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APPENDIX A:
POISSON’S THEOREM

This appendix contains a brief discussion of Poisson’s theorem.  The theorem is

stated and then proved.  The statement and proof of the theorem are adapted from Pierce

[1991].  This theorem can be easily applied to finding the pressure field at the focus of a

spherically converging wave.

Statement of Theorem
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Also, let ox
r

be any point in this region.  Define a sphere of radius R centered at the point

ox
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 where R is chosen such that the medium is homogeneous inside of the sphere from

some time cRto −  to time ot .  Also, define )t,R,x(p o
r

 be the spherical mean of

),( tRnxp o
rr+ over the spherical surface given by,
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where n
r is the surface’s outward unit normal.  Then )t,x(p oo

r
 is given by,
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Proof of Theorem:

The theorem shall be proved by operating in spherical coordinates and selecting

ox
r

 to be the origin (0,0,0).  Begin by calculating the spherical mean for the full wave

equation,
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In this equation, the 2R  terms cancel.  Furthermore, the 2∇  operator in spherical

coordinates is given by
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Substituting this expression into the above equation and simplifying where possible

yields,
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Now if we evaluate integrals II and III we get,
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because 0)0sin()sin( ==π , and
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Now define a function F(R,t) by
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and take the derivative of this function with respect to R and t:
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Now multiply 
t
F
∂
∂  by 

c
1−  and add the result to 
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This means that F(R,t) has a general solution of the form 
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 solving for F(R=0,t) as a function of t.
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This means that
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Since the theorem is true for 0
r

, it is true for any value of ox
r

since a simple coordinate

transformation could always be used to place any ox
r

 at the origin.


