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ABSTRACT

This thesis examines theoretically the determination of
the desired power deposition pattern for localized
hyperthermic treatment and the potential for providing
precision 1local hyperthermia by wusing ultrasonic phased
arrays. A method for calculating ultrasonic fields and
examples of field patterns produced by square ultrasonic
sources are presented. Temperature distributions are
calculated from power deposition patterns by using a finite
difference solution to the bioheat transfer equation. The
combination of these two methods allows calculation of
temperature distributions produced by a given applicator
design.

The power deposition patterns that are required to
uniformly raise (and maintain) the temperature throughout
the tumor to hyperthermic levels are examined. A method is
discussed which wuses the steady state bioheat transfer
equation and the desired temperature distribution in normal
and tumor tissues to calculaﬁe the desired steady state
power deposition pattern. This approach 1is demonstrated
analytically for half-space, c¢ylindrical, and spherical
tumor models. Transient power deposition patterns are
derived from the time dependent bioheat transfer equation,
and analytical solutions are developed for half-space and
spherical tumor models. A three dimensicnal numerical
method 1is presented which allows calculation of time

dependent power deposition patterns for arbitrarily shaped
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tumors.

A method is discussed which uses the steady state
bicheat = transfer equation and the desired temperature
distributions in normal and tumor tissues to aid in
ferromagnetic seed placement and ultrésonic scan path
determination. Methods for forming the required power
deposition patterns using practical hyperthermia systems are
examined, The design considerations for an ultrasonic
hyperthermia phased array are discussed.

An examination is made of an ultrasonic stacked 1linear
phased array applicator for hyperthermia designed for deep
heating. The power deposition pattern for this applicator
is compared to thét for a fixed focus applicator for a
circular scan path. The high intensity necessary for
generating hyperthermia by scanning a focal region and the
large number of focal locations required to cover a typical
tumor volume 1limit the applicability of phased array focal
scanning. A method is presented for producing enlarged foci
with a -phased array’ S0 that the required number of scan

locations is significantly reduced.
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CHAPTER 1

INTRODUCTION

The application of hyperthermia to cancer therapy was
inspired by observations of the spontaneous regression of
tumors due to fever. This led to the injection of toxins
for artificially inducing a fever, producing hyperthermia of
unpredictable duration and unmeasurable dosage. The
applications of hyperthermia that followed this primative
approach were described by Neymann in 1938 and included:
electric current diathermy at 1 MHz, radiothermy at 10 to
100 MHz, and electromagnetic induction at 12 MHz (Short and
Turner, 1980).

The first therapeutic applications of ultrasound began
around the time of Neymann's report and.were published in
1944 (Horvath, 1944). After a period of enthusiastic growth
in the 1940's for this new cancer therapy, pessimistic
results led to a resolution in 1949 that ultrasound was
unsuitable for cancer therapy and its usage should be
stopped (Florrisson, 1949). However, basic laboratory
studies on the bioceffects of ultrasound continued (Kremkau,
1979).

Laboratory results that suggested sensitivity of tumor
tissue to heat have 1led to a resurgence of interest in
hyperthermia in the last two decades (Kremkau, 1979). The
heat sensitivity was not an intrinsic property of the tumor
tissue, but was due to the prevailing conditions of

nutritional deprivation, chronic hypoxia and low pH found in



the interior of a tumor (Hahn, 1984). Farly hyperthermia
systems provided regional heating so that, with the heat
sensitivity of the tumor tissue, more tumor tissue than
normal tissue would be affected. Results were promising,
but the heat sensitivity alone was not enough to provide a
sufficient difference in the rate of cell death between
normal and tumor tissues:; 1local hyperthermia was proposed
to provide additional selectivity. Local hyperthermia
involves elevation of the tumor temperature above that of
the surrounding normal tissue, so that both the temperature
differential and the heat sensitivity differential cause
additional tumor cell killing.

This thesis examines theoretically the determination of
the desired power deposition patterns and the potential for
providing precision local hyperthermia by using ultrasonic
phased arrays. In Chapter 2, the methods used for
calculating ultrasonic fields and temperature distributions
are described. The wultrasonic field calculation has been
presented previously (Ocheltree, 1984), and is included for
completeness. Additionally, field patterns produced by
Square wultrasonic sources are presented, allowing the
characterization of the field for square hyperthermia
applicators (Underwood, 1986). Temperature distributions
are calculated from power deposition patterns by using a
finite difference solution to the bioheat transfer equation.
The combination of these two methods allows calculation of
temperature distributions produced by a given applicator

design.



Hyperthermia system design has concentrated on
developing configurations that allow control of power
deposition patterns. In Chapters 3 and 4, methods for the
determination of the power deposition pattern‘required to
produce a desired temperature distribution for hyperthermia
treatment are presented, and these results are applied to
general applicator design iQ Chapter 5. In Chapter 3, a
method is discussed which uses the steady state bioheat
transfer equation and the desired or target temperature
-distributions in normal and tumor tissues to calculate the
desired steady state power deposition patterns. This
prospective thermalv dosimetry approach is demonstrated
analytically for three tumor models: an infinite half;space
model, an infinite cylinder model, and a spherical model. A
three dimensional numerical method is demonstrated for two
different tumor geometries.

In Chapter 4, the power deposition patterns that are
required to uniformly raise (and maintain) the temperature
throughout the tumor to hyperthermic 1levels are examined.
The power deposition patterns are derived from the time
dependent bioheat transfer equation. This is demonstrated
analytically for an infinite half-space tumor model and a
spherical tumor model. A three dimensional numerical method
is presented which allows calculation of time dependent
power deposition patterns for arbitrarily shaped tumors.
This method is applied to an example of a spherical tumor.

A method is discussed in Chapter 5 which uses the

steady state biocheat transfer equation and the target



temperature distributions in normal and tumor tissues to aid
in ferromagnetic seed placement and ultrasonic scan path
determination. The results of Chapters 3 and 4 are applied
to general applicator design and utilization.

In Chapter 6, the design considerations for an
ultrasonic hyperthermia phased arréy are discussed. Both
frequency and applicator size are examined in their relation
to such factors as optimum efficiency, gain, and underlying
bone heating. A range of acceptable values for each design
parameter is presented.

In Chapter 7, an examination of an wultrasonic stacked
linear phased array applicator for hyperthermia designed to
heat tumors at depths from 5 to 10 cm is made (Ocheltree et
al.. 1984). The power deposition pattern for this
applicator is compared to that for a fixed focus applicator
for a circular scan path. The power deposition pattern for
the stacked linear phased array shows hot spots that are not
Ccbserved for the mechanically scanned fixed focus
applicator. The overall performance of the stacked 1linear
phased array applicator compared to that of a fixed focus
applicator is summarized.

The high intensity necessary for generating
hyperthermia by scanning a focal region and the large number
of focal locations required to cover a typical tumor volume
limit the applicability of phased array focal scanning. In
Chapter 8, a method is presented for pfo&ucing enlarged foci
with a phased array so that the required number of scan

locations is significantly reduced. Advantages as well as



limitations of this method are discussed.

In Chapter 9, recommendations for future work on
hyperthermia 1linear phased arrays are given, along with
discussion of othér promising designs. The overall
potential of ultrasound phased array hyperthermia is

discussed.



CHAPTER 2
METHODS FOR CALCULATION OF ULTRASONIC FIELDS

AND TEMPERATURE DISTRIBUTIONS

2.1 Sound Field Calculation '

The sound field due to a circular piston vibrating in
an infinite, plane, rigid baffle has been the subject of
many papers and has been well characterized (Zemanek, 1970).
Since a circular piston has only one descriptive dimension,
namely the radius in wavelengths, and axial symmetry is
present, the field for a range of sizes of circular sources
can be presented in a series of field cross-sections. Due
to the availability of calculated fields for circular
pistohs, cne can often characterize the field of a device by
examining published results, and an efficient fielid
calculation routine is not required.

The fields due to rectangular pistons cannot be
characterized as easily since rectangular sources have two
descriptive dimensions, lacking the axial symmetry
characteristic of circular sources (Freedman, 1959).
Complete characterizétion of the field for a source of one
size requires a series of field cross-sections. Therefore,
the task of calculating and presenting the field patterns
for rectangular sources is two degrees more complex than
that of presenting circular piston fields due to the
additional descriptive dimension and the 1lack of radial

symmetry. These additional degrees of complexity make an



efficient field calculation method, such as described below,

very desirable.

2.1.1 Methods

The presence of the plane rigid baffle yields the
following expressién for the sound pressure amplitude, Py,
at a point

o, - l_;)\_cl/ . %-(aﬂ'k)r das (2.1)
S

where the integration is over the complete radiating surface
S, p 1is the density of the medium, ¢ is the phase velocity
of the sound waves, u. is the velocity amplitude of the
piston, A is the wavelength, k is the wave number, o is the
attenuation coefficient, and r is the distance between the
field point and an elemental area of the piston. This
integral is often evaluated by using Huygen's principle and
summing the contribution from closely spaced point sources
representing the radiating surface.

A more efficient approach has been developed that uses
the summation of the contributions of small rectangular
sources to represent the radiating surface (Ocheltree,
1984). This method is implemented by dividing the source
into a number of elements that are too large to be
represented as point sources. The total pressure P, at a
point in the field is then the sum of the pressure

contributed from each element:



s N ]
- Jec - (at+ik)r
P, = 188 un//_?_ da (2.2)
n=1

where N is the number of eleﬁents of size AA = AhAw and 'un
is the'complex surface velocity for element n. The complex
surface velocity u_, is the same for all elements when a
simple rectangular source is considered. For a phased
array, u, is uséd 'to represent the different phase and
magnitude of the velocity on each element of the array. The
center of element n (subelement n in the case of a
‘multielement transducer) is denoted by (xn,yn) to simplify
the analysis that follows. To simplify the integration, a
coordinate system in x, and y, with its origin centered on
an element is defined as shown in Fig. 2.1. Using these

relations in Eg. (2.2) yields

Ah Aw
. N 2 .2 .
- Jec -(a+jk)r
Po A E: ug J//.% dx, dy, (2.3)
n=1 —_A_{i_—éy_
2 2
where
r =\/22+(x—xn_xo)2+(y—yn_yo)2 . (2.4)

Up to this point all expressions for the pressure have been
exact. To find an éxpression for the pressure that is
easily evaluated numerically, suitable approximations and
their regions of applicability are defined.

By chcocosing Ah and Aw to be small, the distance to the
field point is made much greater than the dimensions of the

source and the Fraunhofer approximation can be applied. To
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Polx,y,z)

Figure 2.1. Coordinate system and geometry used for
rectangular radiator method.
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simplify application of the Fraunhofer approximation, we

define the intermediate = wvariables xﬁ = X - Xp and

Yo =Y - ¥Yp- The Fraunhofer approximation takes the
distance from the origin of the element to the poiﬁt of

interest in the field -

R =\/22+(x—xn)2+(y-yn)2

= 2 2 2
R —\/z +x£ Y5 (2.5)

to be large compared to Xq and Yor i.e., R >> Xo and

R >> Yo. Thus,

e-(u+jk)¢%2+(Xﬁ—xo)2+(Yﬁ—yo)z

. 2 2.2
e—(a+3k)\/R T2X X om2YAY TR GtV ] (2.6)

Using the first two terms of a binomial expansion of the

rédical on the right side of Eg. (2.6) yields

e-(a+jk)VQ2+(Xﬁ—xo)2+(Y$—yo)2 =

e—(a+jk)(R—Xﬁxo/R-YAYo/R+Xg/2R+Yg/2R) . (2.7)

For kxg/ZR + kyg/ZR small compared to m, omission of these
terms produces a negligible phase error and gives the

expression
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o (043K W22+ (%)= ) 2+ (¥ 1-yo) 2 =

e~ (at3k) (R-xA%/R-v}vo/R) (2.8)

Substituting this equation into Egq. (2.3), and assuming

1/r 2 1/R and substituting into Eg. (2.3) give

éy_ x'x éﬂ yly
o = ec N u_ - (a+jK)R 2(a+jk)-nR—°. 2 (a+ik)- oo
n=1 : -Aw —-Ah

He

The assumption that e**nXo/R = 1 for Aw > X, > -Aw and the

equivalent condition for Y, are used to reduce the two
integrals in Eqg. (2.9) to Fourier transform expressions

which upon evaluation yield

. N .
_ Jpcaa u -(a+jk)R _. kxp Aw : kyn Ah 2.10
Pq 5 § ?? e 81nc[ 3R sinc| =831 ( )

n=1

Equation (2.10) is a straightforward expression for the
pressure due to a rectangular source, but is only useful if
the approximations used are applicable. The three

assumptions used to derive Egq. (2.10) are that

kxg/ZR + kyg/ZR is small compared to 7w, 1/r £ 1/R, and
e®¥nXo/R = 1, since the maximum values of X, and y, are
Aw/2 and Ah/2, respectively, these conditions can be
expressed as: 1) cos (kAw?/8R + kAh2/8R) = 1, 2) r/R = 1,
and 3) e®(XpAw + yjpAh)/2R z 4

These conditions provide limiﬁations on the sizes of Aw
and Ah that can be wused for computation. The £first
condition provides the limitation on Aw that m >> kAw2/8R.

This condition can be rewritten as R >> Aw2/4k. which is

equivalent to the provision that the field point be in the
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farfield for a source of size Aw. Since z is less than R,
an equivalent condition is z >> Aw2/4x. A constant F can be
defined such that the first condition is given by the

following relation:

— ,
Aw < é_F__Z_ ) (2.11)

The constant F represents the distance from the source to
the field point relative to the distance to the
nearfield-farfield transition for a source of size Aw. The
inequality sign in-Eg. (2.11) has been retained so that Aw
may be chosen to be smaller than the value an equality would
yield, such that the exact area of the source can be
represented. Likewise, a similar relation applies to the
selection of Ah.

The use of Eq. (2.11) for determining Aw and Ah ensures
that the second and third conditions are satisfied. Also,
significant cancellation of errors occurs from one side of
an element to the other side, so that actual errors are less
than would be predicted by a first order approximation and a
second order analysis 1is required to establish an upper
bound on the error.

Equation (2.10) was implemented on a VAX 11/730 with Aw
and Ah as given by Eq. (2.11). The relationship between the
size of the element and z, given by Eg. (2.11), was used to
minimize computation time by reducing the number of elements
as the distance from the array increased. This preserved
the same degree of accuracy for the entire field, but

reduced computation time. Examples o©of the results of
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applying this method of computation to a square source and a

phased array are given in Appendices A and B, respectively.

2.1.2 Results and Discussion

The rectangular radiator method was used to calculate
the acoustic field for a range of sizes of sgquare sources
radiating in a lossless mediﬁm. The fields are 1illustrated
in Figs. 2.2 to 2.8 usiﬁg contour plots of the -3 and -6 dB
levels for a longitudinal section in the x-z (y = 0) plane
(coordinates are given in Fig. 2.1), with the field
normalized at each axial (z) distance. Included with these
results are plots of the normalized axial intensity. Axial
distances were made relative to the nearfield-farfield
transition distance (length of source squared divided by
four times the wavelength) to remove frequency dependence
and to aid in comparison with the results for a circular
source as computed by Zemanek. This normalized field
approaches a 1limiting pattern as the source size becomes
much larger than a wavelength, a behavior observed for a
circular source as well (Zemanek, 1971). As a single cross
section is not completely sufficient to characterize the
field for a square source, a section taken diagonally
(x = y) through a 2 wavelength square source is shown in
Fig. 2.9 to illustrate that the field does not wvary
significantly from the y = 0 section shown in Fig. 2.4.

Sound pressure contours for a circular source, as
produced by Zemanek, are shown in Fig. 2.10. The

differences between the field for a circular source and =&
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Figure 2.10. Sound pressure contours and normalized
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square source is evident. A square source lacks the on-axis
nullé and lateral variation of the field which occurs in the
field of a circular source. Similarities exist in the beam
widths and locations of on-axis minima for similarly sized
circular and square'SOurces. The more uniform behavior of
the square source in the nearfield makes it better suited
for usage as a surface hyperthermia applicator (Underwood et
al., 1987).

The field for a rectangular source of dimensions
suitable for a linear phased array element, one half of a
" wavelength by ten wavelengths, is shown for two
perpendicular sections in Figs. 2.11 and 2.12, with each
contour plot having axial distances relative to the source
dimension in the plane of the field section. Thus, the
axial fields shown in Figs. 2.11(b) and 2.12(b) are actually
the same: the axial distances in each figure are relative
to different nearfield-farfield transition distances. The
similarities of the field sections for this rectangular
source with those for equivalently sized square sources,
Figs. 2.2 and 2.6, respectively, demonstrate the near
independence of the field pattern across each direction of a
rectangular source. Accordingly, the length of a
rectangular source in one direction, e.g., X%, has 1little
effect o¢n the beamwidth produced in the other direction, y.
of the source.

Knowledge of the sound pressure field allows
calculation cof the power deposition, which is the socurce of

heat for raising the temperature of tissues in hyperthermia.
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The power deposition can be calculated from the sound
pressure, assuming the effects of shear wviscosity can be
ignored, using

Qp = apg/pc C(2.12)

(Nyborg, 1981; Cavicchi, 1984). The power deposition
pattern calculated wusing Eg. (2.12) can be used with the
bioheat transfer equation to determine temperature

elevation.

2.2 Finite Difference Solution to Bioheat Transfer Equation

The biocheat transfer equation, a heat conduction
equation with a heat sink term representing the effects of
blood flow, can be used to model tissue for the calculation
of temperature elevation. The time dependent bioheat

transfer equation is given by

- 2
PCAT = KV4T - WoCpT + Qp (2.13)
dt
where p is the tissue density (kg/m3). C is the specific

heat of the tissue (J/kg/©C), K is the thermal conductivity
of the tissue (W/m/©C), T is the difference of the tissue

temperature and the arterial blood temperature (°C), Wb is
the blood perfusion raté (kg/m3/s), Cb is the specific heat
of blood (J/kg/®C), and Qp is the local power deposition
(W/m3). The parameter values are given in Table 2.1 and are

used in all following analyses except where blood perfusion

is varied as indicated in the relevant figures.



Table 2.1. Parameters used for tumor models.

Parameter

‘Thermal conductivity
Arterial blood temperature
Blood perfusion rate
Specific heat of blood
Tissue density

Specific heat of tissue
Desired tumor temperature

. Duration .of initial
heating phase

Sound amplitude
absorbtion coefficient

Variable

K

W

C

b

b

(K., K¢)

(an' Wbt)

27

Value

0.55 W/m/°C

'37.0 °C

1.67 kg/m>/s
4000 J/kg/°C
1070 kg/m>
3500 J/kg/°cC
6.0 °C

360 s

0.1 nep/cm/MHz
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The bioheat transfer eqﬁation can be solved numerically
using finite difference and finite element techniques
(Myers, 1971). Although the finite element method is
particularly well suited to irregular geometries, the
example geometries constructed for this investigatiop do.nbt
require this flexibility. and the more direct finite

difference method will be applied.

2.2.1 Differential Equation Representation

The basis of the finite difference approach is the
representation of derivatives by using differences. The
first derivative of T at point m can be approximated as
ar 1

S| = 78% Tme1 ~ To-1) (2.14)

th point and Ax

where Tm designates the temperature at the m
is the spacing between adjacent points. Likewise, the

second derivative can be approximated as

Cr| _ 1 g
2 - 2

—2Tm+T
dx”Im 20X

) . (2.15)

m-1 m+1

Similar approximétions for the time derivative can be used:
however, the majority of work to follow will concentrate on
maintaining constant hyperthermic temperature 1levels where
the time dependent term is equal to zero.

The steady state bioheat transfer equation is
0 = K¥27 - W CpT + Qp. (2.16)

In one dimension, the del operator represents a second
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derivative, and the bioheat transfer equation can be
approximated as

_ K
0 = —5 (T

- - 2.17
- ey ~ 2Tp * T W.CWT + Qy ( )

m+l) b
which can be solved for the temperaﬁure at node m

3 K 2
T = Ax Qp + Tm + T . {(2.18)

m 2 -1 m+1
2K + Ax Wbe K

A solution in cylindrical coordinates, with no angular
variation, was also used for this study. The temperature at
node (m,n), Tm,n1~where~m denotes the radial coordinate and

n the linear coordinate, is given by

K 2
T = AxTQ + |1 + Ax |T
A S szwbcb [*E‘ P [ 2t } mtl,n
m (2.19)
+ (1 - %?L]Tm—l,n Tt Tm,n+l]’
m

A solution in three dimensions has the same form as the

one dimensional solution

6K + Ax"W, C K

o K 2
Tk,m,n - 2 [éﬁ—Qp + Tk—l,m,n + Tk+l,m,n
b™b

(2.20)

+ +

Tk,m—l,n +'Tk,m-%’—l,n + Tk,m,n-—l Tk,m,n+l]°

Each of these equations characterizes the temperature at a
given point in terms of the temperature at surrounding
points.

These approximations to the differential egquation are
evaluated at each point iteratively, known as the
Gauss-Seidel method, until each new value is within a set
tolerance of the previous value (Myers, 1971). Such direct

iteration is slow in converging. A faster convergence is

obtained by using successive overrelaxation, where each new
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value TH®Y ig obtained by adding weighted values of the
result of the appropriate finite difference equation T€9 to

the old solution TO1d
Thew = yred 4 (1 - w)rold _ (2.21)

where w is the . relaxation factor. Fdr successive
overrelaxation, w takes on a value between 1 and 2, with the
optimum wvalue dependent on the geometry and tissue
parameters. A value of 1.86, determined by Charles A. Cain
to be optimum for his cylindrical geometry model (Cain,
1985), was typically used and provided sufficiently rapid

convergence.

2.2.2 Boundary Condition Representation

A complete solution to the bioheat transfer equation
using finite differences requires a choice of boundary
conditions for the modeled region as well. Boundary
conditions need t§ be chosen at both the skin surface and
the model borders in the body interior. The effect of the
choice of boundary conditions is minimized by modeling a
volume sufficiently larger than the tumor so that the entire
region of significant temperature elevation is within the
model volume. The boundary condition at the skin surface is
most simply modeled by assuming that the skin is bathed with
a fluid maintained at a constant temperature, thus fixing
the skin surface temperature.

