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T H E O R Y AND APPLICATIONS OF 
D I R E C T A N D INVERSE SCATTERING P R O B L E M S 

Yi-Ming Wang, Ph.D. 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign,1991 

Two algorithms based on the recursive operator algorithm are proposed 

to solve for the scattered field from an arbitrarily shaped, inhomogeneous 

scatterer. By discretizing the object into JV subobjects, the scattering solu

tion of an arbitrarily shaped inhomogeneous scatterer can be formulated as a 

scattering solution of an iV-scatterer problem, each of whose scattered fields 

is approximated by M harmonics. Using the translation formulas, a recursive 

approach is developed which enables us to derive an n + 1-scatterer solution 

from an n-scatterer solution. Therefore, knowing the isolated transition ma

trices for all subscatterers, the total transition matrices for an JV-scatterer 

problem can be obtained recursively. The computation time of such an al

gorithm is proportional to N2M2P, where P is the number of harmonics 

used in the translation formulas. Furthermore, by introducing an aggregate 

transition matrix to the recursive scheme, a fast algorithm, whose compu

tational complexity is linear in JV, is developed. The algorithm has been 

used to solve for the scattering solution of a 10A diameter, two-dimensional 

dielectric scatterer with about 12,000 unknowns, taking 32 sec on a CRAY-2 

supercomputer. 

In order to solve the electromagnetic inverse scattering problem beyond 

the Born approximation, two iterative algorithms are developed. They are 

the Born iterative method and the distorted Born iterative method. Numeri

cal simulations are performed in several cases in which the conditions for the 
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Born approximation are not satisfied. The results show that in both low and 

high frequency cases, good reconstructions of the permittivity distribution 

are obtained. Meanwhile, the simulations reveal that each method has its 

advantages. The distorted Born iterative method shows a faster convergence 

rate compared to that for the Born iterative method, while the Born itera

tive method is more robust to noise contamination compared to that for the 

distorted Born iterative method. 

A boosting procedure which helps to retrieve the maximum amount of 

information content is proposed to solve the limited angle inverse scattering 

problem. Using the boosting procedure in the limited angle inverse scattering 

problem, good reconstructions are achieved for both well-to-well tomography 

and subsurface detection. 

By applying the fast recursive algorithm to the solution of the direct 

scattering part of the iterative schemes and the conjugate gradient method to 

the solution of the inversion part of the iterative schemes, the computational 

complexity of the Born iterative method and the distorted Born iterative 

method is further reduced from JV3 to JV2. 
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harmonics in the coordinate system i into the outgoing 
wave harmonics in the coordinate system j 

T Transition matrix which relates the scattered field to 
the incident field 

W Transmission matrix which relates the field inside the 
scatterer to the incident field 

T,-(i) Isolated scatterer transition matrix for the scatterer i 

Wj(i) Isolated scatterer transmission matrix for the scatterer i 

Tj(n) n-scatterer transition matrix for the scatterer i 

r Aggregate transition matrix 
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C H A P T E R 1 

INTRODUCTION 

Electromagnetic scattering from an inhomogeneous scatterer is one of 

the most frequently encountered problems in computational electromagnet

ics. The major interest in computational electromagnetics is to find an effi

cient and effective way to solve such a problem. Traditionally, there are two 

numerical methods available for the solution of the scattering problem. They 

are the method of moments and the finite element method (FEM). Because 

of the automatic satisfaction of the radiation condition in the method of mo

ments, its implementation is relatively easier than that of the finite element 

method. However, the computational complexity of the method of moments 

is JV3. For the finite element method, since the region to be considered is 

unbounded in the scattering problem, we have to truncate it somewhere out

side of the scatterer. To satisfy the radiation condition at this truncated 

boundary, several techniques have been developed, such as the unimoment 

method and the absorbing boundary condition method. The implementa

tion of these techniques will result in increasing the bandwidth of the matrix 

generated by the finite element method. 

In Chapter 2 of this thesis, an alternative efficient method for the solution 

of the electromagnetic scattering problem is developed by using the recursive 

operator algorithms. This method is adopted from a recursive algorithm for 

the solution of a multiple scattering problem. It provides us with a concise 

and efficient method to solve a general electromagnetic scattering problem. 
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In the recursive operator algorithm, as in the method of moments, the 

object is first discretized by about 10-12 points per wavelength for accurate 

solutions. Then, we consider each mesh in the object as an individual sub-

scatterer in an JV-scatterer problem. Knowing the isolated transition matrix 

T,(i) for each subscatterer, the solution to JV scatterers is constructed by 

using the translation formulas. First, an JV2 algorithm is developed by ex

pressing the final solution in terms of the total transition matrices T,(#)-/3fo, 

i = 1,2,...,JV, where T,-(jvj •/3,o gives the scattering amplitude from the 

scatterer i when JV scatterers are present. In the JV2 algorithm, at the 

(n + l)-th recursion step, the number of float-point operations is 0(n), be

cause the interactions between the (n + l)-th scatterer and the previous n 

scatterers have to be accounted for. Consequently, after JV recursions, the 

number of floating-point operations required is 0(N2). Then, after introduc

ing the aggregate r matrix, a fast recursive algorithm, whose computational 

complexity is linear in JV in the low frequency limit, is developed. In the 

aggregate r matrix algorithm, at the (n + l)-th recursive step, only the two-

scatterer problem has to be solved: one scatterer is the sum of the previous 

n scatterers, characterized by an n-th aggregate r^) matrix; the other is the 

scatterer (n +1) , characterized by T%+i(i). Therefore, the computational ef

fort at each recursion step will be independent of the ordinal number of the 

recursion. As a result, this leads to an 0(JV) algorithm after JV recursions. 

In inverse scattering problems, we attempt to infer the property of the 

scatterer from the measured scattered field outside of the scatterer. This 

type of problem arises in a variety of applications such as medical imag

ing, geophysical exploration, remote sensing, nondestructive evaluation, and 

radar target recognition. Generally, the measurement data and the object 
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are related in a nonlinear fashion. In. one dimension, the Gel'fand-Levitan 

method and the Marchenko method have been proposed to solve such a non

linear inverse problem. However, in higher dimensions, a numerical method 

is usually required to solve the nonlinear inverse scattering problem. In 

Chapter 3 of this thesis, two iterative algorithms are developed to solve the 

higher dimensional nonlinear inverse scattering problem. They are the Born 

iterative method and the distorted Born iterative method. Both of the algo

rithms have been implemented in the two-dimensional cases. The effective

ness of these algorithms is verified by the numerical simulations conducted in 

Section 2.3. 

In the limited angle inverse scattering problem, the locations of the re

ceivers and transmitters are restricted in some regions which cannot com

pletely surround the object. The limited angle measurement data results 

in the reduction of the information content contained in the measurements. 

This leads to further aggravation of the ill-conditioning of the problem ren

dering its solution more difficult. To overcome the above difficulty, a boosting 

procedure, which will help us to retrieve the maximum amount of informa

tion for an arbitrarily predefined experiment setup, is proposed, based on a 

physical viewpoint in Section 4.2. The importance of the boosting procedure 

is confirmed by the numerical simulations. 

One problem faced by the nonlinear inverse scattering algorithms dis

cussed in Chapter 3 of this thesis is the intensive computation time involved. 

To reduce the computational complexity of the algorithms, we have applied 

the fast algorithm developed in Chapter 2 of this thesis to the solution of the 

direct scattering part of the iterative inverse scattering algorithms and the 

conjugate gradient method to the solution of the inverse scattering part of 
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the iterative inverse scattering algorithms. This reduces the overall compu

tational complexity of the algorithms from JV3 to JV2. The result is reported 

in Section 4.3. 

Finally, in Chapter 5, the conclusions and some future work related to 

the topic of this thesis are presented. 
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CHAPTER 2 

RECURSIVE OPERATOR ALGORITHMS 
FOR THE SOLUTION OF SCATTERING PROBLEMS 

2.1 Introduction 

The solution of the electromagnetic scattering problem from an arbitrarily 

shaped homogeneous scatterer has been formulated in terms of the transition 

matrix by Waterman [1,2,3] in 1965. Meanwhile, the solution of multiple 

scattering by spheres and cylinders has been of great interest for years be

cause of its importance in a variety of applications [4-8]. Since then, scores 

of researchers have sought to improve and extend the methods to solve for 

more general scattering problems with less constraint on applications [9-15]. 

Among those, Peterson and Strom [9,10] in 1973 extended the method to the 

solution of an arbitrary number of scatterers with arbitrary cross section by 

applying the translation formulas to the spherical (and cylindrical) wave solu

tion of the Helmholtz equation. The total T matrix was represented in terms 

of the individual T matrices and the translation matrices by introducing two 

auxiliary matrices in the iterative procedure. Because the auxiliary matrices 

were obtained by solving an (JV - l)-th linear system equation, which requires 

(JV — I)3 floating-point operations, the overall computational complexity of 

the method is at least JV3. In order to reduce the computational complex

ity, Chew developed a recursive procedure which has an JV2 computational 

complexity for long wavelength limits. The method is accomplished by in

troducing the intermediate transition matrices T,(n) for each scatterer in the 

n-th iteration step. The physics interpretation of the T,(„) is that it gives the 

scattering amplitude from the z'-th scatterer when n scatterers are present. 
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Another scattering problem which has been of great interest for years is 

the scattering solution from an arbitrary inhomogeneous medium. The solu

tion of the problem is essential for many applications such as radar detection, 

geophysical exploration in a complex environment, and nondestructive eval

uation. For many years, the solution of the problem depended mainly on 

two numerical techniques: the method of moments (MOM) and the finite 

element method (FEM). In the method of moments [16,17,18], since the ra

diation condition is automatically satisfied, the implementation of it is easier 

than that of FEM. The subdomain method where the scatterer is divided into 

JV subobjects as in the case of finite element analysis is popular because of its 

versatility. The rule-of-thumb is to discretize the object by about 10-12 points 

per wavelength for accurate solutions. Using such a method, the scattering 

problem can be cast into a problem involving JV linear algebraic equations. 

The solution of such a set of linear algebraic equations by Gauss' elimina

tion yields an algorithm whose computation time scales as JV3/3. Hence, 

the method of moments cannot be easily applied to large scatterers as the 

computation time scales too rapidly with JV. 

The conjugate gradient method has been used to reduce the algorithmic 

complexity yielding an iterative algorithm with complexity 0(N2P) where 

P is the number of steps in the iteration. However, the number of steps P 

required depends on the condition number of the matrix equation. For ill-

conditioned matrices, the method may not converge [19]. The fast Fourier 

transform method has also been used to exploit the convolutional nature 

of the scattering integral equation yielding a conjugate-gradient type algo

rithm with complexity 0(PNlog2 JV) [19,20,21]. However, conjugate gradient 

methods have the disadvantage of providing a solution for only one incident 

wave at a time. The algorithm has to be restarted for each new incident 

wave. 
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To deal with the radiation condition in the use of the finite element 

method, several techniques have been developed, such as the unimoment 

method and the absorbing boundary condition method. The implementation 

of these methods will result in increasing the bandwidth of the matrix gen

erated by the finite element method. Some of these techniques are still the 

topics of current research, e.g., the absorbing boundary conditions. 

Using a recursive operator algorithm [14,15], now modified for wave scat

tering problems, we shall illustrate two recursive algorithms for the solution 

of such a problem [22,23,24]. One is an N2M2P algorithm; the other is 

an NMP2 algorithm, where M is the number of harmonics for each sub-

object and P is the number of harmonics used for the translation formulas 

[14,15,22-24]. 

In these methods, a large inhomogeneous object is decomposed into many 

subobjects as in the method of moments when subdomain basis functions are 

used. Then a recursive operator algorithm is developed which accounts for 

multiple scattering between the scatterers. Knowing the scattering solution 

for every isolated scatterer, the solution to JV scatterers is constructed recur

sively. 

2.2 One Scatterer Solution 

In order to illustrate the physical meaning of the transition matrix T and 

the transmission matrix W, we shall start from a simple two-dimensional 

scattering problem. Shown in Figure 2.1 is the geometry of the problem. 

The scatterer is a homogeneous circular cylinder with a radius a. The rela

tive permittivities of the scatterer and the background medium are eT and 1, 

respectively. The scatterer is illuminated by an incident field from the posi

tive x-axis with the electric field vector perpendicular to the xy-plane. The 



Figure 2.1. A homogeneous dielectric circular cylirJer illuminated by a 
plane wave from the positive x-axis with the electric field vector perpen
dicular to the xy-plane. 
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center of the cylinder coincides with the origin of the coordinate system. In 

the following derivation, the time dependence e,wt is suppressed. The plane 

incident field is 

E\ = E0e-jkax = EQe-ikopc°**. (2.2.1) 

From the relation of [25,26,27] 

+00 

e-,Wcos* = £ r n J n ( M e i n * , (2.2.2) 
n=—oo 

we have 
+00 

E\ = E0 Y, i-nJn{kQp)ejn*. (2.2.3) 
71=—OO 

The total field outside of the cylinder is considered as a sum of the incident 

and scattered fields, that is, 

E?] = El + El. 

To represent the outgoing-traveling wave, the scattered field is of the form 

+0O 

Et = E0 £ i-Xftf>(AwOeyB0 

n=—oo 

and the total field outside of the cylinder is given by 

+00 

EM = & ^ i'Vnihp) -V tnH£\koP)]ein*, p>a. (2.2.4) 
7l=—00 

The field inside of the cylinder can be represented as 

(2.2.5) 
+00 

£<2) = & ^ ] rnwnJn{kp)ein+, p<a, 
n=—oo 
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where 

k = k0y/f*. 

The two boundary conditions are 

4' )=fa a r = * r , ** ^=«- (2.2.6) 

From the field equations 

H* = J- (V x E), 
tup. 

= — E„ 
up. 

the second boundary condition becomes 

p=o — n \p=ai dp '"-a dp 
(2.2.7) 

since /zi = /z2 = ^o in the problem. Matching the boundary conditions at 

p — a, we have 

+00 +00 

£0 YJ i~n[Uk0a) + tnHW(k0a)}ejn* = Eo £ r " ^ A ( t o ) e ^ , (2.2.8) 

+00 +00 

E0 Y, i~nko[Jn'(k0a) + tnH^'(k0a)}e^ = E0 £ rnkwMka)e^. 
n=—oo n=—oo 

(2.2.9) 

Because e,n*, n = -co , . . . , -2 , -1 ,0 ,1 ,2 , . . . , +oo, form an orthogonal set, 

we have 

Jn(k0a) + tnH^\k0a) = wn Jn(ka), (2.2.10) 

J»( W) + W ? M W = %V^4(ta). (2.2.11) 
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Solving the above for tn and wn, we obtain 

U = WMHPM - Jn(k0a)H^'(k0a)]/Dn, 
(2.2.12) 

wn = [Jn(ka)J'n(k0a) - J'n(ka)Jn(k0a)\/Dn, (2.2.13) 

where 

Dn = jrTJ'n{ka)H£\kaa) - Jn{ka)H^\kQa). (2.2.14) 

Now, we define the basis column vectors ip(k0, p), $grp(k0, p), and $lgip(k, p) 

as 

# W ) m = al!>(6opK''t (2.2.15) 

W(6o , P)m = &( V ) ^ " ^ , (2.2.16) 

W ( & , f L = J m ( W e ^ . (2.2.17) 

Under the above notations, Equation (2.2.3) becomes 

£|(p) = »# '(*„, p)-a, (2.2.18) 

where the supersript t on % ^ stands for "the transpose of," and a is a 

column vector whose components are expansion coefficients of the incident 

field in the basis vector 3lgip(kQ, p), which are 

am = i~mEQ, m = -co , . . . , - 2 , -1,0,1,2, . . . , oo. 

Substituting the solutions (2.2.12) and (2.2.13) into Equations (2.2.4) and 

(2.2.5) and using the vector notation, we obtain 

E(') = %#'(&„, P)' a + f (&o, P) - T - a, p > a, 
(2.2.19) 

E(2) = W ( 6 , p ) - W . a . p < a , (2.2.20) 
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where T and W are the transition matrix and the transmission matrix, re

spectively. Comparing Equations (2.2.19) and (2.2.20) with Equations (2.2.4) 

and (2.2.5), we can see that 

{ in,if m = n 
(2.2.21) 

0, if m 7̂  n, 

{ wn,i£ m = n 
(2.2.22) 

0,if m^n. 

The transition matrix T relates the amplitude of the scattered field to the 

amplitude of the incident field, while the transmission matrix W relates the 

amplitude of the internal field to the amplitude of the incident field. In the 

example, both the transition matrix and the transmission matrix are diagonal 

matrices and are obtained analytically. In general, this may not be true. The 

matrices may not be diagonal and may have to be obtained by using the 

numerical method, such as the extended boundary condition method [28]. 

Nevertheless, once the transition matrix T and the transmission matrix W 

are obtained, the solution of the problem can always be written in the form 

of Equations (2.2.19) and (2.2.20). 

When the subobjects are a fraction of a wavelength, their shapes can be 

approximated by circular cylinders without much loss of accuracy. Hence, 

the T-matrices of every such isolated scatterer can be easily found. 

Once the T matrices for every isolated scatterer are found, they can 

be used easily to construct the solution of scattering by many scatterers. 

When more than one scatterer are present, multiple scattering exists between 

the scatterers. The solution to such a problem can be found recursively by 

using the translational addition theorem for spherical harmonics or cylindrical 

harmonics [9,10,14,15,22-24,28]. 
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In the following sections, we shall derive two recursive algorithms for the 

solution of the JV-scatterer problem given the isolated transition matrix T,(i) 

and transmission matrix W,-^ for each scatterer. 

2.3 JV2 Recursive Algorithm 

In order to gain a physical insight into the recursive operator method 

introduced in the following sections, we shall consider first the solution of a 

two-scatterer problem. 

2.3.1 Two-scatterer solution 

For a two-scatterer problem, three coordinate systems are introduced. 

One is a global coordinate system. The others are two local coordinate 

systems located at the centers of two scatterers, respectively (Figure 2.2). 

Suppose that the incident field can be represented in terms of the standing 

harmonic waves related to the global coordinate system as 

W r ) = W' (&o, ro ) -a , (2.3.1) 

where ip^ko, ro) is the outgoing harmonics expressed in the global coordinate 

system, % stands for "the regular part of," and a is a column vector whose 

components are the expansion coefficients of the incident wave in terms of 

the 9fyt/>. Similarly, the total field in the presence of two scatterers can be 

expressed as 

<j>(r) = W ( 6 o , r0) • a + tf'(fc0> r,) • h + f(&o, r2) • f2, (2.3.2) 

where fi and f2 are the unknowns to be determined. The scattered fields 

from each scatterer, which are the last two terms in the above equation, are 

written in terms of the outgoing harmonics expressed in the local coordinate 

13 



Scatterer 1 

Scatterer 2 

Figure 2.2. Coordinate systems of a two-scatterer problem. OQ is the 
origin of the global coordinate system. 0\ and Oi are the origins 
of the local coordinate systems related to the first and the second 
scatterers, respectively. 
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systems of the scatterers. In order to find fi and f2, the following translation 

formulas, which relate the harmonic functions at two different locations, are 

needed [9,10,28,29,36]: 

f(&o, r,-) = V(&o, ri) * «i» hi < kj, 
(2.3.3a) 

tf'(*b,r.) = i>\k0, rj) • Pji, \TJ\ > d,-j, (2.3.3b) 

%f(&b,r,) = »^'(*b,Pi) -Pa, V|r;|, (2.3.3c) 

where J,j is the distance between 0, and Oj, the origins of the i and j coor

dinate systems. Using these formulas, we can readily express the harmonic 

expansion of the field of one coordinate system in terms of another coordinate 

system. The explicit expressions of a t J and /),-,- for cylindrical harmonics are 

given in Appendix A. 

Using (2.3.3a) and (2.3.3b), the total field outside the scatterers can be 

expressed in terms of the local coordinate system of the first scatterer 

4 r ) = &#'(&„, ri) • 01O • a + ip\k0, r{) • % + rp\k0, n ) • a12 • f2. (2.3.4) 

Notice that Equation (2.3.4) is valid only when rt < rfli2 in order to apply 

(2.3.3a). In the above equation, the first and third terms can be considered as 

the incident field impinging upon scatterer 1. Meanwhile, the second term is 

the scattered field from scatterer 1. Here, the isolated T matrices, Ti(i) and 

T2(i), for scatterers 1 and 2 are known, where parenthesized 1 indicates that 

they are the one scatterer T matrices. Remember that the isolated T matrix 

is obtained by matching boundary conditions on the surface of the scatterer, 

and it relates the scattered field to the total incident field. Therefore, we can 

relate fi to a and f2 using the T^) matrix as 

fi = T1(1)-[^10-a + o712-f2]. (2.3.5) 
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By the same token, for scatterer 2, we have 

f2 = Tj(1)-rj9M-a + a21-fi]. (2.3.6) 

Solving Equations (2.3.5) and (2.3.6) for f% and f2, we have 

% = [!- T1(1) - a12 - f2(1) - a,!]"1 - T1(1) • fJ910 + a12 • T2(1) • 02O] • a, 
(2.3.7) 

f2 = [I - T2(1) - an • T1(1) • a^]" 1 • T2(1) • [Pw + «2i • T1(1) • 01O] • a. 
(2.3.8) 

From (2.3.7) and (2.3.8), we can define the two-scatterer T matrix as 

fi=Ti(2).&o-a, (2.3.9) 

f2 = T2(2)-j320-a. (2.3.10) 

In the above, the scattered field from each scatterer is related to the incident 

field via the two-scatterer T matrices, T,(2), i = 1,2, where the first subscript 

i of T means that this is for scatterer i, and the second parenthesized subscript 

2 means that this is a two-scatterer T matrix. This notation will be used in 

the following derivations. 

Comparing (2.3.9) and (2.3.10) with (2.3.7) and (2.3.8), we have 

Ti(2) • Ao = [I ~ Tic, • au • T2(1) • c^ ] - 1 • f1(1) • [£10 + a12 • f 2{1) • 02o], 
(2.3.11) 

._. 
T2(2) • &o = [I ~ T2(i) • a2l • T1(1) - a^-1 • T2(1) • [02o 4- a21 • f 1(1) • 01O]. 

