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CHAPTER 4

THEORETICAL ANALYSIS OF PROPOSED INDICES
As was previously shown in Chapter 1, linear changes in the applied voltage

across the transducer should produce linear changes in the acoustic pressure at the focus

of the transducer provided that the nonlinear effects associated with acoustic propagation

do not significantly alter the wave before it reaches the focus.  Once the nonlinear effects

become significant, linear extrapolation is no longer valid.  In order to determine when

nonlinear effects can no longer be ignored, many people have proposed indicators that

could potentially be used to monitor the level of acoustical nonlinearity in a propagating

wave.

The indices can be grouped into two different categories, absolute indicators of

nonlinearity and relative indicators of nonlinearity.  The relative indicators incorporate

low voltage measurements of the same transducer into the analysis, whereas the absolute

indicators only require information from the present voltage setting.  In this chapter, each

of the indicators are introduced along with their theoretical basis, a discussion on how

they will be determined, and an evaluation of their respective advantages and

disadvantages.

4.1 Absolute Indicators of Nonlinearity

The first type of indicators that will be discussed are the absolute indicators of

nonlinearity.  These are parameters that could ideally assess the amount of nonlinear

distortion present in a wave by only considering the information contained in the current

waveform.  For our problem of determining a reliable indicator of nonlinearity in order to

find the range over which linear extrapolation would be valid, an absolute indicator

would be preferred over a relative indicator because fewer measurements would be

required. The absolute indicators of nonlinearity that will be discussed in this work are
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the asymmetric ratio, Ostrovskii/Sutin’s propagation parameter σs, Bacon’s acoustic

propagation parameter σm, the field sigma σz, the second harmonic ratio, and the absolute

spectral index.  Each of these indices will be defined in the subsequent sections.

4.1.1 Asymmetric ratio

After completing the analysis presented in Chapter 2 on asymmetric distortion, it

would seem that a logical choice for an indicator should reflect the amount of asymmetry

in the waveform.  One quantity that does this is the asymmetric ratio given by

r

c
asym p

p
P =                                                         (4.1)

where pc is the peak compressional pressure, and pr is the peak rarefractional pressure.

Clearly, this indicator of nonlinearity can be directly obtained from the measured data.

Simply take the ratio of the maximum and minimum values of the waveform.

The simple relationship of the asymmetric ratio to the measured data is its

principle advantage.  Another possible advantage would be its theoretical relationship to

the error in linear extrapolation.  As will be shown in the next section, the asymmetric

ratio can be used to obtain σs, which in turn is directly related to the extrapolation error.

Because these relationships are all derived assuming Ostrovskii/Sutin’s method as

described in Chapter 2 is accurate, the exact relationships will not be derived until

Section 4.1.2.  Also, if Ostrovskii/Sutin’s theory were not valid, then the asymmetric

ratio’s relationship to the error would no longer be valid.

As far as disadvantage, the only one that will be discussed in this thesis is its

sensitivity to the initial symmetry in the waveform.  If the waveform generated by the

source were highly asymmetric, then the asymmetric ratio would no longer reflect the

asymmetry generated by nonlinear propagation. For example, if the asymmetric ratio at

the source was greater than one, then this indicator would reflect more nonlinearity then

was actually present unnecessarily reducing the range over which linear extrapolation

could be performed.  Likewise, if the asymmetric ratio at the source was less than one,

the indicator would show less nonlinearity then was actually present exaggerating the true

range of linear extrapolation.  In either case, the asymmetric ratio would fail in its

intended purpose.
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4.1.2 Ostrovskii/Sutin’s propagation parameter σs

The amount of asymmetric distortion in a waveform can also be described by

Ostrovskii/Sutin’s propagation parameter σs.  The larger the value of σs, the more

nonlinear the waveform.  Because σs was already derived in Chapter 2, we shall only

elaborate on the connection between σs and errors in the linearly extrapolated waveform

in this section.  In Equation (2.8), σs was defined as
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Before proceeding with our evaluation of σs, we need to discuss how σs will be

determined.  Ideally, σs could be found from Equation (4.2).  Unfortunately, the initial

source pressure, po, is not known because the measurement is to be made at the focus.