Two simple ways of modeling the heat transfer at the

borders of the modeled region within the body are (1) fixing
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the temperature at the normal body core value and (2) fixing
the derivative of the temperature as zero. Fixing the
temperature at the Dboundary is equivalent bto providing
sufficient cooling at the boundary to maintain the boundary
temperature at the fixed value. Setting the derivative of
the temperature to zero at the boundary represents fixing
the heat flow across the boundary to zero, so that all heat
is either conducted through the skin surface or removed
through blood perfusion. The analyses that follow will wuse
.the condition that the derivative of the temperature equals
zero on the boundary. This boundary condition was chosen
since it provides an indication of when a larger model
volume 1is required vby the presence of hyperthermic
temperature levels extending to the model boundary.

Details of the specific models used in this
investigation are provided with the relevant discussions in
succeeding chapters. The programs used for these

calculations are included in Appendices C through F.



32

CHAPTER 3

STEADY STATE POWER DEPOSITION PATTERNS

FOR ‘LOCALIZED HYPERTHERMIA

3.1 Introduction

Localized hyperthermic treatmént of tumors has been
accomplished with both invasive and noninvasive systems.
Invasive technigques include the use of ferromagnetic seeds
(Stauffer et al., 1980; Stauffer et al., 1984) and
interstitial microwave antennas (Taylor, 1980; Strohbehn,
1980; Lyons et al., 1984). Numerous noninvasive applicator
systems have been employed which use several different
modalities including magnetic induction (Oleson, 1984;
Storm et al., 1980), microwaves (Kantor, 1981), and
ultrasound (Marmor et al., 1980; Lele and Parker, 1982;
Corry et al., 1984; Fessenden et al., 1984; Nussbaum et
al., 1986; Hynynen, 1986a). More recent implementations of
these techniques allow more precise control of the power
deposition pattern. To employ fully the increased
flexibility of these systems, it is desirable to determine
the power deposition pattern required to treat a specific
tumor most effectively.

The bioheat transfer equation has Dbeen successfully
applied to the prediction of the temperature elevation
produced by hyperthermia applicators in the presence of
bldod perfusion (Cravalho et al., 1980; Halac et al., 1983;

Dickinson, 1984; Roemer et al., 1984; Strohbehn and
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Roemer, 1984) and its limitations have been discussed (Chen
and Holmes, 1980; Bowman, 1981; Jain, 1983). In general,
‘the time dependent bioheat transfer equation must be used to
determine the change in temperature with time and is
considered in Chapter 4 where the initial heating of tumors
is discussed. Because much of a hyperthermia treatment
period involves the maintenance of a steady temperature, the
steady state heating conditions are evaluated in this
chapter. For this, the biocheat equation can be applied in

its steady state form:
0 = KV2T - W, CpT + Qgs (3.1)

where the superscript‘ss indicates the steady state value,
with wvariables as defined for Eq. (2.13). Parameter values
for the models that follow are given in Table 2.1, except
where bloecd flow 1is varied as indicated in the relevant
figure.

In the application of Egq. (3.1) to comparative thermal
dosimetry, a power deposition pattern is used to calculate
the resultant temperature distribution. This approach works
well for determining the temperature field produced by a
given applicator or scan path, in the case of a scanned
focal region produced by ultrasound or microwaves. However,
such an approach yields no direct information regarding the
pPlacement of interstitial sources, best applicatorvdesign,
or most appropriate scan path to achieve a desired
temperature distribution in a given tumor.

From a clinical perspective, it is preferable to choose
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the desired temperature distribution and use a hyperthermia
applicator to produce that distribution, as nearly as‘
-possible. The first step in the process is the calculation
of the power deposition pattern required to maintain the
target temperature distribution. Then the computed power
deposition pattern can be approximated with a real
applicator and scan path. The calculation of the desired
power deposition pattern should also provide insight into
the designs of more useful applicators and scan paths. A
technique for calculating power deposition patterns from

temperature distributions follows.

3.2 Theory

The one-to-one nature of the relationship between a
power deposition pattern and its associated temperature
distribution makes possible the calculation of temperature
distributions from power deposition patterns and vice versa.
One direction of this one-to-one relationship is well known
and easily observed, i.e., that under steady state
conditions, for a given region and given boundary
conditions, a given power distribution produces a single
temperature distribution, in accordance with the steady
state bioheat transfer equation (Eg. (3.1)). The one-to-one
nature of this transformation in the other direction is
evident when the steady state bioheat transfer equation

(Eq. (3.1)) is rewritten to solve for the applied power:

QF° = -KV2T + WhCp T (3.2)
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Substitution of a given temperature distribution for the
same region into this equation vyields a single power
aistribution. Since a power distribution produces a single
temperature distribution and a temperature distribution is
associated with just one power distribution, the one-to-one
relationship is established.

However, choosing a temperature profile with a large
change in temperatu?e over a very short distance, as is
desirable at the boundary of a tumor, will result in a power
deposition pattern which contains regions of negative power
deposition. This is illustrated in the one dimensional
model of Fig. 3.1(a) where the desired temperature
distribution changes from a constant TO within the tumor to
Zero in a linear fashion over a distance dx. The
corresponding power deposition pattern (Fig. 3.1(b)),
computed wusing the numerical method described in Section
3.3, contains negative power deposition. Since no
noninvasive means to apply cooling (negative power
deposition) exist, it is necessary to apply a constraint
which will 1limit the computed power deposition pattern to
only positive values.

Requiring that Qgs > 0 in Eq. (3.2) yields

2
W CpT > V“T. (3.3)
K
The largest spatial rate of temperature change which
satisfies this constraint is obtained by setting the two

terms of Eg. (3.3) equal, which is equivalent to setting
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Temperature distribution (a) and associated
numerically calculated power deposition pattern
(b) for model consisting of half spaces of
tumor and normal tissues. Nonhomogeneous
perfusion was used for this exzmple.
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Qgs = 0. Thus, by setting Qgs = 0 outside the tumor the
power deposition will be positive everywhere and the spatial
«rate ~of change of temperature will be as large as possible
at the tumor boundary. This approach has been used in all
analyses which follow including the half-space, cylindrical,

and spherical tumor models illustrated in this section.

3.2.1 Half-Space Tumor Model

To illustrate the calculation of the power deposition
distribution from the temperature distribution, an example
'is consideéred which consists of infinite half spaces of
normal and tumor tissues. Since T will be a function of x
only, the bioheat equation is reduced to its one dimensional

form and Eq. (3.1) can be rewritten as

2 ss
a“T _ WpopT , 05° - g, (3.4)
dx2 K K

The objective of this analysis is to determine the power
deposition pattern required to maintain the temperature T of
all points within the tumor, x < 0, to TO and to elevate the
temperature of the normal tissue as little as possible.

For x < 0, the temperature is fixed at Ty, and dzT/dx2
in this region is =zero. Thus, in the tumor region,

Egq. (3.4) reduces to

Ss o
957 = WpeCpTo (3.5)

where the additional subscript t indicates values for tumor

tissue. The value for Wy, can vary within the tumor region;

but as long as T = T_, Eq. (3.5) holds and Qgs can be
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determined analytically.

In the region x > 0, Eg. (3.4) takes the form

2
deT _ W, CpT - o, (3.6)

A
dx _Kn

since the area of. consideration is outside the tumor region
and no heat deposition in normal tissue is desired. The
additional subscript n indicates values for normal tissue.

Taking K,  and W, to be constants, solving Eq. (3.6) for T,

and applying the boundary condition T = TO at x = 0 give

T = Toe™ VWpnCp/Kp x (3.7)

for the temperature in the normal tissue. A c¢ross—-section
of the temperature T in the half-space model is shown in
Fig. 3.2(a).

Knowledge of the complete temperature distribution
allows calculation of the power deposition pattern. The
power deposition within the tumor region was determined in
Eg. (3.5), and since power deposition in normal tissue was
defined to be zero, the only remaining power deposition to
be determined is that at the tumor-normal tissue boundary.
For the power deposition at the infinitely thin boundary to
contribute to heating, it must be in the form of a delta
function. Letting Piz be the strength of the delta function
at the boundary for the steady state solution of the

half-space model, where the subscript hs indicates the

half-space model, the power deposition is given by

Qg% = PREO(xX) + Wy cpTou(-x) (3.8)
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distributions in the half-space tumor model.
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where of{(x) 1s a unit delta function centered on the
tumor-normal tissue boundary and u(-kX) 1is a unit step
“function (1 for x < 0, 0 for x > 0). Substituting Qgs into

0~ to 0" yield

Eg. (3.4) and integrating from x

ss _ _ +

Pps = K dT(x) |07, (3.9)
dx 0~

Evaluating the derivative of T at x = 0 and 07 and

substituting into Egqg. (3.9) give

sSs
Pre = To YWpnCuKn- (3.10)

The complete power deposition pattern required to produce  a
uniform temperature within the tumor half space for this

model is shown in Fig. 3.2(b).

3.2.2 Infinite Cylinder Tumor Model

A model also considered in this study is an infinitely
long cylindrical tumor, which has application in many of the
circularly symmetric bioheat transfer models. The infinite
extent of the tumor limits the applicability of this model
to approximations for the midsection of a c¢cylindrical tumor,
although a complete analytical solution for a finite length
cylinder tumor could be solved using the same method. The
bioheat transfer equation is transformed into cylindrical
coordinates, with the angular and z dependent terms omitted

due to angular symmetry and infinite z extent, to yield

212 2 2088
rédeT N rdT _ Wbcbr T + T Qp = Q. (3.11)

r

dr< dr K K
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In the tumor region, where r < r,, the temperature is
fixed at T, so that the derivatives of T are zero and

"Eg. (3.11) reduces to Eg. (3.5). In normal tissue, where

r > o the power deposition 1s taken as zero, and

_Eg. (3.11) becomes

232 2

dr? dr K,

(3.12)

Equation (3.12) is Bessel's equation of order zero which has

a solution of the form

T = G Jy(j vWpaCp/Kgn ) + H Ng(3 VWonCp/Kp T) (3.13)

where Jy and Ng are zeroth order Bessel functions and G and

H are unknown constants. Rewriting this in terms of real

valued Bessel functions yields
T =G Io (-VanCb/Kn ry + H?Y Ko (1/ancb/Kn r) {3.14)

where IO and Kg are Bessel functions of imaginary arguments

and G' and H' are constants. As r approaches infinity, T
must approach zero, but I, increases without bound;
therefore, the constant G' must be zerc. The constant H'
can be determined by evaluating Eg. (3.14) (with G* = 0) at

the boundary r = r,, where T = T,. Substitution of these

constants into Eqg. (3.14) gives
Ty Kg(r VW Cp/Ky)

T = (3 .15)
Ko (ro VWpnCp/Kp)

for r 2 r,., The temperature distribution for this model is
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sphere, respectively.
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shown in Fig. 3.3(a) as a function of radial distance.

The assumption of a delta function for the power
‘deposition at the tumor-normal tissue boundary in the radiai
direction 1is made, analogous to that assumed for the
half-space tumor model. The strength of the delta function
is taken  as Pgs, where the subscript c¢ indicates the
cylindrical model, and is found to be the difference of the
derivatives of the temperature on each side of the

tumor-normal tissue boundary times the thermal conductivity:

pSS . _ +
Po- = -K dT(r) (3.16)

dr Ty

Evaluating the derivatives in Eg. (3.16) yields

ss _ ST
Pe To VWpnCpKn Kq(rg VW, Cp/Ky)
KO (ro VanCb/Kn)

(3.17)

where K, and K; represent the =zeroth and first order K
Bessel functions, respectively. The strength of the delta
function at the boundary is dependent upon Ty, the radius
for the tumor. The complete power deposition pattern for

the cylindrical geometry is shown in Fig. 3.3(b) as a

function of radial distance.

3,2.3 Spherical Tumor Model

A more realistic analytical example is a spherical
tumor surrounded by an infinitely extended region of
homogeneous normal tissue. Though the normal tissue is
infinite in extent, the model is applicable to most tumors

because heat conduction in the normal tissue is limited to
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less than several centimeters when blood perfusion is
considered. Equation (3.1) may be expressed in spherical
coordinates with the angular dependent terms omitted, since

no angular variation in temperature is desired, to yield

2 ss
a=T + 24T _ WbeT +Q =0

. , (3.18)
dr2 rdr K K

For the tumor region, r < r,, the temperature is fixed

at T, and the derivatives of T in this region are zero. As

in the previous models, the biocheat equation in the tumor
region reduces to Eg. (3.4). As noted previously, Wi is
not required to be constant with respect to r (in fact it

can vary with angular position) for this result to hold.

In the normal region, r > Tor Qp is zero and Eqg. (3.18)

becomes

2
a*T | 2dT _ W, CpT = o, (3.19)
dr* rdr K

n
Equation (3.19) is simplified by defining a new variable

T = S/r which, after substitution and simplification, yields

d”S _ WpnCuS = 0. (3.20)
dr2 Kn

The solution to Eg. (3.20) is

S = A e YWnCh/Xpn T 4 B e YWppCp/Ky ¥ (3.21)

which vields

T = A e YWonCu/Kn r + B e VWpnCh/Kn T, (3.22)
r r
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Since T approaches zero as r approaches infinity, B = 0.
Applying the boundary condition at ry, i.e., T = Ty, the

~szongtant A is evaluated as

A= T r, &"n%/¥n To | (3.23)

to give

TA= Toro eVanCb/Kn (ro - r) (3.24)
r

for r > r,, The complete temperature distribution is shown
in Fig. .3.3.{a) as a function of the radial distance r.

The power deposition required at r = r, can now be
calculated from the temperature distribution, and as before
it is a delta function. The strength of the delta function
Pgs, where the superscript s denotes the spherical model, is
found to be the product of the thermal conductivity and the

difference between the derivatives of the temperature on

each side of the tumor-normal tissue boundary:

PSS _ _ +
Ps = =K dT(r) ry - (3.25)

dr r,

Evaluating Egq. (3.25) yields

PSS = T (WpnCpKy + Kp/To) (3.26)
or

S8 _ SS

PS - Phs + ToKn/roo (3-27)

The complete power depositicn pattern is shown in

Fig. 3.3(b).
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3.2.4vProperties of Models

The strength of the delta function at the tumor
bourdary is a constant for the half-space tumor model, a
quotient of Bessel functions dependent upon tumor radius for
the cylindrical tumor model, and a simple function of tumor
radius for the spherical tumor model. The strength of the
delta function is shown as a function of tumor radius in
Fig. 3.4 for the three tumor models discussed. For 1larger
tumor diameters, the strength approaches a constant value
for all models, which could be used as an approximation for
large tumors.

For the prévious illustrations, Wb and K were chosen as
constants to illustrate the analytical solution. Although
these must be constant in the normal tissue, as stated
previously, they need not be constant within the tumor.
Studies of tumor perfusion have shown that blood flow varies
from near zero in the necrotic core to elevated values in
the advancing front of the tumor (Endrich et al., 1979). 2An

example of this situation is illustrated in Fig. 3.5.

3.3 Methods

In actuality tumors are not exactly spherical and
tissue parameters are not constant, so the analytical
solution presented in the previous section would seldom be
applicable. A three dimensional numerical solution to the
problem has been developed to account for the wvarious

geometries and parameter variations encounteraed in a
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clinical situation.

The temperature distribution required for the numerical
solution was determined by first setting the temperature in
the tumor region to a constant value T, and then calculating
T outside the tumor using a finite difference solution to
the steady state bicheat transfer equation with QSS = 0,
Such a method ensures that the bioheat transfer equation is
satisfied, only positive power deposition is required, and

all tumor temperatures are held at a constant value T The

OO
three dimensional finite difference representation of the

biocheat transfer equation used in this solution is given by

- ' 2 2SS
Tk'm'n = ( K/(GK + Ax Wbe) ) ( A}Ié Qp + Tk—l,m,n + Tk+1,m,n
* Ty ,m-1,n * Tk,m+l,n T Tk, m,n-1 * Tk,m,n+1 ) (3.28)

where k, m, and n are the indices of the point at which the
temperature is being calculated and Ax 1is the distance
between sample points. The associated power deposition
pattern is calculated from the temperature distribution by
inverting Eq. (3.28) to yield

QSs =Z§2( 6Tk, m,n ~ Tk-1,m,n ~ Tk+l,m,n ~ Tk,m-1,n

" Tk,mt1l,n T Tkomen-1 T Tkymen+l )t WpCpTk,m,ne (3-29)
The application of this equation to theoretical temperature
distributions produces an accurate result as confirmed by
comparison to the examples illustrated in the theoretical

discussion (Section 3.2).



50
3.4 Results

The three dimensional numerical solution was applied to
two tumor geometries. The first geometry considered a 4 cm
cubic tumor centered at 6 cm from the skin surface. For
this particular example, tumor and skin temperatures of 43
and 25°C, respectively, were chosen.' Cross-sections of the
complete temperature profile and associated power deposition
pattern, through the center of the tumor, are shown in
Fig. 3.6. The power deposition pattern exhibits the large
maxima near the tumor boundary analogous to those seen in
the analytic models., The constant value evident in the
central region of the tumor is a result of the wuse of a
constant value for Wbt in this example.

The second tumor geometry consisted of a 4 cm diameter
spherical tumor located 6 cm from the body surface.
Figure 3.7 shows cross~sections of the temperature profile
and associated power deposition pattern through the center
of the tumor. The high power depositién on the periphery of
the tumor in Fig. 3.7 represents the delta function in the
theoretical models, and the wvariation in the power
deposition at the periphery is due to the imperfect
repesentation of the spherical boundary in a rectangular
coordinate system. This results in variations in the local
curvature of the tumor boundary and the effective radius of
the tumor, yielding a varying power deposition on the tumor

periphery in accordance with Eq. (3.27).
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3.5 Discussion

Currently, most investigators select a hyperthermia
system and then select placement of sources, initial field
configuration, or initial scen path based on experience and
intuition. For the choice of initial field configuration
and scan path, modifications are made in an iterative manner
based on calculations using the biocheat transfer.equation
prior to treatment, or during treatment based on temperature
feedback. The ultimate goal of this study is to determine
an approach which will allow direct calculation of the
initial treatment configuration based on the desired
temperature profile, tissue thermal properties including
blood perfusion, and hyperthermia system parameters such as
beam size for a scanned ultrasound applicator.

As a first step towards this goal, a three dimensional
numerical method for calculating the optimum power
deposition pattern given the desired tumor temperature was
presented in this chapter. The method can be applied to the
complex tumor geometries which are encountered clinically
and to tumors with nonuniform temperature dependent
perfusion. The other stages of this study deal with
techniques for generating the treatment configuration which
will most nearly produce the desired power deposition
pattern. The analysis considers the effect of such
parameters as the heating of implantable sources, multiple
focus systems, and the beam size and scan path. The results

of these analyses are treated in Chapter 5.
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CHAPTER 4
TIME DEPENDENT POWER DEPOSITION PATTERNS

FOR LOCALIZED HYPERTHERMIA

4.1 Introduction

The application of the steady state bioheat transfer
equation to hyperthermia has been the subject of numerous
theoretical studies (Cravalho et al., 1980; Dickinson,
1984; Roemer et al., 1984; Strohbehn and Roemer, 1984).
The utilization of these studies for actual tumor heating is
limited to the period of time after steady state conditions
have been reached and to other times when a steady state
approximation is applicable. Transient bioheat analysis has
typically been limited to models where the heating was
constant throughout time (Van Den Berg et al., 1983) and the
temperature distributions were allowed to reach steady
state: no additional power deposition was provided at the
. onset of treatment to raise the tumor temperature to
therapeutic levels.

Methods for determining power deposition patterns
reguired to maintain a steady state uniform tumor
temperature were reported in Chapter 3. In this chapter, a
time dependent power deposition pattern which will raise the
tumor temperature to the desired steady state level |is
determined using the time dependent biocheat transfer
equation. This more general solution asymptotically

approaches the steady state solution for large time.
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4,2 Theory

For this investigation, the bioheat transfer equation
is considered in its time dependent form:
pCAT = KV2T - W T + Q. (4.1)
dt
As a preliminary step to an analysis wusing the time
dependent biocheat equation, the applicability of the steady
state solution was examined. This was done by applying the
power deposition pattern required to maintain hyperthermic
temperatures in the steady state case, as given by
Eq. (3.5), and by calculating the temperature rise with
time.
Examining the temperature rise at a point in the tumor
core, so that the effects of the surface delta function are
negligible and the gradient of the temperature can be taken

as zero, Eg. (4.1) reduces to

dT , ptCT _ WpeCpTo

dt oC pC

(4.2)

Equation (4.2) is a first order nonhomogeneous equation with

solution

T =T, (1 - e "btGHt/PC) (4.3)

and time comnstant oC/Wy Cp. Figure 4.1 shows a plot of

temperature versus time for the tumor core with typical
tumor tissue parameters as given in Table 2.1. For this

example, the time required for the temperature tc reach
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Time dependence of tumor core temperature
resulting from application of steady state
power deposition pattern. Heating contribution
from power deposition on the tumor periphery
has been neglected.
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ninety percent of T,, the steady state temperature value, is

22 minutes: a major portion of a hyperthermia session. The
obvious conclusion is that the power deposition pattern
required to maintain the steady state temperature is
insufficiént to raise the tumor temperature to the
therapeutic 1level in a small fraction (for example 10%) of
the hyperthermia session. Therefore a solutiop to the time
dependent biocheat transfer equation must be found involving

a time dependent Qp.