(2.3.12) 

From (2.3.11) and (2.3.12), we have 

T1(2) = [I - T1(1) - 5712 - T2(1) • a21]-x • T1(1) • [J310 + an • T2(1) • 02O] • 0O1, 
(2.3.13) 

f 2(2) = [I - T2(1) - 5 2 1 - T1(1) - al2]~l - f2(1) - [£20 + a21 - T1(1) • 01O] • 0O2. 
(2.3.14) 
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The relation f3~0 = (3Qi has been used in (2.3.13) and (2.3.14). In the above, 

T,(2) • (3i0 relates the scattered field from the i-th. scatterer to the incident 

field expressed in terms of the global coordinate system, while T,(2) relates 

the scattered field from the i-th scatterer to the incident field expressed in 

terms of the local coordinate system of the i-th. scatterer in a two-scatterer 

problem. 

Finally, the total field exterior to the scatterers can be written as 

# r ) = * # % , r0) • a + 5if>\k0, r{) • f1(2) • 01O • a + f (&o, r2) • T2(2) • /320 • a. 

(2.3.15) 

2.3.2 Three-scat terer solution 

Before we go to the general recursive formulas of the JV-scatterer problem, 

we shall investigate, in this subsection, the three-scatterer problem more 

closely in order to clarify some confusion in the domain of validity of the 

recursive algorithms. Three different approaches are used to derive the three-

scatterer T matrices. First, T,(2), i = 1,2, are used to derive the three-

scatterer T matrices. Then, T,(2) • /3 :0, i = 1,2, are used in the derivation 

instead of T,(2), z = 1,2. Finally, the three-scatterer T matrices are directly 

derived from the isolated T matrices of the three scatterers. 

Following the same notations as in Equation (2.3.15), the total field of 

the three-scatterer problem can be written as 

4>(r) = &#*(&o, r0) • a + tf'(fc0, n ) • T1(3) • /310 • a 

+ ip\h,r2) -f2(3) - A o - a + tf'(fc0,r3) • f3(3) • ^3 0 • a. (2.3.16) 

Suppose that the third scatterer is located far enough from the circle em

bracing the first two scatterers, with the center of the circle at the origin of 
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the global coordinate system. Then, the third term on the right-hand side of 

(2.3.16), together with the original incident field, can be considered as the to

tal incident field impinging upon the first two scatterers. From the definition 

of the two-scatterer T matrices given in the last subsection, we have 

f i(3) • Ao = T1(2, • fj910 + a1 3 - f3(3) • A»], (2.3.17) 

f 2(3) - Ao = T2(2) • [&0 + a2 3 • f3(3) • &„]. (2.3.18) 

Notice that here we have used the words "far enough" to describe the required 

distance from the center of the third scatterer to the origin of the global 

coordinate system. The quantitative requirement will be given later. 

Meanwhile, using Equations (2.3.3a) and (2.3.3b), the total field can also 

be expressed in terms of the local coordinate system of the third scatterer as 

# r ) = V ( & o , r3) • /330 • a + W' (&o , r3) • a3 1 • T1(3) • /310 • a 

+ %f(&o, r3) - 5 3 2 - f2(3) • 02O • a + f ( t o , r3) • T3(3) • 03o • a. (2.3.19) 

The above is valid only when |r3| < rfii3 and |r3| < d2i3, where <21)3 is the 

distance between 0\ and (93, and d2,3 is the distance between 0 2 and 0 3 . If 

we consider the first three terms on the right-hand side of Equation (2.3.19) 

as the total incident field impinging upon the third scatterer, then the last 

term on the right-hand side of (2.3.19), the scattered field from the third 

scatterer, can be related to the total incident field in terms of the isolated 

T3(i) as 

2 

f 3(3) • Ao = T3{i, • [&0 + Y <*3' • T,(3) • Ao]. (2.3.20) 
1 = 1 
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On substituting (2.3.17) and (2.3.18) into (2.3.20), we have 

T3(3) • &*, = T3(i) • [/330 + Y «K • Tl(2) - Pi0 

:=1 

2 

+ Y «3i • T,(2) • a,3 • T3(3) • /330]. 
;=1 (2.3.21) 

Then solving the above equation for T3(3) • /330, we obtain 

T3(3)-/33)o = 
»=1 

- 1 

I - T3(i) • Y
a3'<' Tt '<2)'a ' '3 

&,0 + £«3 , , -T , ( 2 ) . f l • J-3(1) • 
:=1 

(2.3.22) 

Knowing T3(3) • /330, the other two T matrices are readily obtained by using 

(2.3.17) and (2.3.18). They are 

T,(3) • Ao = Tl(2)'. [ft0 + ai3 • T3(3) • P30], t = 1,2. (2.3.23) 

Equations (2.3.22) and (2.3.23) together constitute the recursive formulas 

which enable us to derive T,(3), z = 1,2,3, from T,(2), i — 1,2. 

The above derivation uses T,(2), i = 1,2, as the building blocks to derive 

the three-scatterer T matrices. Following the same arguments, we also can 

use T,(2) - /3l0, i = 1,2, as the building blocks in the derivation of the three-

scatterer T matrices. In this case, we still can consider the last term on the 

right-hand side of (2.3.16) together with the original incident field as the total 

incident field impinging upon the first two scatterers if the third scatterer 

satisfies the same condition as in the above derivation. Since T,(2) - j3iQ, 
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i = 1,2, relate the scattered field from each scatterer to the incident field 

expressed in the global coordinate system, we can express the last term of 

(2.3.16) in terms of the global coordinate system using (2.3.3a) and treat 

it as part of the incident field impinging on the first two scatterers. Then, 

following the same argument for (2.3.15) and (2.3.16), we have 

Ti(3) • Ao = Ti(2) - 01O • [I + a03 - T3(3) - 03O], (2.3.24) 

T2(3) • 020 = T2(2) • 02o • [I + «Q3 • T3(3) - 03o]. (2.3.25) 

Following the same argument from (2.3.19) to (2.3.20), we have 

2 

f 3(3) • 03o = T3(i, • [030 + Y <*3' • Ti(3) • Aol- (2-3.26) 
i=i 

Substituting (2.3.24) and (2.3.25) into (2.3.26) and solving for T3(3) • 03O, we 

obtain 

2 

T3(3) • /33,o = I - T3(i) • Y "3,.' • T,-(2) • 0,o • a03 

i=i 

- l 

T3(1) - 03,O+Z^.'T,(2)'0,O 
:=1 

. (2.3.27) 

Equations (2.3.27), (2.3.24), and (2.3.25) together constitute the recursive 

formulas yielding T;(3) • 0lO, i = 1,2,3, from Ti(2) • 0lO, i = 1,2. 

From the above formal derivations, it seems that the two recursive 

schemes are equivalent. However, the domains of validity of the two re

cursive schemes are different. In order to find the domain of validity of the 

two recursive formulas, next, we shall derive the three-scatterer T matrices 

directly from the isolated T matrices, Tt(1), i = 1,2,3. 
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From (2.3.16), we know that the total field of the three-scatterer problem 

can be written as 

# r ) =%#*(&„, r0) • a + ^(*o, ?i) ' T1(3) • 01O • a 

+ iffa, r2) - T2(3) • 02O • a + ^{k0, r3) • T3(3) • 03O • a. 
(2.3.28) 

Using (2.3.3a) and (2.3.3b), we can also express the above equation in terms 

of the local coordinate system of the first scatterer as 

<A(r) = W ( & o , ri) • 01O • a + V'(&o, ra) • T1(3) • 01O • a 

+ W ( 6 o , rx) - an • T2(3) • 02o • a + W*( t„ , n ) • a13 • T3(3) • 03o • a. 
(2.3.29) 

Equation (2.3.29) is valid if |rx| < dh2 and |r%| < <Z1|3. If we consider the first 

and last two terms on the right-hand side of (2.3.29) as the total incident 

field impinging upon the first scatterer, we have 

Ti(3) • 0io = T1(1) - [01O + a12 • T2(3) • 02O + <*i3 • T3(3) • 03o]. (2.3.30) 

Similarly, for scatterers 2 and 3, we have 

T2(3) • 02O = T2(1) - [02O + a21 • Tip; • Ao + a23 • T3(3) • 03O], (2.3.31) 

T3(3) • 030 = T3(i) • [03o + a3i • T1(3) • 010 + 5% • f 2(3) • 02o]. (2.3.32) 

Substituting (2.3.31) into (2.3.30), we obtain 

Ti(3) • 0io =Ti(i) • 01O + T • a12 • T2(1) • [02O + a21 • T1(3) • 01O 

+ "23 • T3(3) - 03o] + Tm) • a13 • T3(3) • 03O. 
(2.3.33) 

Rearranging (2.3.33), we have 

[I - T1(1, • a12 • f2(1) - 521] - T1(3) • 010 = T1(1) • [01O + a12 • T2(1) • 02O] 

+ Tm) • [a13 + a12 • T2(i) • a23] • f 3(3) • 0,o. (2.3.34) 
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Then we have 

Ti(3) • 0io = [ I " T1(i) • a12 - T2(i) - a^1 • T1{1) • [01O + a12 • T2(1) • & J 

+ [I - Ti(i) • a i 2 • T2(i) - a2i]"^ • Ti(i) • [ai3 + a i 2 • T2(i) • a23] • T3(3) • 03O. 

TO 

(2.3.35) 

From (2.3.11), we can recognize that the first term on the right-hand side 

of (2.3.35) is Ti(2) • 01O. For the last term of (2.3.33), if we suppose that 

the third scatterer is outside of the circle embracing the first two scatterers 

with the center at the origin of the global coordinate system, the following 

identities hold 

Si3 = 0io'«o3, (2.3.36) 

a23 = 02o • «03, (2.3.37) 

if 

|r3|0| > max(|r1)0|, |r2,0|), (2.3.38) 

where r,i0 is the distance between the origin of the local coordinate system 

of the i-th scatterer and the origin of the global coordinate system. Now, we 

define C0,i as a region bounded by a circle centered at the origin of the global 

coordinate system with the radius of c?0,,-, that is, 

Co,, = {r0| |r0| < do.,}- (2.3.39) 

Now, we define Q' as a union of C0,i and C0)2, that is, 

fi' = Q,,i U C".2 - Mr € C0ll, or r 6 C0,2}. (2.3.40) 

Then (2.3.38) becomes 

F3.o f 0'. (2.3.41) 
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Applying (2.3.36) and (2.3.37) to the last term of (2.3.35), we have 

(II) = [ I - T i { i ) - Q i 2 - T 2 ( 1 ) - a 2 i ] - 1 

• Ti(i) • [010 + «i2 • T2(i) • 02O] • a 0 3 • T3(3) • 03 o 

= T1(2) • Ao • a0 3 • T3(3) • 030- (2-3.42) 

Equation (2.3.11) has been used in (2.3.42). Using (2.3.42), (2.3.35) yields 

f i(3) • Ao = Ti(2) - Ao - [I + <%03 • T3(3) - 03O], (2.3.43) 

which is the same as (2.3.24). By the same token, we can also recover (2.3.25) 

by substituting (2.3.30) into (2.3.31). Meanwhile, (2.3.32) is the same as 

(2.3.26). Therefore, the recursive formulas (2.3.23), (2.3.24), and (2.3.25) are 

valid only if (2.3.41) is true. 

However, in order to recover (2.3.17) from (2.3.35), we require that 

(II) = Ti (2) • [513 - f3(3) • 03O]- (2.3.44) 

Using the identity 0 t j = 0 i o • 0O;, Equation (2.3.13) becomes 

f i(2) = [ I - f i ( 1 , • a12 • f2(1) - an]-1 • f1(I) • [I + a12 • T2(1) • 021]. (2.3.45) 

From Equations (2.3.45) and (2.3.35), we can see that in order to satisfy 

(2.3.44), the following identity has to hold 

a2 3 = 0 2 1 -a 1 3 . (2.3.46) 

From Appendix A, we know that (2.3.46) is true only when the following 

condition is satisfied: 

d i j > 4,2. (2.3.47) 
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Now, we define Ci,2 as a region bounded by a circle centered at the origin of 

the local coordinate system of scatterer 1 with the radius of dit2. The first 

subscript means that the center of the circle is located at the origin of the 

local coordinate system of scatterer 1. The radius of the circle is di,2, the 

distance between the origins of the local coordinate systems of scatterers 1 

and 2. With the above definition, Equation (2.3.47) means that scatterer 3 

is outside of Ci,2. 

By the same token, in order to recover Equation (2.3.18) from Equations 

(2.3.30) and (2.3.31), the following identity is required: 

4,3 > dh2. (2.3.48) 

Condition (2.3.48) means that scatterer 3 has to be outside of C2,i. Mean

while, Equation (2.3.32) is the same as Equation (2.3.20). Therefore, if the 

conditions (2.3.47) and (2.3.48) are satisfied, the recursive formulas (2.3.22) 

and (2.3.23) are valid. Now, we define ft" as a union of Ci,2 and C2,i, that is, 

fi" = Ci,2 | J Cu = {r|r e d,2, or r G C2ll}. (2.3.49) 

Using the definition of ft", the restraint conditions (2.3.47) and (2.3.48) be

come 

r3l0 i fi2. (2.3.50) 

Comparing condition (2.3.50) with condition (2.3.41) shows that condition 

(2.3.50) is much stronger than condition (2.3.41). Meanwhile, condition 

(2.3.41) is easier to check than condition (2.3.50) in the numerical imple

mentations. Figure 2.3 shows the domains of Cli2, C2il, ft', and Co,,, i = 1,2, 

for two specific cases. In Figure 2.3(a), the origin of the global coordinate 
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system coincides with the origin of the local coordinate system of the scat

terer 1. In Figure 2.3(b), the origin of the global coordinate system is located 

between 0\ and 02 . In both cases, ft2' defined by Equation (2.3.40) is a sub

set of ft2 defined by Equation (2.3.49). The above results pertaining to the 

domain of validity shall be extended to more general JV-scatterer problems 

in the next subsection. 

2.3.3 JV-scatterer solution—recursive solution 

In the last subsection, the three-scatterer solution is constructed from 

the two-scatterer solution. Here, we shall derive the recursive formulas which 

allow us to obtain the n -t- 1-scatterer solution from the n-scatterer solution. 

First, we derive a recursive scheme by using T,(„) -0{o as the building blocks. 

Similar to (2.3.16), the total field exterior to the n scatterers for an n-scatterer 

problem is of the form [14,15,22-24] 

n 

tf(r) = »#'(*<,, r0) • a + Y #'(&o, %) • f ,(n) • 0lO • a. (2.3.51) 
;=i 

Suppose that the n-scatterer solution is known, that is, all of the T,(n) • 0{o, 

i = 1,2,..., n, are known. Remember that each T,(n)-0lO relates the scattered 

field from the i-th scatterer to the incident field expressed in terms of the 

global coordinate system. 

Similarly, the (n + l)-scatterer solution has the form 

n+l 

<P(r) = W ( A o , r0)-a + Y ^(&o, r,-) • Tl(n+1) • 0jO • a. (2.3.52) 
:=1 
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Figure 2.3(a). Domains of Ci,2, C2,i, C0,i, and C0,2, when the origin of 
the global coordinates coincides with the origin of the local coordinates 
of the scatterer 1. Here, CQ,I is empty and C0)2 = Ci,2. 
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Figure 2.3(b). Domains of Ci)2, C2,i, Co,i, and C0>2, when the origin of 
the global coordinates is located between 0\ and 02, the origins of the 
coordinate systems related to the scatterers 1 and 2, respectively. 
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The above can be rewritten as 
n 

4>(r) = »#'(*&,r0)-a+Y^(&o,r,-) • f ,.(n+1) • 0<o • a 
:=1 

+ ^'(fco,rn+i) • Tn+i(n+i) - 0n+liO • a. 
(2.3.53) 

The first and last terms in Equation (2.3.53) can be thought of as the total 

incident field impinging on the i = 1,.. . , n scatterers. Remember that the 

total field for an n-scatterer problem can be expressed in terms of Equation 

(2.3.51), only when the source of the scattering problem is outside of the 

circle embracing the n scatterers, that is, the source shall be outside of the 

ftj,, where 
n 

ftLsJCo,,. (2.3.54) 
;=i 

Therefore, if 

r„+i,o i fi'n, (2.3.55) 

by using Equation (2.3.51), the scattered field amplitudes for the first n 

scatterer can be written as 

Ti(n+i) • 0,o • a = T,(%) • 0,o • [I + a0 ,n+i ' Tn+i(„+1) • 0n+iiO] • a, 

i = l ,2, . . . ,n, (2.3.56) 

where we have applied the translation formula (2.3.3a) to translating the last 

terms from the coordinate system of the i-th scatterer to the global coordinate 

system. 

The scattered field amplitude from the (n + l)-th scatterer is due to the 

scattering of the incident field from the other n scatterers via the isolated-

scatterer T matrix. Hence, the scattered field amplitude due to the (n + l)-th 
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scatterer is related to the other field amplitudes as 

T„+i(„+i)-0n+1|O-a = T-+i(i)- V « 0n+l,O + X/an+l,i • T,-(n+i) • 0. ,0 

«=1 

a. (2.3.57) 

Using (2.3.56) in (2.3.57), we have 

T„+i(„+i) • 0n+i,o - Tn+1(i) 0n+l,O + Y a»+1'i ' T«'W " ^'° 
:=1 

+ Y an+1'» ' T,'(n) " 0'O • a0,n+l • T„+i(n+l) • 0Tl+i,o 
:'=1 

Solving this equation for Tn+X(n+i) • 0n+iiO, we obtain 

T„+i(n+l) • 0n+l,O = 

(2.3.58) 

I - Tn+i(i) • 2 ^ an+i,i • T,-(„) • 0,o • ao,n+i 

' T7l+l(l) 0n+l,O + 2 ^ a"+1 ' ' ' T,'(") * ^'0 
« ' = 1 

. (2.3.59) 

From (2.3.56), we have 

T,(n+i) • 0,o = T,(n) • 0^ • [I + o70,n+i • Tn+i(n+i) • 0n+iiO], 

»' = l ,2, . . . ,n. (2.3.60) 

Equations (2.3.59) and (2.3.60) together comprise the recursive relations that 

enable us to calculate the T,(n+1) - 0,o matrices, i = 1,..., n + 1, given the 

T,(„) - 0,o matrices, i = 1,. . . , n. Hence, given the knowledge of the isolated-

scatterer T matrices, the JV-scatterer solution is constructed recursively, 

starting from the one-scatterer solution. Once T,(jv) • 0,-o> i = 1,2,...,JV, 
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are derived by using the recursive relations (2.3.59) and (2.3.60), the total 

field of the JV-scatterer problem outside of the scatterers can be written as 

4>(r) = W'(&o, r„) • a + Y f(&o, r,-) • Tm • 0,-o • a. (2.3.61) 
:=1 

The domain of validity for the recursive relations (2.3.59) and (2.3.60) is 

given by Equation (2.3.55), which is a general form of Equation (2.3.41) for a 

three-scatterer problem. Therefore, in order to apply the recursive relations 

(2.3.59) and (2.3.60), we need to chose a proper global coordinate system and 

to sort the JV scatterers in this global coordinate system such that condition 

(2.3.55) is always true in every recursive step. This could be achieved by 

reordering the scatterers in the global coordinate system as 

|ri ,o|<|r2 . i |<---<|rN ,0 | . (2.3.62) 

The global coordinate system could be chosen in the following way. We view 

every scatterer as a unit mass point and choose the weight center of the 

JV-mass point system as the origin of the global coordinate system. After 

ordering the scatterers according to (2.3.62) in the global coordinate system, 

condition (2.3.55) is always true for every recursive step. Consequently, the 

recursive relations (2.3.59) and (2.3.60) are eligible if (2.3.62) is true. 

In the following, we shall derive a recursive scheme by using T,(„), 

i = 1,2,... ,n, as the building blocks and investigate the domain of valid

ity of this scheme. First, we assume that the n-scatterer solution is known, 

that is, the T,(n) matrices, i = l ,2,. . . ,n, are given. We want to derive a 

recursive relation which enables us to obtain the (n -f l)-scatterer solution 

from the n-scatterer solution. 
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From (2.3.52), the (n + l)-scatterer solution has the form 

n+l 

# r ) = 3t#<(fc0, r0) • a + £ V'(&o, r,-) • T,-(n+1) • 0,o • a. (2.3.63) 
;=i 

The above can be rewritten as 

Mr) = %^(fc0, r0) • a + ]T ^'(&o, r.) • T,(n+1) • 0,o • a 
1=1 

+ #'(*&, r„+i) • Tn+i(„+i) - 0n+iiO • a. 

(2.3.64) 

The first and last terms on the right-hand side of (2.3.64) can be viewed as 

the total incident field impinging upon the previous n scatterers. Remember 

that T,(„) relates the scattered field from scatterer i to the total incident 

field expressed in terms of the local coordinate system of the i-th scatterer. 

Therefore, the scattered field from scatterer i in the (nfl)-scatterer problem 

can be related to T,(„), the solution of the n-scatterer problem, by 

T,(„+i) • 0,o = T,(„) - [0lO + a,,„+i • Tn+i(n+i) • 0n+i,o], 

i = l ,2,. . . ,n. (2.3.65) 

From (2.3.57), we have 

Tn+i(n+i)-0n+liO-a = Tn+1(i)- 0n+i,o + Y a"+1 ' ' * T«("+i)' Ao 
1=1 

a. (2.3.66) 

Solving (2.3.65) and (2.3.66) for the Tn+i(n+1) • 0B+1,„, we have 

^n+l(n+l) * 0n+l,O ~ I - Tn+i(i) • Y an+l,i - T«(n) • "..n+l 
i=l 

Tn+l(l) 0n+l,O + Y an+U ' T'(") ' ̂ '° 
,=1 

(2.3.67) 
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From (2.3.65), we have 

T,(„+i) • Ao" = T,(„) • [0lO + a,,„+i • Tn+i(n+i) • 0„+i)O], 

i = l ,2, . . . ,n. (2.3.68) 

From (2.3.67) and (2.3.68), we obtain 

Ln+l(n+l) = I - Tn+1(i) - Y
 an+U • T,(„) • a,,n+i 

«=1 

- 1 

-n+l(l) ' I + E ««+!.. •T,(„)-A,»+i 
1=1 

. (2.3.69) 

T,(n+i) = T,(„) • [I + a,,„+i • Tn+i(n+i) • 0n+i,,], 

i = l ,2, . . . ,n. (2.3.70) 

In the above, the relations 0,o = 0O, and 0,o • 0Oj = 0,_, have been applied. 