Therefore, it is necessary to modify Equation (4.2) to remove the dependence on po.

Recall that the peak compressional and rarefractional pressures according to the

Ostrovskii/Sutin method are given by Equation (2.12) and repeated in Equation (4.3) for

convenience:
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Notice that the dependence on po can be removed by substituting the value of σs given by

Equation (4.2) into one of the pressure equations given by (4.3) and then solving for po.

Since the rarefractional pressure will be effected less by nonlinear absorption, the second

equation will be selected when solving for po.
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Substituting this value for po back into Equation (4.2) yields



29

( )










−





 ⋅







=

o
r

o
r

s

R
F

pc

R
Fp

ln
sin

2

ln

2 β
π

ααρ

β
σ                                  (4.5)

Notice that Equation (4.5) depends on the density ρ, sound speed c, and nonlinearity β,

the peak rarefractional pressure at the focus pr, the focal length of the transducer F, and

the boundary location of the two regions of propagation Ro.  Except for Ro, all of these

parameters are easy to determine.  There is some uncertainty in the value of Ro because it

is difficult to define quantitatively, as was discussed in Chapter 2. For this thesis, the

value of Ro selected for the purpose of evaluating σs was the rf defined in Chapter 2.  Of

course a different value of Ro may yield different performance.

Another method for determining σs that avoids the problem of uncertainty in Ro is

based on the asymmetric ratio defined in Equation (4.1) in the previous section. If the

values for pc and pr found by the Ostrovskii/Sutin method given in Equation (4.3) are

substituted into this ratio, then the following simple relation for determining σs presents

itself:
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Notice that using this equation σs, can be determined directly from a measurement

without making any assumptions on the values of the other parameters.  Because we

know σs can be determined from the pressure waveform at the focus, we can now

perform a qualitative evaluation of its use as an indicator for nonlinearity.

The first step in evaluating σs is to determine how it compares to our ability to

perform linear extrapolation.  For the purpose of this analysis, we shall assume that the

Ostrovskii/Sutin method for determining the pressure waveform at the focus of a

transducer is sufficiently accurate.   Notice that in each of the equations given in (4.3),

the pressure consists of a linear portion divided by sσ±1 .  Therefore, the error between

the “true” values of peak compressional pc and peak rarefractional pressures pr, as

predicted by Ostrovskii/Sutin, and our linearly extrapolated value should vary with σs as
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Likewise, the error in the peak average pressure (i.e., ( ) 2/ppp rcavg += ) should vary

with σs as
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As an aside, the error in the peak average pressure would be the same as the error in the

peak-peak pressure if this later parameter were of importance for the measurement.  From

Equations (4.7) and (4.8), it is clear that “ideally” there is a simple relationship between

the value of σs and the expected errors in the linear extrapolation.  However, this simple

relationship may degrade if the Ostrovskii/Sutin method is not sufficiently accurate. 

At this point, we can make some general observations on the advantages and

disadvantages of σs as an indicator of nonlinearity.  The main advantage of σs is that it

“ideally” has a simple relationship to the expected error in the linear extrapolation.  It

also can be determined directly from a simple measurement as given in Equation (4.6).

However, it also suffers from several disadvantages.  Namely, it is only quantitatively

meaningful if Ostrovskii/Sutin’s theory is accurate.  Once their theory breaks down, σs

loses its significance.  Another disadvantage is that if σs is determined by Equation (4.6)

it may be biased by asymmetries present in the source waveform as was discussed in the

previous section.  Using Equation (4.5) to determine σs avoids this biasing; however, as

was mentioned before, the Ro in this equation is difficult to determine analytically.

