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BOUNDARY DETECTION IN ULTRASONIC SPECKLE 

Richard Norman Czerwinski, Ph.D. 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign, 1996 
Douglas L. Jones and William D. O'Brien, Jr., Advisors 

This dissertation considers the problem of detecting boundaries in ultrasound speckle 

imagery. For physiological reasons, we argue that boundaries between tissue layers ap­

pear as lines in ultrasound scans and approach the boundary detection problem as one of 

detecting lines of unknown orientation. We define a set of "sticks," short line segments 

of variable orientation that can locally approximate the boundaries. Using the physi­

cal principles that account for the speckle phenomenon, we derive the optimal detector 

for sticks of unknown orientation in fully developed speckle and compare the optimal 

detector to several suboptimal detection rules which are more computationally efficient. 

We show that when the underlying Gaussian random process underlying speckle noise is 

uncorrelated, a very simple suboptimal detection rule is nearly optimal, and that even 

in colored speckle, a related class of detectors can approach optimal performance. The 

basic technique is then extended in a number of ways to improve its performance. We 

investigate the effect of varying the size and shape of the sticks and show that these vari­

ations affect the performance of the algorithm in very fundamental ways, for example, by 

making it more or less sensitive to thinner or more tightly curving boundaries. We also 

present a means of improving performance by estimating the distribution function of the 

orientation of the line passing through each point. Next, we show that images can be 

"stained" for easier visual interpretation by applying to each pixel a false color whose hue 

is related to the orientation of the most prominent line segment at that point. Finally, 

an analysis is given of boundary detection approaches in radio-frequency ultrasound. 
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CHAPTER 1 

INTRODUCTION 

1.1 Ultrasound Medical Imaging 

Ultrasound is a pulse-echo imaging modality based on interrogation of tissue with high 

frequency focused sound waves. Its use in medical imaging, particularly of the fetus, has 

become widespread because it is inexpensive and safe. Furthermore, because ultrasound 

images can be produced in real time, the modality allows for imaging dynamic structures 

such as the beating heart, as well as for exploratory imaging. 

Ultrasound interrogation is accomplished by focusing a beam of high frequency coher­

ent sound into tissue by means of a transducer, which also acts as a receiver, capturing 

the returned signal containing reflections from structures lying within the tissue. An 

image is formed by geometrically aligning echo signals - a linear scan is formed from a 

sequence of parallel interrogations from a sequence of starting positions lying on a line; 

a sector scan is formed by sweeping the beam through a range of angles from a single 

starting point. In both cases, a constant speed of sound is assumed so that the depth of 

a scatterer is directly proportional to the time delay of its reflection. 

The strongest reflections of acoustic energy tend to come from large structures ori­

ented nearly perpendicularly to the interrogating beam. In addition, ultrasound backscat-

ter also contains reflections of the interrogating pulse from a large number of small scat­

terers spaced densely within the tissue. The effect of these diffuse scatterers is to produce 

a form of interference in ultrasound images, known as "speckle noise." Speckle is a phe­

nomenon common to many coherent imaging systems, such as synthetic aperture radar 

(SAR) and laser holography. Although it is often viewed as noise, speckle is signal de­

pendent because it contains information about the subresolvable structure of the tissue. 
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Medical ultrasound imaging systems are designed to make speckle usable for human 

diagnosis, instead of suppressing it. Skilled sonographers can interpret the "texture" of 

the speckle; for example a "shadowed" region may indicate the presence of a nearby sound 

absorbing or highly reflective region of tissue. Modern image quality is such that even 

untrained individuals are often able to make out features through the speckle. However, 

in optimizing images for visual interpretation, the problem of computer detection of 

boundaries is completely overlooked. The texture which provides diagnostic information 

can make computer detection of boundaries difficult. 

In cases in which computer intervention may be necessary or convenient, such as in 

fetal maturity estimation or ultrasound mammography, conventional images pose unusual 

challenges for computer vision algorithms, which are usually designed for use in high 

signal to noise ratios (SNRs). This thesis considers the problem of detecting boundaries in 

medical ultrasound imagery and represents a contribution to the field of pattern analysis 

in speckle imagery. The main result is an image enhancement technique that facilitates 

boundary detection; detection itself is performed on the enhanced image by applying 

a threshold, perhaps after further enhancement, such as by a dynamic programming 

approach to edge linking. 

This work is primarily distinguished from other edge detection procedures by its use of 

a line process (rather than a step process) to model the boundaries. This is appropriate 

because of the nature of the boundaries in ultrasound imagery - cross-sectional views 

of the two-dimensional surfaces separating tissue layers. These surfaces are generally 

smooth on the scale of the scan line spacing, and so appear in cross-section as curving 

lines. In a sufficiently small region surrounding each point on a boundary, the boundary 

appears as a straight line of variable orientation. 

Thus, boundary detection can be phrased as a composite hypothesis testing problem 

and approached with the methods of statistical detection theory. The ultimate goal is 

to develop statistically motivated techniques to determine whether one of a set of short 

straight line segments ("sticks") of variable orientation is present passing through each 

pixel. This determination is made using local information from the pixel itself as well 

as from nearby pixels which are likely to be statistically correlated, especially when a 

boundary is truly present. 
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1.2 Overview of This Document 

This thesis provides a complete study of statistical methods of boundary (line) de­

tection in speckle, which can be extended to other pattern analysis problems in speckle. 

For purposes of analysis, speckle is assumed to be distributed as a correlated Rayleigh 

or Rician random field, as predicted by a reasonable model for the scattering process, 

described in Chapter 2. The treatment in Chapter 2 is adapted from [2], [3], [4] and 

[5], with some additional material from other sources to fill in the gaps. We know of no 

single published source which treats this material in the depth presented here. 

The detection itself can be accomplished by a variety of different methods, ranging 

from an optimal likelihood ratio detection rule through less computationally intensive 

linear-quadratic detectors to very simple linear rules and ad hoc approaches. These de­

tectors are defined in Chapter 3 and compared in performance by Monte Carlo simulation. 