‘The limitations on Qp within the tumor for a transient
solution are: Qp must approach Wy C T, (the steady state
solution) for large time, Qp is non-negative for all time,
and dT/dt is limited by the power that can be supplied by a
practical applicator and by the pain associated with
increasing temperature too rapidly. Considering the limit
on dT/dt and the simplicity which results from having a
constant change of temperature with time within the tumor
for the initial heating phase, a desired temperature-time

relationship was chosen as shown in Fig. 4.2, with To and to

as given in Table 2.1. Defining the function h(t) as

0 for £t < O

h(t) =4t for 0 < t < 1, (4.4)

v
-

1 for t >

the desired time dependent temperature can be expressed as

T(t)

Toh(t/tg) . (4.5)

The rate of temperature increase during the initial heating
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phase is R = T/t (°c/s).

The power deposition required within the tumor to
produce the desired transient temperature rise is evaluated
by substituting Eq. (4.5) into the time dependent biocheat
transfer equation (Egq. (4.1)). Since the tumor temperature
will be raised uniformly, the Laplacian (V2) of the

temperature is set to zero to give

pCRrect(t - to/z) = -WpeCpToh(t/ty) + OF (4.6)
o
where
0 for t < -1/2
rect(t) =<1 for -1/2 < t < 1/2 (4.7)

0 for t > 1/2

and the superscript t indicates the time dependent solution.

Solving for Qp in Eq. (4.6) yields

. (4.8)

QS = W, CpT + pCRrect(t - ty/2
t

o]

Figure 4.3 shows Q; as a function of time for the tumor
parameter values given in Table 2.1 and a range of blood
perfusion rates. From Eq. (4.8) it is seen that Q; has two
terms: the first is equivalent to the steady state solution
(Eq. (3.5)) with T  replaced by T, and the second term 'is
equal to pCR during the initial heating phase and zero
thereafter. 1In this context, the significance of each term

is apparent: WhtCpT serves to maintain the achieved
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elevated temperature by compensating for heat 1loss due to
blood perfusion, while pCR serves to elevate the temperature
at a rate of R degrees per second. The application of
Eg. (4.8) is not limited to spatially invariant Wbt'

The time varying power deposition pattern within the
tumor volume was found to be a function of tissue parameter
values, but independent of tumor geometry. In contrast, the
powér deposition P required on the tumor boundary is a
function of tumor shape. This has been determined
~analytically for two tumor models: an infinite half-space

model and a spherical tumor model.

4.2.1 Half-Space Tumor Model

The first tumor model considered consists of two
infinite half spaces: one of homogeneous normal tissue and
cne of tumor tissue. For such a model, the bioheat equation
is a function of a single coordinate direction x, and can be
simply evaluated to give Eg. (4.8) for the power deposition
in the tumor region, x < 0. As demonstrated in Chapter 3,
the strength of the power deposition delta function at the

tumor boundary for a half-space model is given by

dx x=0

This result was derived for the steady state case, but is
applicable to the time varying case as well. Thus, in order
to determine Pgs' the temperature must be determined for the
normal tissue region for all time so that its spatial

derivative at x = 0% can be evaluated.
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The temperature in the normal tissue region obeys the

time dependent bioheat equation (Eg. (4.1)) with zero power

deposition,
pCAT = K_dT - WG T, : (4.10)
dat "2

subject to the boundary condition
T(X=Olt) = Toh(t/to). (4011)

Assuming that T(x,t) can be expressed as a summation of
separable eigenfunctions of the form v(t)u(x), and using a

separation constant of jwpC for Eg. (4.10) vyield

vit) = eIWE (4.12)

and

u(x) = e (£ + Jglx (4.13)

where

£+ 3g =///ngcb + J46C | (4.14)
n n

Evaluating the square root of Eg. (4.14) so that u(x)

remains finite as x approaches positive infinity gives
w,_C 2 2n2

bn'b w p“C
f=/ /-—-——22+l+l] 4.15

2K WZ CZ j (4.15a)
g = o ///%bncb ///wZchz s 11 (4.15b)

— —2-_-—-2—_ - °
lwl 2K, "onCh
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The general form of the temperature can then be

expressed as the integral over all eigenfunctions:

T(x,t) = J A(w)e-(f+jg)x ejwt dw

-0

(4.16)

where A(w) 1is a constant dependent on the boundary
éonditions. To determine A(W), Eg. (4.16) is evaluated at
x = 0 so that the boundary condition of Eq. (4.11) can be
applied

- L[ 3
T(x=0,t) = 5= f 272 () eI¥* du (4.17)

-0

Equation (4.17) is recognized as the expression of an

inverse Fourier transform, so that
_ 1
A(w) = HF{T(X=0,t)} (4.18)

where F denotes the Fourier transform. Substituting

Eq. (4.11) into Eg. (4.18) yields

1

A(w) = 5= FIT h(t/t )}, (4.19)

or egquivalently,

t T T -t /2
A(w) = %# F{:f EQ rect[ ———E—g—— } d{} (4.20)

o)

-0

The Fourier transform in Eg. (4.20) can be evaluated wusing

transform tables (Stremler, 1977) to vield
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T (4.21)

T wt .
e—JwtO/Z + ?? §(w) .

= — 2  ainl_—2
Alw) = jﬂwzto 51n[ 5

“Substituting this result into Eq. (4.16) and reducing yield

a general expression for T in the region x > 0,

2T o -fx wt t
+ o) e sin o . £ o
TE_ ~7 ——| sinfuw - = - gx| dw.(4.22)

This integral can be computed numerically. The time
dependence of the temperature distribution for a
representative case is shown in Fig. 4.4.

The power deposition delta function' at the tumor
boundary is determined by substituting Eg. (4.22) into

Egq. (4.9) and evaluating to yield

T x
PhS 5 bn™b "n + p— E-l-z— sin _2_9_
o o)

o ) S | P

where the superscript t indicates the time dependent

solution. Comparing this result with Eg. (3.10) gives

w?p?c? . to-
W T + 1 + 1 sinjw{t - 5 (4.24)




DISTANCE X (cm)

o]

65

_l [III!IIII'I'II'Illlllllllllll lllllelll!lllll_
-~
-
== e 43
[~ 5 ]
: ¥ ;
- s
” o~ ]
. < |
- s ]
- O —
b < -
B fe)) -
- M ’
o m —
- m —
g .
_m —
| NI EENEE NS EREE RSN ERE
0] 5 10 I5 20 25

TIME (min)

Figure 4.4. Contour plot of temperature time dependence for
a cross-section of the half-space tumor model,
tumor (x < 0) and normal tissue (x > 0).
Temperatures are given at increments of 0.5°C.



66

Defining d(t,tc,a) as

2
/ %
//mza2 + 1+ 1 sinjuit = 5| | (4.25)

vields
t _ ,ss
Phg = Ppg Qlt,t_,pC/W, C ). _ (4.26)

The function Pﬁs is illustrated in Fig. 4.5 for typical

tumor parameter values and various blood perfusion rates.
The differences between the time dependencies of Qg in the

tumor interior and Pﬁs can be noted by a direct comparison

of Figs. 4.3 and 4.5.

4.2.2 Spherical Tumor Model

The second model considered is a spherical tumor of
radius r, surrounded by an infinitely extended region of
homogeneous normal tissue. Despite the infinite extent of
the surrounding tissue, the spherical model is applicable to
most tumors because heat conduction in the normal tissue is
limited to several centimeters when blood perfusion is
considered. The temperature and power deposition in the
tumor region, r < r,, are again given by Eg. (4.5) and
Eag. (4.8), respectively. However, the power deposition

delta function at the tumor boundary differs from that for
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Figure 4.5. Time dependence of the strength of the delta

function required at the tumor boundary for the
half-space model, Pp ., for a range of blood
perfusion values.
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the half-space model due to the curvature of the boundary.
As before, derivation of the power deposition delta

“funiction at the tumor boundary requires determination of the

temperature in the normal tissue. Outside the tumor, where

r > r,, there is no power deposition Qp and Egq. (4.1) can be

expressed in spherical coordinates as

n 3r? r r bn~bn" (4.27)

Again, T(x,t) 1is assumed to be expfessible as the summation
of separable eigenfunctions of the form vi(t)ul(r). Using a

separation constant of jwpC gives

vit) = el0t © (4.28)

and

u(r) = ¢~ (£ + Joir (4.29)
r

where f and g are given by Eqg. (4.15). The general form of

the temperature is

T(r,t) = j éé?l o(f + jo)r oJut g

-_C0

Wy (4.30)

which is evaluated at r = r_ for application of the boundary

condition to give

-1 (T 2ma(w) (£ + 3 -
TlEer®) = 7 f N olf TINTo It g, (4.31)

- OO

Equation (4.31) has the form of an inverse Fourier transform
and can be evaluated using the same method as for the

half-space model to yield
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T(r,t) = Toro - ancb :Kn(r - ro)

2% €
+ 2Toro ® 1 e-f(r - ro) sin wto
ntor o w2 2 : (4.32)

t
sin[w[t - 7?} - g(r - rO)] dw,

The time dependence of this distribution for a 2.5 cm radius
tumor model is shown in Fig. 4.6. The temperature falls off
over a shorter distance for the spherical model (Fig. 4.6)
than for the half-space model (Fig. 4.4) because the heat is
conducted outward in all three coordinate directions rather

than in only one.

The strength of the delta function at the tumor

periphery for the spherical mecdel is

ro+ . (4.33)

r—ro

P‘S'j = -K 4T (r, t)
dr

Substituting Egq. (4.32) into Eg. (4.33) and reducing yield

T T K 2T (7 wt
t_ o /W_C K o' n no 1 . 0
P = —2— bn"b n + + JO 'w—-z' Sln[

2 5
s rO ﬂto 2

£ + L i £ - to + to (4.34)
f; sin|w 5 gcos|w|t - > dw.

This can be further reduced and expressed in terms of

previously defined functions as

Pt _ Pt + ToKn
s hs

h(t/to). (4.35)
o

A comparison of the time dependent solution of Eg. (4.35)
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Contour plot of temperature time dependence for
a cross-section of the spherical tumor model
with 2.5 cm tumor radius, tumor (r < 2.5 cm)
and normal tissue (r > 2.5 cm). Temperatures
are given at increments of 0.5°C.
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with the steady state solution of Eqg. (3.27) reveals the

similarities of the dependence on tumor radius of the time
dependent and steady state solutions. The function Pg for a
tumor radius of 2.5 cm is shown in Fig. 4.7 for
representative tumor parameters and various blood perfusion
rates. More power is required on the periphery of the
spherical model (Fig. 4.7) than for the half-space model
(Fig. 4.5) due to the increased heat conducted to the normal

tissue.

4.2.3 Numerical Tumor Model

Applications of the preceding two models are limited to
situations where normal tissue parameters are nearly
constant and the normal-tumor tissue boundary geometry
approaches a spherical shell or a plane. Clearly, a general
numerical method, applicable to arbitrarily shaped tumors,
would be desirable for clinical applications.

The steady state numerical method discussed in Chapter
3 was modified for the calculation of the time dependent
solution. Since the time dependencies of the power
deposition interior to the tumor and the power delta
function at the tumor boundary are different, these regions
are handled separately. For a tumor of arbitrary size and
shape, Eg. (4.8) holds and specifies the power deposition
reguired at each point interior to the tumor as a function
of time. Equation (4.8) 1is wvalid for variable tissue
parameters within the tumor as long as a uniform rate of

temperature rise R is prescribed throughout the tumor. Such
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Figure 4.7. Time dependence of the strength of the delta

function required at the tumor boundary for the

spherical model, P_, for a range of blood
perfusion values. iumor radius is 2.5 cm.
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an application of Eg. (4.8) is equivalent to weighting the
interior steady state solution with h(t/to) and adding an
~amount PCR throughout the tumor during the initial heating
phase.

The time dependent power deposition required on the
tumor boundary for an arbitrarily shaped tumor with variable
tissue properties is related to the steady state numerical
solution. The results represented by Eg. (4.35) can be used
by defining an effective tumor radius Yeeg as the local
curvature of the tumor as represented in the numerical
model. Denoting the numerical time dependent solution by
ng Eg. (4.35) can be rewritten as

t t ToKn

n hs reff

h(t/to). (4.36)

Equation (4.36) has the same form as Eg. (4.35), so the time

dependence of Pg is alsc given by Fig. 4.6 for the case of

Teff = 2.5 cm. The effective tumor radius Teff is chosen at
each point on the tumor boundary so that Eq. (4.36) holds.
Taking the limit of Egq. (4.36) as time approaches infinity

yields the steady state numerical power deposition Pgs

T K (4.37)
pSS _ pSs . O n°
eff

n hs r

Since Pis is known and Pi: can be approximated by using the

local tissue properties, the quotient ToKn/reff can be
determined. Replacing this quotient in Eqg. (4.36) with its

steady state equivalent and using Eg. (4.26) give
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t ss -
P- = PSS h(t/t,) + Ppg (A(t,t,,0C/W Cp ) - hlt/t ). (4.38)

Equation (4.38) holds for constant tissue properties outside
the tumor and is used for approximating Pg for nearly
. constant tissue properties.

The time dependence of the two terms of Eg. (4.38) are
shown in Fig. 4.8. The first term of Eg. (4.38) increases
linearly with time until it reaches the steady state
solution at time t_  where it remains throughout the duration
of the treatment, while the second term increases
exponentially to a 1limit until time tJ when it begins to
decay exponentially to =zero. The first term 1is also
dependent only on the steady state numerical solution,
whereas the second term is dependent on the 1local tissue
properties in the normal tissue for evaluating Pﬁg and
d(t,t,, PC/WppCp). Dependence on the effective tumor radius

eer 1s not explicitly present, but is included in Pis-

4.3 Results

The numerical solution discussed in the previous
section was applied to a spherical tumor model in a three
dimensional rectangular coordinate system. A rectangular
coordinate system was used so that an arbitrary tumor
geometry could be represented, and a spherical model was
chosen for ease of visualization since symmetry assures that
a two dimensional cross-section through the tumor center is
a representative sample. A more complicated tumor geometry

could have been chosen, but a complete set of cross-sections
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delta function strength Pg. Weighting
functions are shown for a range of blocd
perfusion values.
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would have been required to characterize the power
deposition pattern at a particular instant in time.
Likewise; constant tissue parameters were used to simplify
the illustration. |

A steady state numerical solution for a 2 c¢m radius
spherical tumor centered at a depth of 8 cm was presented in
Chapter 3. A cross-section of the power deposition pattern
required to maintain a constant tumor temperature for this
spherical geometry is shown in Fig. 3.7 along with the
resultant temperature distribution. The steady state
numerical solution is used in the determination of the time
dependent solution.

The power deposition from the steady state numerical
solution, Pis, and the steady state half-space solution as
given by Eg. (3.10), ﬁpﬁz, are combined with appropriate
weighting functions ﬁsing Eg. (4.38) to give the time
dependent power deposition at the periphery, Pg, When this
result, Pﬁ, is superimposed with the steady state result Q;S
weighted as given in Eg. (4.8), the complete numerical time
dependent solution is formed. The time dependent power
deposition required for the case of the spherical tumor is
given in Fig. 4.9 for several representative times to
illustrate the progression 6f heating to uniformly raise the

tumor temperature to, and maintain it at, a uniform value.

4.4 Discussion

Results presented here are for the simplified case of
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Figure 4.9. Gray scale plots of a cross-secticn of the
power deposition for a numerically calculated
spherical tumor model sampled every 2 mm with
major divisions indicated every centimeter.
Cross-sections are shown for times of 0, 2, 4,
6, 8, and 10 minutes. The skin surface is
located at the left side of each cross-—-section
and the tumor is centered at a depth of 8 cm.
Corresponding power profiles taken through the
skin surface and tumor center are presented
with each cross-section.
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constant, temperature independent, perfusion, an
oversimplification that yields illustrative results. The
humerical m&thod can be modified to incorporate the
additional complications that arise in practical
applications.

The material presented in this chaptér is useful for
two purposes: to give an understanding of the time
dependent power deposition regquired to achieve and‘ maintain
a uniform therapeutic temperature and to vield a numerical
model that can be adapted to clinical usage. The‘ results
indicate that a more uniform power deposition pattern is
desirable for raising the temperature toc the therapeutic
level, while reduced power deposition within the tumor
relative to that at the periphery of the tumor is more
suitable for maintaining the steady state. Attempting to
raise the temperature by simply elevating the power levels
required to maintain the steady state will cause the
temperature rise within the interior regicn to lag behind
that of the exterior regions of the tumor.

Such a detailed analysis of the power deposition
patterns required to produce desired temperatures within the
tumor provides the insight required to best utilize
precision hyperthermia applicators. The results presented
show that different power deposition patterns are necessary
during the initial heating and the steady state periods of
hyperthermia. Practical applications of these theoretical
results have been considered and are treated in the

following chapter.
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CHAPTER 5
APPLICATOR CONFIGURATIONS AND SCAN PATHS

FOR LOCALIZED HYPERTHERMIA

5.1 Introduction

The first microwave and ultrasound hyperthermia
applicators- were simple devices designed to produce
collimated beams of radiated energy. Later device designs
have included control of several collimated beams, focusing
to allow deep heating, scanning of the focus for precision
hyperthermia, and placement of multiple microwave antennas
or ferromagnetic seeds within the tumor. Despite such
advances in applicator design, the design criteria have
remained basically the same: provide gain for deep heating
and as much control over the radiated field as possible.

Control algorithms are being developed (1) to move a
focus throughout a tumor following a scan path designed to
produce a uniform temperature distribution, (2) to keep the
temperature at a constant elevation throughout the
treatment, and (3) to provide temperature information
throughout the tumor based on a limited number of sample
points. All of these methods have the goal of producing a
uniform temperature throughout the tumor volume for the
duration of the hyperthermia treatment.

In this chapter, more direct approaches towards
obtaining the goal of a uniform temperature by using the

results of Chapters 3 and 4 are examined. Only the steady
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state solution will Dbe considered here for illustrative
purposes. The results, however, are general since the time
dependent solution can be formed from the steady state

results as was shown in Chapter 4.

5.2 Fourier Transform Representation

The concept behind the procedure presented in this
chapter can best be illustrated by first considering the
ideal case of a power deposition pattern basis function that
does not change shape when its position is changed. This
basis function applies to a specific hyperthermia system and
would correspond to the fixed focus of a mechanically
scanned ultrasonic transducer, the electronically scanned
focus of an wultrasound or microwave.phased array, or the
heat generation pattern of an implantable ferromagnetic
seed.

With a basis function that is independent of position,
the power deposition pattern can be represented by the
convolution of the power deposition basis function and the
scan path weighted by the dwell time at each position for
the case of a scanned focus. For ferromagnetic seeds, the
power deposition basis function is convolved with the seed
positions. However, the unknown function in either case is
the scan path with dwell time weightings or the seed
position, depending upon the chosen method of heating. This
function will hereafter be referred to as the conforming

function as it is used toc conform the basis function to
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produce a desired power deposition pattern. Using Q(x,vy,z)
to represent the power deposition for tumor heating (W/m3),
B(x,v,z) to represent the power deposition basis function
(W/m3), and C(x,v,z) to represent the conforming function,

the convolutioﬁ can be expressed as
Q(x,y,2z) = C(x,y,2) * B(x,v,2). (5.1)

Applying a Fourier transform to Eg. (5.1), the

convolution becomes a multiplication in the form
‘Q(u,v,w) = C{u,v,w) ° B{u,v,w), (5.2)

where u, v, and w represent spatial frequencies in the three
coordinate directions. Equation (5.2) can be rearranged to

solve for the conforming function
Clu,v,w) = Q(u,v,w) / Blu,v,w). (5.3)

For the conforming function to be defined everywhere, a zero
must be present in Qf{u,v,w) at every point that a zero is
present in B(u,v,w). Also, Q(x.,v.z) represents the actual
poWer deposition produced by the applicator, not Qp(x,y,z),
which is the power deposition pattern required to produce a
uniform temperature distribution across the tumor. Ideally,
Q({x,v,z) should equal Qp(x,y,z).

A simple illustration of this approach is provided by
the following one dimensional example. From the results of
Chapter 3, Qp(x), the optimum Q(x), can be represented by
two impulse functions of strength P and a rectangle

function:
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Qp = PO(x - xg) + P&(x + xg) + WpCpTorect (x/2x4) (5.4)

where the tumor is centered at x = 0 with width 2xo and

constant blood perfusion W .. The simple analytic Fourier

transform of Eqg. (5.4) is given by

Qp(u) = 2Pcos (xgqu) + 2Wp, CpTysin(xg u) /u (5.5)

as illustrated in Fig. 5.1(a). For the example of a focused
ultrasound beam scanned parallel to the face of the focused
square source (and approximately for that of a focused

circular source), the focal profile is approximately
B(x) = (w sin(2rx/w)/2rx)2 (5.6)

with Fourier transform

B(u) (w/2) A (wu/4m) (5.7)

where A represents the triangular function as shown in
Fig. 5.1(b).

Division of Qp(u) by B{u) would yield the ideal
conforming function only if it were possible to achieve
exactly Q. (u). However, it is evident that it is not
possible to form the required impulse functions (producing
the high frequency content in Qp(u)) by using the finite
width Dbasis function B(x). Also, the indiscriminate use of
Qp(u) in place of Q(u) yields regions of negative values in
the conforming function C(x), which 1is not possible to
achieve physically. Because of these problems, Qp(u) cannot

be wused in place of Q(u), and the lack of a straightforward
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Figure 5.1.

Qp(x) and Qp(u) (a), and B(x) and B(u) (b).
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method to obtain Q(u) from Qp(u) limits the application of a

Fourier transform approach.

However, the differences in Q(u,v,w) and Qp(u,v,w) at
high spatial frequencies are not of practical importance
because the temperatﬁre distribution will be smoothed by
heat conduction. The allowable spatial variation can be
determined by examining the effect of heat source (basis

function) spacing.

5.3 Maximum Allowable Heat Source Spacing

To use the Fourier transform approach, the maximum
allowable spacing between the locations of the heat sources,
or scan locations, must be determined. The maximum
allowable. source spacing 1is determined by two limiting
factors: the temperature reduction which occurs between the
locations and the adequacy of the representation of the

impulse function on the tumor periphery.