4.1.3 Bacon’s propagation parameter σm

The next absolute nonlinear indicator that will be discussed is Bacon’s acoustic

propagation parameter σm [Bacon, 1984].  The goal of Bacon’s analysis was very similar

to our present analysis in that he wanted to determine the amount of nonlinearity in a

converging sound wave based on a pressure measurement at the focus.  Bacon bases his

work on the analysis of a planar transducer done Fenlon and Kesner in 1976 who in turn
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based their work on equations derived by Kuznetsov in 1971 [Bacon, 1984].  In their

work, Fenlon and Kesner determined the fields produced along the beam axis of a planer

source at the origin assuming a Gaussian distribution across its surface and neglecting the

effect of variations in the off-axis fields  [Bacon, 1984].  Bacon then applied these ideas

to a focused source by treating the focus as a virtual planar Gaussian radiator and then

back propagating the waves to the transducer surface using the expressions developed by

Fenlon and Kesner in 1976 [Bacon, 1984].   Before proceeding with Bacon’s analysis, it

is important to emphasis that by neglecting the off-axis field variations, Bacon has

removed all asymmetric distortion from his theory. This approximation places a severe

limitation on the applicability of Bacon’s final expressions for the field.

Using these ideas, and assuming sinusoidal propagation, Bacon showed that the

pressure field along the beam axis of the transducer after appropriate substitutions could

be described by
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where r is the distance along the beam axis of the transducer, F is the focal length, σo is

the nonlinear propagation parameter given by,

3c
rp oo

o ρ
βωσ =                                                     (4.10)

and R is a normalized distance from the focus given by

or
FrR −=                                                        (4.11)

Furthermore, po is the pressure at the focus linearly extrapolated from the expected value

at low amplitudes (i.e., nonlinear effects neglected), and ro is a characteristic distance

given by

λ
π 2a

ro =                                                        (4.12)
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where a is the radius of the beam in the focal plane determined for a low amplitude

setting.  As an aside, Bacon [1984] never explicitly defined his beam radius, but it seems

that a was intended to be the radial distance at which the pressure amplitude has decayed

by e-1.  Taking this to be the definition and applying the field equations provided by

[Kino, 1987], the value of a should theoretically be given by

a = 0.8224λ(f/#)                                              (4.13)

where f/# is the focal length of the transducer divided by its diameter, and λ is the

wavelength.

Before proceeding with the analysis to obtain an expression for the pressure at the

focus, Bacon [1984] defines a transducer gain G to provide insight into some of the terms

in Equation (4.9).  Notice that in the absence of nonlinear effects, the ratio of the pressure

at the focus (R = 0) to the pressure at center of the transducer ( )orFR −=  is given by
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which Bacon [1984] then defines as the gain of the transducer.  More will be said about

this gain parameter later in this section.  Substituting Equation (4.14) into Equation (4.9)

and solving for the field at the focus (R = 0) yields
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At this point in his analysis, Bacon makes a series of approximations to obtain an

expression for the amplitude of the pressure wave at the focus of the transducer.  Recall,

that po in the above expressions is the pressure at the focus in the absence of nonlinear

effects.  Unfortunately, this quantity cannot be measured.  Therefore, the first step is to

determine the value of the peak pressure amplitude with nonlinear propagation included.

In order to do this, Bacon [1984] states the following false relation without proof or any

justifying argument:
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where pm is the peak pressure amplitude at the focus and
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( )1ln 2 −+= GGoσσ                                             (4.17)

Based on Equation (4.16), Bacon defines a new propagation parameter σm to evaluate the

amount of nonlinearity in the acoustic signal given by
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Now that the theoretical basis for Bacon’s [1984] propagation parameter, σm, has

been summarized, the next step in evaluating its use as an indicator for nonlinearity is to

discuss how it can be determined from measured pressure data at the focus of a

transducer.  Recall that all of Bacon’s analysis neglected the off-axis field variations that

would produce asymmetric distortion in the waveform.  As a result, there is some

uncertainty in pm, the peak pressure amplitude at the focus.  One could use the peak

compressional pressure pc, the peak rarefractional pressure pr, or the average peak

pressure ( ) 2rcavg ppp += , as was proposed by Bacon [1984].  All of these pressure

values would be different.  However, since the average peak pressure is not as effected by

asymmetric distortion, pavg should be the closest to the pm intended by Bacon’s theory.