Equations (2.3.69) and (2.3.70), or (2.3.67) and (2.3.68), together comprise 

the recursive relations from which the T,(n+i) matrices, i = 1,2,..., n + 1, 

can be found given the T,(„) matrices, i = 1,2,...,n. 

Next, we shall investigate the domain of validity of (2.3.69) and (2.3.70). 

We shall i^art our discussion with Equations (2.3.65) and (2.3.66) to de

termine the conditions under which (2.3.65) and (2.3.66) hold. First, we 

shall look at the conditions under which Equation (2.3.65) is held. Equation 

(2.3.65) is 

T,(„+i) • 0,o = T,(n) - [0,o + a,,n+i • Tn+i(n+i) • 0n+i>o]. (2.3.71) 

In order to determine the constraint conditions of the above equation, we 

need to write T,(n) explicitly by applying Equation (2.3.70) with the sub

script n being replaced by n — 1. Notice that this step is only suitable for 
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i = 1,2,..., n - 1. Then, we obtain 

T,(„+i) - Ao = T,(n_i) - [I + a,-,n • Tn(n) - A J 
> v, ' 

(I) 

[Ao-t-a,-,n+i-fn+i(n+i)-0n+i,j. (2.3.72) 

TO 

In the above equation, there are no constraints for all other terms except for 

the term from the product of (I) and (II), which is 

(I) • (II) = a,-lB - f B(B) - 0„,:- • a,-,»+, - Tn+i(n+i) • 0n+liO. (2.3.73) 

In order to find the constraint condition for (2.3.73), we need to examine 

(2.3.73) term by term from right to left. The first two entries Tn+i(n+i) -0n+liO 

represent the scattered field, the outgoing harmonics expressed in the local 

coordinate system of the scatterer n + 1 . The third entry a,,n+i translates 

the expression of the above scattered field from the outgoing harmonics ex

pressed in the local coordinate system of the (n + l)-th scatterer into the 

standing harmonics expressed in the local coordinate system of scatterer i. 

This translation is valid only for the field inside C,>+i. The fourth entry 0ni-

translates the above standing harmonics from the local coordinate system of 

the i-th scatterer into the local coordinate system of the n-th scatterer. From 

the constraint condition of a,in+1, scatterer n has to be inside C,)B+i. This 

is equivalent to saying that (2.3.73) is valid only when the scatterer n + 1 is 

outside of C,<n. This condition can be expressed mathematically as 

r»+i,o $ C,,„. (2.3.74) 

Since (2.3.73) and (2.3.71) have the same constraint condition, (2.3.74) is also 

the constraint condition for (2.3.71). Moreover, the subscript i in Equation 
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(2.3.65) goes from 1 to n. But the step from (2.3.71) to (2.3.72) is only valid 

for i = 1,2,..., n - 1. Therefore, (2.3.74) should hold for i = 1,2,..., n - 1. 

Thus, the constraint condition for (66) with i = 1,2,... ,n - 1, becomes 

n - l 

r*+i,of L K " - i ' (2.3.75) 
»=i 

For i = n, (2.3.71) becomes 

Tn(n+1) • 0n,O = Tn(n) ' [0„,O + "n.n+l ' TB+i(n+i) • 0n+iiO]- (2.3.76) 

Similarly, we shall write, the TB(B) explicitly by applying Equation (2.3.69) 

with all the subscripts n being replaced by n - 1. Then, we obtain 

T„(„+i) • 0„)O = 

n - l 

• T„(l) • [1+ Y"n'{ ' T ' ("-D * A,n] * [0n,O + «n,n+l ' TB+i(B+i) • 0 n + l i O ] . 
i=l ' X ' 

% v ' (V) 

(rv) 

(2.3.77) 

From the analysis following Equation (2.3.72), we see that the constraint 

condition comes from the terms which involve the product of 0 and a. In 

Equation (2.3.77), the only terms containing these products come from the 

product of (IV) and (V), which is 

n - l 

(IV) • (V) = Y ««,- • T,(n_,). 0- n . an<n+l • f B+1(B+1) - 0B+1,O. (2.3.78) 
1 = 1 
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Equation (2.3.78) is an eligible expression only if 0 i B • an,n+i, for all 

i = 1,2,... ,n - 1, holds. Following the argument from (2.3.72) to (2.3.75), 

scatterer n +1 has to be outside of all C„,,-, i = 1,2,..., n — 1. This condition 

can be expressed as 

n - l 

rn+i,o $ (J CB,„ (2.3.79) 
i=l 

Equations (2.3.75) and (2.3.79) comprise the constraint condition for the 

validity of Equation (2.3.65). Meanwhile, Equation (2.3.66) is always true 

if scatterer n + 1 is outside of the previous n scatterers. Since the recursive 

relations (2.3.69) and (2.3.70) are derived from (2.3.65) and (2.3.66), they 

share the same constraint conditions. Combining (2.3.75) and (2.3.79), the 

constraint condition for the validity of the recursive relations (2.3.69) and 

(2.3.70) finally becomes 

n - l n - l 

r«+i,of(UCWU(UC".()' (2.3.80) 
1=1 1=1 

The above is equivalent to 

dn+hn > max(d,-,B, i = 1,2,..., n - l ) , (2.3.81) 

and 

<n+i > d,,n, i = 1,2,..., n - 1. (2.3.82) 

Equations (2.3.81) and (2.3.82) need to hold for each recursive step from 2 to 

JV. Therefore, at the n-th step, all Clv?, i, j = 1,2,..., n - 1 , will be contained 

in ( U ^ C , , ) U(LC/C,,B). Thus, the condition (2.3.81) is equivalent to 

n 

rn+i,o $ | J C,,r (2.3.83) 
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Equation (2.3.83) is a very strong constraint condition for the application 

of the recursive relations (2.3.69) and (2.3.70). Moreover, the locations of 

the scatterers for any specific problem are predetermined. For most of the 

problems, condition (2.3.83) is too strong to be satisfied. Therefore, it is 

difficult to apply the recursive relations (2.3.69) and (2.3.70) to most of the 

general multiple scattering problems. Fortunately, the constraint condition 

(2.3.62) for the recursive relations (2.3.59) and (2.3.60) is easily satisfied 

for most application problems. The only case for which condition (2.3.62) 

may be violated is when there are more than two scatterers located at the 

same circle centered at the origin of the global coordinate system. In this 

case, we may move some of the scatterers, which are located on the same 

circle, a small distance 6 to satisfy (2.3.62). If 6 is much smaller than the 

typical dimension of the scatterers, for example, 10~6 of the radius of the 

smallest scatterer in the problem, the error contributed by these shifts will 

be proportional to 6. Therefore, if we choose 6 much smaller than the required 

accuracy of the problem, these shifts actually do not affect the accuracy of the 

solution. Thus, from a practical point of view, condition (2.3.62) can always 

be satisfied by reordering and shifting the scatterers without sacrificing the 

accuracy of the solution. Consequently, the recursive relations (2.3.59) and 

(2.3.60) are legitimate recursive relations for the solution of the multiple 

scattering problem. 

From now on, we shall concentrate on the recursive relations (2.3.59) and 

(2.3.60) because their constraint condition (2.3.62) can be easily satisfied in 

the solution of the multiple scattering problem. Theoretically, the recursive 

relations (2.3.59) and (2.3.60) give an exact solution of the scattering problem 

if the dimensions of the matrices in (2.3.59) and (2.3.60) are infinite. In order 

to implement the algorithm numerically, the matrices have to be truncated 
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to finite dimensions. For an JV-scatterer problem, if the field around each 

scatterer is approximated by M harmonics, the total number of unknowns of 

the problem will be NM. In this case, T,(n) -0tO-a in (2.3.61) is an M element 

column vector. When the subobjects are much smaller than the wavelength, 

M could be kept small. However, the number of terms in the translation 

formulas should be large enough to maintain their accuracy. In other words, 

T,(B) - 0 io need not be square—it should be M x P where P is large enough 

to keep the translation accurate. 

For the convenience of discussion of the computational complexity of the 

algorithm, let us rewrite (2.3.59) and (2.3.60) with the dimension indices 

included 

• T„+i(i) -[0B+i,o + Y «"+',' • T'(n) • Ao], (2-3.84) 
MxM MxP MxM MxP 

T,(n+i) • Ao = T,(B) - Ao +(T,(B) - 0,o - a0,n+i) • Tn+i{n+1) • 0B+1>O. (2.3.85) 

MxP MxP MxP PxM MxP 

In the above T,(B+i) -0:O is the unknown function to be solved recursively. 

It is an M x P matrix. The dimensions of the matrices are indicated above. 

The number of floating-point operations required to multiply an. MxP matrix 

with a P x M matrix, or an M x M matrix with an M x P matrix, is equal 

to M2P. Assuming M < P, the other matrix multiplications and inversions 

are subdominant. Therefore, at each recursion, the number of floating-point 

operations is 0(nM2P). Consequently, after applying the recursion relations 

to JV scatterers, the number of floating-point operations is 0(N2M2P). 
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A study of the translation formula shows that for accurate results, 

P > kd, where d is the distance of translation. In the long wavelength 

limit, this is easily met. Hence, the algorithm scales as JV2 for static and 

quasi-static problems. 

As the object becomes larger compared to the wavelength, or the wave

length becomes shorter for wave scattering problems, P is proportional to the 

radius of the object. In two dimensions, the radius of the object is propor

tional to y/N, while in three dimensions, it is proportional to JV1/3. Hence, 

this algorithm scales as JV5/2, in two dimensions, and as JV7/3 in three dimen

sions. 

The JV scatterer problem is also expressible as an NM unknown prob

lem by solving NM linear algebraic equations. However, this would require 

0(N3M3) floating-point operations if these NM linear algebraic equations 

were solved with Gauss' elimination. If the conjugate gradient method is used 

here, the 0(N2M2) algorithm is possible, but the conjugate gradient method 

solves the matrix equation A-x = b with a fixed right-hand side. It has to be 

redone if the right-hand side of the equation changes. Hence, if the incident 

angle of the wave changes, the equation has to be solved again. However, the 

above algorithm is independent of the incident angle of the incident wave. 

2.4 JV Recursive Algorithm 

In the last section, an JV2 algorithm has been developed by using a recur

sive operator algorithm. In that algorithm, at the n-th recursion, since the 

interactions between the (n + l)-th scatterer and the previous n scatterers 

have to be taken into account, the computational labor is proportional to 

0{n) for each recursion. Consequently, after JV recursions, the number of 
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floating-point operations is 0(N2). (At this point, in order to simplify the 

analysis, the floating-point operations involved in matrix operations at each 

recursion have not been taken into account.) From the above, it is clear that 

in order to make an algorithm linear in JV, the floating-point operations in 

each recursion have to be independent of the number of the scatterers such 

that after JV recursions, it will yield an O(N) algorithm. 

2.4.1 Recursive formulas 

In order to make the floating-point operations at each recursion indepen

dent of the number of the scatterers involved, we need to find a way to remove 

the summations in the recursive relation (2.3.84). Actually, the two summa

tions in (2.3.84) are the same, because a0,n+i in the first term involving the 

summation in (2.3.84) can be taken out of the summation. The physical 

n _ 
interpretation of £ aB+i,, • T,(„) • 0,iB+i is that the outgoing harmonics ex-

1=1 

pressed in the local coordinate systems of the corresponding scatterers, from 

scatterers i, i = 1,2,... ,n, have been translated to the standing harmonics 

in the local coordinate system of scatterer n +1. Since these translations are 

relative between i, for i = 1,2,..., n, and n + 1, they have to be repeated in 

every recursion step. 

Since the scatterers of the problem have been ordered according to Equa

tion (2.3.62), the following identity is always valid 

<*„+!,, = a„+i,o • 0o,;, for all i < n + 1. (2.4.1) 

On substituting (2.4.1) into (2.3.84) and removing an+i,o from the summa-
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tions, we obtain 
n 

Tn+i(„+i) • 0B+iiO = [I - Tn+i(i) - aB+i,0 • 2j0Ol-Ti(B) • 0tO • ao,n+i]-1 

i=i 

• T„+i(i) - [0n+,,o + ttn+i.0 • Yhi • T,(„) - 0 J . (2.4.2) 
1=1 

Now, we define an aggregate transition matrix r as 

n 

nn) = £0oi-T,-(n)-Ao. (2.4.3) 
«=1 

On substituting Equation (2.4.3) into Equation (2.4.2), we have 

MxP MxM MxM Mxp p x p P%M 

TB+i(n+l) • 0n+i,o = [ I - TB+i(i) • an+l,0 • T(n) ' «0,n+l 1-1 

• T„+i(i) -[0B+i,o + an+1,0 • r ( n ) ] . (2.4.4) 

MxM MxP MxP PxP 

Multiplying Equation (2.3.85) from the left by 0O,-, summing over i from 1 to 

n, and adding 0O(B+i • TB+1(B+i) • 0B+iiO to the both sides of the equation, we 

finally obtain 

PxP PxP P\M M ? p PxP PxM M*p 

T(n+1) = T(n) + 0O,n+l ' Tn + i (B + i ) • 0B+i iO + f(n) ' "o,n+l ' T n + i ( n + i ) • 0 n + 1 ( O • 

(2.4.5) 

Equations (2.4.4) and (2.4.5) together constitute the recursive formulas 

for r . Obviously, the number of matrix multiplications in the recursive equa

tions (2.4.4) and (2.4.5) is independent of n, the recursive ordinal. Therefore, 

the total floating-point operations after JV recursions will be linear in JV if P 
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and M are fixed. With the aggregate r-matrix expression, Equation (2.3.61) 

becomes 

<j>(r) = W ( & o , r0) • a + f(&o, r0) • rm • a. (2.4.6) 

The aggregate r matrix defined in Equation (2.4.3) is a global represen

tation of the T (transition) matrices by translating every T,(„)-matrix from 

its own local coordinate system related to the i-th scatterer to the origin of a 

global coordinate system. Hence, Equation (2.4.4) actually is an equation for 

a two-body scattering problem: one scatterer is an assembly of the previous 

n scatterers characterized by the n-th aggregate T(n)-matrix located at the 

origin of the global coordinate system, the other is the (n + l)-th scatterer 

characterized by an isolated single TB+i(i) matrix located at rn+i(0). This 

will become more obvious when we compare Equation (2.4.4) with Equation 

(2.3.84). Let n equal 1 in Equation (2.3.84) and suppose that scatterer 1 is 

located at the origin of the global coordinate system, then, two equations will 

be exactly the same if we replace T(„) in Equation (2.4.4) with Ti(i). 

Because Equation (2.4.4) always involves a two-body scattering problem 

at each recursion, the number of matrix multiplications will be a constant, 

which is independent of the ordinal number of the recursion. In Equation 

(2.4.4), indices P and M represent the number of harmonics in the transla

tion formulas and the number of harmonics in the isolated scatterer T matrix 

of the subobject, respectively. In Equations (2.4.4) and (2.4.5), matrix oper

ations include matrix multiplication of an M x P matrix and a PxP matrix, 

or a P x P matrix and a P x M matrix, matrix multiplication of a P x M 

matrix and an M x P matrix, and matrix inversion of an M x M matrix, 

etc. The number of floating-point operations required for a matrix multipli

cation of a P x P matrix and a P x M matrix, or an M x P matrix and 
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a P x P matrix is equal to MP2. Under the assumption of M < P, this 

matrix operation will be dominant compared to the other matrix operations 

in Equations (2.4.4) and (2.4.5). Therefore, at each recursion, the number of 

floating-point operations is proportional to MP2. Finally, after applying the 

recursion relations to JV scatterers, the number of floating-point operations 

is 0(NMP2). 

As we mentioned in the last section, to achieve the required accuracy 

in the translation formulas, P, the number of the harmonics used in the 

translation formulas, should satisfy the relation of P > kd, where d is the 

distance of translation. In the low frequency limit, this could be easily met 

by choosing a fixed P, because the dimension of the object is always less than 

the wavelength. Therefore, the computational complexity will be linear in JV 

for static and quasi-static problems. 

When the scatterer becomes larger compared to the wavelength, P will 

be proportional to the radius of the object, and JV, the number of subobjects, 

is proportional to the square of the radius of the object in two dimensions, or 

the cube of the radius of the object in three dimensions. Therefore, when the 

wavelength becomes shorter, P will be proportional to N1!2 in two dimen

sions, and JV1/3 in three dimensions. Finally, the computational complexity 

of the algorithm will scale as JV2 in two dimensions and as JV5/3 in three 

dimensions. 

2.4.2 Field inside the scatterers 

The field expression (2.4.6) is only valid outside of a big circle which 

closely embraces all of the subobjects. Therefore, the field inside the object 

cannot be directly obtained by using the aggregate r matrix expression of 
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the field. In order to calculate the field inside the object, the T,(#) matrices, 

i = 1,..., JV, have to be found. This could be achieved by a backward recursion 

scheme. From the recursive relations (2.4.4) and (2.4.5), we already have the 

T,(.) • 0,o matrices for i = 1,2,..., JV. From Equation (2.3.62), for any i < j , 

the i-th scatterer is inside of Co,;. Now, to find the T#_i(#) matrix, we 

consider an (JV — l)-scatterer problem with a composite incident field which 

consists of the original incident field and the field scattered from scatterer 

JV represented by TN(N) • 0#,o which is known. With Tjv-i(w-i) • 0jv-i,o o n 

hand, the TN-I{N) • 0iv-i,o c a n De directly obtained from 

Tjv-i(N) • 0;v-i,o = TjV-i(w-i) • 0N-I,O • [I + «o,iV • T#(/v) • 0WiO]. (2.4.7) 

Similarly, for (JV - 2)-th scatterer, we have 

TN- 2 ( JV) • 0JV-2.O = T;v-2(JV-2) ' 0N-2.O ' P + &0,N ' ^N(N) ' 07V,O 

+ a0lN-i • ?N-I(N) • 0^_liO]. (2.4.8) 

Generally, knowing TN{N)-(3Nfi, TN.HN)-0yv_i,o, -,Tyv_,+i(jv)-0^_,+i,o, and 

T,(,) • 0,o, the recursive equation for T#_,(#) • (3N_i<0 matrix is 

i - i 

Tjv-i(W)-0;v-i,o = TJV_,(iV-,)-0w_I)o-[I+2jao,jv-j-Tjv-j(^)-0^_Jio]. (2.4.9) 
3=0 

We define a complementary partial JV-th aggregate T,(#) as 

1-1 

7*W = H SO,JV-J • TJV-J(W) • 0N-,,o- (2.4.10) 
3=0 

Using (2.4.10) in (2.4.9), we have 

T,V-,(AT) • 0iv-,,o = T#_,(#_,) • 0Ar-,,o ' [I + .̂(/v)]- (2.4.11) 
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From (2.4.10), the next complementary partial aggregate matrix r can be 

obtained from 

Ti+i(N) = Tj(iV) + a0,N-i • Tjv-,(jv) • 0iv-i,o- (2.4.12) 

Equations (2.4.11) and (2.4.12) constitute the backward recursive relation for 

TJV-,(JV) • 0#_,-,o, % = 1,2,..., JV - 1. The computational complexity of the 

backward recursive scheme of (2.4.11) and (2.4.12) is the same as that of the 

forward recursive scheme of (2.4.4) and (2.4.5). 

Once Tj(#) for scatterer j is known, the field internal to scatterer j is 

readily calculated by matching the boundary condition at the scatterer's sur

face. For example, if T,(jv) for i = 1, • • • , JV, are known, then the field exterior 

to the scatterer can be written as 

N 

<t>(r) = V ( & o , r„) • a + Y ^(&o, %) • Tm • 0,o • a. (2.4.13) 
i= l 

If the internal field interior to the j-th scatterer is of interest, the fields of 

the other scatterers can be expressed in terms of the j-th coordinate system 
as 

flr) = W ( & o , rJAo • a + £ »#'(**, r,) • a3l • Tm • 0,o • a 

+ f ( to , r jTxjV) Ao a. (2.4.14) 

The first two terms on the right-hand side of (2.4.14) can be treated as 

the total incident field impinging upon scatterer j . Therefore, the scattered 

amplitude T,(JVJ • 0jO could be related to the isolated transition matrix of the 

scatterer j , T,(i), and the total incident field as 

T J ( I ) a = T,(iv) • 0,o • a, (2.4.15a) 
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or 

a = T j ( 1 ) .T i ( J V ) -0 i o-a . (2.4.15b) 

The left-hand side of (2.4.15b) is .the total incident-field amplitude on 

scatterer j , but the right-hand side of (2.4.15b) provides an exceedingly simple 

way to calculate this total incident-field amplitude. Once the total incident-

field amplitude on the j-th scatterer is found, the internal field of scatterer j 

can be found using the isolated transmission matrix Wj(i) as 

<£(r) = W ( 6 j , r,-) - Wj(i) • T~(1) • T m • 0 j o a, r 6 fi;, (2.4.16) 

where 

ft, = {r|r inside the scatterer j} (2.4.17) 

and 

kj = koy/Tj. (2.4.18) 

Moreover, the field inside of the circle that closely embraces all the scatterers, 

that is, r 6 C0,/v, but external to all the scatterers, that is, r $ \Ji_1 ft;, is 

given by (2.4.13). 

2.5 Numerical Implementat ion and Results 

The two recursive algorithms discussed above have been implemented for 

a two-dimensional dielectric scattering problem depicted in Figure 2.4. The 

object is an inhomogeneous cylinder. To apply the recursive algorithms, the 

problem has to be discretized. Here, we decompose the object into JV subob

jects. The dimension of the subobjects is much smaller than the wavelength 

in high frequency cases, or the characteristic length of the object within 
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in 

Figure 2.4. Configuration of a two-dimensional scattering problem. 
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which the permittivity has a significant change in low frequency cases. By 

considering each subobject as a single scatterer in an JV-scatterer problem, 

the solution of the problem can been obtained by applying the two recursive 

algorithms developed above. The incident field is a TE wave with the electric 

field vector perpendicular to the paper. 

2.5.1 JV2 recursive algorithm 

The JV2 recursive operator algorithm discussed in Section 2.3 has been 

implemented for a two-dimensional scattering problem shown in Figure 2.4. 

The two-dimensional translational formulas are given in Appendix A. The 

incident field is a TE wave with the electric field vector perpendicular to the 

paper in Figure 2.4. 

