitude of the wave decreases with distance. This attenuation is due to either absorption or
scattering. Absorption is a mechanism that represents that portion of the wave energy that is
converted into heat, and scattering can be thought of as that portion which changes direction.
Because the medium can absorb energy to produce heat, a temperature increase may occur as
long as the rate at which heat is produced is greater than the rate at which the heat is removed
(O’Brien, 1978, 2007; NCRP, 1983 1992, 2002). The thermal mechanism is relatively well
understood because increase in temperature produced by ultrasound can be calculated using
mathematical modeling techniques (Robinson and Lele, 1972; Nyborg, 1975, 1981; Lerner et
al., 1973; Cavicchi and O’Brien, 1984, 1985; Nyborg and Steele, 1983; Nyborg and O’Brien,
1989; Curley, 1993) and has been estimated for a variety of exposure conditions (NCRP,
1983, 1992).

In tissue, at the site where the ultrasonic temporal-average intensity is I, , the average

rate of heat generation per unit volume per unit time is given by the expression (Nyborg,
1981; Cavicchi and O’Brien, 1984)

ES
Q=2al,, = opp , (38)
pcC
where
E
1, =22 (39)
2pc

where o is the ultrasonic amplitude absorption coefficient which increases with increasing
frequency, p and p* are the instantaneous ultrasonic pressure and its complex conjugate,
respectively, p is density and ¢ is sound speed. The product of p and p* is equal to the

ultrasonic pressure amplitude squared, pg , at the specific location in the medium where Qis
determined and can be thought of as a temporal-average quantity.

The temporal-average intensity is not necessarily at the location where it is maximized,
that is, at the spatial peak location. If it were, however, then I, (Eq.39) would be the spatial

peak, temporal peak intensity Igpra » Which would maximize Q for that tissue site. AIUM’s
Statement on Mammalian In Vivo Ultrasonic Biological Effects (Table 3), sometimes referred
to as the 100 mW/cm? Statement, is a generalization about the state-of-affairs with respect to
an intensity-time limit (in terms of Igprs ) below which there have been no independently
confirmed significant biological effects in mammalian tissues (AIUM, 2008).
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Table 3. American Institute of Ultrasound in Medicine Statement on Mammalian In

Vivo Ultrasonic Biological Effects (ATUM, 2008)

Approved November 8, 2008

Information from experiments using laboratory mammals has contributed significantly to
our understanding of ultrasonically induced biological effects and the mechanisms that
are most likely responsible. The following statement summarizes observations relziive to
specific diagnostic ultrasound parameters and indices.

In the low-megahertz frequency range there have been no independently confirmed
adverse biological effects in mammalian tissues exposed in vivo under experimental
ultrasound conditions, as follows:

1. Thermal Mechanisms

a. No effects have been observed for an unfocused beam having free-field spatial-peak
temporal-average (SPTA) intensities* below 100 mW/cm?, or a focused** beam having
intensities below 1 W/cm?, or thermal index values of less than 2.

b. For fetal exposures, no effects have been reported for a temperature increase above the
normal physiologic temperature, AT, when AT <4.5 —1log10 t 0.6 , where t is exposure
time ranging from 1 to 250 minutes, including off time for pulsed exposure (Miller et al.,
2002).

c. For postnatal exposures producing temperature increases of 6°C or less, no effects
have been reported when AT < 6 —logl0t 0.6, including off time for pulsed exposure.
For example, for temperature increases of 6.0°C and 2.0°C, the corresponding limits for
the exposure durations t are 1 and 250 minutes (O’Brien et al., 2008).

d. For postnatal exposures producing temperature increases of 6°C or more, no effects
have been reported when AT < 6 — log10t 0.3 , including off time for pulsed exposure.
For example, for a temperature increase of 9.6°C, the corresponding limit for the
exposure duration is 5 seconds (=0.083 minutes) (O’Brien et al., 2008).