5.3.1 One Dimensional Source Spacing

The temperature drop between 1locations of the heat
sources can be determined by applying the bioheat transfer
equation. To illustrate the form of the temperature
dependence between two heat source locations, a one
dimensional solution will be presented. The one dimensional
case represents the situation where there are two planes of
applied heat and the temperature between these planes is of
interest. Considering two planes of applied heat separated

by a distance d, the bioheat egquation has the form
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a®T - W o = 0. (5.8)

&
dx Kn

Designating the high temperature at the planes of heating as

Th' the temperature between the two planes is given by

T =Ty (sinh(VWpCp/Ky x) + sinh( vWyCp/Ky (d-x))) (5.9)
sinh( VWthb7 Kt d)

where one plane is located at x = 0 and the other is located
at x = d. Evaulating this expression at d/2 where the

minimum temperature T, occurs yields

Equation (5.10) can be rearranged to yield an expression for
the separation between the planes of heating, d, in terms of
the maximum and minimum allowable tumor temperatures and the

tissue parameters:

(5.11)
t 1

H

2 -1
s h h
cos
d = \/W] C] 7K| =

Equation (5.11l) can be applied to determine appropriate
scan paths for a mechanically scanned fixed focus ultrasonic
applicator for specified T, and T;. Since the focus of such
an applicator is elongated in the depth direction, scanning
of the beam along two parallel paths or two concentric
circles produces a close approximation to the parallel plane
heat sources as illustrated here. Equation (5.11) can be
used to determine an appropriéte distance between adjacent

scan paths for a given tumor blood perfusion and temperature

tolerance, T, - T,, a relationship shown in Fig. 5.2.
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TEMPERATURE TOLERANCE Ty - T4 (°c)

Contour plot of source spacing d in
centimeters versus blood flow Wbt and
temperature tolerance, T, -T,, for the one
dimensional model. The avetrage of Th and Ty
was fixed at 43°C (with arterial temperaturée

T, = 379C added).
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5.3.2 T™wo Dimensional Source Spacing

The case of line sources of heat forming the sides of a
square (x = 0,d and y = 0,d) can be solved by applicaﬁion of
Eq. (5.10) since the temperature dependence in each
direction has the same form as that for thé one dimensional
case. The low temperature, T;, occurs at the center of the

square (x = 4/2, yv = d4/2) and 'is given by

T, = Ty (sech( W, C, /K¢ as2))2. (5.12)

Likewise the distance between the line sources, d, can be

obtained from Eq. (5.12) as

2 cosh_l .Th %
d = /wbtcb7Kt ﬁ; (5.13)

and 1is illustrated in Fig. 5.3. Equation (5.13) has
application to implanted microwave antennas, which have an
elongated heating pattern such that the sources are usually
placed in a single plane with their major axes perpendicular
to the plane. Similarly, Eg. {(5.13) has applications to
scanned phased array ultrasound where an elongated beam is
placed at discrete locations in a cross—secﬁional prlane of

the tumor.

5.3.3 Source Spacing for Power Deposition Modulation

A possible application of the results from the two
dimensional analysis is to wuse the spacing between focal
locations produced by a scanned ultrasonic source to
modulate the 1local intensity within the tumor. The power

deposition required in the interior of the tumor to maintain
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TEMPERATURE TOLERANCE T, - T, (°c)

Contour plot of source spacing d in
centimeters versus blcod flow Wbt and
temperature tolerance, T, -7y, for the two
dimensional model. The average ¢f T, and T
was fixed at 43°C (with arterial temperature

T, = 37°C added).
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& steady temperature 1is given by Egq. (3.5), which when
multiplied by the square of the maximum allowable distance
between heat source locations gives the power required at

each focal location, Pf (W/m),

Pr = Q as. (5.14)
Substituting the result of Eg. (5.13) yields

P

£ = 4KR.T, (cosh™ I ((Ty /1) 1/ 2)2, (5.15)

Using this approach, the power deposition required at each
focal 1location 1is independent of tissue properties, while

the focal spacing varies with blood perfusion.

5.3.4 Three Dimensional Source Spacing

The minimum spacing for a three dimensional array of

heat sources with a given temperature tolerance, Th - Ty,
can also be calculated using the same approach:
2 -1({({T &
h his
- iR cos .
d W, C./Ke -——Tl . (5.16)

The minimum spacing d is shown in Fig. 5.4 for a range of
blood perfusions and temperature differences, 'I‘h - Ty. The
three dimensional solution has applications to the
determination of acceptable spacings of ferromagnetic seeds
for magnetic inductance heating. The soluticn also has
applicability to scanned phased array ultrasonic heating
where the region to be heated is shallow in depth and the

length of the focus is limited in its extent.
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5.3.5 Sources of Finite Size

The results of this.section can be adapted to heat
deposition patterné or heat sources of finite dimensions by
.considering the distance d as the distance between the 3 dB
levels of two adjacent sources of heat, so that the actual
spaciﬁg is d plus the 3 dB heat source width. This distance
correction is necessary, since when the 3 dB levels from two
adjacent sources overlap, the power deposition is
approximately 1level for the entire distance between the
source centers,lmaking the effective 4 equal to zero. Thus,
the center of the sources can be spaced a total distance of

the sum of d and the 3 dB width of the heat source.

5.4 Power Deposition Pattern Matching in One Plane with

Focused Ultrasound

The formation of a good approximation to the required
power deposition pattern derived in Chapters 3 and 4 can be
accomplished with focused wultrasound using the results
presented above. The first step in attempting to match the
ideal power distribution is to calculate a suitable focal
(source) spacing using the results of the previous section.
The locations of the foci required to cover a cross-section
parallel to the applicator face are established, making
certain that the maximum focal spacing is not exceeded. An
area associated with each focus, Af, is designated. The
power deposition required over each area, Pf (W/m), is then

calculated by averaging the power deposition per unit volume
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Qp over Af and multiplying by the focal area Ag:

equivalent to Eq. (5.14). To use this approach effectively,
calibration of the applicétor, i.e., knowledge of the power
deposition at the desired depth (W/m) for a given input
power, is required.

A one dimensional application of the bicheat equation
was used to investigate the effects on this method of focal
size, focal spacing, and focal placement. The 1linear form
of the bioheat transfer equation, given in Eqg. (2.17), was
used. The blood perfusion, W, for this model wés the same
function of distance from the tumor boundary as shown in
Fig. 3.5(a), up to 4 cm from the tumor boundary and 0.1667
kg/m3/s for greater distances. Other parameter values were
as given in Table 2.1. A Gaussian was used to represent the
focal shape. The modeled region extended 20 cm into the
tumor region and 10 cm into the normal tissue so that
boundary conditions would not affect the temperature
distribution. The following figures do not show the entire
modeled region, but only the region of interest.

Figures 5.5 through 5.9 show the power deposition
patterns and resultant temperature distributions for focal
regions of different sizes and spacings compared with the
requirea power deposition pattern and its resultant
(desired) temperature distribution, respectively.
Confirmation that the desired temperature distribution can

be closely matched using small (0.5 cm half power width),
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closely spaced (0.5 cm spaced) foci is shown in Fig. 5;5.
Shifting this set of closely spaced foci by 0.2 cm (see
Fig. 5.6) changes the resultant temperature distribution
only slightly and the desired power deposition pattern is
still well matched. Widening the spacing of the foci to 1.0
cm produces some degradation of the match between the
desired and the realized temperature distributions, as shown
in Fig. 5.7. Increasing the spacing to 2.0 c¢m, shown in
Fig. 5.8, gives a poorer match to the required power
deposition pattern and results in rippling in the
temperature distribution. Increasing the size of the focus
to 1.0 cm half power width, as shown in Fig. 5.9, results in
significant temperature overshoot within the tumor and
underheating in the highly perfused peripheral regions.
These examples demonstrate the importance of precision
matching of the required power deposition pattern for
developing a uniform temperature distribution. Also, these
figures illustrate that the focal position with respect to
the tumor boundary is important along with the focal size

and spacing.

5.5 Optimum Depth for One Plane of Pattern Matching with

Focused Ultrasound

The method of the previous section is 1limited to two
dimensions because, for focused ultrasound, all the energy
reaching the plane where the method is being applied must

pass through intervening regions of tissue. Thus, the power
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deposition levels that would be determined at different
depths are not independent, making a determination of three
dimensional power deposition significantly more difficult.
'In this section the potential is investigated for setting
the power deposition pattern in only one tumor
cross—-section, allowing the remaining volume of the tumor to
be heated by the power deposited by the sound field
determined for that one cross-section.

The depth at which the éingle power deposition
cross-section should be determined is that which requires
the most power from the applicator. This approach ensures
that the power deposited in every cross-section of the tumor
(including the power deposited in surrounding normal tissue
in the cross-section) will be greater than the required
power deposition for that cross-section. Using the results
for the spherical tumor model of Chaptef 3, the total power
required in a cross section PCS(D) at a depth D relative to

the center of the tumor of radius r, is given by
P..(D) = m(r2 - D2)QSS 4+ 2qr pSS (5.18)
cs = To P o*s

where s > D > -ry. Substituting using the relations in

Eg. (3.5) and Eq. (3.26) yields

Peg (D) = Tom ((r2-D2)Wy . cp + 2r, vWGoCoRn + 2K.). (5.19)

The relative power that the applicator must deliver, Pa(D),
to achieve the power deposition PCS(D) is inversely
proportional to the loss accumulated through propagation to

the given depth. With an attenuation coefficient ¢, and
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considering the loss relative to that at the tumor center,

the resultant applicator power Pa(D) is independent of the

tumor depth and is given by

Pa(D) = ToﬂezaD((rg-Dz)Wthb + 2ro-van§bKn + 2Kn)- (5020)

Figures 5.10 through 5.12 show the required applicator
power versus distance of the plane from the center of the
fumor for three tumors of different diameters and an
attenuation coefficient of 0.05 nep/cm. The peak of
Eq. (5.19) occurs past the center of the tumor for all sizes
of tumors. This indicates that a cross-section approaching
the ideal power deposition pattern should be formed past the
center of the tumor.for the best results using this simple
approach.

The optimum depth for forming the power deposition
cross-section is determined by setting the derivative of Pa

equal to zero and solving for D:

1 2 Kn
D =. [—5— e o —— ¥ ——
opt Av/i rd tlt e (VW%ncbﬂn * ro)' (5.21)

0 bnb

The optimum depth D is strongly dependent on both

opt
frequency and tumor radius as illustrated in Fig. 5.13.
When Dopt is examined relative to tumor radius, r,, as shown
in Fig. 5.14, the ratio Dopt/ro is found to be only weakly
influenced by rg.
The procedure of matching the required power deposition

at a single plane was used with a three dimensional

circularly symmetric bioheat transfer model (using Eq. 2.19)
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preoducing ideal power deposition cross-section
versus depth, shown for a 1 cm radius tumor.
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and a focus produced by a scanned fixed focus ultrasonic
applicator. The 12 cm circular applicator was focused at a
‘depth of 12 cm and operated at 0.5 MHz, with a single focus
shape as shown in Fig. 5.15. The tumor had a radius of 3 cm
and was centered at a depth of 8 cm. Single plane power
deposition pattern matching was applied at a depth 0.9 cm
past the tumor center to yield the power deposition pattern
shown in Fig. 5.16. The temperature distribution produced
in a homogeneous tissue model is shown in Fig. 5.17. The
"even temperature distribution that results suggests that

this method may be adequate for treatment planning.

5.6 Power Deposition Pattern Matching in Three Dimensions

with Pocused Ultrasound

The other method available for power deposition pattern
matching 1is to match in three dimensions throughout the
tumor volume. Such a method appears to be practicable only
by using an iterative approach to set the scan path and
power weightings.

A straightforward way to approach such a method would
be to determine initially a scan path to heat the periphery.
then £ill in the interior region as required. The entire
periphery could not be scanned directly, as there would be
too much power deposition in the tumor interior when both
the shallow and deep extremes of the tumor are directly
heated with the required power deposition.

A more promising approach is to form the peripheral
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power deposition for the single plane as discussed above,

add peripheral power deposition to the back of the tumor,
then fill the tumor interior to the required level. The
virtual independence of -the power deposition on the tumor
peripherj at the depth of the tumor center and the interior
power deposition could be used for matching in three
dimensions. The three dimensional power deposition pattern
matching would be very applicator specific, and is beyond

the scope of this investigation.

5.7 Discussion

The eventual use of an automated method for directing
hyperthermia treatments can be foreseen, with the
improvement of automatic tissue classification and image
production. Such an automated method is well suited for
providing uniform and consistent hyperthermia treatmehts.
Improvements to the model are still necessary to consider
perfusion changes, but the model provides a starting point
for directing hyperthermia treatments.

Improved hyperthermia delivery systems are necessary to
provide the resolution required for matching required power
deposition patterns. The design of a precision hyperthermia
applicator wutilizing wultrasonic phased arrays is presented
in Chapter 6 with two different approaches to forming the

required power deposition pattern given in Chapters 7 and 8.
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CHAPTER 6
DESIGN CONSIDERATIONS FOR A HYPERTHERMIA

PHASED ARRAY

6.1 Introduction

Ultrasound in the frequency range of 0.3 MHz to 3.0 MHz
is considered suitable for hyperthefmia applications. At
the higher frequencies of this range, i.e., 2.0 to 3.0 MHz,
the penetration depth is shallow and the power deposition
decreases at approximately the same rate as microwave power
deposition. Since the penetration depth is limited to a
couple of centimeters, minimal bone heating occurs and the
potential of high frequency ultrasound is similar to that of
microwaves. However, with ultrasound lower frequencies can
be used to give increased penetration so that deep
hyperthermia is feasible.

The short wavelengths of ultrasound in this frequency
range, i.e., 0.5 mm to 5.0 mm, allow for precise focusing
while the longer wavelengths of microwave radiation in the
appropriate frequency range for hyperthermia, i.e., 3.0 cm
to 30.0 cm, provide limited focusing capability and allow
much beam spreading. For microwave and ultrasound sources
of the same size, the energy from the microwave source
starts diverging much closer to the source because of its
smaller size relative to the wavelength of the energy being
radiated. Likewise, for frequencies of ultrasound and

microwave radiation with similar tissue attenuation
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coefficients, the depth of penetration’of the ultrasound is
greater due to lesser beam divergence. Thus, ultrasound
allows better beam collimation and has more potential for
focusing than microwaves.

Clinical testing of ultrasound hyperthermia 1led one
group of invéstigators working with unfocused ultrasound
transducers to conclude that the major drawback of their
simple system was the lack of dynamic control of the field
intensity distribution (Corry et al., 1984). They felt that
the control of the intensity distribution is important
because the vast majority of tumors that undergo clinical
cancer treatment are irregularly shaped and involved with
normal tissue, makiﬁg selective hyperthermia difficult.
This problem has been addressed in the design of other
systems that use multielement applicators (Fessenden et al.,
1984), scanned focused applicators (Dickinson, 1984), and
multielement scanned focused systems. However, these
increases in complexity to provide dynamic cocntrol are
accompanied by complex mechanical systems and often
difficulties with the patient-machine interface.

The advantages of a phased array applicator become
evident when the physical limitations of mechanical scanning
of a fixed focus system are considered. The mechanical
equipment necessary to perform the scanning is cumbersome
and must be attached directly to the scanned applicator.
Often, it 1is contained within the water bolus above the
patient. Mechanical scanning rates are also limited by the

speed of the mechanical scanning apparatus while the



113

electronic scanning of the focus produced by a phased array
is 1limited only by the speed of the controlling electronics
and the bandwidth of the transducer.

The characteristics of a phased array applicator allow
it to fbrm a focus providing intensity gain as does a fixed
focus applicator. For a two dimensional phased array with
elements of size O.7Alsquare or less, the directivity (peak
intensity relative to total radiated power) for small
steering angles is approximately equal to Ehat of a source
with a continuously varying phase, i;e., a fixed focus
applicator. In addition, the focus dimensions produced by
phased arrays and fixed focus sources share the same
function of source size and frequency. When these
properties are considered together, it is evident that a
phased array with sufficiently small elements can form and
scan a focus as well as a fixed beam transducer that is
mechanically scanned. Thus, if a tumor geometry is present
that cannot be treated with a practical phased array design,
then a conventional fixed focus applicator could not be
used.

An additional advantage of a phased array system is
that it can easily be reconfigured to reduce hot spots.
Array elements nearest to intervening bone can be shut off
to reduce bone heating. The potential for manipulation of a
phased array to reduce undesirable heating is not limited by
physical constraints associated with the scan path as with a

fixed focus applicator.
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6.2 Frequency Selection

The choice of operating frequency for an ultrasonic
hyperthermia system is a constrained optimization problem
that yields different solutions depending upon the
optimization criterion. There are considerations in the
design of a phased array system for deep heating that favor
the use of both 1lower and higher frequencies such that a

compromise design must be found.

6.2.1 Efficiency Optimization

One possible optimization criterion that has been
suggested previously is to maximize the heat generation at
the target (tumor) depth relative to the  source intensity
(Christensen and Durney, 1981). For an unfocused source

with intensity I, radiating into homogeneous muscle tissue,

the intensity decays exponentially with distance as

- -2a0d
I = IO e (6.1)

where o is the attenuation coefficient in muscle and 4 is
the distance into the tissue. The power deposited per unit

volume is

Qp = 2T pa (6.2)

where p is the fraction of the attenuation due to
absorption, taken as 0.8 for this analysis, and poa
represents the abscrption coefficient (Nyborg, 1981). In

terms of the source intensity,
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Since attenuation is approximately 1linearly related to
frequency, o = 0qp.. £, where 0jMHy 1S the attenuation at
1 MHz and £ is the ultrasonic frequency in MHz. Including
the frequency dependence in the power deposition calculation

yvields
Qp = 2:[0 P OL].MHZ £ e_zalMHZ £ d. (6.4)

Equation (6.4) can be solved for I, to find the source
intensity required to produce a given power deposition Qp at

Ehe tumor depth D using unfocused ultrasound:

20 £fD
1MH
Io = Qp e i /2p aqyp, £ (6.5)

Figure 6.1 is a contour plot of Io' versus tumor depth
and frequency, required to produce a power deposition of 0.2
W/cm3, a level determined to be sufficient by one group of
investigators (Fessenden et al., 1985). This wvalue is
higher than the Qp determined in Chapter 3 (0.05 W/ems) for
the interior of a tumor, but Fessenden's result was for the
treatment of small volumes, where more power deposition is
required because heat conduction toc normal tissue dominates.
However, the particular choice of power deposition Qp is not
important because of the relative nature of this analysis.
The peak of each contour in the depth direction represents
the optimum frequency for that depth based on this

optimization criterion. For example, the optimum operating

frequency at a 10 cm depth is 0.5 MHz, based con the peak of
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the 7 W/cm2 contour. The optimum frequency can be

determined for each application depth and is expressible as
£ = 1/(204,0 D) | (6.6)
with the associated I, for the same depth given by

Tomin = Qp D e/p. (6.7)

A graph relating optimum frequency and application depth is
given in Fig. 6.2.

Such an optimization approach represents a maximization
of efficiency, since it ensures that the source intensity is
minimized for a desired power deposition at the tumor, which
is equivalent to maximizing the power deposition for a given
source intensity. One approach to the use of the efficiency.
criterion is to constrain the frequency choice to be within
a specified tolerance of the maximum efficiency for a given
depth. This approach is illustrated in Fig. 6.3, where
tolerance curves have been added to the curve for the
optimum choice of frequency in increments of 5 percent.
Thus, for heating at a depth of 10 cm and allowing an
efficiency tolerance of 10 %, frequencies in the range of
0.3 MHz to 0.76 MHz are acceptable based on the efficiency
criterion. Certainly the efficiency of the systeﬁ must be
considered, but there are other system constraints that
suggest the choice of a different freguency than would be

selected based on efficiency alone.
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6.2.2 Gain Optimization

Choosing a frequency based exclusively on efficiency
considerations could lead to an applicator design that has
little intensity gain and is incapable of heating deep
tumors without overheating intervening normal . tissues.
Alternatively, providing sufficient gain for deep heating
for a design with an efficiency based frequency choice could
require an aperture impractically 1large for any area
available on the body. Clearly, gain must also be
considered in the selection of an operating frequency.

Applicator gain is considered by maximizing the
intensity gain at the desired treatment depth. This
approach is equivalent to minimizing the heating at the body
surface as well as that of intervening tissue. Maximizing
the gain is the same as choosing the maximum value of It/Io'

where It is the intensity at the tumor, for a given depth D.

For an unfocused applicator, this can be represented as

It/IO = e z ° (6.8)

A focused applicator uses a surface area at the source
greater than the cross—sectionél area of the tumor so that
intensities are higher at the tumor depth, providing a gain
greater than 1. For purposes cof hyperthermia treatment, the

gain for a focused applicator can be approximated as

-20 £ D
1MHEZ
It/IO = (AS/At) e (6.9)

where As is the applicator area and Ay is the tumor

Al

cross-sectional area. This definition of gain uses the
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cross—-sectional area of the tumor, as opposed to the area of
the focal region, because the energy at the focal depth is
deposited throughout the tumor cross-section. For effective
deep hyperthermia, the intensity at the tumor shouid be
higher than that at the surface. Equation (6.9) can be
rearranged to solve for the ratio of applicator area to

tumor cross-sectional area in terms of the intensity gain:

20impz £ D
As/At = (It/Io) e ° (6.10)

A contour plot of required ratios of areas (Egq. (6.10))
versus tumor depth and frequency is shown in Fig. 6.4 for
It/Io = 1, i.e., only enough gain is provided to compensate
for attenuation lossés. A simple comparison using Fig. 6.4
reveals that for heating at a depth of 8 c¢m, using 1 MHz
instead of 0.5 MHz, would require an applicator of over
twice the area to achieve the same intensity gain. In fact,
the maximum intensity gain is always achieved by using the

lowest frequency possible.