For efficiency, we expect to make both M and P as small as possible. Since 

the object has been discretized by about 10—12 points per wavelength, we can 

assume that the field in each subobject is nearly a constant. For TE waves, 

the induced current in the subobject is also nearly a constant. Therefore, 

only the monopole term in the transition matrices is important. Hence, we 

can keep only a basic mode in the expansion of the scattered field from each 

subobject, implying that we can choose M = 1, without any significant loss 

of accuracy. When the dimension of the mesh is much smaller than the 

wavelength, in two-dimensional cases, the square mesh could be replaced by 

a circular mesh with the same area [16,17,18]. With such a replacement, the 

isolated scatterer T,(i) matrices could be obtained analytically. Meanwhile, 

P should be chosen just large enough to satisfy the relation of P > kd to 

maintain a desired accuracy. 

In order to check the accuracy of the algorithm, we calculated the scat

tered field from a circular cylinder using both the JV2 algorithm and the 
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method of moments [16]. The code of the method of moments has been vali

dated by comparing the scattered field with that from a closed-form solution 

for a uniform circular cylinder. 

The test case consists of a circular cylinder. The radius of the object is 

0.6 m. The frequency is 3 x 10* Hz. The dielectric constant of the scatterer 

is 2e0. Therefore, the diameter of the object is about 1.7 wavelengths. The 

scatterer is divided into 373 subobjects so that JV is 373, and M is 1 while 

P is taken to be 9. 

Figure 2.5(a) shows the scattered field intensity as a function of angle for 

an observation point 5 m from the scatterer. The phase of the scattered field 

is shown in Figure 2.5(b). The results from the recursive algorithm and the 

method of moments are indistinguishable. 

2.5.2 JV recursive algorithm 

The JV algorithm discussed in Section 2.3 has also been implemented for 

a two-dimensional dielectric scattering problem shown in Figure 2.4. The 

incident field is a TE wave with the electric field vector perpendicular to the 

paper. 

The problem has been discretized in the same way as in Section 2.5.1. 

Following the same arguments as those in Section 2.5.1, we can choose M = 1 

for a TE polarized incident field without any significant loss of accuracy. 

Meanwhile, the square meshes have been replaced by the circular cylinders 

with the same area, since we know that the size of the meshes is much smaller 

than the wavelength in the problem. In this case, the isolated scatterer T,(i) 

matrices could be obtained analytically. P is chosen just large enough to 

satisfy the relation of P > kd to maintain a desired accuracy. 

48 



Magnitude of Scattered Field 

I 
•a 
I 
•g 

I 
o 
•8 

J 

i 
I 
o 
i l 

I 
UJ 

1 
Q. 

MomentMethods 
Recursive Algorithm 

30 60 90 120 150 180 210 240 270 300 330 360 
Observation Angle (Degree) 

(a) 

Phase of Scattered Field 

30 60 90 120 150 180 210 240 270 300 330 360 
Observation Angle (Degree) 

- Moment Methods + Recursive Algorithm 

(b) 

Figure 2.5. Comparison of the scattered fields by using the recursive 
operator algorithm and the method of moments, (a) Amplitude of the 
scattered field as a function of the observation angles, (b) Phase of the 
scattered field as a function of the observation angles. 
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First, we calculated the scattered field from a uniform circular cylin

der using the JV algorithm and the method of moments to check the ac

curacy of the algorithm. The radius of the object is one meter. The fre

quency of the incident wave is 3 MHz. The relative permittivity of the ob

ject is 2. Therefore, the diameter of the object is about 2.8 wavelengths. 

The scatterer is divided into 777 subobjects. M is one and P is taken as 

25. The field is measured at the points on a circle whose radius is 10 m. 

Figure 2.6 shows the comparison of the results from the method of moments 

and the aggregate r matrix method. The dashed curves are the results from 

the method of moments, and the solid-curves are the results from the ag

gregate r matrix method. Figure 2.6(a) gives the magnitude of the scat

tered field as a function of the observation angles. The results from the two 

methods are almost indistinguishable. Figure 2.6(b) gives the phase of the 

scattered field as a function of the observation angles. The results are also in 

excellent agreement, and the only observable discrepancies are in the neigh

borhoods of 60 degrees and 300 degrees. As we see, the errors are quite small 

and acceptable. The numerical result of the aggregate f-matrix method in 

Figure 2.6 was obtained on a CRAY-2 supercomputer. 

In Figure 2.7, a comparison is made between the solutions from the 

method of moments and the recursive algorithm for an inhomogeneous di

electric scatterer with radius p0 = 0.6 m and relative permittivity profile 

^ , ^ ) = = l + ^ ± ^ ) s i n ^ , 0 < „ < p o . (2.5.1) 

The agreement is excellent for both amplitude and phase. The inhomoge

neous dielectric cylinder is illuminated with a plane wave of 300 MHz incident 

from the positive x axis (<j> = 0). The fields are computed at 5 m from the 
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center of the scatterer. For this case, JV = 377, P = 9, and M = 1. The 

calculation was performed on a SUN-SPARC workstation. The CPU time 

taken for the method of moments is 1,401 sec while that for the recursive 

algorithm is 54.2 sec, which is approximately 26 times faster. 

Figure 2.8 shows the comparison of the computation times for the method 

of moments, the JV2 recursive algorithm, and the JVrecursive algorithm as the 

number of unknowns JV is increased. The top curve in Figure 2.8 is the result 

for the method of moments. The method of moments has a large overhead 

in the matrix fill time because numerical integration is needed to accurately 

evaluate the matrix elements. Since the matrix fill time is proportional to 

JV2, the moment method curve has an JV2 slope in the beginning, and finally 

takes off with an JV3 slope. To simplify the comparison for the JV2 algo

rithm and the f-matrix alroithm, we have a fixed P for all the simulations. 

P is chosen according to the requirement for the largest object such that it 

will yield the required accuracy for the largest object, or the largest number 

of unknowns in the simulations. In choosing P this way, we can guarantee 

that the algorithms will give a satisfactory accuracy for all the simulations in 

Figure 2.8. Here, P has been chosen as 15. The middle curve shows the 

results for the JV2 algorithm discussed in Section 2.3. It has a slope of 

JV2. The bottom curve is obtained by the JV recursive operator method 

discussed in Section 2.4. It has a slope of JV as expected. The simulation in 

Figure 2.8 is performed on a SUN SPARC workstation. The results show that 

the JV2 algorithm is consistently more efficient than the method of moments, 

and the aggregate r matrix algorithm is the most efficient algorithm in the 

above three methods. 

Up to now, we have only checked the scattered field outside the scatterer. 

Since the field inside the scatterer is calculated by Equation (2.4.16), the 
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backward recursive relations (11) and (12) have to be implemented to find 

T,-(iv> i = 1,2,...,JV, from the aggregate transition matrices r and T,-(,-), 

i = 1,2,...,JV. The object is a uniform dielectric cylinder. The radius 

of the object is 0.5 m. The relative permittivity of the object is 2. The 

frequency of the incident wave is 300 MHz. Figure 2.9(a) shows the amplitude 

of the internal field derived using the r matrix algorithm and the method of 

moments. Figure 2.9(b) shows the phase of the internal field. The agreement 

is excellent. The knowledge of the internal field is important in a number of 

applications such as inverse scattering [31,32] or biomedical applications. 

2.5.3 Solution of large inhomogeneous scat terers 

In the last two subsections, the two recursive algorithms have been val

idated by comparing their simulation results with those obtained by the 

method of moments for small scatterers of one or two wavelengths. The CPU 

time shown in Figure 2.8 demonstrates that the two recursive algorithms are 

much more efficient than the method of moments. But for large scatterers, 

the method of moments is extremely inefficient due to its JV3 complexity. 

We have used the JV recursive algorithm to calculate the scattering solu

tion from a large cylinder, which is about 10A x 10A and can be approximated 

by 11,905 unknowns. Since the method of moments is extremely inefficient 

in this regime, we validate our solution by comparing it with the closed-form 

solution of a circular, homogeneous cylinder, which is solvable by harmonic 

expansions. 

Figure 2.10(a) shows the amplitude of the scattered field obtained by the 

recursive algorithm and the closed-form solution. The agreement is excellent. 
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Figure 2.10(b) shows the phase of the scattered field by the recursive 

algorithm and the closed-form solution. We observe excellent agreements 

except for some angles of observation. However, for such a wavelength, note 

that if the diameter of the object is changed by 0.5%, a phase error of about 

9° is possible, which indicates that the phase of the scattered field is very 

sensitive to the size of the object. 

In order to use the recursive algorithm, the subscatterers have to be 

ordered so that they are of increasing distance from the origin [22-24], We 

have used the Heapsort algorithm [33,34] to order the subscatterers with 

computer time proportional to JVlog2JV. If a naive sorting algorithm of 

0(N2) complexity is used, the sorting time could constitute as much as 40% 

of the total computer time. 

On a CRAY-2 supercomputer, the 11,905-unknown problem is solved in 

about 30 sec. In this simulation, we pick M = 1 and P = 30. Though 

the CRAY-2 has a peak performance of about 1.7 GFLOPS, this peak is in 

general not attainable for practical applications. For instance, for a simple 

fully vectorizable "DO" loop, the throughput of the CRAY-2 is about 100 

MFLOPS unless a special programming technique is used [35]. In general, the 

throughput is about 20 to 40 MFLOPS. We assume 30 MFLOPS throughput 

and that JV3/3 floating-point operations are required to invert an JV x JV ma

trix. Then multiplying by a factor of 4 for complex floating-point operations, 

we estimate that it will take about 20 hours to solve this problem by the 

method of moments. Figure 2.11 shows the computer times on a CRAY-2 

supercomputer of the fast recursive algorithm and the method of moments 

versus the number of unknowns. The 11,905-unknown points for the method 

of moments is extrapolated since it is too expensive to solve a problem with 

such a large number of unknowns. 
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In this program, the isolated scatterer T matrix and the translation for

mulas are calculated as they are needed. Hence, the dominant part of the 

memory is used to store the grid which is proportional to the number of 

unknowns JV, whereas a matrix method such as MOM would have required 

storage proportional to JV2. 

Even though the simulation given above is for a homogeneous cylinder, 

it provides solid evidence of the capability of the algorithm for the solution 

of a large inhomogeneous 2-D scatterer. The arguments are as follows. First, 

we have treated the problem as an inhomogeneous scatterer problem and 

have taken no advantage of the homogeneity and symmetry of the problem. 

Second, due to the recursive nature of the algorithm, it could easily become 

unstable if the numerical errors in the algorithm are amplified by the re

cursive procedure. However, in the above simulation, a reasonably accurate 

result has been obtained even after about 12,000 recursive steps. Last, the 

subscatterers have been sorted according to their distances from the origin of 

the global coordinate system, which is the center of the cylinder in the above 

simulation. The n + 1-th scatterer is added to the previous n scatterers in 

an asymmetric fashion. There is no built-in symmetry in our algorithm that 

exploits the symmetry of the simulated example. Nevertheless, the solution 

we have obtained for the circular, cylindrical scatterer is very symmetrical 

as can be observed from Figure 2.10. On the other hand, if our algorithm 

had been unstable, an asymmetric result would have been obtained for our 

simulation. 

Table I shows the breakdown of the computer time spent on various parts 

of the computer program. About 16% of the time is spent in reading in the 

input for the program. This could be sped up by using binary data files. 
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Table I. The breakdown of the computer time spent on various parts of 
the computer program. 

Recursive Part 
Translation Matrices 

Input Data 
Bessel Functions 

Tm) Matrices 
Sorting 

Main Program 

Percentage of 
the Total CPU 

. 44.928 
19.928 
16.176 
16.013 
2.062 
0.606 
0.287 

CPU Time 
(second) 

14.327 
6.355 
5.158 
5.106 
0.657 
0.193 
0.092 

Times 
Been Called 

1 
11,905 

1 
35,862 
11,905 

1 
1 

Total CPU = 31.888 second 
Total Memory = 0.385 MWord 
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Note that the memory used is about 0.385 MWord. A full matrix method as 

in the method of moments would have required 290 MWord of memory. 

2.6 Conclusions 

The recursive algorithms for the solution of the multiple scattering prob

lem have been formulated using the two different approaches. One is formu

lated by using T,(n) as the building blocks in the recursive procedure. The 

other is formulated by using T,(„) • /3i0 as the building blocks in the recursive 

procedure. The investigations on the domain of validity of the two algorithms 

reveal that the constraint condition for the method with T,(n) as the building 

blocks is too strong to be satisfied for most of the applications, while the 

constraint condition for the method with T,-(n) • /3,0 as the building blocks 

can always be satisfied by reordering and shifting scatterers without sacri

ficing the accuracy of the problem. Therefore, the recursive algorithm using 

T«(n) • Ao as the building blocks is a legitimate algorithm for the solution 

of a general multiple scattering problem. The analysis of the computational 

complexity of the algorithm shows that it is an JV2 algorithm for static and 

quasi-static problems, an JV*/2 algorithm for two-dimensional wave scatter

ing problems, and an JV7/3 algorithm for three-dimensional wave scattering 

problems. 

By introducing an aggregate transmission matrix r , an algorithm with 

an JV computational complexity for static and quasi-static problems has been 

developed from the algorithm with the use of T,(„)-/3«o as the building blocks. 

The scattered field exterior to the object can be easily calculated from the r 

matrix. The field interior to the object is obtained by a backward recursive 

scheme, which has the same computational complexity as that of the forward 
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recursive scheme for the calculation of the r matrix. For wave scattering 

problems, the computational complexity of the r matrix algorithm is JV2 for 

two-dimensional cases and JV5/3 for three-dimensional cases. 

Both the Tt(n)-/3l0 algorithm and the r matrix algorithm have been imple

mented in two dimensions. The algorithms have been verified by comparing 

their results with that from the method of moments. The computational 

times for the method of moments, the T,(n) • /3i0 algorithm, and the r ma

trix algorithm demonstrate that the algorithms introduced in this chapter are 

more efficient than the method of moments, and the r matrix algorithm is the 

most efficient of the three methods. The r matrix algorithm has been applied 

to solve a 10A x 10A problem with 11,905 unknowns, in less than 32 sec on 

a CRAY-2 supercomputer with a typical throughput of about 30 MFLOPS. 

Unlike the finite-element method, this method can be easily implemented on a 

rectilinear mesh, and its implementation is rather straightforward. Moreover, 

the method provides a solution that naturally satisfies the radiation condition 

at infinity and a full scattering solution valid for all angles of incidence. 
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CHAPTER 3 

ITERATIVE SOLUTION OF TWO-DIMENSIONAL 
ELECTROMAGNETIC INVERSE SCATTERING PROBLEMS 

3.1 Introduction 

The electromagnetics inverse problems in a general sense are aimed at 

determining the field source or the property of the scatterer from indirect 

information about an electromagnetic field. These types of problems arise 

in a variety of science branches and in different applications. There are two 

kinds of inverse problems which can be distinguished from each other. One, 

the inverse problem in the narrow sense, determines the field source or the 

property of the scatterer from the measured radiation patterns or scattered 

field. The other constructs a source distribution which could generate an 

electromagnetic radiation with specified characteristics. The latter category 

of the electromagnetics inverse problems is called the design problem or elec

tromagnetic synthesis problem. The problem investigated in this thesis is the 

two-dimensional electromagnetic inverse scattering problem. In this chapter, 

two iterative methods are introduced to solve the nonlinear electromagnetic 

inverse scattering problem. Electromagnetic inverse scattering is also called 

electromagnetic imaging. 

It is well recognized that electromagnetic imaging has several potential 

advantages over other techniques. Of particular interest is the ability to 

image parameters such as permittivity and conductivity over a wide range 

of frequencies. It can provide additional information which could be com

plementary to that obtained by other imaging techniques. Furthermore, 
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electromagnetic imaging is of interest to various disciplines such as medical 

imaging, geophysical exploration, remote sensing and nondestructive evalu

ation. 

In electromagnetic imaging, diffraction effects are important and can

not be neglected without decreasing the quality of the imaging. In weak 

scattering cases, the diffraction tomography (DT) approach has been intro

duced and investigated within the framework of the Born and the Rytov 

approximations [1-4], where the diffraction effects are supposed to be weak 

but not negligible. Unfortunately, these conditions are not frequently sat

isfied in practical problems. The limitations of the Born and the Rytov 

approximations have been investigated by Keller [5], and Slaney et al. [6]. 

To consider the effects of strong diffraction, the nonlinear inverse scattering 

problems have to be solved without the Born approximation. 

One-dimensional electromagnetic inverse scattering problems have been 

investigated by many researchers for many years. Using the time domain 

analysis, Tijhuis [7] proposed an iterative technique for one-dimensional 

permittivity distribution reconstruction. An iterative procedure called the 

distorted Born approximation, which is equivalent to the Newton iteration 

method, had been proposed by Chew and Chuang [8] and Habashy et al. [9] 

for one-dimensional reconstruction of permittivity and conductivity distri

butions. For higher dimensional problems, Wolf [10] proposed a method for 

reconstructing the permittivity distribution of the object from its hologram 

taken at different angles of irradiation. Recently, a point matching method 

was used to reconstruct dielectric properties of a three-dimensional model of 

the human body within the framework of the first-order Born approxima

tions [11]. A-method called pseudoinverse transformation [12] was proposed 

69 



to reconstruct two-dimensional dielectric distributions. However, the suc

cess of the method depends on the solution of the inverse source problem, 

for which the stability of the solution is difficult to ensure because of the ex

istence of nonradiating sources [13-15]. A double iterative algorithm based 

on expansion of both er and the total electric field E was proposed to solve 

the two-dimensional inverse scattering problem by using sine basis functions 

and multiple source techniques [16,17,18,19]. 

In this chapter, two iteration algorithms will be discussed to solve the 

two-dimensional nonlinear electromagnetic inverse scattering problem. They 

are the Born iterative method [20] and the distorted Born iterative method 

[21]. We first present the formulation of the methods in Section 3.2. In 

Section 3.3, the numrical simulations will be given using both methods. 

3.2 Theory and Formulations 

The geometry of the two-dimensional inverse problem is shown in 

Figure 3.1. A cylindrical medium with an arbitrary cross section is inho

mogeneous in the xy plane but is homogeneous in the z-axis. The receivers 

are located around the cylindrical object at finite discrete points. The ob

ject is illuminated by either a plane wave or the field excited by an electrical 

current line source indicated as T in Figure 3.1. In this thesis, TM inci

dent waves are assumed in both the plane wave and line source cases since 

the operator involved in the basic equation becomes much simpler for TM 

irradiation than that for TE irradiations [22] and, consequently, yields a bet

ter accuracy for the scattered field solution [23]. In the following, the time 

dependence e"""' is suppressed. For the pure TM incident wave, Maxwell's 
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Figure 3.1. Geometrical configuration of the problem. 
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equations reduce to a scalar equation 

V2E,(z, y) + k2(x, y)Ez{x, y) = -iup0Jz. (3.2.1) 

Here, normal incidence has been assumed, and 

a~ dx2^ dy2' 

k2 = u2p,0e(x, y). 

The inverse scattering problem is to reconstruct k2(x, y) from the measured 

scattered fields Es
z{pj), j = 1,2, ...,M, exterior to the scatterer. Equation 

(3.2.1) can be cast into an integral equation as 

E,(Pi) = Ei(pi) + J J G(Pj - p',eb)0{p')Ez{x',y')dx'dy', 

j = l,2,...,M, (3.2.2) 

where S is the scatterer cross section, and G(p—pl, e&) is the Green's function 

which is the solution of 

V2G(r - r', eb) + k2(r)G0(r - r', eb) = -<5(r - r'), (3.2.3) 

and 

0(p) = kQ(eT(p)-eb(p)) 

is the object function to be recovered. 

Moving the incident field E?(pj) of Equation (3.2.2) to the left-hand 

side of the equation, we have 

% ) = ^ % - / , 6 t ) 0 ( / ) ^ ( ^ , ! / ' ) ^ W , 

j = l ,2, . . . ,M, (3.2.4) 
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where 

El(pj) = E2(pj)-E
i
2
n(pj), j = l ,2, . . . ,M, (3.2.5) 

is the scattered field measured at the observation points Pj, j = 1,2,..., M, 

outside of the scatterer. Here, we have deliberately restricted the number 

of measurement locations to a finite number M to distinguish the practical 

application of the inverse scattering problem from the mathematical inverse 

problem, in which the field on an arbitrarily closed surface completely em

bracing the object is assumed to be known. Furthermore, we have relaxed 

the locations of the observation points to arbitrary regions outside the object. 

For the inverse scattering problem, both the object function 0(p) and 

the total field E(p) in the integrand of the integral equation (3.2.4) are 

unknown. Since the total field inside the scatterer is a functional of eT(p), 

Equation (3.2.4) is a nonlinear integral equation for er(p). This will become 

very clear if we substitute the Neumann series solution of the total field E(p) 

into the integrand of Equation (3.2.4), 

El{p) = J J dp'G(p - p', eb)0(p')Ein(p') 

+ Jj dp'G(p - p', eb)0(p') JJ dp"G(p' - p", eb)0{p")E?{p") 

+ .... (3.2.6) 

The terms after the second term of the right-hand side of the equation come 

from the multiple scattering of the wave in the object. In weak scattering 

cases, in which the scattered field is much smaller than the incident field, 

the integral equation (3.2.4) can be solved for SeT under the Born or Rytov 

approximations. Unfortunately, the distortions of the reconstructed profile 

become intolerable under the first Born approximation when the criteria are 
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not satisfied. In these cases, the strong diffraction effects have to be con

sidered, which means that the inherent nonlinearity of the integral equation 

(3.2.4) has to be taken into account. In this section, two iterative methods for 

the solution of the nonlinear integral equation (3.2.4) are introduced. They 

are the Born iterative method and the distorted Born iterative method. 