2. Nonthermal Mechanisms

a. In tissues that contain well-defined gas bodies, eg, lung, no effects have been observed
for in situ peak rarefactional pressures below approximately 0.4 MPa or mechanical
index values less than approximately 0.4.

b. In tissues that do not contain well-defined gas bodies, no effects have been reported
for peak rarefactional pressures below approximately 4.0 MPa or mechanical index
values less than approximately 4.0 (Church et al., 2008).

*Free-field SPTA intensity for continuous wave and pulsed exposures.
**Quarter-power (~6-dB) beam width smaller than 4 wavelengths or 4 mm, whichever is less at the

exposure frequency.

For a given I, , the maximum temperature increase AT under the assumption that

no heat is lost by conduction, convection, or any other heat removal processes, is
approximately described by

Q At

AT = , 40
max Ch ( )
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where At is the time duration of exposure and Cy, is the medium’s specific heat. This formula
is valid only for short exposure times; for longer exposure times, heat removal processes
become significant. Nonetheless, as a “ballpark estimate,” using the intensities from the
AIUM Statement in Table 3 of Iy, = 0.1 and 1 W/em? at an ultrasonic frequency of 5 MHz,

from Eq. 38, Q = 0.05 and 0.5 Jem’-s (o = 0.25/cm at 5 MHz). Because the thermal

properties of biological tissue can be approximated by water (Cy, = 4.18 J/cm3-C), the
maximum time rates of change of temperature are

AZ’:*"‘ =0.012 and 0.12°C/s, (41)

which means that for a 1 second exposure, AT _ would be about 0.012 and 0.12 °C. If the

exposure duration were longer than 1 second, the temperature would continue to increase but
at a progressively slower rate, until the rate of heat generation was about the same as the rate
of heat removal.

To estimate the temperature increase from a single pulse for clinical, diagnostic pulse-
echo instrumentation, the local, single pulse intensity of Eq. 38 is considered to be the spatial
peak value averaged over the duration of the pulse, that is, the spatial peak, pulse average
intensity, Igpp, . For typical instrumentation, a maximum value of Iy, may be as high as

500 W/cm®. Thus, the maximum time rate of change of temperature is

Ao _60°cs, (42)
At

but, with a diagnostic pulse duration, At, of approximately 2 us, the maximum temperature
rise, AT, =120 p°C. However, in the case of high-intensity focused ultrasound (HIFU) for

which the spatial peak, pulse average intensity may be 5,000 W/cm? the maximum time rate
of change of temperature is

AT
== =600°C/s, (43)
At

and for a pulse duration that may be as long as 100 ms, AT . = 60°C, thus clearly increasing

the tissue temperature to a level sufficient for ablation.

There have been several studies to calculate the temperature increase in mammalian
tissue from ultrasonic exposure and some of them have shown to compare favorably with
experimental results (Pond, 1968, 1970; Robinson and Lele, 1972; Lerner et al, 1973; NCRP,
1983; Nyborg and Steele, 1983; Cavicchi and O’Brien, 1985: AIUM, 1988, 1993, 2000).
These demonstrate that selected aspects of the theory are reasonably well understood. But
there are still many unanswered concerns in terms of being able to assess in vivo temperature
increase, particularly if the goal is to increase the temperature to, say, 43°C, and then hold that
43°C temperature for a period of time.
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5. THERMAL DOSE CONCEPT

Healthy cellular activity depends upon chemical reactions occurring at the proper
location at the proper rate. The rates of chemical reactions and thus of enzymatic activity are
temperature dependent. The overall effect of temperature on enzymatic activity is described
by the relationship known as the 10° temperature coefficient, or Qi Rule (Hille, 2001). Many
enzymatic reactions have a Qo near 3 which means thai for each 10°C increase in
temperature, enzymatic activity increases by a factor of 3; a more physical description of rate-
dependent temperature effects is the Arrhenius activation energy concept (Henle, 1983;
Sapareto and Dewey, 1984; Dewey, 1994; Dewhirst et al., 2003). An immediate consequence
of a temperature increase is an increase in biochemical reaction rates. However, when the
temperature becomes sufficiently high (i.e., approximately > 45°C), enzymes denature.
Subsequently, enzymatic activity decreases and ultimately ceases, which can have a
significant impact on cell structure and function.