6.2.3 Bone Heating Considerations

Overheating of Dbone is a frequent problem with
ultrasound that can lead to the termination of hyperthermia
treatment before adequate temperature elevation within the
tumor is achieved (Corry et al., 1984). The deeper
penetration of 1low frequency wultrasound coften 1leads to
overheating of bone especially when unfocused sources are
emploved without consideration of bone location. As a

result, freguencies below 0.5 MHz have been considered
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unsuitable for hyperthermia treatment with unfocused

ultrasound, which relies solely on attenuation for the
reduction of intensity from the tumor region to underlying

bone.

6.2.3.1 Unfocused Sources

Ultrasound from an unfocused source propagates
approximately as a collimated beam, so that in a homogeneous
medium the intensity decreases exponentially with distance
due to attenuation. For propagation through layers of media
of different properties, a simple model of human tissues,
both reflection from interfaces of dissimilar tissues and
the varying absorption of ultrasound for different tissues
distort the simple exponential decay. Significant
reflections can occur at a muscle-bone interface, with the
power in the reflected wave dependent on the angle of
incidence as shown in Fig. 6.5 for a frequency of 1 MHz
(Chan, 1971; Chan et al., 1974; Frizzell, 1975). Also, at
obligue angles of incidence some of the wultrasound energy
transmitted into the bone is converted from longitudinal to
shear waves which have a substantially greater absorption
coefficient. The energy associated with each of these waves
is shown as a function of angle of incidence in Fig. 6.5,

As the reflected power varies significantly with the
angle of incidence and the typical muscle-bone interface is
curved, the effect of bone cannot be modeled by a single
angle of incidence. Assuming a cylindrical shape tc the

muscle-bone interface, as shown in Fig. 6.6, the average
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Angle of Incidence (deg)

Amount of energy in reflected longitudinal
wave (R), transmitted longitudinal wave (T),

and transmitted shear wave (S) as a function
of angle of incidence at a muscle-bone

interface (from Frizzell, 1975).
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Figure 6.6. Geometry for muscle-bone interface model used
for averaging transmission coefficients.



126

power in each of the components can be calculated by using
i

2
Cavg =J/fc(9) cos(8) de (6.11)
0

where C represents the power, relative to the incident
power, associated with a particular wave. Equation (6.11)
can be used to calculate the average reflected wave power,
the average transmitted 1longitudinal wave power, and the
average transmitted shear wave power. The average power in
each of these components was calculated to be 26%, 32%, and
42%, respectively.

These results along with the effect of the reflection
at a fat-muscle interface were considered in a theoretical
examination of ultrasonic heat generation in a
fat-muscle-bone tissue model. The resultant power
deposition distribution for 1 MHz is shown in Fig. 6.7 and
can be compared to the results of Chan for the same
frequency and various angles of incidence as shown in
Fig. 6.8. The average values used in the calculation of
Fig. 6.7 are approximately the same as those used by Chan
for a 30 degree angle of incidence. Figure 6.9 shows the
results of this model when the coefficients for 0° angle of
incidence are used, allowing a direct comparison with Chan's
results in Fig. 6.8. The differences in these results can
be attributed to sﬁall differences in the values chosen for
the tissue properties (tissue properties used in this
investigation are shown in Fig. 6.10).

The theoretical power deposition pattern calculated

using the average transmission and reflection cocefficients
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was used to compute the temperatures. All calculations
employed the finite difference solution to the bioheat
transfer equation. The blood flow distribution and tissue
properties for this model were as shown in Fig. 6.10, where
the tumor core is taken to have a reduced blood flow
associated with necrotic tissue. The skin surface was fixed
at 25°c maintained by a circulating coupling fliud. Such a
simple model was dhosen so that results would be as general
as possible and so that focusing effects could be
incorporated simply into the model. The program used to
make these calculations is included in Appendix F.

Temperature distributions for the range of frequencies
from 0.4 MHz to 2.0 MHz were calculated using this model and
are presented in Figs. 6.11 through 6.16. The temperature
distributions have been normalized by adjusting the
applicator power so that the temperature of the tumor center
(x = 6,5 cm) is elevated to 43°C. The results demonstrate
that significant bone heating occurs at lower frequencies
and that significant superficial heating occurs at higher
frequencies. For this particular model, temperature
elevations at the bone surface exceed those at the tumor
center for frequencies below 0.6 MHz,. Clearly, when the
increased temperature sensitivity of the bone surface is
considered, the bone heating due to an unfocused, lower
frequency (f < 0.6 MHz) applicator is unacceptable.

The use of frequencies above 1 MHz reduces bone
heating, but penetration is so . limited that deep

hyperthermia is difficult and heating of intervening tissue



36 38 40 42 44 46 48
1 1 i i 1

32,

TEMPERATURE (©¢)
26 28 30
1 i i

24
L

132

e AV
o

RELATIVE POWER DEPOSITION

Figure 6.11.

! i i i { i 1 ; ]
5 10

DISTANCE (cm)

heating model with
ultrasound.

Temperature distribution produced i
unfocused 0.4 MHzZ

15

n bone



TEMPERATURE (°C)

RELATIVE POWER DEPOSITION

L
T e

Figure 6.12,

] i i ] i i i ; i
10 15

U1~

DISTANCE (cm)

bcne
MHz

distribution produced in
with unfocused 0.6

Temperature
heating model
ultrasound.



TEMPERATURE (€C)

. RELATIVE POWER DEPOSITION

36
i
T,

34
|
M

32

30
i
————

28
|

26

24

e

PR
P

L —
IOt
emssa e siay e

134

Figure 6.13.

i i i ! i 1

DISTANCE (cm)

Temperature

distribution produced

heating model with unfocused

ultrasound.

in bone
0.8 MHZ



TEMPERATURE (©C)

RELATIVE POWER DEPOSITION

[ —
PR L
o

135

Figure 6.14.

Temperature

DISTANCE (cm)

distribution produced

heating model with unfocused

ultrasound.

in
1.0

15

bone
MHz



TEMPERATURE (©C)

RELATIVE POWER DEPOSITION

44

32 34

30
|

N
J
|

7 T i T ! I I I ! 1 ] T ; 1

0 5 10 15

DISTANCE (cm)

Figure 6.15. Temperature distribution produced in bone
heating model with unfocused 1.2 MHz
ultrasound.



TEMPERATURE (©C)

RELATIVE POWER DEPOSITION

g

137

Figure 6.16.

i i i i
10

DISTANCE (cm)

Temperature

distribution produced

heating model with unfocused

ultrasound.

in
1'5

ot

15

bone
MHZz



138

becomes a problem. Even with the surface cooling, excessive
temperature elevations are observed in the fat 1layer for
frequencies greater than 1 MHz. The higher temperatures
within the fat layer occur due to the 1low blocd perfusion
and thermal conductivity of fat. The tradeoff between
penetration and bone heating in the choice of frequency is
evident for unfocused ultrasound.

These results show good agreement with the experimental
measurements of scanned focused bone heating made by Hynynen
(Hynynen, 1986b). The measurements used a focused source,
but are applicable to the unfocused case because of the gain
reduction due to scanning. With 1 MHz scanned sonication,
Hynynen found that the temperature elevation at the bone
surface was several fold higher than at the focal region in
the muscle in front of the bone. Even using four focused
beams overlapped at the focus depth, the maximum temperature
elevation occurred at the bone surface for focus-bone
surface separation distances of less than 4 cm. Application
of 3.58 MHz ultrasound removed the selective bone heating,
and the maximum temperature elevation moved to the skin
surface. These results are in qualitative agreement with
those of this study. Better agreement with these
experimental results could be obtained by modelling the

actual geometry and the effects of focusing.

6.2.3.2 Focused Sources
Selective heating of the tumor tissue can be enhanced

by using focused ultrascund sources which increase heat
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generation at the tumor relative to the surrounding normal
tissue and the body surface. Simple models of the intensity
gain for one dimensional and two dimensional phased array
focusing have been used to examine the lessening of bone

heating when focused systems are employed.

6.2.3.2.1 Linear Array Focusing

Linear array focusing has been proposed as a means of
configuring phased arrays for hyperthermia treatment
(Ocheltree et al., 1984; Frizzell et al., 1985). The
intensity gain can be modeled by considering the applicator
area A,, the tumor cross-sectional area Ag, and an
intermediate beam cross-sectional area A(d) at a depth d as
illustrated in Fig. 6.17. The intermediate cross-sectional
area can be modeled as a linear interpolation between the

applicator area and the tumor cross-sectional area

A(d) = Ap + |1 - a/D|(Ag - Ag) (6.12)

where D is the depth of the center of the tumor from the
skin surface. The absolute value of 1 - 4/D is employed in
Eg. (6.12) to extend the applicability of the result to
depths greater than D by representing the divergence of the
heating pattern past the tumor as well as the convergence
before the tumor. Frcem this relation, the average power

deposition Q1p at a depth d for one dimensional focusing can

be expressed as

Qp = Q(d)At / A(d) (6.13)
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Figure 6.17. Geometry used for linear array focusing model.
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where Q(d) is the power deposited at a depth d as calculated

previously for an unfocused source.

This power deposition for one dimensional focusing was
computed and used with the bioheat equation model described
in Section 6.2.3.1 to calculate the temperature
distributions resulting from treatment with a range of
frequencies, with a wvalue of AS/At = 4, as shown in
Figs. 6.18 through 6.21. Comparison of these results with
the corresponding unfocused results reveals significantly
less bone heating for the focused épplicators.

Examining the elevation of the bone surface temperature
relative to the tumor center temperature (fixed at 43°C5, an
equivalence is noted between a 1 MHz unfocused source
(Fig. 6.14) and a 0.6 MHz focused source (Fig. 6.19) with
AS/At = 4, Both applicators heat the bone to approximately
40°cC, This comparison indicates that increasing the gain,
i.e., increasing A /A., has the same beneficial effect on
bone heating as increasing the frequency. The effects of
frequency and gain can be investigated using the simplified
model of bone heating that follows.

A simplified comparison of the effects of increasing
frequency and .increasing gain can be made by assuming that
all the power transmitted into the bone is absorbed within a
short distance from the bone surface. Thus, the heat
generation in the bone relative to the heat generation in
the tumor can be expressed as the ratio of the intensity
transmitted into the bone divided by the power deposition at

the tumor center:
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Temperature distribution produced in bone
heating model with focused 0.4 MHz ultrasound.
Linear gain of 4.
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Figure 6.19.
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Temperature distribution produced in bone
heating model with focused 0.6 MHz ultrasound.
Linear gain of 4.
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Figure 6.20., Temperature distribution produced in bone

heating model with focused 0.8 MHz ultrasocund.
Linear gain of 4.
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heating model with focused 1.0 MHz ultrasound.
Linear gain of 4.
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TB e2oclMHzf(D - B)

H, =
B 7 209y, Pf[l + [1 - B/D]A/A - 1)] (6.14)

where Ty is the fraction of energy transmitted into the bone
and B is the depth of the bone.

A contour plot of Hp versus the ratio Ag/A. and
frequency is shown ‘in Fig. 6.22. Lines of constant Hp in
Fig. 6.22 indicate designs having approximately the same
severity of bone heating. The similar reduction in bone
heating that occurs with increases in frequency and gain are
evident, and the greater proportional change with increases
in frequency should be noted. From Fig. 6.22, a 1 MHz
unfocused (A /A. = 1) source has bone heating equivalent to
that of a 0.6 MHz focused source with AS/At = 3 due to the
simplifications used in this model. This result is slightly
different from the result obtained using the temperature
distributions, where the equivalence occurred with a 0.6 MHz
focused source with Ag/np = 4. However, this model does
Present - a general relation for considering the relative
effects of frequency and gain on bone heating, which is also

approximately correct quantitatively.

6.2.3.2.2 Two Dimensional Array Focusing

Hyperthermia applicators that have been proposed that
provide gain in two dimensions include circularly scanned
fixed focus transducers (Lele, 1980), fixed annular focusing
transducers (Beard et al.. 1982), and annular and sector
vortex phased arrays (Cain et al.. 1986). A two dimensional

phased array can also be used to provide gain in two
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Figure 6.22. Contour plot of relative bone heating HB
versus frequency and gain for linear focusing
model.,
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dimensions as illustrated in Fig. 6.23. Ags for a one
dimensional focused system, a simple approximation to the
beam cross-sectional area is made by interpolating between
the applicator area and the tumor cross-sectional area to

give

A(d) = A (1 + |1 - d/D|( VAg/A, - 1))2 (6.15)

where the absolute value sign has been used to extend this

model past the tumor region. The average power deposition

Qyp for two dimensional focusing can then be expressed as

Qp = Q(d)A: / A(d). (6.16)

As with one dimensional focusing, power deposition
patterns, for a range of frequencies and gains, were used in
the calculation of temperature distributions. Results aré
shown 1in Figs. 6.24 through 6.27, and as expected, are very
similar to the one dimensional focusing for the same gain.
However, for this simple model, the power deposition in the
intervening tissue is lower for the one dimensional model
when cases with equal gain are compared. This would not be
expected to occur in actual practice, as the longer paths to
the tumor from each end of a one dimensional gain applicator
would result in greater losses, reducing the overall gain.

A simplified model was also considered for the case of
two dimensional focusing. The relative bone heating was
expressed as

T, eZalMHzf(D - B)
B % 20, PE[l + |1 - B/D|(YA_/A_ - 1)12 ° (6.17)

H
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Figure 6.23. Geometry used for two dimensional array
focusing model.
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Temperature distribution produced in bone
heating model with focused 0.4 MHz ultrasound.
Two dimensicnal gain of 4.
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Figure 6.25. Temperature distribution produced in bone
heating model with focused 0.6 MHz ul trasound.
Two dimensional gain of 4.



TEMPERATURE (©cC)

RELATIVE POWER DEPOSITION

152

26

24

DISTANCE (cm)

Figure 6.26. Temperature distribution produced in bone
heating model with focused 0.8 MHz ultrasound.
Two dimensional gain of 4. .
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The frequency and gain dependencies of this function are
shown in Fig. 6.28. This is approximately the same’result
as for one dimensional focusing, except that the two
configurations are not equivalent, in that a high gain is

much easier to achieve using two dimensional focusing.

6.2.4 Tissue Inhomogeneity Considerations

An additional advantage of the use of lower frequencies
for deep ultrasound hyperthermia becomes apparent when phase
error due to variation of the velocity of propagation in
different tissues is considered. Consider that two
different paths of propagation from the applicator to the
focus have a constant time delay difference as a result of
differences in velocities along the propagation path. The
phase error associated with the fixed time delay will be
proportional to frequency. Consequently, the degradation of
the focus due to propagation velocity differences will be
more severe with higher frequency.

The magnitude of the problem of tissue .inhomogeneities
can be illustrated by considering a simple case. Assume
that to reach the focus, the sound travels through 6 cm of
tissue where the velocity of propagation varies linearly
from an average of 1490 m/s at one end of the array to 1510
m/s at the other array end. If the phases applied to the
array elements are computed assuming a constant propagation
velocity, the ultrasound signals from the ends of the array
will arrive at the focus with a time difference of 0.533 US.

Assuming that the signals arriving from different elements
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of the array are uniformly distributed over this time
interval, the degradation of the focus can be calculated for
different frequencies. Usiné T to represent the period,
i.e., T = 1/f, the intensity at the focus relative to the no

loss situation can be formulated as

r m(0.533) 2
| T T,
Ire1 = |Z7(0.533) eI? 4y ~ (6.18)
. -7 (0.533)
T
which reduces to
r 2
T ._(1(0.533)
Ire1 = |7(0.533 Sln[ T }] . (6.19)

Evaluating this result for the cases of 0.5 MHz and 1.0
MHz vields relative intensities of 0.787 and 0.352,
respectively. The foéal intensity at 1 MHz is lessened to a
much greater degree than that at 0.5 MHz. Although focus
spreading would accompany this reduction so that the energy
deposited in the tumor would not be lessened to this large
an extent, tissue inhomogeneity considerations favor the use

of lower frequencies.

6.2.5 Element Size Considerations

The size of the elements for a hyperthermia phased
array is limited by directivity considerations. For an
array with elements larger than one wavelength across,
grating 1lcbes appear in the field reducing the directivity
cf the array. The reduced directivity of the array means
that not as much power is delivered to the tumor region and
that the gain of the array is reduced. The power within the

grating 1lobes also provides undesired heating outside the
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tumor.

The most significant design criterion affecting element
size selectidtn 1is the size of the element in wavelengths.
Consequently, to design a linear array at 1 MHz with similar
grating lobe rejection properties and the same total area as
one operating at 0.5 MHz, twice as many array elements would
be required. Likewise, a two dimensional array with twice
the fregquency would require four times as many array
elements., Also, at the higher frequency more gain would be
'required to compensate for attenuation losses, so that a 1
MHz array would require a larger area and significantly more

elements.

6.2.6 Focus Size Considerations

When simple phasing is used with a phased array to
produce a focus at a single point, the focus size is very
strongly related to the frequency. The focus size
determines the resolution of the system and the number of
scan locations and maximum intensity if scanning is used.
Alternatively, a focus can be formed in the shape of the
tumor by using a more complex phasing scheme, as will be
demonstrated in Chapter 8. The choice of the size of the
focus generally involves a tradecoff between the precision
available at higher frequencies and the 1lower peak

intensities at lower frequencies.

6.2.7 Cavitation and Nonlinear Considerations
Both cavitation and nonlinear sound propagation occur

for high intensities of ultrasound. The maximum intensity
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usable for ultrasound hyperthermia is 1limited by the
occurrence of cavitation, while nonlinear effects provide
beneficial additional power deposition at the focus.
Cavitation should be avoided in hyperthermia because it
produces uncontrollable tissue damage. Generally,
cavitation is prevented by using higher frequencies, since
to produce a given power deposition Qp a lower local

intensity is required:

Tt = Qp/(2p ayymy £). (6.20)

For unfocused and unscanned systems, this simple

relationship governs the design.

6.2.7.1 Frequency Dependence of Maximum Intensity

Scanned focused systems where peak intensities are
inversely related to the focal cross-sectional area exhibit
a more complex relation. The width of a focus, We, is
inversely proportional to the width of the source, L, and

inversely proportional to the frequency:
We = ¢cq/(£-L) (6.21)

where Cl is a constant. The cross-sectional area of the

focus can then be expressed as:
A = (cq/(£°1))2 (6.22)
£ 1 . :

For a small focal area, a higher peak intensity will be
required at the focus to produce the same average intensity

achieved using a larger focus. The maximum intensity Imax
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is simply the required average intensity I, multiplied by
the ratio of the tumor cross-sectiocnal area At to the focus

cross—sectional area:
Thax = I (Ac/2g) - (6.23)
Substituting Eq. (6.20) and Eq. (6.22) yields

I = 0.A,L2E/(2 p o c?) (6.24)
max p—t 1MHZz%1/ & °

The significance of this relation 1lies in the frequency
dependence: using a higher frequency requires a higher
maximum intensity to produce the same average power
deposition. This result implies that for a cavitation limit
independent of frequency (below 2.0 MHz), scanned focused
ultrasound favors the use of low frequencies while unfocused
ultrasound favors higher frequencies. Thus, the approcach of
using higher frequencies to avoid cavitation as with
unfocused ultrasound does not apply to scanned focused

ultrasound.

6.2.7.2 Magnitude of Maximum Intensity

The large aperture necessary to provide sufficient
intensity gain for deep hyperthermia causes a phased array
to produce a very small focal regicn of approximately a
wavelength across and several wavelengths in depth. Since
the focal size produced by such an array is typically 2 to 6
mm across and 5 to 30 mm in length, and the target volume is
typically much larger, the required scan path consists of a

large number of focal locations. For a large number of
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focal locations, the dwell time at each point is small and
very high focal intensities are required to produce a time
-averaged intensity suitable for hyperthermia. The use of
very high focal intensities, i.e., intensities greater than
100 W/cmz, brings in additional complications of nonlinear
sound propagation and cavitation.

The order of magnitude of the focal intensity for
scanned ultrasound hyperthermia in typical applications can
be easily calculated. For an array operating at a frequency
of 0.5 MHz, a frequency suitable for deep hyperthérmia, the
focal size is dependent on the size of the array and the.
tissue properties and would be approximately .0.4 cm by
0.4 cm for a two dimensional phased array, yielding a focal
cross-sectional area of 0.16 cm?. To heat a tumor with a
6 cm diameter cross-section and an extent in depth of one
focal 1length, division of the tumor cross-sectional area by
the focal cross-sectional area provides the number of scan
positions: 176, Assuming a required power deposition of
0.2 Wem® as  used previously and wusing Eg. (6.20), the
average intensity Iavg can be calculated. Using a= 0.04
nep/cm and p = 0.8, typical values for muscle tissue at 0.5
MHz, the average intensity is calculated as 2.5 W/cm?. From
this, the maximum intensity is simply the average intensity
divided by the number of focal locations necessary to cover
the tumor, yielding a maximum intensity of 442 W/cmz. This
intensity is well within the region where cavitation
(Frizzell, 1983) and nonlinear sound propagation have been

observed (Swindell, 1985), but far 1less than the levels
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required to produce cavitation in brain and 1liver with
‘focused ul trasound.

-Nonlinear sound propagation is advantageous because the
nonlinear effects cause an enhancement of heating at the
focus due to production of higher harmonics which have a
larger abscorption coefficient than the fundamental. Because
of this phenomenon, additional gain is present, enhancing
tumor heating by up to a factor of two. The minor
disadvantage of nonlinear sound propagation is that computer
modeling of the sound field is much more difficult since a
single frequency field can no longer be assumed and fields
for a range of frequencies must be calculated or simplifying
approximations made (Swindell, 1985). Also, for intensities
where nonlinear propagation is significant, the cavitation
threshold is approached.

Cavitation causes nonthermal tissue damage when high
intensities are present, and consequently the focal
intensity 1level must be 1limited to avoid cavitation.
Several studies have investigated the cavitation threshold
frequency dependence in tissue for the diagnostic frequency
range, 1 to 25 MHz, while the hyperthermia frequency range,
0.3 to 2.0 MHz, has remained largely unexplored.