Chapter 4 contains a discussion of some useful extensions to the basic technique 

described in Chapter 3. In particular, it discusses the effects of varying the length and 

thickness of the template sticks. The chapter also presents a procedure for improving 

the algorithm's performance by inferring a distribution function on the angle of the line 

passing through each point. Finally, Chapter 4 presents a technique for applying false 

color to an image to visually enhance boundaries. The basic line detection technique 

developed in Chapters 3 and 4 was used as part of a larger package of software on a large 

scale data analysis project undertaken jointly by the Bioacoustics Research Laboratory 

and the Meat Science Laboratory of the University of Illinois. The operating manual for 

this software package is included in an appendix to this dissertation. 

Chapter 5 extends the results in Chapters 3 and 4 to the detection of boundaries in 

radio frequency ultrasound. Again, the analysis is by simulation, and the performance 

differential between a coherent detector and an energy detector is noted for each of a 

number of aberrations that can be introduced into the signal. 

Finally, Chapter 6 gives a summary and suggestions for future research. 
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CHAPTER 2 

STATISTICS OF ULTRASOUND SPECKLE 

Speckle occurs when a coherent source is used to illuminate a surface (or image 

through a medium) which is rough on the scale of the wavelength of illumination. The 

physical process that generates acoustic speckle is common to radar imaging and laser 

holography; consequently, the statistical properties of the images formed by these differ­

ent means are similar in form. The discussion here is largely adapted from from [2], [3], 

[4] and [5], with some additional material from other sources to fill in the gaps. We know 

of no single published source which treats this material in this depth. 

2.1 First-Order Statistics 

2.1.1 Fully developed speckle 
The first-order (pointwise) statistics of ultrasound speckle are derived using an argu­

ment exactly analogous to the one used to describe laser speckle statistics in [2]. Consider 

a radio frequency ultrasound trace. If there is no large target present in the trace, the 

most significant reflections come from numerous point scatterers with independent posi­

tions and scattering strengths. This scenario is illustrated in Figure 2.1, and leads to a 

signal of the form: 

r (* )=E a iP (* - r i ) e , W ( t " T < ) . (2.1) 

t 

where p(t) is the transmitted pulse and 7* is twice the time-of-flight to the ith reflector. 

Note that we have assumed that the reflectors themselves do not modify the pulse except 

by a real scaling factor o,-. This is a valid assumption when the scatterer size is small 

with respect to the wavelength; any phase imparted by the scatterers to the reflected 

signals is assumed to be accounted for by the delay term 7*. 
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Source 
Resolution 

Cell 

1 ' i 

Figure 2.1 Speckle results from coherent interrogation of a rough medium, that is, one 
containing a distribution of small scatterers with independent positions and scattering 
strengths. 

If the received trace is demodulated and a matched filter applied, the resulting wave­

form is 

f(t) = Jp(-T)r(t-T)e-Mt-T)dT 

= fp(-r) IEOipit -r-Ti)e#*—%) 
J L t 

= [pWEaiPd-T-TJe-MdT 
J i 

= £ Oie-ju/r' fp(-r) p(t -Ti-r) dr 
i J 

= ^aie-Wpit-Ti) 
i 

= E lAle-*" 

e-Mt-r)dr 

(2.2) 

where 

p{t) = Jp(-r)p(t-r)dT 

= Jp(T)p(t + r)dT, (2.3) 

5 



Pi = OiP(t-Ti), (2.4) 

and 

<f>i = < »T< * * * " , (2.5) 
uiTi + ir i f A < 0 

If each resolution cell contains a large number of scatterers whose scattering strengths 

are independent of each other and of their positions, i(x) can be shown to converge 

to a circular Gaussian random process by a central limit theorem argument [2], if the 

o»s are independent and identically distributed. If the scatterers are spaced such that 

k/Z%MOD27T is uniformly distributed on (0,2%), then r(t) takes on a circular Gaussian dis­

tribution, i.e., it has independent, identically (Gaussian) distributed real and imaginary 

parts. 

The "circular" nature of this distribution can be seen by considering i(x) as the 

resultant of a two-dimensional random walk in the complex plane. Each term in the 

summation is a step of some magnitude and direction. Since the directions are uniformly 

distributed, the steps in the real and imaginary directions are independent. In the limit 

of many scatterers, the distribution of the resultant is Gaussian with real and imagi­

nary parts of equal variance, corresponding to a circularly symmetric probability density 

function (pdf), shown in Figure 2.2. 

The complex image function i(x) is inconvenient to display; it is customary in ultra­

sound to output the magnitude of the received signal from each resolution cell as a pixel 

intensity. The use of the signal magnitude simplifies the detection of the RF signal as 

well; typically, an envelope detector is used instead of demodulation, so complications 

such as frequency shifts due to pulse attenuation can be ignored. 

Speckle conforming to this simple model is known as "fully-developed" speckle. The 

pixels of an image exhibiting fully developed speckle have a Rayleigh distribution: 

o i f y < o 
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Figure 2.2 Circular complex probability density function for backscatter from many 
scatterers, each of which contributes an independent step in a uniformly distributed 
direction. 

where a2 is the variance of the real or imaginary part of the underlying complex field. 

Note that the pointwise pdf is not a function of the correlation that may exist between 

pixels. 

2.1.2 Coherent reflectors 
If a highly reflective target (such as a structure much larger than a wavelength) is 

present in a resolution cell, the result is also visualized in terms of the complex random 

walk analogy: the coherent reflector represents a large step in a single direction which 

is added to the many small reflections in random directions. The resultant is a circular 

complex Gaussian random variable with a non-zero complex mean value as shown in 

Figure 2.3. 

The magnitude of a pixel containing coherent reflected energy has a Rician distribu­

tion function 

J^MMi.^) *y>o p(V) 
0 ify<o 

(2.7) 

7 



lm 

Re 

Figure 2.3 Circular complex probability density function for a resolution cell containing 
a single strong scatterer in addition to diffuse scattering. 

where a2 is the variance of the real or imaginary part of the underlying complex random 

variable, Io is a modified Bessel function of the first kind, and Vs is the magnitude of the 

coherent reflection within the resolution cell. 

2.2 Second-Order Statistics of Ultrasound Speckle 

In the far field of the transducer, the interpixel correlations due to speckle noise 

are separable into two correlations, one in the axial direction and one in the transverse 

direction. Correlation between nearby pulses within a single trace (axial correlation) 

is due to an intersymbol interference-like effect between resolution cells. Correlation 

between cells on different traces is due to beam diffraction. Because of the independence 

of these effects, they can be studied separately. 

