APPENDIX A: POISSON'S THEOREM

This appendix contains a brief discussion of Poisson's theorem. The theorem is stated and then proved. The statement and proof of the theorem are adapted from Pierce [1991]. This theorem can be easily applied to finding the pressure field at the focus of a spherically converging wave.

Statement of Theorem

Let $p(\vec{x}, t)$ satisfy the wave equation for some region $\vec{x} \in \mathfrak{R}^{3}$.

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) p(\vec{x}, t)=0 \tag{A.1}
\end{equation*}
$$

Also, let \vec{x}_{o} be any point in this region. Define a sphere of radius R centered at the point \vec{x}_{o} where R is chosen such that the medium is homogeneous inside of the sphere from some time $t_{o}-R / c$ to time t_{o}. Also, define $\bar{p}\left(\vec{x}_{o}, R, t\right)$ be the spherical mean of $p\left(\vec{x}_{o}+\vec{n} R, t\right)$ over the spherical surface given by,

$$
\begin{equation*}
\bar{p}\left(\vec{x}_{o}, R, t\right)=\frac{1}{4 \pi \cdot R^{2}} \iint p\left(\vec{x}_{o}+\vec{n} R, t\right) d S \tag{A.2}
\end{equation*}
$$

where \vec{n} is the surface's outward unit normal. Then $p\left(\vec{x}_{o}, t_{o}\right)$ is given by,

$$
\begin{equation*}
p\left(\vec{x}_{o}, t_{o}\right)=\left[\left(\frac{\partial}{\partial R}+\frac{1}{c} \frac{\partial}{\partial t}\right) R \cdot \bar{p}\left(\vec{x}_{o}, R, t\right)\right]_{t=t_{o}-R / c} \tag{A.3}
\end{equation*}
$$

Proof of Theorem:

The theorem shall be proved by operating in spherical coordinates and selecting \vec{x}_{o} to be the origin $(0,0,0)$. Begin by calculating the spherical mean for the full wave equation,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left(\frac{1}{4 \pi \cdot R^{2}} \int_{0}^{2 \pi \pi-\varepsilon} \int_{\varepsilon}^{\pi}\left(\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) p(\vec{x}, t)\right) R^{2} \sin (\theta) d \theta \cdot d \phi\right)=0 \tag{A.4}
\end{equation*}
$$

In this equation, the R^{2} terms cancel. Furthermore, the ∇^{2} operator in spherical coordinates is given by

$$
\begin{equation*}
\nabla^{2} p=\frac{1}{R} \frac{\partial^{2}}{\partial R^{2}} R p+\frac{1}{R^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial p}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}} p \tag{A.5}
\end{equation*}
$$

Substituting this expression into the above equation and simplifying where possible yields,

Now if we evaluate integrals II and III we get,

$$
\begin{equation*}
I I=\frac{1}{4 \pi} \int_{0}^{2 \pi \theta=\pi} \int_{\theta=0} \frac{1}{R^{2}} d\left(\sin (\theta) \frac{\partial p}{\partial \theta}\right) \cdot d \phi=\frac{1}{2 R^{2}}\left(\sin (\theta) \frac{\partial p}{\partial \theta}\right)_{0}^{\pi}=0 \tag{A.7}
\end{equation*}
$$

because $\sin (\pi)=\sin (0)=0$, and

$$
\begin{align*}
\text { III } & =\lim _{\varepsilon \rightarrow 0}\left(\frac{1}{4 \pi} \int_{\phi=0}^{\phi=2 \pi} \int_{\varepsilon}^{\pi-\varepsilon} \frac{1}{R^{2} \sin (\theta)} d \theta \cdot d\left(\frac{\partial p}{\partial \phi}\right)\right) \tag{A.8}\\
& =\frac{1}{4 \pi \cdot R^{2}}\left(\frac{\partial p}{\partial \phi}\right)_{0}^{2 \pi} \lim _{\varepsilon \rightarrow 0}\left((\ln (\csc (\theta)-\cot (\theta)))_{\varepsilon}^{\pi-\varepsilon}\right)=0
\end{align*}
$$

because $\left(\frac{\partial p}{\partial \phi}\right)_{2 \pi}=\left(\frac{\partial p}{\partial \phi}\right)_{0}$. This means that