If damage occurs during exposure of tissue(s) to elevated temperature, the extent of
damage will be dependent upon the duration of the exposure as well as on the temperature
increase achieved. Detrimental or hyperthermia effects in vitro are generally noted at
temperatures of 39 to 43°C, if maintained for a sufficient time period; at higher temperatures
(> 44°C) coagulation of proteins can occur. These effects have been documented in
experimental studies of heat-induced cell death in cultures of normal and cancerous cell lines.
The lethal (100% destruction) dose (LDjgo) for HeLa cells exposed to different temperatures
for differing durations has ranged from 41°C for 96-hr duration to 46°C for 30-min duration
(Selawry et al., 1957; Hornback, 1984). These findings are comparable to the time-
temperature relationship to destroy 50% (LD5() of sarcoma-180 tumor cells in mice (Crile,

1961; Hornback, 1984); from 42°C for 2-hr duration to 46°C for 7.5-min duration.

These observations suggest a logarithmic relationship between time and temperature for
death due to a temperature increase. Dickson and Caldwell (1980) have indicated a similar
relationship for time vs temperature for thermal-induced death of tumors and normal animal
and human tissues. Important points addressed in this study are: (1) at 40°C long-duration
exposures (5 to 100 hours) are required for thermal-induced cell death, and (2) at
temperatures appreciably below 40°C there were no irreversible adverse effects detected.

An empirical formula, based on a large number of studies involving the thermotolerance
of cells and tumors, relates the time, t (in min), required to produce an isoeffect (e.g., a given
amount of cell killing) to the time (t;3) which would be required had the exposure occurred at
a reference temperature of 43°C, that is,

t, =tR®D, (44)

where R = 0.5 for T > 43°C and R = 0.25 for T <43°C (Henle, 1983; Sapareto and Dewey,
1984; Dewey, 1994; Dewhirst et al., 2003). Theoretical considerations based on reaction
kinetics (thermodynamic Arrhenius analyses) lead to the prediction that the temperature
dependence of the rate of protein denaturation is determined primarily by the activation
energy. The quantity R is an expression of the relative increase in reaction rate for a 1°C
increase in temperature. The rationale for there being two “R” values is based upon the
empirical determinations of R for a number of biological systems and endpoints (Dewey et
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al., 1977; Sapareto and Dewey, 1984; Dewey, 1994; Dewhirst et al., 2003). In these systems,
R values ranged from 0.4 to 0.8, with 0.5 being the most common value, for temperatures
above 43°C. The few studies performed at temperatures < 43°C indicate that the R value is
approximately one half of the value obtained at the higher temperatures.

By using Eq. 44, the empirical relationship derived by Sapareto and Dewey (1984), an
equivalent t43 can be ascribed to any combination of temperature and exposure duration. It
also follows that any given biological effect due to hyperthermia ¢z+ be characterized by that
ts3 value of the causative exposure. The lowest t;; value giving rise to some effect would be
considered the threshold.

For example, Miller and Ziskin (1989) estimated that the t,; was greater than 1 min for
each teratologic observation in their study (the lowest t43 for any effect was 1.9 min for the
production of exencephaly in the mouse (Webster and Edwards, 1984)). Rearranging Eq. 44,
and assuming that R = 0.25 (for temperatures < 43°C), yields

t=t,,4%D, (45)

Miller and Ziskin (1989) used t4; = 1 min for fetal tissues, that is,

t= 40D (46)

to indicate that there have been no significant, adverse biological effects observed due to
temperature increases less than or equal to the line defined by this equation (see Figure 3); the
applicable exposure duration ranged between 1 and 250 min.

For nonfetal tissues a range of t4; values has been reported. Results for breast (Lyng et
al., 1991) and other tissues (Dewey, 1994) are summarized in Table 4. It should be noted that
some of the data were garnered using animal models, whose baseline temperatures are higher
than 37°C, implying that the temperature increase necessary to achieve a particular thermal
dose would be lower than would be the case with humans (Miller and Dewey, 2003; Herman
and Harris, 2003). Adjustments in the t43 as applicable to humans might have to be made.