2.2.1 Axial correlation 
After detection, the amplitude of a demodulated ultrasound trace at a point corre­

sponding to depth z is given by 

a{z) = r(2z/c)e^*/= 
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= E * e - * * p ( 2 z / c - % ) (2.8) 
i 

where r(t) is defined in (2.1). The correlation function Rax(zi,z2) is 

RttX(zl,z2) = E[a(zi)a*(z2)\ 

= E h r a ie-^p(2z 1 /c - 2J) E < e ^ p ( 2 % / c - Tfc) 

= Z E E M E [ e-^- r*>p(2 2 l / c - % ) p ( 2 % / c - Tkj\ 
i k 

= Z E [|a,|2] E [e-^-T^p(2^/c)p(2(Az + &)/c)] 

+ E E E M E M E [ e - ^ - T O p (2&/c) p (2(Az + 6k)/cj\ (2.9) 

= ^ E [|%|'] E[e-^ ' -^p(2^/c)p(2(Az + &)/c)] (2.10) 

= E E [N 2 ] x °/2x /*"" P(%M% + 2Az/c)d« (2.11) 

where 

c£,- = the distance from the transducer to the ith scatterer 

T{ = 2di/c 

Az = zx — z2 

z2—di = z2 — z\ + Z\ — di and 

Sk = zi-di 

= Az + 5k, (2.12) 

and (2.10) follows from (2.9) because the <% arise from scatterers which are equally 

likely to contribute constructively or destructively to r(t), and are thus symmetrically 

distributed about zero, leading to E[a,] = 0. 

Because we have assumed a convolutional model for the imaging process, the limits 

on the integral in (2.11) are the support of p(u), and thus the correlation Rax(zi, z2) is a 
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function of the distance Az = Z\— z2: 

Rax(zu *2) oc p(u) * p(-«)U 2 A 2 / c , (2.13) 

where * denotes convolution. This is the accepted result for the axial correlation function. 

2.2.2 Transverse correlation 
In the transverse direction, the correlation is caused by diffraction of the beam as it 

proceeds into the tissue. If we assume homogeneous, constant speed sound propagation 

and that the tissue is being imaged in the far field of the transducer, the correlation 

function is dependent only on the size and shape of the transducer aperture, and not on 

properties of the medium. 

A monochromatic^ monodirectional plane wave propagating through free space is 

modified according to the Huygens-Fresnel point-spread function [6]: 

h(x,y,d) = jF-i { ^ ^ ^ Z ^ | 

kd 
2TT [ (d2 + x2 + y2)3/2 J{d2+x2+y2) 

g,*Vf+==+P=, (2.14) 

where T~x denotes the inverse Fourier transform, and k = 2ir/X, the wave number. If 

an intensity profile is known in plane (x, y, z = 0), then the point-spread function can be 

used to determine the intensity profile in the plane (x, y,z = d) by a convolution of the 

(z, y, 0) intensity profile with h(x,y,d). 

If d2 » x2 + y2, then the Huygens-Fresnel point spread function can be simplified: 

.QJky/tP+X^W 
j2Ty/d2+x2 + y2 

k e i k y / ^ - ^ (2.15) 
j2xd 
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Consider a plane wave i(x, y, 0) propagating in the z direction. At point (ar, y, z), the 

intensity profile is given by 

i(x, y,z) = ^ - [ A(f, r/, Q)e'W''+<*-a'+(^)'#dq. (2.16) 
jZirz J J 

When z2 » (x - 0 2 + (y - T/)2, 

fl = ^ 2 + (ar_e)2 + ( y _ 7 7 ) 2 

, 2 ( 1 + ̂ i)i^>f + . . .), (2,7, 

by the Fresnel approximation. 

By neglecting the high-order terms and substituting (2.17) into (2.16) the intensity 

simplifies to 

k_ 
IT. 

= -e** [i0(ar, y, 0) ^ ^ + ^ / ^ , (2.18) 

i(z,y,z) = / / ^ _ e ; ^ ^ , 0 ) ^ ( ( * - ( ) ' + C ^ ) 
J J jzirz 

where io(x, Vi 0) differs from i(x, y, 0) by a constant factor and ** denotes two-dimensional 

convolution. The quantity exp {jk^x2 + y*)/2z) is known as the point-spread function of 

free space. 

Transverse correlation between image pixels arises because diffraction spreads out 

the interrogating beam, interrogating adjacent tissue regions in addition to the region of 

interest. The amount of spreading the beam experiences can be calculated by application 

of (2.18). Consider a transducer which focuses acoustic energy into a circular beam of 

radius R. Inside the beam, power intensity is constant; outside, it is zero. At depth z, 

the beam intensity is given by 

*(*,%,,;) = ;C** / , # * %. °) a * (j'g&Kf - *)* + (% - ?)*)) # % 

= -e^'expfj^-tf+y2) (4(^+4 
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Figure 2.4 Geometric model of the profile of a focused beam. 

jf^%(f,77,0)exp ( - 7 ^ ( 2 ^ + 2rm-e-n2)) d*dn (2.19) 

which in polar coordinates is given by 

k r2ir rR f k \ 
i(r,0,z) = -r-eJ*r / / exp -j—(2prcos6cos<£-I-2rpsin5sin0) 

jz Js=oJp=o \ 2z J 

exp ( i ^ ( P 2 cos2 0 + p2 sin2 0) j p dp d6 

= -e?kz 

z 

<l/2. (2.21) 

The 3 dB beamwidth at depth z is the largest r for which i2(r,<f>,z) < i2(O,0, z)/2, or 

equivalentiy 

fe./o(^)exp(^p2)prfpl2 

| j ^ e x p ( j ^ ) p d p | ' 

This beamwidth has been numerically determined for a realistic range of values of R and 

fc/z, and found to be inversely proportional to both R and k/z. This is in agreement 

with the beam profile derived for a spherical transducer mounted in a rigid baffle in [7]. 