$$
\begin{align*}
I=0= & \frac{1}{4 \pi} \int_{0}^{2 \pi \pi} \int_{0}\left(\frac{1}{R} \frac{\partial^{2}}{\partial R^{2}} R p-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} p\right) \sin (\theta) d \theta \cdot d \phi \\
= & \frac{1}{4 \pi}\left(\frac{1}{R} \frac{\partial^{2}}{\partial R^{2}} R\left(\int_{0}^{2 \pi \pi} \int_{0}^{2} p \sin (\theta) d \theta \cdot d \phi\right)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\int_{0}^{2 \pi \pi} \int_{0} p \sin (\theta) d \theta \cdot d \phi\right)\right) \\
= & \frac{1}{R} \frac{\partial^{2}}{\partial R^{2}} R\left(\frac{1}{4 \pi \cdot R^{2}} \int_{0}^{2 \pi \pi} \int_{0}^{2} p R^{2} \sin (\theta) d \theta \cdot d \phi\right) \tag{A.9}\\
& \quad-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{4 \pi \cdot R^{2}} \int_{0}^{2 \pi \pi} \int_{0}^{2 \pi} p R^{2} \sin (\theta) d \theta \cdot d \phi\right) \\
= & \frac{1}{R} \frac{\partial^{2}}{\partial R^{2}} R \bar{p}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \bar{p}=0
\end{align*}
$$

Now define a function $F(R, t)$ by

$$
\begin{equation*}
F(R, t)=\frac{\partial}{\partial R} R \bar{p}+\frac{1}{c} \frac{\partial}{\partial t} R \bar{p} \tag{A.10}
\end{equation*}
$$

and take the derivative of this function with respect to R and t :

$$
\begin{align*}
& \frac{\partial F}{\partial R}=\frac{\partial^{2}}{\partial R^{2}} R \bar{p}+\frac{1}{c} \frac{\partial^{2}}{\partial R \partial t} R \bar{p} \tag{A.11}\\
& \frac{\partial F}{\partial t}=\frac{\partial^{2}}{\partial R \partial t} R \bar{p}+\frac{1}{c} \frac{\partial^{2}}{\partial t^{2}} R \bar{p}
\end{align*}
$$

Now multiply $\frac{\partial F}{\partial t}$ by $-\frac{1}{c}$ and add the result to $\frac{\partial F}{\partial R}$.

$$
\begin{equation*}
\left(\frac{\partial}{\partial R}-\frac{1}{c} \frac{\partial}{\partial t}\right) F(R, t)=\frac{\partial^{2}}{\partial R^{2}} R \bar{p}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} R \bar{p}=R\left(\frac{1}{R} \frac{\partial^{2}}{\partial R^{2}} R \bar{p}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \bar{p}\right)=0 \tag{A.12}
\end{equation*}
$$

This means that $F(R, t)$ has a general solution of the form $F(R, t)=f\left(t+\frac{R}{c}\right)$. The function $f\left(^{*}\right)$ can be found in terms of $p(\vec{x}, t)$ solving for $F(R=0, t)$ as a function of t.

$$
\begin{align*}
F(R=0, t) & =f(t)=\left(\frac{\partial}{\partial R} R \bar{p}+\frac{1}{c} \frac{\partial}{\partial t} R \bar{p}\right)_{R=0} \tag{A.13}\\
& =\bar{p}+R\left(\frac{\partial}{\partial R} \bar{p}+\frac{1}{c} \frac{\partial}{\partial t} \bar{p}\right)=\bar{p}(\overrightarrow{0}, 0, t)=p(\overrightarrow{0}, t)
\end{align*}
$$

This means that

$$
\begin{align*}
F(R, t)=p\left(\overrightarrow{0}, t+\frac{R}{c}\right) & \Rightarrow(F(R, t))_{t=t_{o}-R / c}=p\left(\overrightarrow{0}, t_{o}\right) \\
& \Rightarrow p\left(\overrightarrow{0}, t_{o}\right)=\left(\frac{\partial}{\partial R} R \bar{p}+\frac{1}{c} \frac{\partial}{\partial t} R \bar{p}\right)_{t=t_{o}-R / c} \tag{A.14}
\end{align*}
$$

Since the theorem is true for $\overrightarrow{0}$, it is true for any value of \vec{x}_{o} since a simple coordinate transformation could always be used to place any \vec{x}_{o} at the origin.