The tradeoffs between cavitation and nonlinear
propagation need to be studied to determine if the gains
from ncnlinear propagation are more significant than the
occurrence of cavitaticn within the tumor. Both cavitation
and nonlinear sound propagation can be avoided by the

formation of multiple foci. This is done by forming foci at
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several locations simultaneously rather than scanning a
single focus through each of the separate focal locations
and is discussed in Chapter 8. This enlarged focus can
either be made sufficiently large to cover the entire tumor,

or it can be scanned over the tumor volume.

6.3 Design Results

Clearly, there is not a single frequency that is
suitable for all applications. Since gain, tissue
inhomogeneity, and element size consideration favor the use
of 1low frequency, the lowest frequency acceptable for the
depth and chosen efficiency tolerance (see Fig. 6.3) should
be used. When the potential for bone heating is present,
frequencies extending to the maximum allowable under the
efficiency constraint can be used, depending on the
proximity of the bone to the tumor.

For deep heating in the range of 5 to 15 c¢cm, a
selection of phased array applicators with fregquencies
ranging from 0.3 MHz to 1 MHz should be available. If only
a single applicator were available, the most useful
frequency range appears to be from 0.4 to 0.6 MHz. The
availability of multiple frequency phased array applicators
is not unreasonable; the same applicator controller can be
used for multiple applicators.

Sufficient applicator gain to compensate for
attenuation 1losses is recommended, providing additional

benefits with respect to overheating of bone. More gain is
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recommended and certainly desirable, although the gain
available may be dictated by a practical limit on the number
of elements. -

In the following two chapters, a phased array design is
presented that wuses linear arrays to reduce the number of
elements required. The reduction in the required number of
elements is accompanied by a reduction in the potential for
'achieving high gains. Using a 1linear array system doeg
provide considerable reduction in system complexity; other
simplifications of two dimensional array systems have been

considered and are presented in Chapter 9.
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CHAPTER 7
SCANNING OF PHASED ARRAY FOCUS TO

UNIFORMLY HEAT A TUMOR

7.1 Introduction

A two dimensional phased array allows focal placement
in three. dimensions and produces intensity gain in two
dimensions, but is too complex and costly since each element
of the array requires its own phasing circuitry and
amplifier. An alternative approach is to use a series of
separate linear arrays stacked in the y-direction, as shown
in Pig. 7.1, and to change the excitation from one group of
arrays to another to provide scanning in the y-direction
(Ocheltree et al., 1984). The desired scanning in the
y-direction can be achieved by exciting the linear arrays in
groups of three adjacent arrays and switching among various
groups of three arrays. This provides the required beam
width in the y-direction, since at the nearfield-farfield
transition, the distance for operation of the array, the one
half power beam width is approximately one third the
y-dimension of the source (See Figs. 2.4 through 2.8 for a
confirmation of this property.).

In this chapter, a stacked 1linear phased array
applicator design is presented. Theoretical comparisons are
made between power deposition patterns resulting from
electronic scanning of the phased array and mechanical

scanning of a fixed focus transducer.
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Stack of five linear phased arrays.

Figure 7.1,



166
7.2 Array Design

Heating of a deep seated tumor by a surface applicator
requires that sufficient intensity gain be present so that
the loss of intensity due to attenuation is more than
compensated such that the resultant intensity at the tumor
is greater than that at the surface. (see Section 6.2.2 and
Fig. 6.4). The array gain for the stacked phased array
applicator considered in this study was maximized by
choosing as large an array length as currently practical,
L = 20 cm, and the minimal frequency within a 20% efficiency
tolerance, £ = 0.25 MHz. This frequency choice is too low
to be practical for any heating adjacent to bone, but is
adequate for a comparison with a fixed focus applicator of
the same frequency.

The other design parameters of a stacked linear phased
array are dictated by the choice of operating frequency,
array length, and treatment depth. The element spacing, d
(see Fig. 7.1), is selected to be between 0.5X and 1.0)X . to
avoid grating lobes. The element width, w, is simply the
element spacing minus the minimum gap between elements
(0.125 mm for this study). The array height, h, is chosen
so that the nearfield-farfield transition region for the
height of three arrays occurs at the desired operating depth

De

h = +/4Xx D/9 . (7.1)
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For an operating depth D = 8 cm, an array height h = 1.5 cm
is required. A sufficient number of arrays in the stack is
required to span the tumor cross—-section. Phase
quantization to 4 bits, giving resolution to 22.5 degrees,
provides negligible losses due to guantization errors (see
Ocheltree, 1984). Table 7.1 lists the array parameters as

determined here.

‘Table 7.1. Parameters of stacked array.

Array length L 20 cm
Number of elements 64
Element width w 3.0 mm
Element spacing d 3.125 mm
Array height h 1.5 cm
Number of stacks 8

Total array height 12 cm
Phase quantization 4 bits

7.3 Comparison of Stacked Linear Phased Array and Fixed

Focus Transducer

The performance of a stacked linear phased array

applicator can be evaluated by comparing it to an equivalent
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fixed focus applicator. The applicators are compared by
calculating, wusing the field calculation routine described
in Chapter 2, the power deposition patterns with and without
scanning.

The tumor for this study was an 8 cm diameter sphere
centered at a depth of 6 cm. For this comparison, the scan
path was chosen as circular, around the periphery of the
tumor at a depth of 6 cm. Such a scan path has been shown
to produce a uniform therapeutic temperature throughout the
tumor volume for a poorly perfused tumor (Cravalho et al.,
1980). A value of 0.7 dB/MHz/cm was chosen for the
attenuation of normal and tumor tissues. A 2 cm water path
was selected for bothlapplicators to allow for the coupling
medium, which might also provide surface cooling, and for
clearance for the mechanically scanned fixed focus
applicator. Based on the design parameters for the array
presented in the previous section, an operating frequency of
0.25 MHz was used for each applicator.

The surface area of the stacked 1linear phased array
applicator was 240 cm?2, Consequently, a 10 cm diameter was
chosen for the fixed focus applicator to provide a
comparable surface area in the plane of the source (254 cm2)
for the particular scan path used in this comparison.
Though the two applicators have markedly different shapes
and sizes, as shown in Fig. 7.2, their scanned surface areas
are approximately \ equivalent. A summary of the two

applicators is given in Table 7.2.
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APPLICATOR

APPLICATOR AREA - 240 ¢m?

SCANNED
SURFACE

AREA
APPLICATOR

TUMOR-

SCANNED SURFACE AREA - 254cm?

Figure 7.2. Comparison of stacked 1linear phased array

applicator surface area (top) and scanned
surface area of fixed focus applicator
{bcttom) .
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Table 7.2. Parameters for applicators used in this comparison.

Phased Array Fixed Focus

Applicator Applicator
Frequency 0.25 MHz 0.25 MHz
Applicator Area 240 cm? : 78.5 cm?
Scanned Surface 240 cm? 254 cm?
Focusing Depth 8 cm 8 cm

The power deposition pattern without scanning is
provided for each applicator in Figs. 7.3 and 7.4. The
pattern produced by the phased array, Fig. 7.4a, represents
a slice through the focus in the x-z plane. The extent of
the focus in the y-direction at the 3 dB 1level . is
approximately the height of one array, 1.5 cm (see
Fig. 7.4b). The size of the focus produced by the phased
arrey 1is smaller in the x-z plane than that produced by the
fixed focus applicator because of the larger aperture of the
phased array in the x direction.

The scan for the fixed focus applicator is continuous
whereas the focal region for the phased array must be
scanned by moving it among discrete positions. These
positions must be determined from consideration of the scan
path and the focal characteristics of the applicator, so
that a nearly uniform power deposition is prdduced over the
tumor periphery. This requires that the distance between

phased array scan locations be approximately the same as the
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BODY SURFACE
COUPLING MEDIUM

FIXED FOCUS APPL ICATOR

Figure 7.3. Power deposition patterns £for single focus
locations produced by fixed focus appligator.
The pattern is normalized to 1 W/ cm gnd
contours are given in increments of 0.1 W/cm”.
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Figure 7.4.

BODY SURFACE
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STACKED ARRAY APPLICATOR

Power deposition patterns for single focus
locations produced by the stacked array
appl%cator. The patterns are normalized to 1
W/cm agd contours are given in increments of
0.1 W/cm®. The patterns for the stacked array
applicator are made phased (with 4 Dbit
quantization) to produce a focus at x=0 cm (See
Fig. 7.1 £for coordinates). Figure 7.4a is the
pattern in the x-z plane and Fig. 7.4b 1is the
pattern in yv-z plane. :
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3 dB dimension of the focus in each direction. An
additional complexity of the phased array focusing is that
when the focus is off axis, the elliptical shape of the
focus is rotated, as illustrated in Fig. 7.5. However, the
rotation of the focus is not significant enough to severely
affect the scanned power deposition pattern of the phased
array applicator.

The scanned power deposition pattern of the fixed focus
applicator 1is easily calculated from its unscanned power
deposition pattern since the shape of the focus is the same
for all scan positions. The focus sweeps out a circle with
its 3 dB power levels as shown in Fig. 7.6a. The power
deposition pattern in.the x-z plane cross section, displayed
in Fig. 7.7, shows that there are no high intensity regions
away from the desired path. This single cross section of
the scanned power deposition pattern defines the field for
any point since circular symmetry exists.

The phased array applicator was scanned in a circular
path by placing the focus at the specific 1locations
illustrated in Fig. 7.6b. The focal locations are chosen so
that the number of focal positions in each 45 degrees of arc
is a constant. For actual implementation of phased array
scanning, a larger number of focal locations might be chosen
for a more continuous distribution, and the time spent at
each location would be adjusted to provide the desired power
depositicn pattern. as discussed in Chapter 5. The
approach used in this study was chosen for its computational

efficiency. Since each focal 1lccation has its own
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BODY SURFACE
COUPLING MEDIUM

Figure 7.5.

STACKED ARRAY APPL ICATOR

Power deposition pattern in the x-z plane for a
single focus location produced by the stacked
array applicator at x=40 cm. All other
parameters are the same as in Fig. 7.3.
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a)

b)

TUMOR

Figure 7.6. Scan paths for circular scanning of the fixed
focus (Fig. 7.6a) and stacked array (Fig. 7.6b)
applicators., The 3 dB limits of each scan are
indicated.
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SCANNED FIXED FOCUS APPLICATOR

Figure 7.7. Power deposition patterns for a circular scan
path produced by the fixed focus applicator.
The pattern is displayed using the same

parameters as Fig. 7.3.
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charateristic shape and the field contribution from each
must be calculated separately, it is preferable to use =a
smaller number of locations for simulation purposes.

The power deposition pattern in an x-z cross section is
shown in Fig. 7.8. It should be noted that an area of high
power deposition, greater than 40% of the peak, appears at
the center of the field toward the surface of the applicator
and has the potential for causing undesired heating of
intervening tissue. However, for this particular tumor size
and depth, the 0.4 contour area lies at the front surface of
the spherical tumor and would serve to provide additional
heating to the tumor. The source of this high power
deposition area 1is evident when the skewed focal region of
Fig. 7.5 is examined. The single power deposition section
shown 1in Fig. 7.8 characterizes only one cross section of
the field volume since there is no circular symmetry for the
power deposition pattern of the scanned phased array

applicator.

7.4 Discussion

A stacked 1linear phased array applicator can be
designed to provide the required intensity gain for heating
deep seated tumors. However, initial comparisons suggest
that the array may be more 1likely than a fixed focus
applicator to produce hot spots in intervening tissue when
each applicator is scanned.

The production of hot spots in intervening tissue can
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STACKED ARRAY APPL {CATOR

Power deposition patterns for a circular scan
path stacked array array in a x-z plane
section. The pattern is displayed using the
same parameters as Fig. 7.3. Figure 7.8 is
produced by phasing (with 4 bit quantization)
the array to sequentially scan the focus
positions shown in Fig. 7.6Db. 4
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be decreased by exciting only the portions of the array
closest to the focal lccation. Thus, the excitation of the
array could be shifted in both the x and y directions to
follow the focal position, in much the same way as the fixed
focus transducer is moved along its scan path. The same
overall gain would. be provided, because the entire
applicator surface area is still being used for heating.
Another alternative to phased array scanning is the

formation of an enlarged focus, as described in Chapter 8.
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CHAPTER 8
SHAPING OF PHASED ARRAY FOCUS TO

UNIFORMLY HEAT A TUMOR

8.1 Introduction

The dynamic focusing capability of an ultrasonic phased
array can be used in diagnosis to produce a high resolution
image. However, when a phased array is made of sufficient
size to provide the intensity gain necessary for deep
hyperthermia, the resulting focus is too small to heat a
tumor volume without some manipulation of the focus. The
focusing characteristics of an ultrasonic phased array can
be altered to heat a larger volume by two different methods:
electronic scanning of the small focus or the formation of
an enlarged focus or specially designed field shape. A
combination of these two methods cculd also be used.

Electronic scanning of the focus 1is performed by
changing the driving phases to each array element so that
the focus is moved throughout the desired volume along a
defined path. For a typical hyperthermia application the
path would follow the periphery of the tumor, so that heat
conduction and blood flow would transmit heat to the tumor
interior and a uniform temperature distribution would result
(Lele, 1980). Consequently, control over the energy deposi-
tion pattern is much more important than producing a uniform
energy depocsition pattern. Control of the power deposition

pattern was the objective in the analysis that follows.
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8.2 Theory

Both cavitation and nonlinear sound propagation effects
can be avoided by the formation of multiple foci. By
forming foci at several locations simultaneously réther than
scanning a sinéle focus to each of the separate focal
locations, the dwell time is increased and the intensity is
decreased. This enlarged focus can be made sufficiently
large to cover the entire tumor, or it can be scanned over
the tumor volume along a path which includes fewer sites.

The formation of a single focus is straightforward, as
all the elements of the array are phased so that the sound
from each source arrives with the same phase at the focus.
For forming multiple foci, the ideal phasing of each array
element is.not so obvious, since every element cannot be
phased so that vall signals arriving at every focus is in’
phase. A method for determining an optimum set of phases
for multiple focus generation follows.

The simplified problem of M omnidirectional sources
used for producing N foci in a lossless medium, as shown in
Fig. 8.1, will be examined. The result, however, can be
applied to the situation of directional scurces in
attenuating media, as occurs with a hyperthermia phased
array. The solution can be obtained by considering the
optimum phase gopt for a single source Sg. The phase on
source Sm that would add constructively, i.e., completely in
phase, to form the nth focus Fn is designated by 8, Thus,

if the source is excited with a signal of phase 6, the
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Figure 8.1. Geometry for forming N foci using M sources.
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component of the signal that adds constructively at the

focus F is given by cos(6 - 8,). Since the objective is to

maximize the contribution to all N focal locations, eopt is

the phase that maximizes the sum

N

1 A cos(e - &) (8.1)
n=1

where An is the magnitude of the desired relative amplitude
at the nth focus. Since the maximum of this function occurs
where the derivative is =zero, the optimum phase 1is the
solution to the equation

N
0 =) A

sin (6 -
ne1 B opt - 8 ) (8.2)

subject to the constraint that the second derivative is less
than zero giving the additional condition

N

0 < E A cos (8

- 8
n=1 opt

o). (8.3)

Designating the positive real sum of Eqg. (8.3) by R and

adding to Eg. (8.2) multiplied by j vyield

N
nzlAn cos (Bepe = 85) + sin(Bgpe - 85)f = R. (8.4)
This may be rewritten as

N 3

z Anej (eopt - en) = R (8.5)
n=1

and rearranged to yield

N . .
) A e 3% = re”3%pt. (8.6)
=1 n

Equating real and imaginary components of Eq. (8.6) vields
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N :

nzlAncosen = Rcos8qp¢ (8.7)
N

nzlAnsinSn = RsinBgp¢ | (8.8)

Dividing Eq. (8.8) by Eq. (8.7) vyields
N ) N

tané .- n2131n8n/n£lcos9n . (8.9)
This is exactly the same phase that is obtained by a simple
summing of the complex signals required for each focus,
ejen, weighted by the desired relative amplitude An'

An enlarged focus is produced by producing multiple
adjacent foci as described above (Tucker, 1956). The
complex driving signal Sm for the mth element to produce N
foci 1is

Sm = Sm'l + Smlz + Sm'3 + eee T Sm,N (8.10)

where s is the signal that is required on the m™? element

to produce a focus at the nth focal position. A higher
amplitude can be produced at a given focal position by
increasing the magnitude of the Sp,n term in the summations.
To produce a similar heating pattern wusing the scanned
approach, the driving signal for the nth array element would
be cycled through the set of signals
(8n,1+ Sm,2+ Sm,3+ +--s Sm,N). The multiple foci can be
chosen to conform the power deposition pattern to the shape

of the tumor, hereafter referred to as conformal focusing.
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One disadvantage of conformal focusing is that while it
produces the desired intensities at the specified focal
locations, higher intensities can be produced at other
locations due to the formation of an interference pattern.
Practically, intensities can be set in only one surface
equidistant from the applicator and the quality of the
conformed focus severely degrades as the number of focal
locations in the pattefn approaches the number of array
elements. The conformal approach also requires driving
amplitude control, an additional complication, although
conformal focusing can be used with fixed driving amplitude

with some degradation of the focus.

8.3 Methods

Conformal focusing has been investigated for use with a
stacked linear phased array applicator design, as previously
described by the author in Chapter 3 and would be applicable
to a tapered 1linear phased array applicator (Benkeser,
1985). This approach is evaluated by examining a simple
linear phased array. A frequency of 0.4 MHz was chosen to
allow for sufficient penetration for deep hyperthermia. An
array length of 20 cm was chosen as representative of the
aperture required to provide sufficient gain for deep
hyperthermia. The array was divided into 64 elements of 3
mm width and 45 mm height, and an attenuation coefficient of

0.08 nepers/cm/MHz was used for all tissues.
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8.4 Results

A cross section of the energy deposition patterﬁ of a
single focus produced by this array was computgd and is
shown in Fig. 8.2, normalized to the maximum intensity and
with contours at 0.1 interval. Scanning of this focus

(-2.4, 0.0, 2.4) mm at z = 100 mm to produce a

through x
pattérn three focal widths wide is shown in Fig. 8.3.
Conformal focusing at x = (-2.4, 0.0, 2.4) mm and z = 100 mm
produced the focus of Fig. 8.4, where maxima greater than
the focal intensity occur along the center axis. This
effect 1s not as evident when the conformal focusing

produces widely spaced foci as shown in Fig. 8.5.

8.5 Discussion

A suitable combination of scanning and conformal
focusing could serve to suppress the disadvantages of each
approach. Conformal focusing could be used to increase the
size of the focﬁs used for scanning so that the intensity
could be reduced to 1lessen the chance of occurrence of
cavitation. Alternatively, scanning of a conformal focus
resembling a comb could be used to cover a large volume
while supressing the interference effects arising when the
multiple foci are closely spaced. More investigation of
focusing alternatives is required to determine the optimum

combination of these approaches.
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CHAPTER S

RECOMMENDATIONS FOR FUTURE STUDY

9.1 Alternative Configurations for Surface Applicators

The variations in the nearfield of circular applicatérs
cause hot spots which lead to patient discomfort when
treating surface tumors. The nearfield wvariations can be
reduced by using applicators consisting of multiple square
sources as indicated in Chapter 2 (Benkeser, 1985;
Underwood, 1987). This nearfield smoothing can be explained
by qualitatively considering the effect of the square
corners added to the overall response of a circular source.
The corner regions can be considered as providing shading,
i.e., a tapering of excitation versus radial distance from
the applicator center, making the excitation closer to a
Gaussian distribution, which produces a smooth nearfield
region.

The uniformity in the nearfield of a square source
suggests that more uniform nearfields could be produced by
designing applicators with multiple Gaussian weighted
sources, which would be difficult to construct, or
apprlicators composed of triangular sources. A triangular
source would be expected to have a mocre uniform nearfield
than a square source since its effective radial weighting is
even closer to that of a Gaussian. These alternative
multielement applicator configurations for treating source

tumors should be investigated further.
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9.2 Required Power Deposition Pattern Determination

The numerical model presented in Chapters 3 and 4 for
calculating required power deposition patterns should be
further developed for clinical applications. The time and
temperature dependences of blood perfusion should be
incorporated to make the model more realistic. The
incorporation of temperature dependence of blood perfusion
in the steady state model is straightforward. However,
including the effects of time and temperature dependence of
the blood perfusion in the time dependent model would
involve evaluating the function d(t,to,oc/anCb) for a
variable W, to determine the required peripherial power
deposition. For both models, changes in the blood perfusion
in the tumor interior require a proportionate change in the
power deposition in accordance with Eq. (4.13).

Automatic tissue classification and assignment of blood
perfusion rates could be used for defining the tumor
geometry and parameters. Such a system, as currently used
by Roemer at the University of Arizona, would use
information from CAT (computer aided tomography) scans and
diagnostic ultrasound to determine tissue types and
geometries. Noninvasive means of blood perfusion and
temperature measurement would also aid in the clinical usage

of this model.

9.3 Required Power Deposition Pattern Formation

An efficient method for closely approximating the
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required power deposition pattern by using a scanned phased
array system needs to be determined. It is expected that an
iterative approach is necessary, although a more direct
approach, such as wusing a Fourier transform, would be
preferred. Difficulties with an iterative approach would
include selecting an appropriate measure of the matching of
the required power deposition pattern and determining when a
satifactory soiution has been obtained. Alternative schemes
for phasing the elements of the array, such as partial
excitation of the array or enlarged focus formation, need to

be considered further.

9.4 Construction and Testing of Practical Linear Phased

Array Applicator

A prototype linear phased array applicator needs to be
built to test the theoretically derived design constraints.
Deviations in the focal pattern from the theoretical results
need to be considered when determining a suitable scan path
or focus formation to approximate the required power
deposition pattern discussed in Chapters 3 and 4. Nonlinear

effects need to be measured and compared with theory (Goss

and Fry, 1981).