In practice, ultrasound beams are focused, or directed inward at the source to produce 

a narrow beam in a region of the scan plane called the focal region. This allows the system 

to achieve high lateral resolution in an area of interest at the expense of lateral resolution 

in other regions. The beam profile as a function of depth is as shown in Figure 2.4. The 
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beam width at any depth z can be determined geometrically: 

r{z) = -
r„-gS$ z<z,-6,/2 
rf zf - Lf/2 < z < zf + L//2 . (2.22) 

r/ + ^ % % ^ Z<z; + W2 

When the beam reaches a target at depth z, the reflection is characterized as a 

complex field a(x,y). The reflected wave then travels back towards the transducer, 

where a diffracted version is received after passing through tissue of thickness z: 

a(x,y,z) = ^'Jfa&ri^-tf+^^dZdn 

= i ^ V ' ^ ^ ^ l l a ^ T / J e - ^ ^ ^ / V ^ ^ ^ ^ r f r / . (2.23) 

The correlation between two points at depth z is given by 

E[4=i,%i,zK(=2,*,z)] = (2y^4-Hi) /2ze-^4^) /2z 

fill E [o(&, 7ftK(6, %)] e-MziSiHHm-^-yM)/* 

e*(M-d-#/2*d&d,%d&d,%. (2.24) 

Because of the independence of scatterers, prior to diffraction, i.e., at the reflecting 

surface), the complex field is spatially uncorrected with itself for any non-zero shift. In 

other words, 

E [a(&,7,i)a*(&, %)] = 7 P ( 6 , Jh)P*(6, mWZi ~ 6 , Vi ~m), (2.25) 

where £(•, •) denotes a two-dimensional impulse, and P(-, •) is the amplitude of the field 

at the point of interest, i.e., 

\P(x,y)\2 = E[\a(x,y)\2}. (2.26) 
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Substituting (2.25) into (2.24), we obtain 

E[a(xuyi,z)a*(x2,y2,z)} = j ^ * « + f ? - « M > / * 

J J |P(f, ntfe-M^-^e-i^-^dtdri. (2.27) 

Normalizing so that E [\a(x, y, z)|2] = 1, we obtain 

E[a(ari,yi,z)a*(x2,7y2,2)] = 
J7|P(£r?)W77 

= gJt(^+^_z#_y#)/2z 1 1 | p o ( e j 77)|2e-J^Ax/2e-Jfe,A!,/z^77> 

(2.28) 

where 

P0(e, 7?) = , P{tn) (2.29) 

If z » x2 + y2, the initial exponential term in (2.28) becomes negligible, and the 

correlation simplifies to 

E [a(xu yx, z)a*{x2, y2, z)] « J J |P„(f, ,,)| V«A*'\r* f c*»>«, (2.30) 

which is the Fourier transform of the square of the interrogating pulse. If a circular 

transducer is used to produce a disk-shaped beam intensity profile of radius R at depth 

z, the correlation in (2.30) is 

2Ji (2w£J(Ax)2 + (Ay)2) 
E[a(x,y,z)a'(x + Ax,y + Ay,z)] = } y K ' JJ, (2.31) 

where Ji is a Bessel function of the first kind. 

The interpixel correlations (as opposed to the correlations between points of the com­

plex field) can be determined by a similar technique involving a bit more algebra: 

RtTana{Ax, Ay) = E [\a(x,y,z)\2\a(x + Ax,y + Ay,z)|2] 
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= (J J' \P{x,y)\2dxdy) 
2 ' 7 , (2Ji (HIV(A*) 2 +(^) 2 ) 

2*£y/(Ax)2 + (Ay)2 

(2.32) 

2.3 Higher-Order Moments 

Image pixels are obtained by non-coherently detecting the complex Gaussian quanti­

ties discussed in the previous sections. Interpixel correlations can be obtained in terms 

of the parameters of the underlying complex Gaussian field using moment generating 

functions [8], since expected products of pixel intensities are simply moments of the un­

derlying Gaussian random field. If «'(-, •) is the complex field received at the transducer 

face, and I(x,y) = \i(x,y)\2, then 

E [I(x, y)I(x + Ax,y + Ay)] = E [i(x, y)i*(x, y)i(x + Ax,y + Ay)i*(x + Ax,y + Ay)], 

(2.33) 

which is a moment of the random vector 

i{x,y) 

i(x + Ax, y 4- Ay) 

i*(x,y) 

i*(x + Ax,y + Ay) 

(2.34) 

If z is a circular complex Gaussian random vector, and 77 is formed by concatenating 

z and z* 
z 

77 = (2.35) 

it is easy to derive statistical quantities such as (2.33). If complex vector z has correlation 

matrix 1R = E [(z - p.)(z — p.)H], where H denotes conjugate transposition, p. = E [z], 

and the compound vector 77 has correlation matrix 

E = 
(D IR 

1R <D 
(2.36) 
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and probability density function 

f(v) = ^Rjexp (-ifo - hfVrlh - h)) , (2.37) 

where h = E ^ , and n is the number of elements in z (half the number in 77), and <D 

denotes the n x n null matrix. 

The moment generating function for this distribution is [8]: 

$(r) = EpT?] 

= expQi/ rEi/ + i / rhV (2.38) 

The nth moment of \z\ (analogous to (2.33)) is given by 

B to • • • **M • • • <1 - dvxdZ~a^ "» (k s " + ̂  L ' (2-39) 

The moment generating function allows higher-order image statistics to be computed 

using estimated second-order statistics. 

2.4 Estimation of Speckle Moments 

The generation of higher order moments from lower order quantities is a potentially 

valuable tool for researchers seeking to use higher order statistics in tissue character­

ization. However, researchers often attempt to estimate these moments as in [9, 10], 

instead of directly calculating them by application of (2.39). These estimates, especially 

estimates of higher-order moments, generally have a very high variance, as shown in this 

section. 

If Xi, i = 1,2,... N, are N independent realizations of a speckle pattern, the Mth 

moment of X can be estimated by 

0M = ^Exr (2.40) 
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where X,- is obtained from an underlying complex Gaussian random process according to 

Xi = \nc + fi\2, (2.41) 

nc is zero mean, complex Gaussian with independent and identically distributed real and 

imaginary parts, and p. is the strength of the coherent reflection present. This corresponds 

to the intensity of a speckle image, not the magnitude as is often displayed in ultrasound 

imaging. The expected value of 9M is 

E[9M] = 
fr 

w 
E# 

= E[K + p|2"]. 

Thus 9M is an unbiased estimator of XM. 