3.2.1 Born iterative method 

Since Ez(p), the field interior to the object, is unknown in the integral 

equation (3.2.4), we cannot directly solve Equation (3.2.4) for the object 

function O(p). In order to solve the nonlinear integral equation (3.2.4), 

iterative procedures have to be developed so that we need to deal only with 

a linear problem at each iteration step. In this subsection, the Born iterative 

method should be introduced to solve Equation (3.2.4). In this method, 

G(p — p', eb), the kernel of the integral operator, is chosen as the Green's 

function of the uniform background medium, and remains unchanged in the 

iteration procedure. Without losing the generality, we can assume that the 

background is free space, that is eb = e0. The free-space two-dimensional 

Green's function is 

G(p - p', e0) = G0(p -p)= l-HJ>l)(kQ\p -p'\). (3.2.7) 

Since €6 remains unchanged during the iteration procedure, the integral equa

tion (3.2.4) becomes 

E3
Z(PJ) = J J dp'G{Pi-p',eQ)0{p')Ez{p'), j = 1,2,. ..,M, (3.2.8) 

where 

0(p) = 62(<=r(p) - 1.), (3.2.9) 
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and Ea
z is the measured scattered field at the receivers. To linearize the 

integral equation (3.2.8), we approximate the total field interior to the scat

terer by the incident field, that is Ez(p) = E™ in the integrand of Equation 

(3.2.8). Then, (8) becomes 

E°z(Pj) = Jj/P'G(P3 ~ p',e0)0(p')E?(p'), 

j = l,2,...,M. (3.2.10) 

The above equation is a linear integral equation of the unknown object func

tion O(p). Equation (3.2.10) is the Born approximation of Equation (3.2.4). 

Solution of (3.2.10) gives an approximate solution of the object function 

O^Xp). Here, we assume that the integral equation (3.2.10) is solvable. 

The topics related to the ill-posed problem and stability of the solution will 

be discussed later. With this approximately reconstructed object function 

O^Xp), an iterative solution of the nonlinear integral equation (3.2.8) can 

be obtained by the following procedures: 

(a) Solve the scattering problem for the field in the object and at the obser

vation points with the last reconstructed distribution function. 

(b) Substitute the field in the object obtained in step (a) into the integrand 

in the integral equation and solve the inverse problem to recover the next 

order distribution function. Once again, we assume that the pertinent 

linear integral equation is solvable. 

(c) Go to step (a) and compare the field scattered by the reconstructed 

distribution function with the measured data which, in our case, are the 

simulated fields for the exact distribution function at the receiver points. 

If the relative residual error (RRE) (see definition below) is less than the 
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convergent criterion or is larger than the RRE of the last reconstructed 

profile, the iteration terminates. Otherwise, repeat the cycle until the 

solution converges. 

The definition of the relative residual error (RRE) in the jth iteration is 

ZUEaM-Ef\Pi)) RRE = ^ t - f f C , . (3.2.11) 

where the summation is over the receiver points. 

The relative residual error (RRE) defined by (3.2.9) gives an objective 

estimate of the "goodness" of the reconstructed data and is the only estimate 

in practical situations to judge the convergence of the solution of inverse 

scattering problems. In step (c) of the above iteration procedure, there are 

two cases in which the iteration will be terminated. One is that the RRE is 

less than the convergent criterion. In this case, we assume that a convergent 

solution of the integral equation (3.2.8) has been achieved. The other case is 

that the RRE of the recently obtained reconstructed object function 0^\p) 

is larger than that of the previous one O^XP). In the latter case, we either 

find an approximated solution or do not find a convergent solution depending 

on the absolute value of the RRE and the convergent criterion being given. In 

the noiseless case, if we make the convergent criterion too small, for example 

10~8, then the RRE increases when the RRE is a relatively small number but 

still larger than the convergent criterion, for example, lO"*1. At this point, we 

still consider that a good approximate solution has been achieved. However, 

if the RRE is too large, for example, RRE = 0.1 which means about 10% 

error in the scattered field from the reconstructed object function, then we 

may assume that the satisfactory reconstruction of the object function is not 
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achieved. In the noisy case, in which the signal received at the receivers has 

been contaminated with noise, if the RRE increases in the iteration procedure 

but has the same order as that of the signal-to-noise ratio of the problem, 

then we can assume that an acceptable reconstruction of the object function 

is obtained since for noise data it is unnecessary to fit the measured data more 

accurately than the signal-to-noise ratio of the measured data. However, if 

the RRE increases and is much larger than the signal-to-noise ratio of the 

measured data, then we should assume that the convergent solution is not 

obtained. An empirical criterion for the region of the convergent solution of 

the method will be given in Section 3.4. 

As we see in this method, only the fields in the integrand are updated in 

each iteration step, while the Green's function remains unchanged through

out the solution process. We call this the Born iterative method because in 

each iteration, the kernel of the integral operator remains unchanged; only 

the field in the scatterer is updated. 

3.2.2 Distorted Born iterative method 

One immediate extension of the Born iterative method is to update the 

Green's function as well as the field in the scatterer. We call this the dis

torted Born iterative method. Since the Green's function, the kernel of the 

integral equation, changes during the iteration procedure, the right-hand side 

of Equation (3.2.4), which is the scattered field due to the inhomogeneity of 

the scatterer relative to the background distribution eb
r(p), has to make the 

corresponding change too. Therefore, Equation (3.2.4) becomes 

2;(Pi,fO) = ^ " d / G ( p j -p ' ^ )«0(p ' )E , ( / ) , 

j ' = l,2,...,JW, (3.2.12) 

77 



where 

6O(p) = k0{eT(p)-eb
r(p)] (3.2.13) 

and 

El(Pj, 60) = E'z(Pj) - El(Pj, 4), j = 1,2,..., M, (3.2.14) 

where EZ(p, ej) is the scattered field from the inhomogeneous background 

medium, eb(p), E'(p) is the measured scattered field at the receiver locations, 

and the Green's function G(p — p', ej) is the solution of Equation (3.2.3). 

The permittivity distribution is obtained from (3.2.11). That is, 

<r(f) = ^ + <r(P). (3.2.15) 

Equation (3.2.12) has to be linearized in each iteration to solve this nonlin

ear integral equation. Similar to the Born iterative method, we first solve 

Equation (3.2.12) under the Bom approximation, that is, we approximate 

the total field interior of the scatterer by the original incident field Ez
n(p, e0). 

Then (3.2.12) becomes 

E3
Z(P3, eb) = J J dp'G(Pj - p', e0)O^Xp')ET(p'l 

j = l,2,...,M. (3.2.16) 

The solution of (3.2.16) gives an approximate solution of the object function 

O^Xp). Then the first-order solution of the permittivity distribution is given 

by 

4')(,) = ̂ P + 1. (3.2.17) 

With this approximately reconstructed permittivity distribution ey(p), the 

distorted Born iterative solution can be obtained by the following procedures: 

78 



(a) Solve the direct scattering problem for the field in the object and at 

the observation points with the last reconstructed distribution function. 

Next, calculate the point-source response in the object for every observa

tion point with the last reconstructed object function. The second part 

of this step is to calculate the Green's function G(p — p', eb
r) with the last 

reconstructed permittivity distribution as the background permittivity 

4(*,%). 

(b) Substitute the new Green's function and the field inside the scatterer 

obtained in step (a) into the integrand, and subtract the scattered field 

due to the last reconstructed distribution function from the measured 

scattered field at the receivers to obtain Ez(pj, eb
r), the right-hand side 

of Equation (3.2.12), where eb
r(p) is the last reconstructed distribution 

function. Then solve the above inverse problem for the corrections to 

the last reconstructed profile. Generate the new profile by adding the 

corrections to the previous profile. 

(c) Repeat step (a) and compare the field scattered by the reconstructed 

distribution function and the measured data, which, in our case, are the 

simulated fields for the exact distribution function at the receiver points. 

If the relative residual error (RRE) is less than the criterion given before 

or is larger than the RRE of the last reconstructed profile, the iteration 

terminates. Otherwise, repeat the cycle until the solution converges. 

3.2.3 Scattering solution and the Green's function 

To implement the above two iterative methods on a computer, both 

the direct (step (a) and step (c)) and the inverse (the Born approximate 

solutions and step (b)) problems need to be discretized. For consistency, 
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we choose the same basis function /,(x, y) for both of them. For simplicity, 

the pulse basis function fi(x, y) has been used in discretizing both the direct 

and the inverse scattering problems. The point-matching method [22,23] 

is employed in solving the direct scattering problem and in calculating the 

Green's function with the permittivity distribution at every iteration step 

for the distorted Born iterative method. 

The field and the permittivity of the object are represented as 

Ez(x,y) = YEifi(x,y), (3.2.18) 
«=i 

N 

6eT(x,y) = Yaittx^- (3-2.19) 
«=i 

For the direct scattering problem, by substituting (3.2.18) into Equation 

(3.2.4), we have 

N 

YEifi(p) = Ez"{p) 

JV 

+ jj 6p'G0(Pi -p')k26er(p') YEMP')- (3-2.20) 

Using the point-matching method, we have 

f a = b , (3.2.21) 

where a is an unknown column vector whose entries are the expansion coef

ficients of Ez(x, y) expressed in Equation (3.2.18), and b is a column vector 

whose components are the expansion coefficients of the incident field in the 
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first term on the right-hand side of Equation (3.2.20). The elements of matrix 

r are 

r,i = % - J J h' G0(Pi - rtklSeJjip'). (3.2.22) 

In the distorted Born iterative method, the linear system of equations for 

calculating the Green's function is the same as Equation (3.2.21) except that 

the entries in the column vector b are the incident field generated by a two-

dimensional point source located at the corresponding receiver point. 

Notice that to calculate the Green's function numerically in every iter

ative step, the matrix inverse needed is exactly that used for solving the 

direct scattering problem. Therefore, if the matrix has been inverted in solv

ing the direct scattering problem, the same matrix inverse is directly applied 

to calculate the Green's function so that the extra computational effort is 

proportional to MN2, where M is the number of receivers and JV is the 

number of basis functions used in the discretization of the problem. In most 

practical situations, the number of unknowns is much larger than that of 

the receivers, i.e., JV > M. Therefore, compared to the computational time 

spent on solving the direct problem, which is proportional to JV3, the extra 

time spent on the calculation of the Green's function in each iterative step 

is not that significant. 

3.2.4 Inverse scattering solution 

For a linearized version of the integral Equation (3.2.4), the linear system 

of equations for the inverse scattering problem is 
N rr 

af (*,,*) = E*^y% <%(* -f'X)t2/,(z',y')4')(^,y')^W 

j = l,...,M, (3.2.23) 
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where S; is the domain of the pulse function fi(x,y), and El' is the Z-th 

direct scattering solution with the Z-th permittivity distribution function. 

For I = 0, it is the incident field in the object. Equation (3.2.10) has been 

used to express 6eT in terms of the basis function fi(x,y). Gt(pj —p1,^) is 

the Green's function with the permittivity distribution e{. which has been 

obtained numerically. 

Equation (3.2.23) for the inverse scattering problem can be written as 

the matrix equation 

u = K z, (3.2.24) 

where 

u=[Ef(A),^w,..,^wF, 

z = [a\,a2, ...,a^] , 

where a,-, i — 1,2,..., JV, are the expansion coefficients of er in (3.2.18), and 

K is an M x JV matrix whose elements are 

i = l,...,N,j = 1,...,M. 

Equation (3.2.24) can also be considered as a general "operator" equa

tion, where 

u G U, and, z 6 Z. (3.2.25) 

Here, U is the data space and Z is the image space. According to Hadamard 

[24,25,26], a problem defined by Equations (3.2.24) and (3.2.25) is correctly 

(or well) posed if the following conditions are fulfilled: (i) for each u £ U 

there exists a solution z € Z; (ii) the solution is unique, and (iii) the solution 
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depends continuously on u (it is stable against small variations of u). If 

even one of the above conditions is not satisfied, then the problem is called 

ill-posed. 

Unfortunately, the matrix equation (3.2.24) obtained by discretizing the 

linearized integral equation (3.2.4) is ill-posed [24-30], which comes from the 

unbounded nature of K~x. Thus, the solution of (3.2.24) is unstable against 

small variation of the measured data u [27,29,30]. 

One way to deal with the ill-posed problem is to use Tikhonov's regular-

ization procedure. In this method, instead of solving Equation (3.2.24), we 

seek a solution which will minimize the following Tikhonov's functional: 

T(z, K, u) = ||K • z - u||2 + 7||H • z||2, (3.2.26) 

where 7 is the regularization parameter, and H is the regularization operator 

(or the stabilizing operator). 

For the matrix equation, the minimization of (3.2.26) leads to 

[K t-K + 7 H t -H] -z = K t -u , (3.2.27) 

where K and H are the conjugate transpose of K and H, respectively. In 

this thesis, the zeroth-order regularization in which H is the identity matrix 

of order JV has been used to generate the results given in the next section. 

The solution of Equation (3.2.27) is given by 

z = [K t -K+7H t -H] - 1 -K t -u . (3.2.28) 

The choice of the arbitrary regularization parameter 7 is important in 

the regularization procedure. It must be properly balanced so that it is large 
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enough to filter out unstable high frequency components to obtain a stable 

solution, but not too large so as to filter out too many useful frequency com

ponents in the solution. Generally speaking, however, there is no universal 

strategy for selecting the optimum 7, and it is probably best to regard 7 as 

effectively undefined in any specific case. A safer approach would be to base 

the selection of 7 on the numerical simulations. 

In practice, the range of 7 over which the stable solution could be ob

tained also plays an important role in the inverse procedure. If the solution 

is too sensitive to the parameter 7, i.e., the range of 7 which gives the stable 

solution is too small (for instance less than one order), then the problem 

may not be properly defined for the inverse solution because the information 

contained in the data is not enough to recover the profile with the expected 

accuracy. According to our experience, for a robust inversion algorithm, the 

range of 7, which gives the stable solution should, at least, be three to five 

orders of magnitude, for example from 10"10 to 10"1S. One practical point 

that should be mentioned is that to have a convergent solution using the iter

ative procedure proposed in this thesis, one must have a suitable and robust 

standard inverse algorithm which has to pass the test by using numerical 

simulations in which the first-order Born approximation is valid. 

3.2.5 Operator forms of the inverse scattering problem 

In the following, the solution of the inverse scattering problem should be 

expressed in terms of the operator notations to gain a deeper understanding 

of the problem and view the problem from another perspective. First, we 

should consider the Born iterative method. In the operator representation, 

Equation (3.2.2) becomes 

E) = Emc)+G0-O-E), (3.2.29) 
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where E) is a state vector of the E field, Go is a Green's function opera

tor in a homogeneous medium, and 0 is an operator related to the object 

function 6{,[e,.(r) - 1]. The operator equation (3.2.29) expresses the scatter

ing equation in an abstract linear vector space, which is independent of the 

particular space being considered. In the following, all derivations will be 

performed formally in this abstract space although a specific space has to be 

specified when we implement the final formulas numerically. For instance, 

the coordinate space representation of Equation (3.2.29) can be retrieved by 

evaluating the inner product of Equation (3.2.29) with a coordinate vector 

r. Then, Equation (3.2.29) becomes 

(r, E) = (r, Einc) + {r,G0-O-E). (3.2.30) 

Furthermore, noticing that an identity operator [29] is 

1 = [drr){r, (3.2.31) 

and substituting (3.2.31) into (3.2.30), we have 

(r, E) = (r, Einc) + J dr'dr"{r, Go, r') (r', 0, r") (r", E). (3.2.32) 

On identifying 

(r, E) = E(r), (r, Einc) = Einc{r), (3.2.33a) 

<r,G0,r') = G0(r,r'), (r',0,r"> = 6(r' - r")[fc2(r') - k2], (3.2.33b) 

Equation (3.2.32) is identical to Equation (3.2.8). In the coordinate space 

representation, the operator 0 is diagonal and is related to the object func

tion to be reconstructed in the inverse scattering problem. Following a sim

ilar procedure, Equation (3.2.29) can also be represented in other spaces of 

representations, e.g., the spectral space. 
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Equation (3.2.29) could be formally solved for E) to yield 

E)=(7-G0-0)-1-Einc). (3.2.34) 

Substituting (3.2.35) into the right-hand side of (3.2.29), we have 

Eam) = Go • 0 • (I - Go • O)-1 • Einc). (3.2.35) 

Notice that the scattered field is a nonlinear functional of 0, the operator for 

the object function. From another viewpoint, the nonlinearity can also be 

interpreted as the consequence of the multiple scattering effect contributed 

by the operator (7 - Go • 0)~l. By expanding the operator (7 - Go - O)'1 in 

Equation (3.2.35) into a geometrical series, we have 

Esca) = \Go-0 + G0-0-Go-0 + Go-0-Go-0-G0-0 + ---]-Einc), (3.2.36) 

where E3ca) is the scattered field, which is obtained by subtracting the in

cident field Einc) from the total field E). Equation (3.2.36) is the operator 

representation of (3.2.6). The n-th term in the above series corresponds to 

the n-th multiple scattering of the incident field in the object. Equation 

(3.2.36) is also known as the Neumann series expansion of the pertinent 

integral equation in the operator form representation. 

In the inverse scattering problem, we want to minimize the norm of the 

difference between the measured scattered field Esca) and the calculated scat

tered field from the reconstructed object. This is equivalent to the following 

optimization problem: 

Min{\\Em) - Go • 0 • (7 - Go • 0)~l • Einc)||}. (3.2.37) 

Equation (3.2.37) is a nonlinear optimization problem since the norm in 

the above is a nonlinear functional of the object operator 0. In order to 
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solve the above nonlinear optimization problem, iterative schemes have to 

be introduced so that one needs to deal only with a linear optimization 

problem at each iteration step. In the Born iterative method, the total field 

inside the object, which is ( 7 - G0 • O) -1 • Einc), is approximated iteratively. 

First, the total field E) is assumed to be approximately £?,„c) or the field 

in the presence of an initial guessed permittivity distribution. Then, the 

object function 0 is solved for as a linear optimization problem in (3.2.37). 

The new object function thus found is then used to estimate E) = (I - Go • 

O)'1 • Einc), the total field inside the object. The process is repeated until 

(3.2.37) is minimized. Meanwhile, the regularization procedure is employed 

at every iteration step [24,27,30] to circumvent the inherent instability and 

nonuniqueness [13,14,15,24-30] of the inverse scattering problem. 

As we have mentioned before, the operator expression of a nonlinear 

optimization problem is independent of the particular linear space being 

considered. Therefore, the minimization of (3.2.37) can be performed in any 

linear space of representations, e.g., coordinate space or spectral space. The 

effort needed to find the operator (7—Go-0)-1 at each iteration step is exactly 

equivalent to that of the solution of the pertinent direct scattering problem 

with the object operator 0 at the corresponding iteration step. For example, 

if we assume that {n),i = 1,2, • • •} is a complete set of basis vectors of a 

vector space of representation, then the matrix representation of the operator 

Go • 0 under such a basis set is (m, Go • 0,n); the matrix representation of 

(I - G0- 0) under the basis set {n),n = 1,2, • • • } is (m, (7 - G0 • O), n). 

Therefore, the matrix representation of ( J - Go -O)"1 can be obtained by the 

inversion of the matrix {m,(I—Go-0),n). The above procedure is equivalent 
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to using the method of moments [16,17] to solve the direct scattering problem 

corresponding to the integral equation (3.2.2). 

In the distorted Born iterative method, the incident field is the field in the 

presence of an inhomogeneous background medium; hence, the correspond

ing Green's function is the point source response in the inhomogeneous back

ground medium. In the presence of an inhomogeneous background medium, 

the corresponding scattering equation from (3.2.12) is 

E) = Eb,inc) + Gb-60~-E), (3.2.38) 

where 

Eb,inc) = Einc) + G0 • Ob • Ebtinc), (3.2.39a) 

G6 = Go + G0-<VG6, (3.2.39b) 

0 = Ob + 60. (3.2.39c) 

In the above, the object operator is a diagonal matrix with diagonal element 

&2(r) — k\ under the coordinate space representation. Because the incident 

field Ebiinc) is the solution of the direct scattering problem presented by Equa

tion (3.2.39a), it is the field when an inhomogeneous background is present. 

Similarly, Equation (3.2.39b) states that the Green's function operator Gb is 

the point source response in the presence of an inhomogeneous background 

medium characterized by the background object operator Ob in Equation-

(3.2.39b). 

In the inverse scattering problem, the object operator 60 is the unknown 

to be sought. Since the measurement data are the scattered fields at the re

mote receivers outside of the object, we can formally recast Equation (3.2.38) 

into 

E) = Eb,mc) + Gb-60-(I-Gb- 60)-1 • Eb,inc). (3.2.40) 

88 



Moving the first term on the right-hand side of the above equation to the 

left-hand side of the equation, we have 

Eb,3ca) = Gb-60-(l-Gb- 60)-1 • Eb<inc), (3.2.41) 

where Ebl3Ca) is the scattered field which is defined as the difference between 

the total field E) and the incident field Ebiinc). Given the measurement 

data E3ca) and a background object operator Ob, Eb<3Ca.) can be calculated. 

Consequently, an optimization problem can be set up to minimize 

\\Eb,3Ca)-Gb'6d-E)\\. (3.2.42) 

The above can be solved for 60 by assuming first that 

E)=(!-Gb- 60Y1 - E^) « Eb<inc) (3.2.43) 

in Equation (3.2.42). Under such an approximation, the nonlinear optimiza

tion problem (3.2.42) is converted into a linear optimization problem. Then, 

60 is ascertained by the solution of the corresponding linear optimization 

problem. Given 60, a new 0 given by (3.2.39c) can be used as the new Ob, 

hence yielding new Gb and Ebiinc). Consequently, the process can be repeated 

•until (3.2.42) is minimized. As in the Born iterative method, the regulariza

tion procedure has to be employed at each iteration step to circumvent the 

inherent instability of the inverse problem. 

3.2.6. Convergence of the algorithms 

Now, we should discuss the convergent speed of the two iterative algo

rithms discussed above. We should consider the distorted Born iterative 
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method first. In the distorted Born iterative method, the problem is repre

sented by (3.2.41) which is 

Eb,3Ca) = Gb-60-(I-Gb- 60)-1 • Eb<inc), (3.2.44) 

where Ebt3ca) is the scattered field which is defined as the difference between 

the total field E) and the incident field Ebtinc). Using the series expansion of 

(7-Gb-60)-1, we have 

Ebl3ca) = Gb-60-(l-rGb-60 + ...)- Eb,inc). (3.2.45) 

In each iteration step of the distorted Born iterative method, only the first 

term in the parentheses remains in order to linearize the problem. From 

(3.2.45), we can see that the error is proportional to (60)2. Here, 60 is 

the correction of the object function at this iteration step. Therefore, the 

distorted Born iterative method converges quadratically. The quadratic con

vergence of the solution means that the error at each iteration is proportional 

to the square of the correction of the solution. Hence, the distorted Born 

iterative method is similar to the Newton method for the solution of a one 

variable function. 