Traditionally, the only other parameters required by Equation (4.18) that posses

some uncertainty is the gain of the transducer G.  In Bacon’s [1984] derivation, G was the

ratio of the amplitude at the focus to the amplitude of the intersection of the beam axis

with the transducer surface.  Unfortunately, this value cannot be measured explicitly.

Bacon attempts to provide a method for determining G by stating that the ratio of the

aperture area of the transducer to the area of the beam at the focus should be G2.  One

problem is that although the aperture area of the transducer is clearly defined, the area of

the beam at the focus difficult to define quantitatively.  Bacon says to use the area over

which the pressure amplitude of the pulse is greater than e-1 times the value at the focus.

Unfortunately, in order to obtain an accurate value for G using this definition, the

aperture area of the transducer should also be scaled to correspond to the area over which
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the pressure amplitude of the pulse is greater than e-1 times the value at the intersection

point in the plane of the transducer. Bacon does not do this in his analysis.  As a result,

Bacon’s method for determining G will always overestimate the true G value for the

transducer.  Also, the scaling factor for the aperture area of the transducer can only be

determined analytically similar to how a was found in Equation (4.13).  Therefore, there

is nothing to be gained by performing the area measurement, and in our analysis, G will

simply be calculated by solving for the necessary variables in (4.12), (4.13), and (4.14),

yielding
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In our work with pulsed fields, we used the wavelength corresponding to the maximum

frequency of the acoustic pulse at the focus for λ.

Now that we have discussed how σm will be determined, we can evaluate its

quantitative relationship to our ability to perform linear extrapolation.  Since Bacon’s

[1984] theory neglects asymmetric distortion, only the error in the peak average pressure

can be predicted.  Substituting σm back into Equation (4.16) and solving for the error

yields,
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Notice that just like in the case of Ostrovskii/Sutin’s propagation parameter, σs, there

ideally exists a simple relationship between σm and the linear extrapolation error.

However, it is not clear how this relation will be effected by asymmetric distortion.

At this point, we can summarize some of the advantages and disadvantages of σm

as an indicator of nonlinearity.  First of all, σm has traditionally been used as a nonlinear

indicator.  As a result, it has the advantage of being already accepted by the technical

community.  Secondly, σm has the advantage of a simple relationship to the expected

error in linear extrapolation at least for the case of determining the average pressure.

Unfortunately, σm also suffers from its neglecting of pulse asymmetry resulting in a

difficulty in determining the proper choice for pm, as well as some uncertainty as to how
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well σm will correspond to linear extrapolation errors in pc and pr.  Furthermore, σm

depends on the transducer gain G, a parameter that is difficult to determine quantitatively.

However, both pm and G can be defined as was done in this section if consistency is

enforced in Bacon’s derivations.

4.1.4 Field sigma σz

As was mentioned in the previous section on Bacon’s propagation parameter σm,

one of the disadvantages of σm is its dependence on the transducer gain G.  In an effort to

avoid this disadvantage some have proposed a modified absolute indicator of

nonlinearity, denoted σz, where the G dependence has been ignored:

3c
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Notice that Equation (4.21) is the same as the final formula in Equation (4.18) for σm

with the G terms removed.  This oversimplification of σm places the entire basis for σz in

a rather precarious position.  It would seem highly unlikely for σz to properly reflect the

amount of nonlinear distortion in a waveform for all possible transducer gains.

Furthermore, σz lacks any sort of relationship to the expected error in linear extrapolation

since it is not based on any formal derivation.  However, due to its simplicity and the fact

that blatant errors do not always drastically change the final result in engineering, σz will

still be considered as a possible nonlinear indicator.  Of course, σz would still have all of

the disadvantages of σm in addition to the problems introduced by the oversimplification.