The expected value of 9M can be evaluated by noting that 

E[|n c + ^|2Af] = E[((nc + p)(nc + p,y)M] 

6=0 \ k 
E [|nc|

2*] M 2M-2k 

(2.42) 

(2.43) 

where 
M 

k 

Ml 
k\(M-k)V 

By application of the moment generating function (2.39), 

E [|nc|
2*] = cr» 

where 

a2 = E[|nc |2] 

= 2E [Real[nc]] = 2E [Imag[nc]] 

(2.44) 

(2.45) 

(2.46) 
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Thus, 

Af 

E[M = E 
6=0 

'M'2 

»"W 2M-26 

The variance of 9M can be similarly evaluated: 

E[(9M-E[9M])2] = E[9M]-E[9M\' 

E : (^Ek^r) -EN2 

4 E E E [k+^n^+^r] - EM2 
i y . = i j = i 

^ E E E [ K + M|2Af]E[k 
1 w . 

i > t = i 

1 A 

+ H 2 A I 

jE[k + ^r]-E[|nc + M | 2 A f ] 2 

„t j . ..i2wi2 _ v n- + ^ | 2 ^ ] 2 ^EEE[k+Ml212-E[K 

:E [K-

(2.47) 

= ^{E[|nc + /ir]-E[|nc + H: f}. ,|2Afl2 

(2.48) 

which can be evaluated by application of (2.45) and (2.43). Note that as the number of 

independent observations grows large, the variance of the estimate becomes small; 9M is 

a consistent estimator of XM. 

2.5 The K-Distribution 

Typically, statistical treatments of ultrasonic speckle involve assumptions such as 

those made here: that each resolution cell contains a large number of scatterers, and 

that the scatterers' positions and scattering strengths are independent of each other. 
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This results in a Rayleigh or Rician distribution of pixel magnitudes. These assumptions 

are seldom met exactly, however, especially in abnormal or diseased tissue, where the 

deviation of the scattering parameters from ideal values has been considered characteristic 

of abnormality. 

A more general distribution function known as the K-distribution has been recently 

borrowed from the radar scattering literature, where it was first proposed in the mid 1970s 

[11, 12, 13]. The K-distribution has been been proposed for ultrasound analysis because 

it couples the true number of scatterers to their scattering cross section to produce an 

"effective" number of scatterers. It has been conjectured that the effective number of 

scatterers can be an indicator of diseased tissue [10]. 

The K-distribution is derived as follows [11]. Consider a received signal 

E(r,t) = Re le*"£%(r,t)e?*™ 
L t-=i 

(2.49) 

equivalent to an un-demodulated form of (2.2). Here, Oi(r,t) and <&(r, t) are the magni­

tude and phase received at time t on the rth scan line. The characteristic function of E 

is given by 

C(U) = E p"*] 

exp [jURe 
AT 

e?"*5]a,e"k 
t = i 

= E 

= nE[exp(;^Re[^y^])] 
t= i 

= Y[E[expU\U\aicos(ujt + <(>i + <f>))] 
!=1 

= {[ElMlUla)], 
t= i 

(2.50) 

in which the independence of all a,- and <f>i is used to pull the sum outside the exponential 

function in the third step, and to perform the expectation with respect to 0 separate 

from that with respect to a,- in the last step. If the scattering strengths a, are identically 
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distributed, (2.50) simplifies to 

C(U)=E[J0QU]a)f. (2.51) 

The K-distribution arises if we assume that the a are distributed according to 

^rtrbjOrr*"^ (2-52> 

where b and u are functions of the viewing position, and K„ is a modified Bessel function 

of the second kind of order u. This distribution function was first derived by assuming 

the radar return from a single "patch" of sea surface to be a product of two random 

quantities, one negative exponentially distributed (related to the overall properties of the 

patch) and the other (corresponding to the patch's "tilt") distributed as a Chi-square 

variate of order 2(v—1) [11]. More importantly, however, (2.52) leads to a tractable form 

for the distribution of |E|2. 

Assuming (2.52), the characteristic function of E reduces to 

C(U) = E[M\U\")f 

where M = N(u +1), and the distribution of 7 = \E\2 is given by 

p(I) = y0j(yf)KM^bVr). (2.54) 

This distribution has come to be applied to ultrasound statistics because the quantity 

M = N(u -+-1) can be loosely interpreted as an effective number of scatterers, dependent 

not only on their true numbers, but also on their scattering cross sections. In the limit of 

large M, the K-distribution can be shown to approach familiar Rayleigh, Rician, Gaussian 

and log-normal distributions. 
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2.6 Conclusion 

This chapter has dealt with statistical properties of ultrasound speckle. First and 

second order statistics have been derived from a physical model for the scattering process, 

and a technique has been proposed to generate higher-order moments. The K-distribution 

is also described as a more general distribution function which may have a role in analysis 

of the statistics of backscatter from diseased or abnormal media. 
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CHAPTER 3 

LINE AND BOUNDARY DETECTION IN 

SPECKLE IMAGES 

3.1 Line and Boundary Detection 

The problem of detecting linear features in an image computed by coherent acoustical, 

radar or laser illumination is of interest because these features may contain important 

information. For example, in synthetic aperture radar (SAR) scenery, it may be known o 

priori that roads travel along straight lines. Similarly, medical ultrasound systems display 

tissue boundaries as broad curves that appear as straight line segments if observed at a 

sufficiently small scale [14]. The detection of these features may be an essential first step 

in segmenting an image for reconnaissance or diagnostic purposes. 

Feature detection in acoustical or SAR imagery is a challenging problem because of the 

presence of speckle noise. The physical mechanism of laser speckle, common to all forms of 

coherent imaging speckle, was surveyed by Goodman [2]. The statistical treatment in [2] 

was adapted by Burckhardt [3] and Wagner et al. [15] to better describe the statistics of 

ultrasound speckle. Later, Wagner et al. [4] introduced the concept of correlation length 

to describe the distance over which image pixels show statistical correlation, in terms of 

imaging parameters such as frequency of interrogation and transducer array size. 