In the Born iterative method, the problem is expressed by (3.2.29), which 

is 

E) = Einc)+Go-0-E). (3.2.46) 

Using (3.2.40) in the above equation and moving the first term of the right-

hand side of the equation to the left-hand side, we have 

E3Ca) = Go • 0 • (I - Gb • 60)-lEbitnc), (3.2.47) 

where Gb is the Green's function of the inhomogeneous medium el(p), which 

is the last reconstructed object function in the iteration procedure, and Eb,inc) 
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is the direct scattering problem with the last reconstructed object function. 

Using the series expansion of (7 - Gb • 60)'1, we have 

Em) = G0-0-(I+ Gb'60+ ...)• Eb,inc). (3.2.48) 

In each iteration step of the Born iterative method, only the first term in 

the parentheses remains in order to linearize the problem. The error at each 

iteration is proportional to 60, the correction of the object function at this 

iteration step. Thus, the Born iterative method is said to converge linearly 

just as the bisection method for the solution of a one variable function. 

3.3 Simulations and Results 

3.3.1 Born iterative method 

In this subsection, some simulated results are obtained for several cases 

from low-frequency to high-frequency electromagnetic images by using the 

Born iterative method. Figure 3.2 shows the relative dielectric distribution 

reconstruction of a sinelike function with a peak value of 11. The frequency of 

the incident wave is 10 MHz. The diameter of the object is about one-tenth 

of the wavelength. Four incident plane waves from the different directions 

are illuminated in this and the following examples in this subsection. The 

receivers are located around the object as indicated in Figure 3.1. The 

number of the receivers in this and the following examples varies from 26 to 

36 depending on the number of unknowns in the problem. The measured data 

for all of the examples in this subsection were simulated on a computer by 

solving the direct scattering problem with the original dielectric distribution 

functions for the scattered fields at the receivers. 

Figure 3.2 shows clearly the evolution of the convergence of the solution 
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Figure 3.2. Reconstruction of a sinelike permittivity distribution with 
operating frequency at 10 MHz. The peak value of the relative permit
tivity is 11. The diameter of the object is one-tenth of the wavelength. 
(a) is the original distribution, (b) is the result of the first-order approx
imation. (c) to (e) are the results from the second iteration to the fourth 
iteration, (f) is the final convergent solution after five iterations. 
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given by the Born iterative algorithm. Figure 3.2(a) is the original dielec

tric distribution function. Figure 3.2(b) is the reconstructed result of the 

first-order approximation, i.e., the Born approximation. Here, we can see 

that the Born approximation fails for the quantitative reconstruction of the 

dielectric distribution function in this case. Figures 3.2(c)-3.2(f) are iter

ation results from the second iteration to the fifth iteration. The solution 

converges to the original dielectric distribution function after five iterations. 

The above example shows that the algorithm works very well even when the 

Born approximation fails to reconstruct the distribution function in the low 

frequency inverse scattering problem. 

Figure 3.3 shows the dielectric distribution reconstruction of a sinelike 

function with the operating frequency at 100 MHz. The peak value of the 

relative dielectric constant in the object is 1.80. The diameter of the object 

in this case is about 1A. Figure 3.3(a) is the original dielectric distribution. 

Figure 3.3(b) is the reconstructed dielectric distribution of the first iteration, 

i.e., the Born approximation. Figures 3.3(c)-3.3(h) are the iteration results 

from the second iteration to the seventh iteration. Figure 3.3(i) is the final 

convergent solution after eight iterations. 

All simulation results given in this subsection are obtained on the SUN 

4/110 workstation. As is well-known, to guarantee the accuracy of the calcu

lated scattered field by using the moment method, the mesh density has to 

be about 100/A2 [19]. Due to the limitation of the memory provided by the 

SUN workstation, the maximum size of the object we can deal with on the 

SUN is about 2A. In Figure 3.4, the operating frequency is 200 MHz. The 

diameter of the object is about 2A. In this example, eight plane waves are 

illuminated from different directions. Figure 3.4(a) is the original dielectric 
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Figure 3.3. Reconstruction of a sinelike permittivity distribution with 
operating frequency at 100 MHz. The peak value of the relativity per
mittivity is 1.80. The diameter of the object is 1A, (a) is the original 
distribution, (b) is the result of the first-order approximation, (c) to (h) 
are the results from the second iteration to the seventh iteration, (i) is 
the final convergent solution after eight iterations. 



(a) (b) («) 

Figure 3.4. Reconstruction of a sinelike permittivity distribution with 
operating frequency at 200 MHz. The peak value of the relativity per
mittivity is 1.80. The diameter of the object is 2A. (a) is the original 
distribution, (b) is the result of the first-order approximation, (c) is the 
final convergent solution after twelve iterations. 
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distribution. Figure 3.4(b) is the reconstructed distribution of the first iter

ation. Figure 3.4(c) is the convergent solution of the dielectric distribution 

function after twelve iterations. 

Some common features appear in all the examples given above. First, 

the Born approximation fails to give a quantitative reconstruction of the 

dielectric distribution in all the examples. Second, the final convergent solu

tions obtained by the algorithm proposed in the paper converge to the exact 

distribution functions after a few iterations with the negligible errors less 

than 1% at grid points. The reason for such good accuracy of the recon

structed dielectric distributions in the above examples is that the property 

of the constraint we employed in the inverse procedure coincides with that 

of the original distribution functions, i.e., continuity of the distribution func

tions. In the next two examples, the dielectric distribution functions with a 

discontinuity, i.e., step function, are considered. The result will give us an 

idea on how the algorithm works and what we can expect for a discontinuous 

distribution function. 

Figure 3.5 shows the dielectric distribution reconstruction of a step func

tion to illustrate the band-limited nature of the algorithm. The regulariza

tion employed in the inverse procedure causes the algorithm to exhibit some 

low-pass-filtering effect. In Figure 3.5, the final convergent solution is, as 

expected, a smoothed version of the original distribution function. In Fig

ure 3.5, the operating frequency is 100 MHz. The diameter of the object is 

about 1A; 6er is 0.60. Figure 3.5(a) gives the original dielectric distribution. 

Figure 3.5(b) is the result of the first iteration, i.e., the Born approximation. 

Figures 3.5(c)-3.5(i) are the results from the second iteration to the eighth 

iteration, respectively. The solution converges after eight iterations. 
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Figure 3.5. Reconstruction of a step permittivity distribution with oper
ating frequency at 100 MHz. The contrast of the relativity permittivity 
is 1:1.60. The diameter of the object is 1A. (a) is the original distribu
tion. (b) is the result of the first-order approximation, (c) to (h) are the 
results from the second iteration to the seventh iteration, (i) is the final 
convergent solution after eight iterations. 
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Figure 3.6 shows a behavior similar to that seen in Figure 3.5. But in 

this example, the operating frequency is 10 MHz. The diameter of the object 

is about one-tenth of the wavelength. Here, 6eT is 10. Figure 3.6(a) gives 

the original dielectric distribution. Figure 3.6(b) gives the result of the first 

iteration. Figure 3.6(c) is the final convergent solution after five iterations. 

As the last example, Figure 3.7 shows that the convergent solution of 

the reconstruction of an asymmetric dielectric distribution agrees quite well 

with the original one. Figure 3.7(a) is the original dielectric distribution. 

Figure 3.7(b) is the convergent solution of the constructed distribution after 

six iterations. However, because of the band-limited nature of the algorithm, 

the result shows that high spectral frequency components of the distribution 

function were smoothed out. 

Figure 3.8 gives the relative mean squared error (MSE) of the recon

structed object function in Figure 3.3 as a function of the iteration steps. 

The relative MSE is defined as 

where S is the scatterer's cross section, e}.''(p) is the reconstructed relative 

permittivity distribution in the i-th iteration, and er(p) is the original relative 

permittivity distribution. In actual application, the MSE is unknown since 

eT(p) is not known. 

The numerical simulations in this subsection covered a wide range of 

the electromagnetic inverse scattering applications, from low frequency with 

high-contrast cases to high frequency with moderate-contrast cases. Accord

ing to the results of the numerical simulations, the algorithm can be suc

cessfully applied to the reconstruction of the dielectric distribution when the 
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Figure 3.6. Reconstruction of a step permittivity distribution with op
erating frequency at 10 MHz. The contrast of the relativity permittivity 
is 1:11. The diameter of the object is 0.1A. (a) is the original distribu
tion. (b) is the result of the first-order approximation, (c) is the final 
convergent solution after five iterations. 
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Figure 3.7. Reconstruction of an axially asymmetric permittivity dis
tribution with operating frequency at 100 MHz. The peak value of the 
relativity permittivity is 1.80. The diameter of the object is 1A. (a) is 
the original distribution, (b) is the final convergent solution after six 
iterations. 
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Figure 3.8. The relative MSE (Mean Square Error) of the reconstructed 
permittivity distribution in Figure 3.2 as a function of the iteration steps. 
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first-order Born approximation fails for the quantitative reconstruction. The 

simulations established that the maximum contrast of the relative dielectric 

constant, in which the algorithm gives a correct convergent solution, is ten 

times more than that for the Born approximation at the fixed frequency. 

3.3.2. Distorted Born iterative method and comparison with 

the Born iterative method 

As the first example, Figure 3.9 shows clearly the evolution of the con

vergence of the solution given by the distorted Born iterative algorithm for 

an asymmetric permittivity distribution. Figure 3.9(a) is the original di

electric distribution. Figure 3.9(b) is the first-order Born approximation. 

Figures 3.9(c)-3.9(h) are the iterative results from the second iteration to 

the seventh iteration. Figure 3.9(i) gives the final convergent solution after 

25 iterations. Actually, it is hard to tell the difference between Figure 3.9(e) 

and Figure 3.9(i). The algorithm terminates after the twenty-fifth iteration 

because a relatively small RRE was chosen as the convergent criterion in 

this case (10-5) in order to examine the convergence and the stability of the 

algorithm. 

Figure 3.10 shows the relative mean square error (MSE) and relative 

residual error (RRE) of the reconstructed permittivity distribution in the last 

example as a function of the iteration steps. It is clear that the RRE drops 

to a negligible level after the fourth iteration. The MSE stays at 0.026 after 

the sixth iteration because of the band-limited effect of the algorithm. For 

example, a discontinuity at the origin of the original permittivity distribution 

is smoothed out in the reconstruction. 

•This example gives us an idea on how the distorted Born iterative algo-
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Figure 3.9. Reconstruction of an asymmetric distribution with operating 
frequency at 100 MHz. The peak value of the relativity permittivity 
is 1.8. The diameter of the object is 3.0 meters, (a) is the original 
distribution, (b) is the result of the first-order approximation, (c) to 
(h) are the results from the second iteration to the seventh iteration, (i) 
is the final convergent solution after twenty-five iterations. 
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Figure 3.10. The relative MSE (Mean Square Error) and the RRE (Rel
ative Residual Error) of the reconstructed permittivity distribution in 
Figure 3.9 as a function of the iteration steps. 
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rithm works for a general permittivity reconstruction problem for asymmetric 

and nonsmooth distributions. 

In the following examples, both the results of the distorted Born iterative 

method and the Born iterative method are given for comparison for every 

case. 

3.3.2.1 Sinelike distribution (noiseless) 

Figure 3.11 shows the reconstruction of a sinelike permittivity distri

bution by using the distorted Born iterative method. The diameter of the 

object is about 1A. Figure 3.11(a) is the original distribution. Figure 3.11(b) 

is the result of the first-order Born approximation. Figures 3.11(c)-3.11(e) 

are the iterative solutions from the second step to the fourth step. Figure 

3.11(f) gives the convergent solution after the 15 iterations. 

Figure 3.12 shows the reconstruction of the same distribution using the 

Born iterative method. The meaning of the curve surfaces is the same as 

that in Figure 3.11. 

Figure 3.13 shows the relative mean square error and the relative residual 

error as a function of the iteration steps for both the distorted Born and 

the Born iterative methods. It shows that for the distorted Born iterative 

method, the convergent solution is achieved after the fourth iteration, while 

for the Born iterative method, the convergent solution is reached after the 

sixth iteration. 

3.3.2.2 Two separated pulses (noiseless) 

Figure 3.14 shows the reconstruction of the two-pulse distribution using 

the distorted Born iterative method. The dimension of the pulses is about 
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Figure 3.11. Reconstruction of a sinelike permittivity distribution by 
using the distorted Born iterative method with operating frequency at 
100 MHz. The peak value of the relativity permittivity is 1.80. The 
diameter of the object is 3.0 meters, (a) is the original distribution, (b) is 
the result of the first-order approximation, (c) to (f) are the results from 
the second iteration to the fourth iteration, (e) is the final convergent 
solution after fifteen iterations. 
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Figure 3.12. Reconstruction of a sinelike permittivity distribution by 
using the Born iterative method with operating frequency at 100 MHz. 
The peak value of the relativity permittivity is 1.80. The diameter of the 
object is 3.0 meters, (a) is the original distribution, (b) is the result of 
the first-order approximation, (c) to (e) are the results from the second 
iteration to the fourth iteration, (f) is the final convergent solution after 
fifteen iterations. 
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Figure 3.13. (a) is the relative MSE (Mean Square Error) and the RRE 
(Relative Residual Error) of the reconstructed object function in Figures 
3.11 and 3.12 as a function of the iteration steps, (b) is the RRE (Rela
tive Residual Error) of the reconstructed object function in Figures 3.11 
and 3.12 as a function of the iteration steps. 
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Figure 3.14. Reconstruction of a two-pulse distribution by using the 
distorted Born iterative method with operating frequency at 100 MHz. 
The peak value of the relative permittivity is 1.80. The diameter of the 
object is 3.0 meters, (a) is the original distribution, (b) is the result of 
the first-order approximation, (c) to (h) are the results from the second 
iteration to the seventh iteration, (i) is the final convergent solution 
after fifteen iterations. 
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A/2. The distance between the two pulses is about A/4. Figure 3.14(a) is 

the original distribution. Figure 3.14(b) is the reconstructed distribution 

of the first-order Born approximation. Figures 3.14(c)-3.14(h) are the re

constructed distributions from the second to the seventh iterations. Figure 

3.14(i) is the result after 15 iterations. 

Figure 3.15 shows the reconstruction of the same distribution by using 

the Born iterative method. 

Figure 3.16 gives the relative residual error (RRE) of the reconstructed 

distributions as a function of the iteration steps for both the distorted Born 

and Born iterative methods. 

From this example, we see that both methods successfully distinguish 

the two pulses from each other. However, the convergent speed of the Born 

iterative method seems much slower than that of the distorted Born iterative 

method. 

3.3.2.3 Sinelike distribution with noise 

Figure 3.17 shows the reconstruction of a sinelike permittivity distri

bution with 25 dB of the signal-to-noise ratio by using the distorted Born 

iterative method. The diameter of the object is 1A. The peak value of the 

sinelike distribution is 1.8. Figure 3.17(a) is the reconstructed distribution of 

the first-order Born approximation. Figures 3.17(b)-3.l7(e) are the iterative 

results from the second to fifth iterations. Figure 3.17(f) is the result after a 

filtering operation which will be described later. The algorithm terminates 

after five iterations because the relative residual error in the fifth iteration 

is larger than the RRE in the fourth iteration. The plot of the original 

permittivity distribution is given in Figure 3.18(a). 
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Figure 3.15. Reconstruction of a two-pulse distribution by using the 
Born iterative method with operating frequency at 100 MHz. The peak 
value of the relative permittivity is 1.80. The diameter of the object is 
3.0 meters, (a) is the original distribution, (b) is the result of the first-
order approximation, (c) to (h) are the results from the second iteration 
to the seventh iteration, (i) is the final convergent solution after fifteen 
iterations. 



I 

BORN ITERATION 

DISTORTED BORN 

3 4 5 6 7 8 
NUMBER OF ITERATION STEPS 

- f — * — # — # — # -
9 10 11 12 13 14 15 

Figure 3.16. The RRE (Relative Residual Error) of the reconstructed 
permittivity distribution in Figures 3.14 and 3.15 as a function of the 
iteration steps. 
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Figure 17. Reconstruction of a sinelike permittivity distribution with 
a 25 dB signal-to-noise ratio in the measurement field by using the dis
torted Born iterative method with operating frequency at 100 MHz. The 
peak value of the relative permittivity is 1.80. The diameter of the object 
is 1A. (a) is the original distribution, (b) is the result of the first-order 
approximation, (c) to (e) are the results from the second iteration to 
the fourth iteration, (f) is the final distribution after operating the filter 
function on (d). 
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Figure 18. Reconstruction by using the Born iterative method for the 
same problem given in Figure 17. (a) is the original distribution, (b) 
is the result of the first-order approximation, (c) to (g) are the results 
from the second iteration to the sixth iteration, (h) is the convergent 
distribution after the fifteen iterations, (i) the reconstructed distribution 
after operating the filter function on (h). 
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Figure 3.18 shows the reconstruction of the same problem given in the 

above by using the Born iterative method. Figure 3.18(a) is the original dis

tribution. Figure 3.18(b) is the reconstruction of the first-order Born approx

imation. Figures 3.l8(c)-3.18(g) are the results from the second iteration to 

the sixth iteration. Figure 3.18(h) is the final result after 15 iterations. Here, 

we have set the maximum number of steps as 15. Figure 3.18(i) is the filtered 

result. 

Figure 3.19 gives the MSE and the RRE as a function of iteration steps 

for both the distorted Born and the Born iterative methods. The MSE of the 

distorted Born iterative method increases at the fifth iteration step. This is 

consistent with Figure 3.18(e), which is noisier than that of Figure 3.18(d). 

Fortunately, at the same step, the RRE increases as well (see Figure 3.20(b)) 

so that the program is terminated after this step. However, the convergent 

behaviour of the Born iterative method is quite different. Both the RRE and 

MSE reach the final convergent solution after a few steps and both of them 

stay at that value until the program terminates after the iteration reaches 

the maximum number of iteration steps. 

When noise exists, unwanted artifacts are present in the reconstructed 

distribution, which could be easily recognized in Figures 3.17(e) and 3.18(h). 

This image noise obscures the actual features of the object. For this reason, 

image filters are used to remove the noise so that the features can be identified 

[31]. The filter operates by passing a 5-cell window over the image, and 

replacing the center cell of the window with some function of all the cells in 

the window. One obvious function would be one that averages all the cells in 

the window. Unfortunately, this type of filter is too harsh because in addition 

to removing the noise in the image it also blurs the desired features of the 

distribution function of the object. In this thesis, the weighted average filter 
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Figure 3.19. (a) is the RRE (Relative Residual Error) of the recon
structed object function in Figures 3.17 and 3.18 as a function of the 
iteration steps, (b) is the relative MSE (Mean Square Error) of the re
constructed object function in Figures 3.17 and 3.18 as a function of the 
iteration steps. 
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of all the cells in the window has been chosen in which weighting factors are 

chosen as 1.8 for the center cell and 0.8 for the other cells. Figures 3.18(f) 

and 3.18(i) are the final reconstructed distributions after applying the filter 

to Figures 3.17(d) and 3.18(e), respectively. The reason for using Figure 

3.17(d) instead of Figure 3.18(e) is that both of the MSE and the RRE at 

step four are smaller than those at step five such that it is more reliable to 

use Figure 3.17(d) instead of Figure 3.17(e). 

3.3.2.4 Single-pixel pulses 

In the investigation of the inverse algorithms, it is of interest to assess 

the ability and quality of the reconstruction of a single-pixel pulse object 

function. For a unit height single-pixel pulse, this is also called the point 

spread function of the algorithm. 

First, a unit height single-pixel pulse, that is 6er = 1, will be recon

structed using both the Born and the distorted Born iterative methods. 

Figure 3.20 shows the reconstruction of a unit height pulse using the 

distorted Born iterative method. The dimension of the reconstructed area is 

about 1A. The area has been divided into the subobject with 169 pixels/A2. 

The operating frequency is 100 MHz. The unit height single-pixel pulse is 

located 3 pixels from the center of the object. Figure 3.20(a) is the original 

distribution. Figure 3.20(b) is the reconstructed distribution of the first-

order Born approximation. Figures 3.20(c)-3.20(h) are the reconstructed 

distributions from the second to the seventh iterations. Figure 3.20(i) is the 

final convergent solution after 20 iterations. 

Figure 3.21 shows the reconstruction of the same distribution by using 

the Born iterative method. Figure 3.21(a) is the original distribution. Figure 
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Figure 3.20. Reconstruction of a single-pixel pulse distribution by using 
the distorted Born iterative method with operating frequency at 100 
MHz. The contrast of the relative permittivity is 1:2. The diameter 
of the reconstructed area is 1.5 meters, (a) is the original distribution. 
(b) is the result of the first-order approximation, (c) to (h) are the 
results from the second iteration to the seventh iteration, (i) is the final 
convergent solution after twenty iterations. 
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Figure 3.21. Reconstruction of a single-pixel pulse distribution by using 
the Born iterative method with operating frequency at 100 MHz. The 
contrast of the relative permittivity is 1:2. The diameter of the recon
structed area is 1.5 meters, (a) is the original distribution, (b) is the 
result of the first-order approximation, (c) to (h) are the results from 
the second iteration to the seventh iteration, (i) is the final convergent 
solution after twenty-five iterations. 
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3.21(b) is the reconstructed distribution of the first-order Born approxima

tion. Figures 3.21(c)-3.21(h) are the reconstructed distributions from the 

second to the seventh iterations. Figure 3.21(i) is the final convergent solu

tion after 25 iterations. 

This example demonstrates that the distorted Born iterative method pos

sesses much better ability to reconstruct the single-pixel pulse than the Born 

iterative method. Actually, the final convergent solution of the distorted 

Born iterative method shown in Figure 3.20(i) is identical to the original 

distribution shown in Figure 3.20(a). Meanwhile, the final convergent solu

tion of the Born iterative method demonstrates a strong low-pass filter effect 

which could be recognized easily from the noise of the background in the re

constructed object function. The sharp image obtained by the distorted Born 

iterative method reveals that generally the distorted Born iterative method 

possesses better ability to reconstruct the fine-structure of the object func

tion than the Born iterative method. In other word, the distorted Born 

iterative method should give better resolution of the reconstructed object 

than the Born iterative method. 

As the second example of the reconstruction of the single-pixel pulse 

function, Figure 3.22 shows the reconstruction of a single-pixel pulse with the 

height of 11, that is, 6er = 11, by using the distorted Born iterative method. 