4.1.5 Second harmonic ratio

For the previous proposed indices, the amount of nonlinearity in the waveform at

the focus was determined based on pressure measurements made of the time domain

waveform.  However, nonlinear propagation also alters the frequency spectrum of the

wave.  As was mentioned in Chapter 3 on nonlinear absorption as well as in other

references [e.g., Hamilton and Blackstock, 1998; Naugolnykh and Ostrovsky, 1998;

Pierce, 1991], as a wave propagates in a nonlinear medium, energy will be transferred

out of the fundamental frequency and into the higher harmonics.  Therefore, a possible
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measure for the amount of nonlinearity in a wave should capture this change in the

spectrum.  One indicator that does this is the second harmonic ratio given by
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( ) ( ))t(pFFTP =ω                                                 (4.23)

In these equations, p(t) is the time domain pressure waveform at the focus, ω1 is the

principle frequency of the sound pulse, and ω2 corresponds to the peak in the spectrum at

approximately 2ω1 as illustrated by Figure 4.1.  Notice that in these plots, ω2 is not

exactly 2ω1.  This can be attributed to higher attenuation at the higher frequencies

[Pierce, 1991].

Figure 4.1: Typical frequency spectrum at the focus of a spherically focused transducer
under two different drive conditions.

Due to its basis, the second harmonic ratio has many advantages.  First, HII has

the advantage of being directly obtainable from the measured data.  There is no additional

dependence on estimated parameters like the transducer gain, G, and region boundary, Ro,

nor is there any dependence on an approximate field theory as there was for Bacon’s

propagation parameter σm and Ostrovskii/Sutin’s propagation parameter σs, respectively.

In this sense, the second harmonic ratio is similar to the asymmetric ratio presented in

Section 4.1.1.  However, unlike the asymmetric ratio that could be influenced by the

initial symmetry in the waveform, HII should not be significantly affected by any type of

|P(ω1)| |P(ω1)|

|P(ω2)|

|P(ω2)|
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biasing in the drive conditions.  This is because thickness mode resonator transducers do

not radiate at twice their fundamental frequency.  Also, the current transducers being

developed with modified frequency characteristics for harmonic imaging may be capable

of receiving at the second harmonic frequency, but they are still designed not to radiate at

this frequency since this would degrade the performance of harmonic imaging [Takeuchi

et al., 2001; Shen and Li, 2001].

In terms of disadvantages, there is no quantitative relationship to the expected

error in linear extrapolation since the analysis is conducted in the frequency domain.  It

might be possible to estimate the amount of error by selecting either Ostrovskii/Sutin or

Bacon’s theory, determining how the harmonics would be generated for a pure sinusoidal

signal, and then use these estimates to predict the error, but this entire process would be

cumbersome.  Furthermore, it would take away from the simplicity of HII as a nonlinear

indicator.   Another possible disadvantage evident in Figure 4.1 is that for small drive

conditions, it may be difficult to find the peak corresponding to ω2.  In the worst case, the

computer program would mistakenly find ω2 at the same location as ω1.  However, this

would only be caused by the peak at ω2 reducing to a negligible amount corresponding to

insignificant nonlinear distortion.  Therefore, even in this case, the second harmonic ratio

calculation could be intelligently adapted to avoid numerical errors.

4.1.6 Absolute spectral index

Another possible nonlinear indicator that would reflect the generation of

harmonics by nonlinear propagation is the absolute spectral index.  The absolute spectral

index is defined as
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where, once again, P(ω) is the Fourier transform of the pressure waveform at the focus.

The frequency ωa is an arbitrary frequency that is selected in the hope of only including

the frequencies generated by nonlinear propagation in the numerator integral of the

equation.  For our analysis, we considered two possible choices for ωa: 2ω1 and 1.5ω1,
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where ω1 is the location of the main frequency peak as described in Figure 4.1.  Ideally,

the si would be zero in the absence of nonlinear effects, and then grow as higher

harmonics were generated by nonlinear propagation.