Even though speckle can be treated statistically, and is often said to "corrupt" an 

image, it is important to note that speckle is not noise in the sense in which engineers 

often use the term. In SAR imaging, for instance, Munson and Sanz [16] showed that 

speckle is necessary to be able to form an image at all. In medical ultrasonics, it is widely 

believed that the speckle "texture" conveys information about the region being imaged, 

although the exact method of interpreting that information is in dispute [10, 17]. 
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A few authors have proposed processing schemes motivated by statistical consider­

ations, notably Kuan et al. [18], who derive adaptive techniques for the restoration of 

speckle imagery, and Donohue [19], who computes the maximum likelihood estimator for 

coherently reflecting targets from A-mode ultrasound backscatter, enabling statistical 

detection of targets in raw RF data. 

Other processing schemes make simplified assumptions on the speckle statistics to de­

velop useful processing techniques. A survey of some of these techniques is given by [20]. 

Bovik and Munson [21], Bovik [22], and Donohue et al. [23] assumed a multiplicative 

model for speckle to produce useful techniques for edge detection, in spite of flaws in the 

multiplicative noise model [24]. The result in [22] is arguably the state of the art in de­

tecting step discontinuities in speckle imagery; however, none of these techniques consider 

second or higher-order speckle statistics in the development of processing techniques. 

This thesis represents a comprehensive study of detection methods in speckle noise. 

In particular, in this chapter, we discuss the optimal and near optimal detection of lines. 

We also describe a suboptimal approach, similar in principle to the Hough transform [25], 

which works well when the speckle field is uncorrelated, and which offers reasonable per­

formance at low computational complexity in colored noise. We also find that theoreti­

cally, the performance of this technique can be significantly improved by "prewhitening" 

the speckle field. 

A related technique has been in use in pattern recognition by Lee and Rhodes [26, 

27, 28, 29] and by Hon and Bamberger [30, 31]. Our own work is the first use of this idea 

in medical imaging [14, 32], and includes a strong argument for the near optimality of 

this approach, at least in the case of ultrasound speckle, which is lacking in [26, 27, 28, 

29, 30, 31]. 

3.2 Detection in Speckle 

In this chapter, the problem of detecting lines in images is broken down into a simpler 

problem, that of determining whether or not a line passes through each pixel. We consider 

a neighborhood around each pixel and search for lines passing through the center of that 

neighborhood. This is an M-ary hypothesis testing problem, where each of the hypotheses 
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Figure 3.1 Orientations of a length 5 stick. Each of these orientations represents a 
hypothesis to evaluate at each pixel. 

represents a possible line orientation. More general M-ary detection problems can be 

considered by substituting a different set of hypotheses for the straight-line segments 

considered here. 

For simplicity, we take the neighborhood to be an N x N square region, and the 

number of possible orientations, equal to the number of hypotheses, to scale linearly 

with N. We refer to the set of lines as "sticks" because although they are long compared 

with the correlation length of the speckle field, they are short on the scale of the features 

of interest; in a sense, large-scale linear features are "built up" of sticks at different 

locations and orientations. Figure 3.1 shows a set of sticks of length 5. 

In the subsections which follow, several different detection strategies are discussed. 

In each case, except for the rotating kernel transformations, the desired test is performed 

by comparing the maximum test statistic value at each point to a threshold. For the 

rotating kernel transformations, the test is implemented by subtracting the minimum 

test statistic from the maximum test statistic and comparing the result to a threshold. 
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3.2.1 Optimal detection 

Optimal M-ary hypothesis testing is accomplished by selecting the hypothesis that 

maximizes the likelihood ratio function [33] 

A,(x) = j g g j , (3.1) 

where the signal vector x is a set of image points in a neighborhood, and the ith hy­

pothesis Hi represents the zth orientation straight line passing through the center of the 

neighborhood. 

The likelihood ratio function is the ratio of the probability density of a particular real­

ization x under hypothesis i (Hi) to its probability density under the null hypothesis (Ho). 

In the stick detection problem, we wish to distinguish between the null hypothesis Ho 

and hypotheses Hi through HM, each of which corresponds to the presence of a straight 

line. The different hypotheses are characterized statistically by 

# : x = |nc + /z«|2 (3.2) 

# 0 : x = |nc|
2, (3.3) 

where nc = a -I- j b is a zero mean complex Gaussian random vector whose real and 

imaginary parts are Gaussian, independent, and identically distributed, and p^ is the 

stick at the ith. orientation. This corresponds to the case of specular reflection of sound 

from the boundary. 

Note that we have "unrolled" the square JV x N image regions into N2 x 1 vectors 

for ease of manipulation. This is done without loss of generality since all the spatial 

correlations of the two-dimensional discrete Gaussian random field can be expressed in 

a correlation matrix. Note also that we will be performing the hypothesis test on the 

squared magnitude of the image rather than on the magnitude. This invertible transfor­

mation is done to simplify computation. 
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The probability density function (pdf) of the signal vector x under hypothesis i can 

be computed from the underlying normal distribution on the constituents of x: 

= &r f^ F [ x - ^ ( a + ^ ) 2 + b 2 ^ x + d ] 

= /_^PB(b)hm^-{p[ )/x-£-b2-E«<a<>/x + d-b2--i£W 

+P Ux-J-b2 - /£« < a < y/x + i-b2 + f^)] \ db 

= /-> ( b )H^f 
{pA (v^x^b*- pF) + pA (^T^b2" + /*))} db, (3.4) 

expressed in terms of an integral over b, a nuisance parameter with known Gaussian 

distribution. Note that in (3.4), the vector square roots are applied to each element, and 

the notation P[x < X < y] indicates the probability that a scalar inequality is true for 

every element of vectors x, X, and y. 

The pdf under the null hypothesis is obtained from (3.4) by setting p to the zero 

vector: 

pxMffo] = /°°PB(b) T 2 = = P A ( V ^ H ^ ) db. (3.5) 
•>-o° njyjxj-lr} 

The likelihood ratio function for each hypothesis is thus the ratio of two ^-dimensional 

integrals, where N is the length of the stick. The most probable hypothesis for any given 

image region is the hypothesis that maximizes the likelihood ratio function. If all the 

likelihood ratio functions are less than some threshold, then the null hypothesis should 

be selected. Thus the optimal stick detection scheme is to evaluate a family of integrals 

for each point, compute the maximum result and compare to a threshold. 