The other configurations and parameters are the same as those in the last 

example. Figure 3.22(a) is the original distribution. Figure 3.22(b) is the 

reconstructed distribution of the first-order Born approximation. Figures 

3.22(c)-3.22(n) are the reconstructed distributions from the second to the 

thirteenth iterations. Figure 3.22(o) is the final convergent solution after 20 

iterations. 
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Figure 3.22. Reconstruction of a single-pixel pulse distribution by using 
the distorted Born iterative method with operating frequency at 100 
MHz. The contrast of the relative permittivity is 1:11. The diameter of 
the reconstructed area is 1.5 meters, (a) is the original distribution, (b) 
is the result of the first-order approximation, (c) to (n) are the results 
from the second iteration to the thirteenth iteration, (o) is the final 
convergent solution after twenty iterations. 
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The last example shows that the distorted Born iterative method works 

quite well for the reconstruction of very high contrast single-pixel pulse object 

functions. 

In order to investigate the resolution of the algorithm, Figure 3.23 gives 

the reconstruction of two single-pixel pulses separated by one pixel whose 

width is about 0.08A by using the distorted Born iterative method. The 

height of the two pulses is 1. The other configurations and the parameters 

are the same as those of the example shown in Figure 3.21. The final result, 

shown in Figure 3.23, is surprisingly good. The final convergent solution is 

almost exactly identical to the original object function. 

3.3.2.5 Complex permittivity distribution 

In this example, the object function is a complex permittivity distribu

tion 

er(p) = <(p) + ie'Xp), 

where 

<(p) = 2.0cos(|£), p<a0, 

<(p) = 0.6cos(|£), p<a0. 

Figures 3.24 and 3.25 show the reconstruction of the above distribution by 

the distorted Bom iterative method. Shown in Figure 3.24 is the convergent 

process of the real part of the permittivity distribution. The reconstruction 

of the imaginary part of the permittivity distribution is given in Figure 3.25. 

The diameter of the object is 1.5 m. The operating frequency is 100 MHz. 

In both of the figures, (a) is the original distribution; (b) is the first-order 

iterative solution or the Born approximation; (c) to (h) are the results from 
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(a) (b) (c) (d) 

00 (f) (g) (h) 

Figure 3.23. Reconstruction of a two single-pixel pulses seperated by 
one pixel using the distorted Born iterative method with operating fre
quency at 100 MHz. The contrast of the relative permittivity is 1:2. 
The diameter of the reconstructed area is 1.5 meters, (a) is the original 
distribution, (b) is the result of the first-order approximation, (c) to (g) 
are the results from the second iteration to the seventh iteration, (h) is 
the final convergent solution after twenty iterations. 
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(a) (b) (c) 

(d) to (f) 

(g) (W (i) 

Figure 3.24. Evolution of the convergence of the real part of a complex 
permittivity distribution reconstructed by using the distorted Born iter
ative method with operating frequency at 100 MHz. The peak value of 
the real part of the relative permittivity is 2. The diameter of the object 
is 1.5 meters, (a) is the original distribution, (b) is the result of the 
first-order approximation, (c) to (h) are the results from the second it
eration to the seventh iteration, (i) is the final convergent solution after 
twenty iterations. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 3.25. Evolution of the convergence of the imaginary part of the 
reconstructed complex permittivity distribution by using the distorted 
Born iterative method with operating frequency at 100 MHz. The peak 
value of the imaginary part of the relative permittivity is 0.6. The diam
eter of the object is 1.5 meters, (a) is the original distribution, (b) is the 
result of the first-order approximation, (c) to (h) are the results from 
the second iteration to the seventh iteration, (i) is the final convergent 
solution after twenty iterations. 
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the second iteration to the seventh iteration; and (i) is the final convergent 

solution after 20 iterations. 

Figures 3.26 and 3.27 show the reconstruction of the same distribution 

as the above by using the Born iterative method. Figure 3.26 gives the 

result of the reconstruction of the real part of the permittivity distribution, 

and Figure 3.27 is the result of the reconstruction of the imaginary part 

of the permittivity distribution. In both of the figures, (a) is the original 

distribution; (b) is the first-order solution; (c) to (h) are the results from 

the second iteration to the seventh iteration; and (i) is the final convergent 

solution after 20 iterations. 

Figure 3.28 gives the relative mean square error (MSE) and the relative 

residual error (RRE) in the reconstruction procedure as a function of the it

eration steps for the last example. It is clear that the convergent speed of the 

distorted Born iterative method is much faster than that of the Born itera

tive method. Meanwhile, the final convergent solution of the distorted Born 

iterative method is more accurate than that of the Born iterative method, 

which could be easily recognized from the MSE and the RRE of the final 

solution for both methods. 

3.4 Discussions and Conclusions 

In the above section, the examples are given for both the distorted Born 

iterative and the Born iterative methods to reconstruct the permittivity pro

files. In the noiseless cases, the distorted Born iterative method displays 

faster convergence than the Born iterative method. However, for the noisy 

cases, the Born iterative method is more robust than the distorted Born 

iterative method. The example given in this thesis with the noisy case for 

the distorted Born iterative method is acceptable because the program is 
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(a) (b) (c) 

(d) (e) (f) 

(g) 00 (0 

Figure 3.26. Evolution of the convergence of the real part of the recon
structed complex permittivity distribution by using the Born iterative 
method with operating frequency at 100 MHz. The peak value of the 
real part of the relative permittivity is 0.6. The diameter of the object is 
3.0 meters, (a) is the original distribution, (b) is the result of the first-
order approximation, (c) to (h) are the results from the second iteration 
to the seventh iteration, (i) is the final convergent solution after twenty 
iterations. 

127 



(a) 00 (c) 

(d) 00 (f) 

(g) (W 0) 

Figure 3.27. Evolution of the convergence of the imaginary part of the 
reconstructed complex permittivity distribution by using the Born iter
ative method with operating frequency at 100 MHz. The peak value of 
the imaginary part of the relative permittivity is 0.6. The diameter of 
the object is 3.0 meters, (a) is the original distribution, (b) is the result 
of the first-order approximation, (c) to (h) are the results from the sec
ond iteration to the seventh iteration, (i) is the final convergent solution 
after twenty iterations. 
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RRE vs. Number of Iterations 

Distorted Born 

Born Iteration 

l 1 1 , 1 1—I I 1 1 1 1 1 1—T T - ? " - ^ 1 

1 2 3 4 5 6 7 8 9 1011121314151617181920 
Number of Iterations 

(a) 

MSE vs. Number of Iterations 

0.9 

Distorted Born 

Born Iteration 

1 2 3 4 5 6 7 8 9 1011121314151617181920 

Number of Iterations 

(b) 

Figure 3.28. (a) is the RRE (Relative Residual Error) in the reconstruc
tion of the complex permittivity distributions in Figures 3.24, 3.25, 3.26, 
and 3.27 as a function of the iteration steps, (b) is the relative MSE 
(Mean Square Error) in the reconstruction of the complex permittivity 
distribution in Figures 3.24, 3.25, 3.26, and 3.27 as a function of the 
iteration steps. 
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terminated immediately just after the MSE increases. However, if the MSE 

and the RRE do not increase at the same step, the final reconstructed profile 

could be quite noisy. The reason why the distorted Born iterative method is 

more susceptible to noise contamination is explained in the following para

graph. 

The left-hand side of Equation (3.2.4), which is the measured scattered 

field by the object with the free-space background, is unchanged in the iter

ative process for the Born iterative method. However, for the distorted Born 

iterative method, the scattered field from the last reconstructed distribution 

has to be subtracted from the measurement data on the left-hand side of 

Equation (3.2.4). If the noise is added in the scattered field at the begin

ning (in our case, a 25 dB signal-to-noise ratio, which is equivalent to about 

5.6% random noise, has been added in the examples given in Figures 10 and 

11), then after a few iterations, the noise will dominate the left-hand side 

of Equation (3.2.4). Consequently, the correction of the distribution after 

that step contributes only to the noise of the constructed distribution and 

no more information about the object could be derived. 

In conclusion, two algorithms for solving two-dimensional nonlinear elec

tromagnetic inverse scattering problems have been proposed. The algorithms 

have been successfully applied to the reconstruction of the dielectric distri

bution functions in a wide range of situations where the Born approximation 

fails. It turns out, according to the results of the numerical simulations, that 

the maximum contrast of the dielectric constant can be relaxed by a factor of 

ten compared to that for the Born approximation. The maximum contrast 

we can reconstruct using the iterative algorithms is when 6ka is about 0.8, 

where a is the diameter of the object if we start our algorithms from a homo

geneous background medium. The relaxation of the criteria is important in 
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many areas of the inverse scattering applications, such as medical imaging, 

nondestructive testing, and geophysical explorations. Meanwhile, the simula

tion results demonstrate that each method has its advantages. The distorted 

Born iterative method shows a faster convergence rate compared to that for 

the Born iterative method, while the Born iterative method is more robust 

to noise contamination compared to the distorted Born iterative method. 
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CHAPTER 4 

LIMITED ANGLE INVERSE SCATTERING PROBLEMS 
AND ADDITIONAL RESULTS 

4.1 Introduction 

Limited angle inverse scattering problems are frequently encountered in 

many applications. In the limited angle inverse problem, the receivers and 

transmitters are confined to specific regions enforced by the problem. The 

effect of the limited view angles is a significant reduction of the information 

content obtained from the measurement data. As a result, the ill-posedness 

of the problem is further aggravated. In order to retrieve the maximum 

amount of information from the limited angle inverse problem, a boosting 

procedure is introduced in Section 4.2 from a physical point of view. The sim

ulation results given in Section 4.2.3 verified the importance of the boosting 

procedure in the limited angle inverse scattering problems. 

Implementation of the Born and the distorted Born iterative methods 

discussed in Chapter 3 requires solving the linear system equations in both 

the direct scattering and inversion parts of the algorithms. By using the 

Gaussian elimination for the solution of the pertinent linear system equa

tions, the computational complexity of the algorithms will be JV3. The rapid 

increase of the computer time with the number of unknowns prevents us 

from applying the algorithm to the solutions of large objects. In order 

to reduce the computational complexity of the algorithms, the fast recur

sive operator algorithm discussed in Chapter 2 is applied to the solution 

of the direct scattering part of the algorithm. The results are presented in 
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Section 4.3. Meanwhile, the conjugate gradient method is applied to the so

lution of the inversion part of the iterative algorithm. As a result, the overall 

computational complexity of the accelerated algorithm is N2. The result in 

Section 4.3 shows that significant reduction of the computational time has 

been achieved by the accelerated algorithm. 

4.2 Limited Angle Inverse Scattering Problems 

4.2.1 Introduction 

Geophysical diffraction tomography has been investigated by several au

thors [1-5] in the framework of the Born and Rytov approximations for the 

weak scattering cases. The effects of the limited view angles on the experi

mental setup result in the further confinement of the image function in the 

Fourier transform space [5]. Beyond the Born approximation, the inherent 

nonlinearity of the inverse scattering problem has to be accounted for. For a 

full-angle problem in which receivers and transmitters are placed in a circle 

which completely surrounds the object, several methods have been reported 

for the solution of the problem [6-11]. However, in the limited angle inverse 

scattering problem, since the receivers and transmitters are restricted to spe

cific regions enforced by the experimental setup for geophysical applications, 

the information content obtained from the measurement data is significantly 

limited. Meanwhile, the restriction on the locations of the receivers and 

transmitters results in further constraints on the experimental setup. The 

combined effect of the limited information content and the restriction on the 

locations of receivers and transmitters further aggravates the ill-conditioning 

of the problem. As a result, part of the valuable information in the measure

ment data corresponding to the small eigenvalues of the matrix equation will 

be lost in the regularization procedures. 
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In principle, there is no difference between the conventional inverse scat

tering problem and limited angle inverse scattering problem. Both of them 

reconstruct the image from the remote measurement data by solving a per

tinent integral equation. However, the two types of problems differ signifi

cantly from a numerical viewpoint. As we know, in the conventional or full 

angle inverse scattering problem, both receivers and transmitters are located 

in a full circle which completely surrounds the object to be imaged. In con

trast, for the limited angle inverse scattering problem, such as well-to-well 

tomography, locations of the receivers and transmitters are restricted to the 

specific regions determined by the specific application at hand, and they do 

not completely surround the object being reconstructed. The restricted lo

cations of the receivers and transmitters in the limited angle inverse problem 

make the information contained in the measurement data more incomplete 

than that in the full-angle inverse scattering problem. 

To reconstruct the object function properly, a boosting procedure is pro

posed in Section 4.2.2 based on a physical viewpoint. In Section 4.2.3, some 

numerical simulations are given to demonstrate the significance of the boost

ing procedure for geophysical explorations. The importance of the procedure 

could be easily recognized from the simulations. 

4.2.2 Boosting procedure 

The limited angle inverse scattering problem is defined as an inverse scat

tering problem in which the locations of the receivers and transmitters are 

restricted in some regions which cannot completely surround the object to be 

detected. This kind of problem occurs frequently in geophysical explorations 

because of the restriction on the experimental setup in most applications. 
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Shown in Figure 4.1 are two typical geometrical configurations of the lim

ited angle problems in geophysical explorations. The effect of the limited 

angle measurement data results in the reduction of the information content 

contained in the measurements. The reduction of the information content 

aggravates the ill-conditioning of the problem further rendering its solution 

more difficult. 

The Born iterative and the distorted Bom iterative algorithms summa

rized in the preceding section have been successfully applied to the solu

tion of the conventional inverse scattering problem in which the receivers 

and transmitters are located on a circle completely surrounding the object 

[6,7]. However, in geophysical explorations, because of limited angle measure

ments, both methods encounter difficulty in obtaining good reconstructions 

or, sometimes, obtaining any convergent solutions. The difficulty is not from 

the algorithms used but from the sparsity of the information collected in 

the limited angle inverse scattering problem. The sparsity of the informa

tion content in the measurement data aggravates the ill-conditioning of the 

linear system matrix in the linearized inversion procedure at each iteration 

step. After applying the regularization procedure, a considerable amount of 

information in the measurement data is overwhelmed by the regularization 

matrix in order to circumvent the ill-conditioning of the linear system equa

tion. Consequently, the amount of information that can be retrieved from 

the measurement data is further reduced. The reduction of the informa

tion content makes it difficult to reconstruct the permittivity distribution in 

geophysical explorations or in any limited angle inverse scattering problems. 

In order to find a remedy, we need to examine the problem more closely. 

There are two factors which contribute to the above difficulty. One is the 

reduction of the information content in the limited angle inverse scattering 
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Figure 4.1. (a) is the geometrical configuration for well-to-well tomog
raphy. (b) is the geometrical configuration for subsurface detection. 
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problems. The other is the nonideal arrangement of the experimental setup 

which comes from the restrictions on the locations of the receivers and the 

transmitters. The first factor cannot be removed because of the nature of the 

problem. For instance, in subsurface detection, the transmitters and receivers 

are restricted to the ground above the object to be detected (see Fig. 4.1(b)). 

If we suppose that the probed region is finite, then the angle spanned at the 

center of the object by the transmitter and receiver array will be about 

100 degrees for most realistic situations because of the limited length of the 

transmitter and receiver array. For the second factor, we need to examine 

more carefully how the locations of the receivers or transmitters contribute 

to the aggravation of the ill-conditioning problem. Here, only the effect of 

receiver locations will be investigated. The effect of transmitter locations 

follows immediately from the reciprocity theorem between the source point 

and the observation point. To simplify our analysis, we will consider a 2-D 

case and use the the first-order approximation of Equation (3.2.4) in the 

following discussion. Under these assumptions, the kernel of the integration 

in the inverse scattering problem is a product of the Green's function and 

the incident field. Figure 4.2 gives the locations of two receivers in a limited 

angle inverse scattering problem. Suppose that receiver A is located at point 

A and receiver B is located at point B, and PB > PA\ then, the integral 

equations corresponding to receivers A and B are 

E3ca(pA) = J J \H(
0

l\\pA - p'\)k26eT(p')Einc(p'W\ (4.2.1) 

Esca(pB) = J J ffi\\pB - p'\)k26eT(p)Einc(p'W- (4.2.2) 

After discretizing the above equations with a set of the subdomain basis 

functions {fi(p),i = 1,2,• • • ,TV}, which is defined as 

« " - { £ " , i t *-j'2 * (4-i3) 
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Figure 4.2. Locations of receiver A and receiver B in a limited angle 
inverse scattering problem. 
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where S,- is the subdomain of the i-th basis function, the object function 

could be expanded in terms of the above basis functions as 

N 

*OMP) = 2 ^ « / K P ) , (4-2.4) 
1=1 

where {a,} is the unknown to be sought and is the representation of the 

object function under the basis {/,•(/>), J = 1,2, ...,JV}. Then, (4.2.1) and 

(4.2.2) become 

N . . . 

E3ca{pA) = Y «' J J lH*\\PA ~ p'\)fi(p')Einc(P')dp\ (4.2.5) 

N . . . 

E3ca(pB) = Y o, J J \H(o\\PB ~ p'\)fi(p')Einc(p')dp'- (4-2.6) 

Because receiver B is farther away from the object than receiver A, the 

signal at receiver B will be weaker than that at receiver A. In the 2-D 

case, we can roughly estimate that the ratio \E3ca(pB)\/\Escct(pA)\ is propor

tional to (PA/PB)2 by using the asymptotic expansion of Hankel functions 

for large arguments. Meanwhile, the corresponding entries in the integration 

for the above two equations are exactly the same except for the variables in 

the Green's function which are different from each other for the two equa

tions. Hence, the magnitude of the integration on the right-hand side of 

Equation (4.2.6) should be smaller than that of the corresponding term in 

Equation (4.2.5) by a factor of (PA/PB)2- The different scales between the 

two equations result in the same scale differences between the corresponding 

rows in the system matrix. For instance, suppose that receiver A corre

sponds to the z-th receiver and receiver B corresponds to the j-th receiver. 
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Then generally speaking, the corresponding elements in the j-th row will 

be approximately scaled down by a factor (PA/PB)2 compared to the cor

responding elements in the i-th row. When solving for the object function 

using the regularization procedure, the weight of the measurement at receiver 

B will be automatically scaled down approximately by a factor of (PA/PB)2 

compared to that of receiver A. Hence, after this scaling effect, part of the 

information contained in the measurement data of receiver B will be lost in 

the regularization procedures. 

In order to make the information measured on receivers A and B equally 

important, we boost the magnitude of measurement data at receiver B by 

multiplying Equation (4.2.6) by a constant (PA/PB)2- By doing so, the new 

Equations (4.2.5) and (4.2.6) will be of similar magnitude so that informa

tion contained in the measurement of receiver B is equally as important as 

that contained in the measurement of receiver A in the inversion procedure. 

Consequently, most of the information from the existing experimental setup 

can be retrieved in this manner. From a mathematical viewpoint, the above 

boosting procedure results in the decrease of the condition number of the 

corresponding system matrix. The decrease of the condition number finally 

results in the alleviation of the ill-conditioning problem of the linear system 

matrix in the inversion procedure so that a weaker form of the regulariza

tion could be adopted. This will consequently enable us to retrieve more 

information from the measurement data in a predetermined experimental 

setup. 

In order to treat all receivers more systematically, the above procedure 

can also be achieved by multiplying (4.2.5) and (4.2.6) by \PA\2 and |ps|2 , 

respectively. Applying the above boosting procedure to every integral equa

tion corresponding to each receiver i, for % = 1,2,... ,M, the weight of the 
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measurement data from all the receivers will be rescaled to the same degree 

of importance such that the maximum amount of information could be re

trieved in the inversion procedure for a predetermined experimental setup in 

the limited angle inverse scattering problem. Summary of the above discus

sions leads us to the following formal description of the boosting procedure: 

Boosting Procedure: In the inverse scattering problem described by the 

integral equation (4.2.1), if the distances from the receivers to the cen

ter of the object vary significantly, that is, Max(|p(,-)|;i = 1,...,M) > 

Min(|p(j)|;i = 1,...,M), where |p(,)| is the distance from the z'-th receiver 

to the center of the object, then the ill-conditioning of the system matrix 

in the inversion procedure will be further aggravated due to the nonuniform 

distances of the receivers. Therefore, a considerable amount of information 

contained in the measurement data from the distant receivers will be lost in 

the regularization procedure. By multiplying every integral equation corre

sponding to each receiver i, for i = 1,2, ...,M, by a factor |P(j)|* in the 2-D 

case and by a factor of |r;| in the 3-D case, we can boost the measurement 

data from all receivers to the same degree of importance so that the maxi

mum amount of information can be retrieved in the inversion procedure for 

a predetermined experimental setup. 

Application of the boosting procedure to the conventional inverse scat

tering problem is not critically important because the information content 

obtained in a full angle inverse scattering problem is sufficient to obtain a 

good reconstruction even if part of the information carried on the distant 

receivers has been immersed in the regularization procedures. However, in 

the limited angle inverse scattering problem, e.g., in geophysical exploration, 

due to the sparsity of the measurement data, the information content be

comes critically important. Therefore, we can no longer afford any loss of 

145 



the valuable information in the measurement data during the regularization 

procedures. Then, application of the boosting procedure on the limited an

gle inverse scattering problems becomes important and will help to boost 

all of the measurement data to the same degree of importance such that 

the maximum amount of information can be retrieved in the inversion pro

cedures. The significance of the boosting procedure in the limited angle 

inverse scattering problems can be verified from the numerical simulations 

in the following section. 

4.2.3 Numerical simulations and results 

To verify the importance of the boosting procedure in the limited angle 

inverse scattering problems, especially in the problems related to geophys

ical explorations, we devote the following few examples to the comparison 

between the two algorithms, one without the boosting procedure and the 

other with the boosting procedure in well-to-well tomography. Configura

tion of the problem is given in Figure 4.1(a). The length of the receiver and 

transmitter arrays is about 10 m. The distance between the two holes is 

3.6 m. The diameter of the formation object is about 3 m. 

As the first example, we reconstruct a sinelike dielectric distribution by 

using the distorted Born iterative method without the boosting procedure. 

The peak value of the relative permittivity is 1.8. The operating frequency 

is 200 MHz; therefore, the relative dimension of the object is about 2A. The 

numbers of receivers and transmitters are 36 and 16, respectively. 

Figure 4.3 gives the 3-D perspective views of the evolution of the con

vergence of the iterative solutions. Figure 4.3(a) is the original distribution. 