9.5 A Two Dimensicnal Array Design

Two dimensicnal phased array designs should be
investigated further. One approach to simplifyving the

construction of a two dimensional array is to use a small
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number of amplifiers to produce the desired frequency with
all possible required phases. The actual phases required on
each element can be quantized to the nearest 45 degrees
without significant degradation .of the focus (Ocheltree,
1984), so that only eight amplifiers would be required. The
phase for each element would then be selected from the eight
available phase shifted signals.

The selection of the phase for each element requires
three bits. These three bits could be determined by filling
an array of shift registers with the appropriate phasing
information. To move the focus laterally the width of one
element, the phase information would be shifted in the
registers in the séme direction. Scanning using such a
method would be done sequentially in planes parallel to the
face of the applicator. To scan in a plane at a different
depth from the applicator surface, new phase information
would be shifted in from the edge of the array of registers
to provide focusing at the new depth.

The hardware requirements for this design of a two
dimensional phased array controlling system are extensive,
but not impractical. A 32 by 32 element array with 3 bits
of phase information would require 8 amplifers, 1024 analog
multiplexers, and 384 shift registers. In addition, enough
memory woﬁld be required to store the phasing information
for a single focus at each desired scan depth. The system
would be complicated, but the benefits of electronic
focusing and scanning and the high gain possible from a two

dimensional array make the system worthy of comsideration.
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APPENDIX A

RECTANGULAR SOURCE FIELD PROGRAM

PROGRAM TO CALCULATE FIELD FOR RECTANGULAR SOURCE.

DIMENSIONS ARE IN WAVELENGTHS.
WRITTEN 6/24/84 BY K. B. OCHELTREE.
MODIFIED 11/20/86 BY K. B. OCHELTREE.

DIMENSIONS ARE AC(NX,NZ),Z(NX,NZ).
COMPLEX AC(41,80),WT, EXPARG, TEMP
DIMENSION Z (41,80)

DATA PI/3.1415926536/

SI1 IS LENGTH OF SIDE IN X DIRECTION.

SI2 IS LENGTH OF SIDE IN Y DIRECTION.

XS IS X STARTING LOCATION.

ZS IS Z STARTING LOCATION.

NX IS NUMBER OF X FIELD POINTS.

NzZ IS NUMBER OF Z FIELD POINTS.

XST,ZST ARE THE STEP SIZES BETWEEN POINTS.
DATA NX,NZ/41,80/

WRITE(6,100)

100 FORMAT(' ENTER SIDE LENGTHS:'$)

READ (5, *) SI1
READ (5, *) SI2
XS=-0.5*3I1
X8T=SI1/FLOAT (NX~-1)
2ST=SI1**2/FLOAT(NZ)
Z8S=Z8T

FAR=10.

CAK=2,*PI

DO 200 J=1,NZ

DO 200 I=1,NX

200 AC(I,J)=CMPLX(0..0.)

CALCULATE FIELD.

XD=8TI1/2.+X8

YD=0.

ZD=ZS

NHD2L=1000

SNW=XD

‘DO 960 IZ=1,NZ
NH=2+INT (SI2/SQRT(ZD/FAR))
NHD2=NH/2
IF (NHD2.GT.100)NHD2=100
IF (NHD2 .EQ. NHD2L)GO TO 840
YINC=SI2/FLOAT(NHD2*2)
CNSTY=PI*YINC

840 YD=YD+YINC/2.

NW=1+INT (SI1/SQRT(ZD/FAR))
IF (NW.GT.200)NW=200
XINC=SI1/FLOAT (NW)

195



CNSTX=PI*XINC

XD=XD-XINC/2.
WT=CMPLX (XINC*YINC,0.)
SNH=YD
DO 920 L=1,NW

SNX=XD

DO 900 M=1,NHD2

DO 880 IX=1,NX

ARG=SQRT (XD**2+YD**2+ZD**2)

XARG=CNSTX*XD/ARG
SINCX=1.

196

IF (ABS (XARG) .GT. .0001)SINCX=SIN(XARG)/XARG

YARG=CNSTY*YD/ARG
SINCY=1,

IF (ABS (YARG) .GT. .0001)SINCY=SIN(YARG)/YARG

EXPARG=CEXP (CMPLX (0., -ARG*CAK))

TEMP=EXPARG*WT*CMPLX (SINCX*SINCY/ARG, 0.)

AC(IX,IZ)=AC(IX,IZ)+TEMP

XD=XD+XST
880 CONTINUE
XD=SNX
YD=YD+YINC
900 CONTINUE
YD=SNH
XD=XD-XINC
920 CONTINUE
XD=SNW
¥YD=0.
ZD=ZD+ZST
NHD2L=NHD2
960 CONTINUE

c
C FIND MAXIMUM AND NORMALIZE.
DO 20 IZ=1,NZ
ZMAX=0,0
DO 10 IX=1,NX
Z(IX,IZ)=CABS(AC(IX,IZ))
ZMAX=AMAX1(Z (IX,IZ), ZMAX)
10 CONTINUE
DO 20 IX=1,NX
Z(IX,IZ2)=20.*ALOG10(Z(IX,IZ)/ZMAX)
20 CONTINUE
C
C CONTOUR PLOT OF FIELD.

CALL CONREC(Z,NX,NX,NZ,-6.,-3.,3..0,-1,0)

CALL FLUSH
STOP
END
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PROGRAM TO CALCULATE ARRAY OF POINTS FOR MAKING A CONTOUR PLOT.

APPENDIX B

PHASED ARRAY FIELD PROGRAM

197

THIS HANDLES MULTIPLE FOCAL LOCATIONS PRODUCED BY LINEAR
PHASED ARRAY.
WRITTEN 5/16/85 BY KEN OCHELTREE.

DIMENSIONS ARE Z(NX,NZ),AC(NX,NzZ),XF(NF),YF(NF), ZF (NF) .
DIMENSION XF(20),YF(20),2F(20),2(60,60)
COMPLEX AC(60,60)

SET ARRAY PARAMETERS.

FR
AT
NE
HT
WI
SP

IQ

IS
Is
IS
Is
IS
IS
Is

FREQUENCY IN KHZ.

ATTENUATION AT 1 MHZ IN NEPERS/CM.
NUMBER OF ELEMENTS IN ARRAY.
HEIGHT OF ARRAY ELEMENTS IN MM.
WIDTH OF ARRAY ELEMENTS IN MM,

CENTER TO CENTER SPACING OF ELEMENTS IN MM,

NUMBER OF BITS QUANTIZATION (IQ=0 MEANS NO QUANTIZATION).

DATA FR, AT, NE, HT,WI,SP,IQ/400.,.08,64,45.,3.,3.125,0/

SET FOCUS LOCATION PARAMETERS.

NF
TI
XF
YF
ZF

Is
IS
Is
IS
IS

NUMBER OF POINTS IN SCAN PATH.
ARRAY OF TIMES AT EACH SCAN POINT.
VECTOR OF X FOCUS LOCATIONS.
VECTOR OF Y FOCUS LOCATIONS.
VECTOR OF Z FOCUS LOCATIONS.

DATA NF,XF(1),YF(1),2zZF(1}/7,0.,0..100./
DATA XF(2),YF(2),2F(2)/2.4,0.,100./
DATA XF(3),YF(3),2F(3)/-2.4,0.,100./

DATA XF(4),YF(4),ZF(4)/4.8

DATA XF(6),YF(6),2ZF(6)/7.2,0

0.,100./

,100./

DATA XF(5),YF(5),2F(5)/-4.8,0.,100./
0

DATA XF(7),YF(7),2F(7)/-7.2,

.,100./

SET FIELD POINT LOCATION PARAMETERS.

XS
YS
ZS
NX
NZ
ST

IS
Is
IS
IS
Is
Is

X STARTING LOCATION.

Y STARTING LOCATION.

Z STARTING LOCATION.

NUMBER OF X FIELD POINTS.
NUMBER OF Z FIELD POINTS.

THE STEP SIZE BETWEEN POINTS.

DATA Xs,YS,Zs,NX,NZ,ST/-30.,0.,70.,60,60,1./

LOOP ON NUMBER OF FOCUS LOCATIONS.
ZMAX=0.0

DO
DO

5 IZ=1,NZ
5 IX=1,NX

Z2(IX,I2)=0.0
CONTINUE

DO

CALL FrXZ (FR,AT,NE,HT,WI,SP,IQ,XF(I),YF(I)

20 I=1,NF

»ZF(I),
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1Xs,YSs, ZS,NX, Nz, ST, AC)
DO 15 IX=1,NX
DO 10 IZ=1,NZ
Z(IX,IZ)=2(IX,IZ)+CABS(AC(IX,IZ))**2
ZMAX=AMAX1 (ZMAX, Z (IX,IZ))
10 CONTINUE
15 CONTINUE
20 CONTINUE
DO 60 I=1,NX
DO 60 J=1,NZ
Z(I,J)=Z(I,J)/2MAX
60 CONTINUE
c
C CONTOUR PLOT.
CALL CONREC(Z,NX,NX,NZ,0.,1.,.1,0,~-1,-682)
CALL FLUSH
STOP
END
c _
C SUBROUTINE TO CALCULATE FIELD PRODUCED BY ONE FOCAL POINT.
SUBROUTINE FXZ (FR,AT,NE, HT,WI, SP, IQ,XF,YF, ZF, XS, Y8, 28,
&NX, NZ, ST, PC)
COMPLEX RAI(128),PC(NX,NZ),WT, EXPARG, TEMP
DATA PI/3.1415926536/
FAR=5,
WAVE=1500./FR
PIDW=PI/WAVE
CAK=2.*PIDW
SPACT=FLOAT (NE-1) *SP
ATT=AT* (FR/1000.)**1.1
C CONVERT ATTEN TO NP/MM.
ATT=ATT/10.
IQQ=2**IQ
C CALCULATE PHASES FOR ELEMENTS TO ACHIEVE A FOCUS.
XVAL=-SPACT/2.
RDIST=SQRT( (XF-XVAL) **2+ZF**2)
CAR=CAK*RDIST
XVAL=XVAL+SP
IF(IQQ .EQ. 1)GO TO 660
CAR=2.*PI*AINT(.5+FLOAT(IQQ) *CAR/ (2.*PI))/FLOAT (IQQ)
660 CONTINUE
RAI(I)=CMPLX(COS(CAR),SIN(CAR))
630 CONTINUE

C

C INITIALIZE ARRAY.
DO 760 J=1,NZ
DO 760 I=1,NX

760 PC(I,J)=CMPLX(0..0.)
C
C CALCULATE FIELD.
XA=-SPACT/2.
ZD=2Z8
DO 1000 IZ=1,NZ
NH=1+INT (HT/SQRT (WAVE*ZD/FAR) )
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YINC=HT/FLOAT (NH)
CNSTY=PIDW*YINC
NW=1+INT(WI/SQRT (WAVE*ZD/FAR))
XINC=WI/FLOAT (NW)
CNSTX=PIDW*XINC
AREA=XINC*YINC

XP=XS

DO 980 IX=1,NX
XNE=XA
DO 940 IE=1,NE
WT=RAI (IE) *AREA
XE= (XINC-WI)/2.
DO 920 IW=1,NW
YE= (YINC-HT)/2.
XD=XP- (XNE+XE)
DO 900 IH=1,NH

YD=YS-YE

ARG=SQRT (XD**2+YD**2+ZD**2)
XARG=CNSTX*XD/ARG

SINCX=1.

IF (ABS (XARG) .GT. .0001)SINCX=SIN(XARG)/XARG
YARG=CNSTY*YD/ARG

SINCY=1.

IF (ABS(YARG) .GT. .0001)SINCY=SIN(YARG)/YARG
EXPARG=CEXP (CMPLX (~ARG*ATT, ~ARG*CAK) )
TEMP=EXPARG*WT*CMPLX (SINCX*SINCY/ARG,0.)
PC(IX,IZ)=PC(IX,IZ)+TEMP

YE=YE+YINC
900 CONTINUE
XE=XE+XINC
920 CONTINUE
XNE=XNE+SP
940 CONTINUE
XP=XP+8T

980 CONTINUE

ZD=ZD+ST
1000 CONTINUE

RETURN

END
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APPENDIX C

THREE DIMENSIONAL BIOHEAT TRANSFER PROGRAM

PROGRAM TO CALCULATE THE NECESSARY HEATING FOR A UNIFORM
TUMOR TEMP OF 43 DEGREES.
THIS PROGRAM IS FOR A SPHERICAL TUMOR.
BASED ON PROGRAM BY CHARLES CAIN.
ENTERED 11/1/84 BY KEN OCHELTREE.
PARAMETER (IM=60,JM=60,KM=60,IMM1=59, JMM1=59, KMM1=59)
PARAMETER (DT=.0001,G=1.86,G1l=-,86)
DIMENSION T(IM,JM, KM),WQ (IM,JIM, KM)
DIMENSION X (JM),Y (JM)

SET CONSTANTS.

SET STEP SIZE.
DX=0.002
SET TUMOR SIZE.
TRAD=10.
R2=TRAD#**2
XCEN=FLOAT (IM+1)./2.
YCEN=FLOAT (JM+1) /2.
ZCEN=FLOAT (KM+1) /2.
SET THERMAL CONDUCTIVITY PARAMETERS (W/DEG/M).
CK=0.55
SET BLOOD FLOW PARAMETERS (KG/M**3/SEC).
WB=1.67
SET TEMPERATURE AT BOUNDARY.
T™B=37.
TS=25.,
TSB=TS~TB
SET BLOOD SPECIFIC HEAT (W/DEG/KG).
CB=4000.
SET OVER-RELAXATION GAIN (1<G<2).
G=1.86
Gl=1.-G
SET CONVERGENCE CRITERIA.
DT=0,.01

CALCULATE FLOATING POINT CONSTANTS.

DX2=DX*DX
A=DX2/CK
WCA=WB*CB*A
CS=G/ (6 .+WCA)

ZERO POWER DISTRIBUTION MATRIX.
DO 160 K=1,KM
DO 160 J=1,J0M
DO 160 I=1,IM

160 wQ(I,J,K)=0.

SET INITIAL VALUE FCR TEMPERATURE AT NODES.
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101

C
C

201

DO 100 Jg=1,JdM

DO 100 K=1,KM
T(1,J,K)=TSB

DO 101 K=1,KM
ZR=FLOAT (K)-ZCEN
DO 101 J=1,0M
YR=FLOAT (J) -YCEN
DO 101 1=2,IM
XR=FLOAT (I)-XCEN
T(I,J,K)=0.

IF (XR**2+YR**2+ZR**2 , LE,R2)T(I,J,K)=6.0
CONTINUE

ITERATION LOOP.

199

LOOP=0
NN=0

C CALCULATE NORMAL TISSUE TEMPERATURE AND TUMOR TEMPERATURE.

Qo

C

210

215
220

300

DO 220 K=1,KM

KM1=K-1

KP1l=K+1

IF(KM1.EQ.0)KM1=2

IF (K.EQ.KM)KP1=KMM1

DO 215 J=1,0M

JM1l=J-1

JP1l=J+1

IF(OM1.EQ.0)JM1=2
IF(J.EQ.JM)JP1=gMM1

DO 210 I=2,IMM1
IF(T(I,J,K).EQ.6.0)GOTO 210
TOLD=T(I,J,K)
T(I,J,K)=CS*(T(I,J,KP1)+T(I,J,KMl)+T(I,JP1,K)+T(I,JM1,K)

1+T(I+1,J,K)+T(I-1,J,K)+WQ(I,J,K))+G1l*TOLD

IF(ABS(T(I,J,K)-TOLD).GT.DT)NN=NN+1

CONTINUE

TOLD=T (IM, J,K)
T(IM,J,K)=CS*(T(IM,J,KP1l)+T(IM,J,KM1)+T(IM,JTP1,K)

1+T(IM,JIM1,K)+T(IMM1,J,K)+T(IMM1,J,K)+WQ(IM,J,K) )+G1l*TOLD

IF (ABS (T(IM,J,K)-TOLD) .GT.DT) NN=NN+1
CONTINUE

CONTINUE

LOOP=LOOP+1
WRITE (6, *)LOOP, NN

IF (NN.GT.0)GO TO 199
DO 300 K=1,KM

DO 300 J=1,JM

DO 300 I=1,IM
T(I,J,X)=T(I,J,K)+TB
CONTINUE

CONTOUR PLOT DATA.

CALL CONREC(T(1,10,KM/2),IM,50,41,25.1,100.1,0.5,0,0,0)
CALL FRAME

INVERT TEMP TO FIND POWER.

DO 320 K=1,KM
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DO 320 J=1,0M

DO 320 I=1,IM
320 7T(1,J,K)=7(I,J,K)-TB

DO 700 K=2,KMM1

DO 700 J=2,JMM1

DO 700 I=2,IMM1

WQ(I,J,K)=((6.+WCA)*T(I,J,K)-T(I~-1,J,K)-T(I+1,J,K)~

ir(1,3-1,X)-1(1,J+1,K)-7(1,J,K-1)-7(1,J,K+1))/A

IF(wQ(1,J,K).LT.0.)WQ(I,J,K)=0.
700 CONTINUE

WRITE (1) ({WQ(I,J,KM/2),I=1,IM),J=1,JM)

CALL EZCNTR(WQ(1,1,KM/2),IM,JM)

CALL FLUSH

STOP

END
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APPENDIX D

LINEAR BIOHEAT TRANSFER PROGRAM

PROGRAM TO CALCULATE TEMPS IN HALF-SPACE MODEL.
BASED ON PROGRAM BY. CHARLES CAIN.
ENTERED 1/23/84 BY KEN OCHELTREE.
DIMENSION X(602),T(301),TT(301),WQ(301),wWQT(301), c(301)
DIMENSION BAS(302),FN(3),WB(301)
DIMENSION TEMP(322)
FN(1)=160.
FN(2)=160.
FN(3)=2.
JMAX=301
JST=201
JT=200
C SET THERMAL CONDUCTIVITY PARAMETERS (W/DEG/M).
CKM=0.55
C SET BLOOD FLOW PARAMETERS (KG/M**3/SEC).
WBM=1.67
TB=37.
C SET BLOOD SPECIFIC HEAT (W/DEG/KG).
CB=4000.
C SET STEP SIZE.
DX=0.001
C SET OVER-RELAMATION GAIN (1<G<2).
G=1.86
Gl=G-1.
C SET CONVERGENCE CRITERIA.
DT=0.001
C SET PARAMETER FOR STOPPING ITERATION.
NSTOP=0
C ZERO POWER DISTRIRUTION.
DO 150 J=1,JMAX
150 WwWQ(J)=0.

Q0N

C

C CALCULATE FLOATING POINT CONSTANTS.
DX2=DX*DX
AM=DX2/CKM

C

C MAKE MULTIPLIER MATRIX.
DO 164 J=1,160
X(J)=FLOAT(J-100) *DX*100.
164 X(J+160)=X(J)
DO 165 J=1,JIMAX
WB (J) =WBM
IF(J.GT.JT)GOTO 165
XX=9.4*100*DX*FLOAT (J-200) /4.0
WB(J)=.1666667
IF(XX.LE.-9.4)G0OTO 165
WB(J)=4.16666-15,625% (XX+,4) **2
IF(XX.LT.-.4)WB(J)=2.916666-1.25*C0OSD(180.* (XX~-.6))
IF(XX.LE.-.9)WB(J)=3.187924068E0-3.021257402E0*SQRT (1~
1(XX+9.4)*%2/72.83713857E0)
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165 C(J)=G*1./(2.+CB*AM*WB(J))
c
C MODIFY POWER DISTRIBUTION MATRIX.
175  CONTINUE
DO 180 J=1,JMAX
180 WQ(J)=WQ(J)*AM
C .
C SET INITIAL VALUE FOR TEMPERATURE AT NODES.
C
DO 101 J=1,JMAX
T(J)=0.
. IF(J.LE.200)T(J)=6.
101 CONTINUE

C

C ITERATION LOOP.
LOOP=0

189 1NN=0

C CALCULATE NORMAL TISSUE TEMPERATURE AND TUMOR TEMPERATURE.
DO 220 J=JST, JMAX-1
XIJ=C(J) * (T(J+1)+T(J-1)+WQ (J) ) -G1*T (J)
IF (ABS (XIJ~-T(J)) .GT.DT) NN=NN+1

220 T(J)=X1IJ _
LOOP=LOOP+1
WRITE (6,666 )LOOP, NN

666 FORMAT(' ',2I5)
IF (NN.GT.NSTOP)GO TO 199

c

C INVERT TEMPERATURE DISTRIBUTION TO FIND POWER.
DO 760 J=2,JMAX-1
WQT (J)=G*T(J)/C(J)-T(J+1)-T(J-1)

760 CONTINUE
WQT (1) =G*T (1) /C(1)-2.*T(2)
WQT (301)=WwQT(300)
DO 780 J=1,JMAX

780 WQT(J)=WQT(J)/AM
DO 750 J=1,JMAX
T(J)=T(J)+TB

750 CONTINUE
IF(JST.EQ.2)GOTO 222
DO 770 J=1,160
TT(J)=T(J+100)

770 CONTINUE

CODE FOR BASIS FUNCTION WEIGHTING

a0

JST=2
WRITE(6,500)

500 FORMAT(' ENTER 3DB WIDTH OF BASIS FUNCTION IN MM:'S$)
READ (5, *)X3DB
CONST=1.3011224*X3DB
WRITE(6,501)

501 FORMAT(' ENTER SPACING OF BASIS FUNCTION IN MM:'S)
READ (5, *) SPACE
WRITE{6,502)

502 FORMAT({' ENTER SHIFT FOR CENTER OF BASIS IN MM:'$)
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READ (5, *) SHIFT
BAS(1)=1.
POW=BAS (1)
DO 151 I=1,301
BAS(I+1)=EXP(-1.* (FLOAT(I)/CONST)**2)
POW=POW+2,*BAS (I+1)
151 CONTINUE
152 BAS(I)=BAS(I)/POW
IFIN=INT(SPACE/2.)
DO 300 I=200+SHIFT,1l,~SPACE
WT=WQT (I)
IF(IFIN.EQ.0)GOTO 153
DO 153 X=1,IFIN
WEV=1.0
IF (SPACE/FLOAT (IFIN) .EQ.2..AND.K.EQ.IFIN)WEV=0.5
IF(I-K.LE.0)GOTO 153
WT=WT+WEV* (WQT (I-K) +WQT (I+K) )
153 CONTINUE
DO 300 J=1,301
IARG=1+IABS (I-J)
WQ {J)=WQ (J) +WT*BAS (IARG)
300 CONTINUE
DO 302 J=1,160
IF(WQ(J+100) .LT.0.0)WQ(J+100)=0.
IF (WQT(J+100) .LT.0.0)WQT (J+100)=0.
TEMP (J)=.000001*WQ (J+100)
302 TEMP(J+160)=.000001*WQT (J+100)
CALL DIFYPLT(X,TEMP,~2,FN,' ', 'DISTANCE (cm)°’,
1'POWER DEPOSITION (W/cm**3)',1.,2.5,4.2,4.8)
GOTO 175
222 CONTINUE
DO 303 J=1,160
TEMP (J)=T(J+100)
303 TEMP(J+160)=TT(J)
TEMP (321)=37.
TEMP (322) =44.
X(321)=-10.
X(322)=-10.
CALL DIFYPLT(X,TEMP,3,FN,' ', ‘'DISTANCE (cm)'"',
1'TEMPERATURE (oC)',4.7,0.,4.2,4.8)
CLOSE(98,DISP='PRINT/DELETE"')
STOP
END
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APPENDIX E

CYLINDRICAL BIOHEAT TRANSFER PROGRAM

PROGRAM FROM CHARLES CAIN TO CALCULATE STEADY STATE
TEMPERATURE DISTRIBUTIONS IN A TWO-DIMENSIONAL
MULTI-LAYERED CYLINDRICAL MODEL.
ENTERED 1/23/84 BY KEN OCHELTREE.
DIMENSION SCAN(101,141),7T(141,101),wQ(141,101),C(141,101)
DIMENSION TEMP(101,141)

SET CONSTANTS.