The true likelihood ratio function has tremendous computational complexity (on the 

order of iV4?^2 multiplications per hypothesis by Gaussian quadrature integration, where 

N is the stick length) to evaluate because of all the interpixel correlations that make (3.4) 
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and (3.5) iterated integrals rather than products of one-dimensional integrals. However, 

if the speckle is known to have uncorrelated pixels, optimal detection can be performed 

at more modest cost. 

A speckle field tends to decorrelate spatially rather quickly, so one way of dealing 

with speckle is to decimate the image to the point where the interpixel correlations are 

insignificant. In this case, the speckle field can be modeled as the magnitude squared of 

a white Gaussian field. Thus, the pixels are independent, and the problem reduces to a 

multidimensional Rayleigh/Rician detection problem, well-known in non-coherent com­

munications [34]. Note that it is the magnitude (not magnitude squared) of a Gaussian 

random variable that has a Rayleigh or Rician distribution. Thus, the likelihood ratio 

below is expressed in terms of y/x, where x is the square of the image pixels, consistent 

with the definition above. 

For white speckle noise [34], the likelihood function is given by 

A,-(x) = nexp (-^j Io ( 3 ? ^ K t ) ' (3-6) 

where I0(-) is a modified Bessel function, a2 = 2?o[x,-]r and prf' is the jth component of 

the stick at the zth orientation. Collecting terms, we obtain 

*M = «p(E-g)ni.(£i/^ 

where K is a constant with respect to x which can be incorporated into the threshold. 

3.2.2 Quadratic detection 

The optimal detector in the colored noise case is prohibitively expensive to implement. 

Even in the case of uncorrelated speckle, optimal detection requires the evaluation of a 

set of Bessel functions for each image point. Thus, a suboptimal detection rule may be 
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desirable for detection in colored noise if it offers reasonable performance at significant 

computational savings. 

We now center our attention on the class of linear-quadratic detectors, since they 

are much simpler computationally than the optimal colored-noise detectors, require no 

special function evaluations, and can offer high performance. One well-known technique 

for designing linear-quadratic detectors is to use the deflection criterion. Historically, 

deflection was first used to design optimal linear-quadratic systems for detecting Gaussian 

signals in Gaussian noise [35]. However, the approach of Picinbono and Duvaut [36] allows 

the technique to be generalized to the case of arbitrarily distributed noise, provided 

certain noise statistics are known. 

A linear-quadratic test statistic has the form 

5Q(x) = x^MoX + b£x + tr(CMa), (3.8) 

where C = E[xxr], and the trace term is included to ensure that 5(x) = 0 under the null 

hypothesis. The subscript a is used to denote a particular hypothesis. The deflection-

optimal linear-quadratic detection rule has the form of (3.8), and uses values of h and M 

which maximize deflection D(S): 

*(S) = t g f (3.9) 
For Gaussian signals in Gaussian noise, D(S) is a signal to noise ratio; in non-Gaussian 

detection problems, it is globally maximized by the likelihood ratio [36]. In the case of 

speckle, a linear-quadratic test can not be globally optimal. It may, however, offer a 

computationally tractable suboptimal solution. 

Picinbono and Duvaut [36] showed that the deflection optimal h* and MQ can be 

obtained by solving the following linear equations simultaneously: 

*«(«) = £C(i lfc)M*) + £5(».*»0Ma(*,0 (3.10) 
k k,l 

r«(t,j) = £B(i\ j \A;)Mfc)+£4(*\y,M)MQ(M) (3.11) 
k k,l 
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where 

E0[x] = 0 (3.12) 

Ea[x] = sa (3.13) 

E0[xxr] = C (3.14) 

Ea[xxr] = Ta + C (3.15) 

Eo[xiXjXk] = B(i,k,l) (3.16) 

EoixtXjXM] = A(i,j,k,l)+C(i,j)C(k,l). (3.17) 

These statistics can be calculated using the moment generating function (2.39). Note 

that since speckle patterns are strictly positive, the mean under the null hypothesis 

E0[x] = E[|a|2] 

= E[Re(a)2 + Im(a)2] 

= [a2 a2 -.- a2]* (3.18) 

must be subtracted from the observation so that Equation (3.12) holds. We define y = 

x — [a2 •— a2] , and derive the moments above for y instead of x. 

Without lengthy derivation, we calculate 

E0[y] = 0 (3.19) 

Ea[y] = |A*(of (3.20) 

E o W = f% (3.21) 

E « W = a% + \p<r)\2\pf\2 (3.22) 

Eo[yiyjyk] = 2a6pijpjkpik (3.23) 

Eo[yiyjykVi] = o-8 [plp2
jk + PijPkl + p2

kp
2

t + 2pikpilpjkpjl 

+2pijPiiPjkPki + 2pijpikpjipki) (3.24) 

where /4 is the zth element of the a orientation stick, and ptj is the "correlation coeffi­

cient" between two points in the complex speckle pattern, taking on values between —1 
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and 1: 

E[aiaj] = E[a!(Zj] = o^pij. (3.25) 

Since the detector coefficients h* and M a derived from the statistics computed in 

(3.19) through (3.24) are in terms of y = x — [a2 -•• a2]7 instead of x, the deflection-

optimal detector has the form 

/ 
/ 

Sa(x) = x r M a x + h * - 2 M o 

V 

\ 

L^jy 
x + tr C-l-a4 

l l .. l 

1 1 - - 1 

l l .. l 

3.2.3 Generalized likelihood ratio detection 

\ 

^Mfl .(3.26) 

In many cases where a likelihood ratio test is intractable, a computationally simpler 

generalized likelihood ratio test (GLRT) can be used instead The GLRT is the ratio of 

active to null hypothesis conditional pdfs, conditioned on maximum likelihood estimates 

of which active and null hypotheses are present [37]. Mathematically, the GLRT is written 

maxpi(ar|0) 
A ( X ) = m a x p o ( # ) ' 

(3.27) 

where Pi(x\9) and Po(x\9) are conditional active and null hypothesis pdfs. A significant 

advantage of the GLRT is its ability to deal with unknown parameters. 