Figure 4.3(b) is the first-order Born approximation. Figures 4.3(c)-4.3(k) 
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(a) (b) (c) 

(d) (e) (f) 

(g) (W (i) 

(j) (k) (1) 

Figure 4.3. Reconstruction of a sinelike permittivity distribution using 
the distorted Born iterative algorithm without the boosting procedure 
with operating frequency at 200 MHz. The peak value of the relative 
permittivity is 1.8. The diameter of the object is about 2A. (a) is the 
original distribution, (b) is the result of the first-order Born approxima
tion. (c) to (k) are the results from the second iteration to the tenth 
iteration. (1) is the final convergent solution after 15 iterations. 
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are the results from the second iteration to the tenth iteration. Figure 4.3(1) 

is the final convergent solution after 15 iterations. Figure 4.4 shows the 

one-dimensional cut of the reconstruction of the problem along the x-axis. 

Small discrepancies between the final convergent solution and the original 

distribution can be easily recognized. 

Figure 4.5 gives the relative Mean Square Error (MSE) and the Relative 

Residual Error (RRE) of the reconstructed permittivity distribution in the 

above example as a function of the iteration steps. Figure 4.5 shows that 

both the MSE and the RRE stay at around 2% after the tenth iteration, 

which is consistent with that of Figure 4.4, in which small discrepancies 

exist between the final convergent solution and the original distribution. 

As the second example, we solve the same problem by using the distorted 

Born iterative algorithm with the boosting procedure. The geometric con

figuration and the experimental setup are the same as those in the above 

example. Shown in Figure 4.6 are the 3-D perspective views of the evolution 

of the iterative solution. Figure 4.6(a) is the original permittivity distribu

tion. Figure 4.6(b) is the first-order Born approximation solution. Figures 

4.6(c)-4.6(h) are the results from the second iteration to the seventh iter

ation. Figure 4.6(i) is the final convergent solution after 15 iterations. On 

comparing Figure 4.6(g) with Figure 4.3(g), we can see that the result of 

Figure 4.6(g), which is the 6-th iteratiion solution, is almost as good as the 

final convergent solution, while the result of Figure 4.3(g) shows obvious dis

crepancy with the final convergent solution. This proves that the algorithm 

with the boosting procedure converges faster than the algorithm without the 

boosting procedure in the limited angle inverse scattering problems. 
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Figure 4.4. 1-D cut of the reconstructed distribution shown in Figure 
4.3 along the x-axis. The line with squares is for the original profile. 
The line with crosses is for the first-order solution, and the line with 
diamomds is for the final convergent solution. 
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Figure 4.5. The relative MSE (Mean Square Error) and the RRE (Rela
tive Residual Error) of the reconstructed permittivity distribution shown 
in Figure 4.3 as a function of the iteration steps. 
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(a) (b) (c) 

(d) (e) (f) 

(g) W (i) 

Figure 4.6. Reconstruction of a sinelike permittivity distribution using 
the distorted Born iterative algorithm with the boosting procedure with 
operating frequency at 200 MHz. The peak value of the relative permit
tivity is 1.8. The diameter of the object is about 2A. (a) is the original 
distribution, (b) is the result of the first-order Born approximation, (c) 
to (h) are the results from the second iteration to the seventh iteration. 
(i) is the final convergent solution after 15 iterations. 
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Figure 4.7 shows the 1-D cut along the z-axis of the reconstructed rela

tive permittivity distribution shown in Figure 4.6. As we can see, the final 

convergent solution agrees very well with the original distribution. No ob

servable discrepancy exists between the final convergent solution and the 

original distribution in Figure 4.7. As we have expected, the first-order Born 

approximation is far away from the real solution. 

Figure 4.8 gives the MSE and the RRE of the reconstructed relative per

mittivity distribution in the example as a function of the iteration steps. 

Both the MSE and RRE reach a negligible level after 6 iterations. On com

paring Figure 4.8 with Figure 4.5, we can see that the algorithm with the 

boosting procedure achieves a better final convergent solution as well as 

faster convergent speed than the algorithm without the boosting procedure. 

In order to investigate the effect of the boosting procedure on the lim

ited angle inverse scattering problem in the domain of validity in which a 

convergent solution can be obtained, we have tested the same problem as 

the above two examples but reduced the number of transmitters from 16 

to 8. In this case, the algorithm with the boosting procedure successfully 

generated a good convergent solution, which is similar to the result shown in 

Figure 4.6, although the convergent speed is slower than that in Figure 4.6. 

Both the MSE and RRE reach a negligible level after about 10 iterations 

instead of 6 iterations shown in Figure 4.8. However, no convergent solution 

has been obtained by using the algorithm without the boosting procedure no 

matter how hard we tried. This test illustrates that the boosting procedure 

not only improves the quality of the image and the speed of the convergence 

but 4so extends the domain of the validity in which the convergent solu

tion can be achieved. In the following examples, all the results are obtained 

by using the algorithm with the boosting procedure. In the following, we 
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Figure 4.7. 1-D cut of the reconstructed distribution shown in Figure 
4.6 along the x-axis. The line with squares is for the original profile. 
The line with crosses is for the first-order solution, and the line with 
diamomds is for the final convergent solution. 
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Figure 4.8. The relative MSE (Mean Square Error) and the RRE (Rela
tive Residual Error) of the reconstructed permittivity distribution shown 
in Figure 4.6 as a function of the iteration steps. 
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will use the boosting procedure for two cases which come from geophysical 

explorations. They are well-to-well tomography shown in Figure 4.1(a) and 

subsurface detection shown in Figure 4.1(b). 

4.2.3.1 Well-to-well tomography 

Figure 4.9 shows the 3-D perspective views of the reconstruction of an 

asymmetric permittivity distribution in the well-to-well tomography prob

lem with the geometric configuration and the experimental setup the same 

as that in the example 1. The frequency of the incident field is 200 MHz. 

The relative diameter dimension of the formation object is about 2A. Fig

ure 4.9(a) gives the original distribution. Figure 4.9(b) is the first-order 

Born approximation solution. Figures 4.9(c)-4.9(k) are the iterative solu

tions from the second iteration to the tenth iteration. Figure 4.9(1) gives the 

final convergent solution after 20 iterations. 

Figure 4.10 shows the 1-D cut of the reconstructed relative permittivity 

distribution shown in Figure 4.9 along both the x-axis and y-axis. The final 

solution matches very well with the original one except in the neighborhood 

of the origin where the original profile is not smooth. 

Figure 4.11 shows the MSE and the RRE of the reconstructed permit

tivity distribution as a function of the iteration steps. Although the RRE 

reaches a negligible value after 5 iterations, the MSE stays at around 0.01 

until 20 iterations, which is attributed to the nonsmoothness of the original 

distribution at the origin. 

As an example chosen to test the ability of the algorithm to distinguish 

two nearby objects, Figure 4.12 shows the 3-D perspective views of the recon

struction of a two-pulse permittivity distribution in well-to-well tomography. 
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(a) (b) (c) 

0) (k) (1) 

Figure 4.9. Reconstruction of an asymmetric permittivity distribution 
using the distorted Born iterative algorithm with the boosting procedure 
with operating frequency at 200 MHz in well-to-well tomography. The 
peak value of the relative permittivity is 1.4. The diameter of the object 
is about 2A. (a) is the original distribution, (b) is the first-order Born 
solution, (c) to (k) are the results from the second iteration to the tenth 
iteration. (1) is the final convergent solution after 20 iterations. 
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Figure 4.10. (a) is the 1-D cut of the reconstructed distribution shown 
in Figure 4.9 along the x-axis. (b) is the 1-D cut of the reconstructed 
distribution along the y-axis. The line with squares is for the original 
profile. The line with crosses is for the first-order solution, and the line 
with diamomds is for the final convergent solution. 
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Figure 4.11. The relative MSE (Mean Square Error) and the RRE (Rela
tive Residual Error) of the reconstructed permittivity distribution shown 
in Figure 4.9 as a function of the iteration steps. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4.12. Reconstruction of a two-pulse permittivity distribution us
ing the distorted Born iterative algorithm in well-to-well tomography 
with operating frequency at 200 MHz. The heights of the pulses are 
1.2 and 1.4, respectively. The width of the pulses is about 0.65A. The 
separation between the two pulses is about 0.42A. (a) is the original dis
tribution. (b) is the result of the first-order Born approximation, (c) to 
(k) are the results from the second iteration to the tenth iteration. (1) is 
the final convergent solution after 20 iterations. 
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The geometrical configuration and the experimental setup of the problem are 

the same as that of the last problem. The system operates at 200 MHz. The 

numbers of receivers and transmitters are 72 and 32, respectively. The width 

of the pulses is about 0.65A. The separation between the two pulses is about 

0.42A. The heights of the two pulses are 1.2 and 1.4, respectively. Figure 

4.12(a) is the original distribution. Figure 4.12(b) is the first-order Born 

approximation solution. Figures 4.12(c)-4.12(h) are the iterative solutions 

from the second iteration to the seventh iteration. Figure 4.12(i) gives the 

final convergent solution after 9 iterations. The results illustrate the band-

limited nature of the algorithm as expected. The final convergent solution is 

a smoothed version of the original distribution. 

In Figure 4.13, we show the 1-D cut of the reconstructed distributions 

along the x-axis in the above problem. The main characters of the object 

have been properly reconstructed although there are overshoots at the edges 

of the pulses, which are attributed to the band-limited nature of the algo

rithm. 

Figure 4.14 illustrates the MSE and RRE of the reconstructed permit

tivity distribution as a function of the iteration steps. The reason for the 

relatively large MSE is that the final convergent solution is a smoothed ver

sion of the original pulse function. 

4.2.3.2 Underground detection 

In this subsection, we will examine two examples in subsurface detec

tion tomography. The geometrical configuration of the problem is shown 

in Figure 4.1(b) where the transmitter and receiver array is confined to the 

ground surface. The object to be detected is just beneath the transmitter 

and receiver array. The operating frequency is 200 MHz in both examples. 
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Figure 4.13. 1-D cut of the reconstructed distribution shown in Figure 
4.12 along the x-axis. The line with squares is for the original profile. 
The line with crosses is for the first-order solution, and the line with 
diamomds is for the final convergent solution. 
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Figure 4.14. The relative MSE (Mean Square Error) and the RRE (Rela
tive Residual Error) of the reconstructed permittivity distribution shown 
in Figure 4.12 as a function of the iteration steps. 
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Figure 4.15 shows the 3-D perspective views of the reconstruction of an 

asymmetric permittivity distribution. The cross dimension of the object is 

about 3 m which is equivalent to about 2A. The numbers of the receivers and 

the transmitters are 36 and 16, respectively. The length of the receiver and 

transmitter array is about 11 m. Figure 4.15(a) is the original distribution. 

Figure 4.15(b) is the solution of the first-order Born approximation. Figures 

4.15(c)-4.15(k) are the iterative solutions from the second iteration to the 

tenth iteration. Figure 4.15(1) is the final convergent solution after 20 itera

tions. Referring to Figure 4.9, we see that for the corresponding iterations, 

the results in Figure 4.9 demonstrate the faster convergent speed than that 

in Figure 4.15. 

Figure 4.16 shows the 1-D profile of the reconstructed distributions along 

both the x-axis and y-axis. Figure 4.16(a) gives the 1-D cut along the x-axis 

and Figure 4.16(b) gives the 1-D cut along the y-axis. The discrepancies be

tween the final solution and the original distribution are negligible except at 

the neighborhood of the origin where the original distribution is nonsmooth. 

Figure 4.17 shows the MSE and RRE of the reconstructed iterative so

lutions as a function of the iteration steps. The results show that both the 

MSE and RRE stop at about 2%. On comparing the results with that in 

the corresponding problem shown in the last subsection, we find that the 

convergent speed in subsurface detection is much slower than that in well-to-

well tomography. The reason is that in subsurface detection, the information 

content is more sparse than that in well-to-well tomography. 

As the last example, we will reconstruct a two-pulse permittivity distri

bution with different heights. The geometric configuration is the same as 

that in the example shown in Figure 4.15. The numbers of the receivers 
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(a) M (c) 

(d) (e) (f) 

Figure 4.15. Reconstruction of an asymmetric permittivity distribution 
using the distorted Born iterative algorithm with the boosting procedure 
with operating frequency at 200 MHz in a subsurface detection problem. 
The peak value of the relative permittivity is 1.4. The diameter of the 
object is about 2A. (a) is the original distribution, (b) is the first-order 
Born solution, (c) to (k) are the results from the second iteration to the 
tenth iteration. (1) is the final convergent solution after 20 iterations. 
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Figure 4.16. (a) is the 1-D cut of the reconstructed distribution shown 
in Figure 4.15 along the x-axis. (b) is the 1-D cut of the reconstructed 
distribution along the y-axis. The line with squares is for the original 
profile. The line with crosses is for the first-order solution, and the line 
with diamomds is for the final convergent solution. 
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Figure 4.17. The relative MSE (Mean Square Error) and the RRE (Rela
tive Residual Error) of the reconstructed permittivity distribution shown 
in Figure 4.15 as a function of the iteration steps. 
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and the transmitters are 72 and 32, respectively. Figure 4.18 shows the 3-D 

perspective views of the evolution of the convergent solution. Figure 4.18(a) 

is the original distribution. Figure 4.18(b) is the solution of the first-order 

Born approximation. Figures 4.18(c)-4.18(h) are the iterative solutions from 

the second iteration to the seventh iteration. Figure 4.18(i) is the final con

vergent solution after 14 iterations. Figure 4.19 gives the 1-D cut of the 

reconstructed distribution along the x-axis. The results show an obvious 

band-limited nature of the algorithm. Figure 4.20 gives the MSE and RRE 

of the reconstructed distributions as a function of iteration steps. Comparing 

Figure 4.20 with Figure 4.13 in the last subsection for well-to-well tomogra

phy, we can see that the convergent speed for subsurface detection is slower 

than that for well-to-well tomography. 

4.2.4 Conclusions 

In this section, the boosting procedure has been introduced to retrieve 

the maximum amount of information from the measurement data in the lim

ited angle inverse scattering problem. The validity of the boosting procedure 

has been asserted by the results of the numerical simulations although the 

rigorous proof of the boosting procedure is still open for further investiga

tions. The numerical simulations demonstrate that the boosting procedure 

not only improves the quality of the reconstruction and the speed of the 

convergence but also extends the domain of the validity in which the con

vergent solution can be obtained. By using the boosting procedure, we have 

successfully reconstructed the images for both well-to-well tomography and 

subsurface detection beyond the Born approximation. 
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Figure 4.18. Reconstruction of a two-pulse permittivity distribution us
ing the distorted Born iterative algorithm in subsurface detection with 
operating frequency at 200 MHz. The heights of the pulses are 1.2 and 
1.4, respectively. The width of the pulses is about 0.65A. The separation 
between the two pulses is about 0.42A. (a) is the original distribution. 
(b) is the result of the first-order Bom approximation, (c) to (h) are the 
results from the second iteration to the seventh iteration, (i) is the final 
convergent solution after 20 iterations. 
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Figure 4.19. 1-D cut of the reconstructed distribution shown in Figure 
4.18 along the x-axis. The line with squares is for the original profile. 
The line with crosses is for the first-order solution, and the line with 
diamomds is for the final convergent solution. 
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Figure 4.20. The relative MSE (Mean Square Error) and the RRE (Rela
tive Residual Error) of the reconstructed permittivity distribution shown 
in Figure 4.18 as a function of the iteration steps. 
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4.3. Accelerated Inverse Scattering Algorithms 

One problem of the nonlinear inverse scattering algorithms discussed in 

Chapter 3 of this thesis is the intensive computation time involved. In both 

the direct and inverse solutions in the iteration procedure, matrix inversions 

are required. By using the standard Gaussian elimination algorithm, compu

tational time for the matrix inversion is proportional to iV3. Therefore, the 

computational complexity of the algorithms discussed in Chapter 3 is N3, 

where N is the number of meshes in the object. 

One way to reduce the computational complexity of the algorithms is to 

apply the conjugate gradient method to both the direct and inverse solu

tions of the algorithms. However, the conjugate gradient method provides 

a solution for only one incident wave at a time. If M, the number of the 

incident fields (or transmitters) is large, overall computation time, which 

is proportional to MN2, can be quite computationally intensive for a large 

object. 

In order to significantly accelerate the algorithm, we applied the fast 

recursive operator algorithm discussed in Chapter 2 to the solution of the 

direct scattering problem in each iteration step. Since the fast algorithm 

gives a full solution of the direct scattering problem, the computational time 

will be independent of the number of the transmitters (or incident fields) 

in the experimental configuration of the inverse scattering problem. The 

computational complexity of the fast algorithm discussed in Section 2.4 is 

N2 in high frequency cases. Therefore, if the conjugate gradient method is 

applied to the inversion part of the algorithm, overall computational time 

will be roughly proportional to N2. This is a significant reduction of the 

computational time. 
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Shown in Figure 4.21 is a comparison of the computer time as a function 

of the number of unknowns between the standard iterative algorithm and the 

algorithm accelerated by using the fast direct scattering solver. The results 

show that a significant reduction of the computer time has been achieved by 

the accelerated algorithm. 
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Figure 4.21. Comparison of the computer time as a function of the num
ber of unknowns for the standard iterative inverse scattering algorithm 
and the algorithm accelerated by using the fast direct scattering solver 
on a CRAY-2 supercomputer. The conjugate gradient method has been 
applied to the solution of the inversion in the accelerated algorithm. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

In this thesis, several solution methods for the direct and inverse electro

magnetic scattering problems have been discussed. The recursive operator 

algorithms for the solution of electromagnetic scattering problems have been 

implemented in the two-dimensional cases. The algorithm has been success

fully applied to the solution of large 2-D inhomogeneous scatterers for TM 

waves. Application of the recursive algorithm to TE waves is an important 

topic for future studies. Meanwhile, (A.l), (A.2) and (A.3) in Appendix A, 

which are the translation relations for the harmonic functions at two dif

ferent locations, are actually the convolution of two discrete series. Thus, 

the computational complexity of the algorithm could be fuither reduced by 

using the FFT in the translation relations. 

For the inverse scattering problems, the Born and the distorted Born 

iterative methods have been discussed in this thesis. The algorithms have 

been implemented in the two-dimensional case for the reconstruction of the 

permittivity distribution of the object. The simulations reveal that the max

imum contrast of the dielectric constant can be relaxed by a factor of ten 

compared to that for the Born approximation. The relaxation of the criteria 

is important in many areas of the inverse scattering applications, such as 

medical imaging, nondestructive evaluation, and geophysical explorations. 

Meanwhile, the maximum contrast we could reconstruct by using the iter

ative algorithms is at 6ka being about 0.8, where a is the diameter of the 

object-. Here we start the iteration from a homogeneous background. To 
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reconstruct higher contrast objects, we have made some test runs by using 

multiple frequencies. This does make some successful reconstructions for the 

contrast 6ka higher than one, if we calculate this criterion according to the 

highest frequency in the multiple frequencies applied. But, generally, appli

cation of the multiple frequencies in the inverse scattering system will slow 

down the convergent speed of the algorithms. The other approach to recon

struct a higher contrast object is to use the frequency increasing method. In 

this method, we start from a relative low frequency at which 6ka is smaller 

than 0.8 to find a good initial guess for the high frequency reconstruct. Then 

we jump to another frequency which is higher than the first one to improve 

our initial guess by using the reconstructed profile from the last frequency as 

the initial guess. The number of this step depends on the contrast of the ob

ject. Finally, we apply the desired frequency to reconstruct the final imaging 

by using the reconstructed distribution from the last frequency as the initial 

guess. Using this technique, we have reconstructed the object whose con

trast 6ka could be as high as 3 according to the final frequency applied. The 

iterative algorithms developed in this thesis have the ability to reconstruct 

any object, if the initial guess is close to the original distribution. Therefore, 

the above method is a good candidate to reconstruct a high contrast object. 

Reconstruction of the permittivity distribution in a limited angle inverse 

scattering problem has been achieved by applying the boosting procedure. 

The domain of validity can also be further relaxed by the frequency increasing 

method discussed in the last paragraph. Moreover, the further reduction of 

the algorithmic complexity of the iterative algorithms for the solution of the 

nonlinear inverse scattering problems is much desired. If this goal could 

be achieved, the algorithm can be immediately applied to the solution of 

inverse scattering problem for large scatterers. Finally, it is also important 

to apply the iterative algorithm to the electromagnetic inverse scattering 

problem with TE polarization. 
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APPENDIX A 

TRANSLATION MATRICES 
FOR CYLINDRICAL HARMONICS 

The translation matrices used in Chapter 2 are obtained by Graf's ad

dition theorem and its generalizations (Ref. 36 of Chapter 2). Let (r,y), 

(a, t/;), and (R, <£) be the cylindrical coordinates of r, a, and R, respectively 

(Figure A.l). Then for the regular cylindrical harmonics Jm(kr)eim'fi, we 

have 
00 

Jm{kr)eim"= Y &'(&a)e- '%j(&o,#m'm, (A.l) 
m'=—oo 

where 

{/3,-i(fca, rp)}m.m = Jm.m,(ka)e^m-m'^. (A.2) 

The subscripts ij of /3 mean that (A.2) translates the cylindrical harmonic 

basis from the coordinates Oj to the coordinates 0,- (Figure A.l). For a < 

R, we have the analogous relation for the Hankel functions (Ref. 36 of 

Chapter 2) 

00 

^ ( t r ) e ^ = %] ^ , ( tA)e- '^A;( ta ,^)}m,«, (A.3) 
m'=-oo 

where Hm(x) can be a Hankel function of the first or second kind. For a > R, 

the relation becomes 

oo . 

^ ( & r ) e ' ^ = ^ ] ^,(tA)e^{a,X&<i,^)}m'm, (A.4) 
m'=-oo 
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where {a,j(fca, 0)}m»m is obtained from {/%(&<%, rp)}m>m by replacing Jm.m> 

by Hm-m>. Since all elements in (3 and a are also cylindrical harmonics, they 

are also related by the same relations as (A.l) and (A.3). For all a, ai, and 

a2 with a = ai + a2, we have 

{#a)}m'm = ^{i9(al)}m'm»{^(a2)}m»m, (A.5) 

and if furthermore ai < a2, 

{a{a)}m>m = ^{/3(ai)}m»ro«{a(a2)}m»r, (A.6) 

Figure A.l. Translation in the cylindrical coordinate systems. 
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