More generally,
t =t ,R®D, 47)

where t is the time (in min) corresponding to the threshold for a specific bioeffect which
results from exposure to a temperature T (in °C). Also, R = 0.5 for T > 43°C and R = 0.25 for
T <43°C. This equation explicitly states the relationship between temperature and exposure
duration on the boundary line.
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> systems, Figure 3 shows the temperature-time curves for 4 values of t;3 (see Eq. 47). The lower
\peratur es curve (t;3 = 1 min) represents that estimated for fetal tissues for t > 1 min (Miller and Ziskin,
 value is 1989; AIUM, 2008; Abramowicz et al., 2008; O’Brien et al., 2008). The other three curves,
based on Table 4 145 values (10, 100 and 240 min), represent nonfetal tissues that are less
198.4)’ an , sensitive to tissue damage from temperature. Based on the values in Table 4, the t;3 = 1 min
iration. It plot represents a conservative, tissue nonspecific boundary for assessing thermal safety for
d by that nonfetal exposures for diagnostic ultrasoung =plications.
would be .
Table 4. t4; thermal dose values for various tissues
] min for
n for the Tissue Species t43 (min)
g Eq. 44, muscle, fat pig 240
skin human, rat, mouse 210
esophagus pig 120
45) cartilage rat, mouse 120
breast human 100
bladder dog, rabbit 80
small intestine rat, mouse 40
colon pig, rabbit 30
(46) liver dog, rabbit 30
brain cat, dog 25
d due to _ kidney mouse 20
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Figure 3. Temperature-time curves (for t43°s of 1, 10, 100 and 240 min) plus the following threshold
data (see Table 5): filled-in circle, cat brain; filled-in triangle, rabbit brain; filled-in square, rat brain;
open diamond, rabbit muscle; open circle, dog prostate; open square, BHK cells, dashed line, multiple
tissue thresholds; shaded line, multiple in vitro thresholds. The red t;; = 1 min line denotes a portion of
Miller and Ziskin (1989)’s line for t> 60 s.

For very short exposure times, the hyperthermia literature shows only limited (Borelli et
al., 1990) t4; thermal dose data points for exposure durations of less than 1 min. Two aspects
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of single-burst in vivo threshold lesion studies in brain (Fry et al., 1970; Dunn and Fry, 1971;
Lerner et al., 1973) and liver (Chan and Frizzell, 1977; Frizzell et al., 1977; Frizzell, 1988)
are germane to the thermal dose issue for exposures less than a few seconds. The threshold
lesion curve for cat brain is described by the expression It** = 350 Ws® / cm?over for
exposure durations between 0.3 ms and 300 sec. The threshold lesion curve for cat and rabbit
liver is described by the expression It%° = 440 Ws®S / cm? over for exposure durations

between 3 ms and 35 s. ] is the spatial peak intensity (in W/cm?) and t is exposure duration (in
sec). Thus the first aspect is that liver has a higher threshold than brain, consistent with the t43
thermal dose trend for brain and liver in Table 4. The second aspect is that for the brain
threshold studies, an estimate was made of lesion temperature increase AT, yielding, at 6
MHz, AT/I estimates (interpolated from Fig 4 in Lerner et al., 1973) of 0.086, 0.13 and 0.16
"C-cm*/W for pulse durations of 1, 10 and 100 sec, respectively. Combining these AT/I

estimates with It = 200 Ws®3 /cm?, and assuming a cat core temperature of 39°C

(NCRP, 1992), yields three temperature-time data points (filled in circles on F igure 3; also
see Table 5).
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Figure 4. Basic geometry of a spherical disk of radius ROC (radius of curvature) where z = ROC is the
geometric focus used to calculate the acoustic field. The radius of the spherical disk in the radial, r,
direction is typically denoted by “a”, and the f-number is ROC/2a.