SET GEOMETRICAL PARAMETERS OF CYLINDRICAL MODEL (M).
RMAX=0,099
ZMAX=0,140
RTUM=0.03
ZTUM=0.06
ZCEN=0.08
ZR1=0.003
ZR2=0.003
Z5=0.000
ZF=0.020
ZzM=0,030
SET THERMAL CONDUCTIVITY PARAMETERS (W/DEG/M).
CKS=0.55
CKF=0.55
CKM=0.55
CKvV=0.,55
CK1=0,55
CK2=0.55
CK3=0.55
SET BLOOD FLOW PARAMETERS (KG/M**3/SEC),
WBS=1.667
WBF=1.667
WBM=1.667
WBV=1.667
WB1l=1.667
WB2=1.667
WB3=1.667
SET TEMPERATURE AT BOUNDARY.
TB=37.
TS=25.
TSB=TS-TB
SET BLOOD SPECIFIC HEAT (W/DEG/XG).
CB=4000.
SET STEP SIZE.
D=0.001
SET OVER-RELAXATION GAIN (1<G<2).
G=1.86
Gl=G-1.
SET CONVERGENCE CRITERIA.
CC=0.001
SET BLOOD SPECIFIC HEAT (W/DEG/KG).
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CB=4000.
C SET PARAMETER FOR STOPPING ITERATION.
NSTOP=2 :

QOn

CALCULATE INTEGER GEOMETRICAL LIMIT CONSTANTS.

IMAX=ZMAX/D+1.5
JMAX=RMAX/D+1.5
IS=ZS/D+1.
IF=ZF/D+.5+I8
IM=ZM/D+,.5+IF
IZ=ZCEN/D+1.5
IZZ2=Z27UM/D/2.+.5
IZR1=ZR1/D+.5
IZR2=ZR2/D+.5
I1=I1Z-1%22
I2=71+IZR1
I3=I2+1IZR2
I6=IZ+IZ22
I5=I6~IZR1
I4=I5-IZR2
J3=RTUM/D+1.5
J2=J3-IZR1
J1=J2-IZR2
C
C READ IN POWER DISTRIBUTION.
C
READ (1) sCcaN
CALL CONREC(SCAN,101,101,141,0.1,0.9,0.1,0,-1,0)
CALL FRAME
DO 150 J=1,101
DO 150 I=1,141
WQ(I,J)=100000.*SCAN(J,I)
150 IF(I.LT.IF)WQ(I,J)=WQ(I,J)/3.
C
C CALCULATE FLOATING POINT CONSTANTS.
C
DD=D*D
AS=DD/CKS
AF=DD/CKF
AM=DD/CKM
AV=DD/CKV
Al=DD/CK1
A2=DD/CK2
A3=DD/CK3

WCAS=WBS*CB*AS
WCAF=WBF*CB*AF
WCAM=WBM#*CB*AM
WCAV=WBV*CB*AV
WCA1l=WB1*CB*Al
WCA2=WB2*CB*A2
WCA3=WB3*CB*A3

CS=1./(4.+WCAS)
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CF=1./(4.+WCAF)
CM=1./(4.+WCAM)
Cv=1./(4.+WCAV)
Cl=1./(4.+WCAl)
C2=1./(4.+WCA2)
C3=1./(4.+WCA3)

Cs0=1./(6.+WCAS)
CF0=1./ (6 .+WCAF)
CMO=1./(6.+WCAM)
Cv0=1./(6.+WCAV)
Cl0=1./(6.+WCAl)
C20=1./(6.+WCA2)
C30=1./(6.+WCA3)

MAKE MULTIPLIER MATRIX.

160

165

DO 160 I=1,IMAX

CX=Cvo0

IF(I.LE.IM)CX=CMO

IF(I.LE.IF)CX=CF0

IF(I.LE.IS)CX=CS0
IF(I.GE.I1.AND.I.LE.I6)CX=C10
IF(I.GE.I2.AND.I.LE.I5)CX=C20
IF(I.GE.I3.AND.I.LE.I4)CX=C30

C(Il 1) =CX*G

DO 165 J=2,JMAX

DO 165 I=1,IMAX

CX=CV

IF(I.LE.IM)CX=CM

IF(I.LE.IF)CX=CF

IF(I.LE.IS)CX=CS
IF(I.GE.I1.AND.I.LE.I6.AND.J.LE.J3)CX=C1
IF(I.GE.I2.AND.I.LE.I5.AND.J.LE.J2)CX=C2
IF(I.GE.I3.AND.I.LE.I4.AND.J.LE.J1)CX=C3
C(I,J)=CX*G

C MCODIFY POWER DISTRIBUTION MATRIX.

C

C

180

DO 180 J=1,JMAX

DO 180 I=1,IMAX

AX=AV

IF(I.LE.IM)AX=AM

IF(I.LE.IF)AX=AF

IF(I.LE.IS)AX=AS
IF(I.GE.I1.AND.I.LE.I6.AND.J.LE.J3)AX=A1
IF(I.GE.I2.AND.I.LE.I5.AND.J.LE,J2)AX=A2
IF(I.GE.I3.AND.I.LE.I4.AND.J.LE.J1)AX=A3
WQ(I,J)=WQ(I,J)*AX

C SET INITIAL VALUE FOR TEMPERATURE AT NODES.

C

100

DO 100 g=1,JMAX
T(1,J)=TSB
DO 101 J=1,J0MAX

208



209

DO 101 I=2,IMAX

101 T(I,J)=0.
C
C ITERATION LOOP,
C
188 LOOP=0
C CALCULATE TEMPERATURE ON CENTER AXIS.
199 NN=0
DO 200 I=2,IMAX-1
TIg=T(I,1)
XIg=C(I,1)*(4.*T(I,2)+T(I-1,1)+T(I+1,1)+WQ(I,1))-G1*TIJ
IF (ABS (XIJ-TIJ) .GT.CC)NN=NN+1
200 T(I,1)=XIg

C CALCULATE NORMAL TISSUE TEMPERATURE AND TUMOR TEMPERATURE.

220

225

230

C

666

DO 225 J=2,JMAX-1
DR=1./((J-1) *2)
DRO=1.-DR
DR1=1.+4DR

DO 220 I=2,IMAX-1
TIJ=T(I,J) »
XIJ=C(I,J)*(T(I,J+1)*DR1+T(I,J~-1)*DRO+T(I+1,J)+T(I-1,J)

1+WQ(I,J))-G1l*TIJ

IF (ABS (XIJ-TIJ) .GT.CC) NN=NN+1

T(I,J)=XIJ

TIJ=T(IMAX,J)
XIJ=C(IMAX,J)* (T (IMAX,J+1) *DR1+T (IMAX,J-1) *DRO+2.*

1T (IMAX-1,J)+WQ (IMAX,J))~-G1l*TIJ

IF (ABS (XIJ-TIJ) .GT.CC) NN=NN+1

T(IMAX,J)=XIJ

CONTINUE

DO 230 I=2,IMAX-1

TIJ=T(I,JMAX)
XIJ=C(I,IMAX)* (T (I,JMAX-1)*2,+T(I+1,JIMAX)+T(I-1,JIMAX)

1+WQ (I, IMAX) ) ~-G1l*TIJ

IF (ABS (XIJ-TIJ) .GT.CC)NN=NN+1
T(I,JIMAX)=XIJ

CONTINUE

LOOP=LOOP+1
WRITE(6,666)LOOP, NN

FORMAT (' ',2I5)

IF (NN.GT.NSTOP)GO TO 199
WRITE(6,*)T(IZ,1),NN

C CHECK TEMPERATURE AT CENTER.
IF NOT 6 C, ADJUST POWER.

C

C

196

197

IF(ABS(T(IZ,1)-6.).LT..1)GOTO 197
FAC=6./T(IZ,1)

DO 196 I=1,IMAX

DO 196 J=1,J0MAX
WQ(I,J)=FAC*WQ(I,J)

GOTO 198

CONTINUE

C CONTOUR PLOT DATA.

DO 456 I=1,IMaAX
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DO 456 J=1,JMAX
TEMP(J,I)=T(I,J)+TB
456 CONTINUE
CALL CONREC(TEMP, 101, JMAX, IMAX,25.,65.,1.,0,-1,0)
CALL FLUSH
STOP
END



APPENDIX F

BONE HEATING MODELING PROGRAM

C PROGRAM TO CALCULATE TEMPS FOR FAT/MUSCLE/BONE MODEL.

C ENTERED 11/14/86 BY KEN OCHELTREE.

211

DIMENSION X(402),T(201),TT(201),Q(201),WQ(201),C(201)

DIMENSION FN(2),WB(201)
DIMENSION TEMP(322)
FN(1)=150.0

JF=30

JM1=40

JT=90

JM2=110

JB=120

JBM=140

JMAX=150

TFAT=,03

TMUS=.08

SET CONSTANTS.

OO n0n

CKF=0.21
CKM=0.55
CKB=.44
CKBM=,44
C SET BLOOD FLOW PARAMETERS (KG/M*+*3/SEC).
WBF=0.41667
WBM=1.667
WBB=0.
WBBM=, 8
TB=37.
C SET BLOOD SPECIFIC HEAT (W/DEG/KG).
CB=4000.
C SET STEP SIZE.
D=0.001
C SET OVER-RELAXATION GAIN (1<G<2).
G=1.86
Gl=G-1.
C SET CONVERGENCE CRITERIA.
DT=0.001 ,
C SET PARAMETER FOR STOPPING ITERATION.
NSTOP=0

C CALCULATE FLOATING POINT CONSTANTS.
DX2=D*D
AF=DX2/CKF
AM=DX2/CKM
AB=DX2/CKB
ABM=DX2/CKBM
C
C SET POWER DISTRIBUTION.
777 CALL LAYERS (TFAT, TMUS,Q)

SET THERMAL CONDUCTIVITY PARAMETERS (W/DEG/M).
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DO 150 J=1,JMAX
150 WQ(J)=100000.*Q(J)
C
C MODIFY POWER DISTRIBUTION MATRIX.
175 CONTINUE
DO 180 J=1,JMAX
AX=AB
IF (J.LE.JM2)AX=AM
IF (J.LE.JF)AX=AF
180 WQ(J)=WQ(J)*AX
C
C MAKE MULTIPLIER MATRIX.
DO 165 J=1,JMAX
X(J)=.1*FLOAT (J-1)
AX=ABM
WB (J) =WBBM
IF(J.GT.JB.AND.J.LE.JBM)GOTO 165
AX=AB
WB(J)=WBB
IF(J.GT.JM2)GOTO 165
AX=AF
WB(J) =WBF
IF(J.LE.JF)GOTO 165
AX=AM
WB (J) =WBM
IF(J.LE.JM1.0R.J.GT.JT)GOTO 165
XX=9,.4* (ABS (FLOAT(J- (JT+JIM1) /2) *2,/FLOAT (JM1-JT) ) -1.)
WB(J)=4.16666-15.625% (XX+.4)**2
IF(XX.LT.-.4)WB(J)=2.916666-1.,25*COSD(180.* (XX-.6))
IF(XX.LE.-.9)WB(J)=3.187924068E0~-3.021257402E0*SQRT (1-
1(XX+9.4)*%%2/72.83713857E0)
165 C(J)=G*1./(2.+CB*AX*WB (J))
C
C SET INITIAL VALUE FOR TEMPERATURE AT NODES.
C
DO 101 J=1,JMAX

T(J)=0.
101 CONTINUE
T(1l)=-12.
c
C ITERATION LOOP.
c
198 LOOP=0
199 NN=0

C CALCULATE NORMAL TISSUE TEMPERATURE AND TUMOR TEMPERATURE.
DO 220 J=2,JMAX-1
XIJ=C(J) *(T(J+1)+T(J~-1)+WQ(J) ) -GL*T (J)
IF (ABS (XIJ-T(J)) .GT.DT) NN=NN+1

220 T(J)=XIg
LOOP=LOOP+1
IF (NN.GT.NSTOP)GO TO 199
JMID= (JM1+JT)/2
WRITE (6, *) LOOP, NN, T (JMID)
IF (ABS{T(JMID)-6.).LT.0.01)GOTO 197
FAC=6./T(JMID)
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DO 196 J=1,JMAX
196 WQ(J)=WQ(J)*FAC
GOTO 198

197 DO 750 J=1,JMAX
T(J)=T(J)+TB
750 CONTINUE
CALL DIFYPLT(X,T,1,FN,*' ',' ', 'TEMPERATURE (oC)',0.,
13.,-6.0,5.)
CLOSE(98,DISP='PRINT/DELETE")
GOTO 777
END
C DISTANCES ARE IN CM IN THIS SUBROUTINE. INPUT IS IN M.
C AVERAGED OVER ALL ANGLES.
SUBROUTINE LAYERS (TFAT, TMUS, Q)
DIMENSION A(1005),D(1005),Q(201),QTEMP(201),X(201)
WRITE(6,90)
90 FORMAT(' ENTER: F(MHZ), # GAIN DIM, APP/TUM, HEAT DPTH:')
READ (5, *)FR, ID,RA,DEP
IF (FR.EQ.0.)STOP
TF=TFAT*100.
TM=TMUS+*100.
AF=,04*FR
AFE=-,08*FR
AM=_,12*FR
AME=-,24*FR
AB=1,5*FR
ABE=-3,*FR
ASB=2.,6*FR
ASBE=-5,2*FR
AMX=0,
DO 100 I=1,1005
D(I)=.02*FLOAT(I-1)
IF(D(I).GT.TF+TM)GOTO 40
IF(D(I).GT.TF)GOTO 20
C CALCULATE POWER DEPOSITION IN FAT.
A(I)=AF*EXP(AFE*D(I))
1+,.04*AF*EXP (TP*AFE+AFE* (TF-D(I)))
2+.26% ,96*AF*EXP (TF*AFE+2 , *TM* AME+AFE* (TF-D(I)))
GOTO 60
C CALCULATE POWER DEPOSITION IN MUSCLE.
20 A(I)=.96*AM*EXP(TF*AFE+AME* (D (I)-TF))
1+.26%,96*AM*EXP (TF*AFE+TM* AME+AME* (TF+TM~-D (I)))
GOTO 60
C CALCULATE POWER DEPOSITION IN BONE.
40 A({I)=.32%.96*AB*EXP(TF*AFE+TM*AME+ABE* (D (I)-TF-TM))
1+.42% _,96*ASB*EXP (TF*AFE+TM*AME+ASBE* (D {(I)-TF-TM))
60 AMX=AMAX1 (AMX,A(I))
100 CONTINUE
DO 14 I=1,1005
14 A(I)=A(I)/{1.+ABS(1.-D(I)/DEP)* (RA**(1,/FLOAT(ID))-1.))**ID
Z{1)=0.
Q(1)=(5./3.)*(A{1L)+A(2)+A(3))
QMAX=Q (1)
DO 201 I=2,201



214

X(I)=.1*FLOAT(I-1)
N=5*({1-1)+1
Q(I)=A(N-2)+A(N-1)+A(N)+A(N+1)+A (N+2)
201 QMAX=AMAX1 (QMAX,Q(I))
DO 202 I=1,201
202 QTEMP(I)=Q(I)/QMAX
CALL DIFYPLT(X,QTEMP,-1,150.,' ','DISTANCE {(cm)'‘',
1'RELATIVE POWER DEPOSITION',1.,2.5,6.0,2.6)
RETURN
END
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APPENDIX G

FIXED FOCUS FIELD PROGRAM

PROGRAM TO CALCULATE THE PRESSURE FIELD PRODUCED BY A CIRCULAR
FOCUSED TRANSDUCER IN AN ATTENUATING MEDIUM.

WRITTEN 10/18/84 BY KENNETH OCHELTREE.,

PROGRAM USES NCAR CONTOUR PLOTTING.

RESULTS ARE USED TO RUN CIRCSCAN.

COMPLEX PC(101,181),EXC
DIMENSION PM2(101,181)
DATA NECESSARY FOR RUNNING THIS PROGRAM IS

DIa DIAMETER OF FOCUSED TRANSDUCER IN MM.

FR FREQUENCY OF TRANSDUCER IN KHZ.

FOC FOCAL DISTANCE OF TRANSDUCER IN MM.

NXP NUMBER OF FIELD POINTS CALCULATED IN X DIRECTION.
XSP INCREMENT BETWEEN ADJACENT X POINTS IN MM.

NZP NUMBER OF FIELD POINTS CALCULATED IN Z DIRECTION.
ZST MINIMUM Z FOR CALCULATED FIELD POINTS IN MM,

ZSP INCREMENT BETWEEN ADJACENT Z POINTS IN MM.

ATT ATTENUATION AT 1MHZ FOR MEDIUM IN NEPERS/CM.

DATA DIA, FR, FOC, NXP, XSP, NzZzP, ZST, 2ZSP, ATT/
1 120., 500.,120., 101, 0.5, 181, 20., 1.0, .1/
DATA PI/3.1405926536/

A SLICE THROUGH CENTER IS ENOUGH TO CHARACTERIZE ENTIRE FIELD.
ATT=,1*ATT* (FR/1000.) **1.1
PIDW=PI*FR/1500.

CAK=2.*PIDW

CALCULATE SIZE OF INCREMENTAL AREAS.

DELTA=SQRT (ZST*600./FR)

DELTA=2.5

DELX=DELTA

IF (DIA/DELTA .LT. 20.) DELX=.05*DIA

CALCULATE NUMBER OF VERTICAL STRIPS TO USE.
NW=INT(.9999+DIA/DELX).
XINC=DIA/FLOAT (NW)

CNSTX=PIDW*XINC
WRITE(6,50) NW, XINC

50 FORMAT(' THERE ARE',I3,' STRIPS OF WIDTH',F5.2)

DIVIDE EACH STRIP INTO SECTIONS.
RAD=DIA/2.
RAD2=RAD**2
CALCULATE FIELD.
DO 80 IX=1,NXP
DO 80 IZ=1,NZP

80 PC(IX,IZ)=(0.,0.)

XE=~-RAD+XINC/2.

DO 160 IW=1,Nw
YHT=SQRT (RAD2-XE**2)
NH=INT(.9999+YHT/DELTA)
YINC=YHT/FLOAT (NH)
WRITE(6,60)NH, YINC
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60 FORMAT (' THERE ARE',I3,' VERTICAL DIVISIONS OF HT',F5.2)
CNSTY=PIDW*YINC
YE=YINC/2.
DO 141 TIH=1,NH
RO1=SQRT (XE**2+YE**2+FOC**2)
ZD=ZST
DO 120 IZ=1,NZP
XD=XE
DO 100 IX=1,NXP
R21=SQRT (XD**2+YE**2+ZD%**2)
ARG=R01~R21
XARG=CNSTX*XD/R21
SNCX=1. -
IF (ABS (XARG) .GT. .0001)SNCX=SIN(XARG)/XARG
YARG=CNSTY*YE/R21
SNCY=1.
IF (ABS(YARG) .GT. .0001)SNCY=SIN(YARG)/YARG
EXC=CEXP (CMPLX (-R21*ATT, ~ARG*CAK) )

C21=ZD/R21 _
PC(IX,IZ)=PC(IX,IZ)+EXC*CMPLX(C21*SNCX*SNCY/R21/R01,0.)
XD=XD+XSP
100 CONTINUE
ZD=ZD+ZSP
120 CONTINUE
YE=YE+YINC
141 CONTINUE
XE=XE+XINC
160 CONTINUE
PMAX=0.0

DO 200 IX=1,NXP
DO 180 IZ=1,NZP
PM2 (IX,IZ)=(CABS(PC(IX,IZ)))**2
PMAX=AMAX1 (PMAX, PM2 (IX, IZ))
180 CONTINUE
200 CONTINUE
DO 300 IX=1i,NXP
DO 300 IZ=1,NZP
300 PM2(IX,IZ)=PM2(IX,IZ)/PMAX
WRITE (1) PM2
CALL CONREC (PM2,NXP,NXP,NZP,0.1,1.,0.1,0,0,-682)
CALL FLUSH
STOP
END
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