In terms of advantages and disadvantages, the absolute spectral index is similar to

the second harmonic ratio.  Like HII, the si has the advantage of being directly

measurable, once ωa has been selected, and does not depend on an approximate field

theory.  It also shares the disadvantage of no quantitative relationship to the expected

error in linear extrapolation.  However, unlike the second harmonic ratio, the absolute

spectral index is not immune to biasing in the drive conditions.  For example, different

transducers will have different bandwidths and will be driven by pulses with varying

duration.  As the bandwidth and pulse duration of the generated acoustical signal varies,

the frequency content above ωa will also change.  The variation may be small, but it

would still influence the calculated value of si causing the measured waveform to appear

more or less nonlinear and corrupting the use of si as a guideline for linear extrapolation.

Another disadvantage of the absolute spectral index not shared by the second harmonic

ratio that was alluded to earlier is the necessity to choose an arbitrary ωa.  Since ωa is

arbitrary, the performance of the si may vary for different choices of ωa.  This variability

introduces some uncertainty in the evaluation of si as an indicator for nonlinearity

because it is not possible to test every possible value of ωa.

4.2 Relative Indicators of Nonlinearity

In Section 4.1, some absolute indicators for nonlinearity were discussed.

However, it may not be possible to quantify the amount of nonlinearity present in a

waveform based on the current waveform alone.  Therefore, in this section two indicators

are proposed that also bring in information from a low voltage measurement at the focus.

These indicators are the relative spectral index and the relative focal pressure.  Relative

indicators have the advantage that they are immune to any biasing by the initial pulse

shape, but this comes at the expense of increasing the number of measurements required.

In our analysis, the low voltage measurement was always taken to be the lowest voltage

measurement for a particular data set.
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4.2.1 Relative spectral index

The relative spectral index, as the name implies, attempts to reflect changes in the

spectrum of the acoustical signal. The relative spectral index is given by
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where Gv is an amplification factor expressing the difference in the drive conditions

between the low voltage reference pressure, Plow, and the current focal pressure, Pcurrent.

Gv would be the same factor selected to perform linear extrapolation.  Unlike the second

harmonic ratio and the absolute spectral index which focus on the generation of higher

harmonics, the relative spectral index has the luxury of capturing all changes in the

spectrum including the generation of sub-harmonics [Hamilton and Blackstock, 1998]

and the nonlinear absorption that was discussed in Chapter 3.  Some other advantages of

the rsi include the fact that it is directly measurable from the acoustical signals/drive

voltages and there is no need to define an ωa, as was done for the case of the absolute

spectral index.

Along with its theoretical advantages, the relative spectral index also has several

disadvantages.  First, since the calculation is done in the frequency domain, there is no

quantitative relationship to the expected error in linear extrapolation.  Another

disadvantage of the rsi is that changes in the time domain may not translate to consistent

changes in the frequency domain.  Although the other frequency-based indicators would

be susceptible to this, the rsi would experience the greatest sensitivity since it captures all

changes in the spectrum.

4.2.2 Relative focal pressure

The last nonlinear indicator that will be evaluated in this thesis is the relative focal

pressure.  The goal of the relative focal pressure is to directly use the error in the linear

extrapolation as an indicator for the nonlinearity.  To this end, we selected the following

expressions corresponding to the error in the compressional pc, rarefractional pr, and

average pavg peak pressures, respectively.
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In this equation, current.p  refers to the value for the current waveform, low.p is the value of

the reference waveform, and Gv is the voltage-based gain factor to be used in the linear

extrapolation.  Clearly, the relative focal pressure is based on a simple theory and is

explicitly measurable.  However, in order to be valid, the error in the linear extrapolation

must be a monotonic function.  If the extrapolation error does not always increase with

increasing drive voltage, then the relative focal pressure would not always reflect the true

amount of nonlinearity present in the waveform.