In addition, there have been a number of docments that have reported threshold-based

data for single-burst exposure durations as low as 100 ms (Table 5). These data are
graphically shown in Figure 3.
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Table 5. Temperature-time threshold-based data for various biological materials

Figure 3 symbol | Time (s) | Temp (°C) | Material Reference(s)

Filled-in circle 1 69.1 Cat brain in vivo Lerner et al., 1973

Filled-in circle 10 534 Cat brain in vivo Lerner et al., 1973

Filled-in circle 100 44.6 Cat brain in vivo Lerner et al., 1973

Filled-in circle 1 65 Cat brain in vivo Lele, 1977

Filled-in circle 1.8 64 Cat brain in vivo Lele, 1977

Filled-in circle 2.5 63 Cat brain in vivo Lele, 1977

Filled-in circle 3 65 Cat brain in vivo Lele, 1977

Filled-in triangle | 10 53 Rabbit brain in vivo | Vykhodtseva et al.,

2000
Filled-in triangle | 30 48 Rabbit brain in vivo | McDannold et al.,
2004

Filled-in triangle |- 30 47.8 Rabbit brain in vivo | Chen et al., 2002

Filled-in square 9 60.2 Rat brain in vivo Pond, 1968

Filled-in square 3 63.7 Rat brain in vivo Pond, 1970

Open diamond 30 47.2 Rabbit muscle in McDannold et al.,
vivo 2000

Open diamond 30 47.5 Rabbit muscle in Cheng et al., 2003
Vivo

Open circle 180 51 Dog prostate in vivo | Peters et al., 2000

Open square 1 57 BHK cells in vitro Borelli et al., 1990

Dashed line' 0.1 64.5 Multiple tissue Lele, 1983
thresholds

Dashed line* 770 41.5 Multiple tissue Lele, 1983
thresholds

Shaded line' 60 46.2 Multiple in vitro Henle, 1983
thresholds

Shaded line® 840 42.9 Mutltiple in vitro Henle, 1983
thresholds

'Minimum time value is that reported in the article.
*Maximum time value was truncated to fit the curve.

These data (Figure 3; Table 5) suggest that for hyperthermia radiation planning, the data
base is quite weak and needs considerable attention.

Later on in this book various chapters will deal with specific applications based on the
generation of heat. These include reversible effects for healing (US mediated healing, Chapter
4) and activating heat senstive promoters for remote control of gene expression (MR guided
HIFU: thermal mapping and gene activation, Chapter 11), and irreversible effects for
hemorrhage control (Acoustic hemostasis, Chapter 5) and the destruction of tissue by
coagulative necrosis (US guided HIFU and thermal ablation, chapter 6). The last chapter
(New research directions and novel applications, Chapter 13) will also describe how low
level hyperthermia generated by HIFU exposures can be used for targeted drug delivery
where the heat can deploy drugs from heat sensitive carriers.
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6. NON-CAVITATIONAL AND N ON-THERMAL EFFECTS

The word “effects” has been used in this section heading because such effects have been
identified but the mechanism/mechanisms has/have not been identified.

The ultrasound-induced temporal-average force per volume (Eqgs. 23 and 37) has been
implicated as a mechanism associated with tactile response (Gavrilov et al. 1977a,b; Gavrilov
1984; Magee and Davies, 1993 ; Dalecki et al. 1995), auditory response (Foster and
Wiederhold 1978; Tsirulnikov et al. 1988), increased fetal activity (Arulkumaran et al.,
1991,1996; Saeian et al. 1995; Fatemi et al., 2001), bone repair (Dyson and Brookes, 1983;
Wang et al., 1994; Pilla et al., 1990; Wang et al., 2001), tissue regeneration (Dyson et al.,
1968, 1970), blood stasis (Dyson et al, 1971, 1974; Nyborg, 1989), cardiac changes in frogs
(Dalecki et al., 1993, 1997), movement of detached retinas (Lizzi et al, 1978) and
macroscopic streaming to differentiate between cystic and solid tumors (Stavros and Dennis,
1993; Nightingale et al, 1995). Other than those responses related to macrostreaming
(Nyborg, 1953, 1965), there is a limited association, possibly only speculation, between the
response and radiation force. But, these responses/effects appear to not be caused by bubble
activity. In the last chapter (New research directions and novel applications, Chapter 13),
preliminary evidence will be provided for a proposed novel ultrasound mechanism for
enhancing targeted drug delivery - by improving local tissue permeability - where the effects
are associated with the creation of radiation forces, and especially the relative large
displacements and associated shear that is generated locally in the tissue.

One of the most extensively studied ultrasound-induced biological effects is lung
hemorrhage. However, the mechanism is not clear. While heating resulting from the
absorption of ultrasound can cause tissue injury, heating has been experimentally excluded as
the mechanism responsible for ultrasound-induced lung hemorrhage (Hartman et al., 1992;
Zachary et al., 2006). Also, inertial cavitation has been excluded as the mechanism using an
overpressure procedure (O’Brien et al., 2000), a pulse polarity procedure (Frizzell et al.,
2003) and the injection of contrast agents (Raeman et al., 1997; O’Brien et al., 2004).

7. DELIVERING ULTRASOUND

There are three general thermal-based ultrasonic therapy regimes, viz., physical therapy,
hyperthermia and ablation. Physical therapy devices generally deliver ultrasound as an
unfocused plane wave and ablation devices generally deliver ultrasound as a focused wave.
There are no clinically approved hyperthermia devices, given the continuing scientific
challenges, and therefore the mode by which ultrasound is delivered is yet to be defined for
efficiency.

Textbooks are replete with theory of unfocused plane waves (Beyer and Letcher, 1969;
Skudrzyk, 1971; Pierce, 1981; Kinsler et al., 1982, 2000; Hall, 1987; Kino, 1987; Ensminger,
1988; Blackstock, 2000), particularly fields from a plane piston source under harmonic
(single frequency) conditions. The resultant and idealized field is divided into two regions,
the near or Fresnel region and the far or Fraunhofer region. The distance from the plane
piston source that quantifies the length of the near field is commonly taken at the last axial

maxima that occurs at a’ / \ where a is the source radius. Other distances have also been
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used to designate this distance such as 2a® /A and ma’ / A where the axial intensity begins

to behave as r” (r is the distance from the transducer surface); 7 a® /A is sometimes called

have been
; the Rayleigh Distance. The ultrasonic fields from physical therapy devices typically deliver
has been ultrasonic energy to tissue under the condition that the tissue is in the near field. For example,
 Gavrilov if the piston source radius is 1 cm, at a frequency of 1 MHz (A = 1.5 mm), a’ /A =6.7cm
oster and Q.7.
an et al., Higher acoustic pressure/intensity values are required for ablative ultrasonic therapy. An
es, 1983; example of a spherically focused field (O’Neil, 1949; Stamnes, 1986; Kino, 1987) is useful
on et al., for demonstrating some basic principles. Figure 4 shows the geometry of the spherically
s in frogs focused transducer with the geometric focus occurring at the depth of focus or the distance of
978) and the radius of curvature (ROC). The axial (z direction where r = 0) relative intensity is given
d Dennis, by
streaming
'ween the 2 2
5y bubble I(r=0,z)c (ROC) Sinc? { 2 (ROC - 1) } (48)
pter 13), ; z 2AR0OC\ z
nism for
he effects Sin (nX)
ive large where Sinc (X)= X The lateral (r direction at the focus where z = ROC) relative
T
is lung intensity is given by
from the
cluded as kra §
., 1992; ; 2], (ROC)
using an I(r,z=ROC)x | (49)
1l et al,,
ROC
where J; is the Bessel function of the first kind of order 1 and k is the acoustic wave number.
Even when the medium is assumed to be lossless, as in Eqs. 48 and 49, the reciprocal
therapy, distance parameter in Eq. 48 has a significant influence on where the intensity peaks (Figure
d as an 5a). This is why therapy transducers typically are strongly focused (i. €., f/1). Another benefit
>d wave. of a strongly focused field is that the beam width at the focus is relatively narrow (Fig 5b) for
scientific - - a constant frequency. For a lossless medium, frequency does not have a significant influence
fined for on where the intensity peaks (Figure 5c¢), only on the space occupied by the focus (Fig Sc,d).
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