In this subsection, we compute the GLRT for a stick of unknown amplitude in additive 

colored Gaussian speckle. Like the deflection criterion, this method may provide a useful 

technique in spite of unrealistic assumptions on the noise statistics. The signal model is 

the following: 

Hi-.x = n + /%(i) 

H0 : x = n, 

(3.28) 

(3.29) 

where n is a colored Gaussian random vector, pi is the unit magnitude stick of orientation 

i, and /3 is a positive quantity denoting the unknown magnitude of the stick. 
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The GLRT is 

maxiPo(x\i) 

maxf,g exp ( - I (x - %.) rS~1(x - % ) ) 

exp ( - lx^2- ix) 

= m a x e x p ( | x r S - l x - i ( x - - % r E - 1 ( x - - ^ ) ) 

= m a x e x p ^ S - ^ - ^ / f E - 1 ^ ) . (3.30) 

Since i is a discrete valued parameter (the index into a family of sticks), we maximize 

first with respect to /?; the maximum occurs when 

>•$£ (3-31) 
Because the exponential is a monotonically increasing function, we can implement an 

equivalent GLRT by thresholding only its argument; thus, the GLRT is 

Note that we have assumed that /? > 0; however, it is possible for negative values 

to occur. Since E _ l is a positive semi-definite correlation matrix, /? < 0 implies that 

//TE-1x < 0. We will treat this as an error condition implying that no signal is present 

at that orientation. 

With this assumption, the GLRT can be implemented as 

m a x ^ ( ^ E ~ ^ x , (3.33) 

where 

^ 7 # & ? (3M) 

If the noise is circularly distributed, K(i) is constant with respect to i, and can be 

neglected, leading to a particularly simple linear test. 
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3.2.4 Linear detection 

3.2.4.1 Sticks 

If the noise is assumed to be white, (3.33) reduces to a simple linear projection 

operation. At each point, the detection statistic is produced by adding all the pixel 

intensities falling along a stick of one orientation and maximizing the sum over all possible 

stick rotations: 

A(x) = max p? x. (3.35) 

Although speckle is neither additive, Gaussian nor white, we have found the "Sticks" 

technique to be useful for detection of linear components as well as for image enhance­

ment [14, 32]. 

3.2.4.2 Pre-whitened matched filtering 

Although the Sticks technique has yielded useful results, it is based on highly faulty 

assumptions, particularly that the speckle is Gaussian and uncorrelated. A more sophis­

ticated linear detection rule can be constructed by "prewbitening" the image to remove 

the interpixel correlations, and then applying a matched filter. The prewbitening filter 

is implemented by retaining the E - 1 term in (3.33) but assuming K(i) from (3.34) is 

constant with respect to i: 

A(x) = maxpf E_1x. (3.36) 

where 

E = Ett [(x - p{a)) (x - /*(a))
T] (3-37) 

This can be evaluated element-wise by application of the statistics calculated in (3.19) 

through (3.24): 

{2}* = <r%, (3.38) 

Note that the correlation expression in (3.38) is independent of the presence or absence 

of a line. The prewbitening operation assumes the noise has Gaussian distribution with 

mean and covariance calculated by the moment generating function, applies a whitening 
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filter to the observation, then applies a matched filter. The technique is still suboptimal 

since speckle does not have a Gaussian distribution. 

3.2.5 Rotating kernel transformations 

The use of rotating kernel transformations, introduced by Lee and Rhodes [26, 27, 28, 

29] for pattern recognition and enhancement of linear features, represents a generalization 

of the Sticks technique. The transformations involve the convolution of the original image 

with a long narrow operator at various orientations. The convolutions produce a set of 

output values for each pixel; the enhanced image is computed pointwise as a function 

of the output values at each point. Until the present work, the use of these techniques 

has been statistically uncharacterized. In each of the rotating kernel transformations, a 

new image point I(x, y) is obtained from the original image i by some combination of 

the results of a set of angle-dependent filter outputs: 

r(x,y) = g fe£ fe(x -k,y- l)i(k,l)] . (3.39) 

The choice of fg(x, y) and g(h(9)) in (3.39) distinguishes the transformations. Table 3.1 

summarizes a few of these algorithms. 

Lee and Rhodes [26, 27, 28, 29] proposed a "rotating kernel min-max transforma­

tion" (RKMT) similar to Sticks, except that the detection statistic is the arithmetic 

difference between the largest and smallest stick projections, instead of the maximum. 

This technique may offer better performance when the original image has varying de­

grees of brightness at different points of the image, or a varying signal-to-noise ratio. A 

tapering function can be used with the RKMT by applying a taper to the stick instead of 

using a rectangular contour. This is a potentially useful means of matching the operator 

to the line profile when the target has significant curvature; along the support of the 

stick, the target may have a tapered profile more exactly matched by a tapered stick. 

Rectangular, Gaussian and triangular tapering functions are compared in Section 3.3.3. 
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Table 3.1 Summary of Rotating Kernel Transformations 

Operator 

Sticks 

RKMT 

RKMT with 
triangular contour 

RKMT with 
Gaussian contour 

fo(x,y) 

f 1 i f | x | < f , a n d y = 0 
\ 0 otherwise 

f 1 i f | a : |< f ,and7/ = 0 
\ 0 otherwise 

( l-f ify = O a n d | x | < T 
\ 0 otherwise 

f e"** ify = 0 
\ 0 otherwise 

9(K9)) 

max h(9) 

max h(9) — vamh(9) 

mzx.h(9) -xaxah(9) 

max/&(0) — vamh(9) 

3.2.6 Other operators 

The number of potential line detection operators is virtually unlimited. For example, 

we have experimented with the use of a median operation in place of the line sum used 

by Sticks [38], and with estimating the prior probabilities of each line orientation to help 

in detection [39]. At this time, we will defer analysis of these techniques, and simply 

comment that they illustrate the variety of related techniques that can be developed. 

A comparison of techniques showing their performance in processing real images will be 

presented in Chapter 4. 

3.3 Comparison of Results 

This section presents a comparison of the techniques described above by way of Monte 

Carlo simulation. In each case, the detector performance is summarized in a receiver 

operating characteristic (ROC) curve, in which the probability of correctly detecting a 

line segment (Prj>) is plotted versus the probability of falsely detecting a segment when 

none is present (PpA)- The threshold is a parameter that increases along the ROC curve 

with increasing values of Pp^. More powerful detectors have higher ROC curves (i.e., 

34 



for a given false alarm probability, they yield a higher probability of correct detection). 

For cases in which the ROC curves for two detectors cross, detector performance can be 

quantified in a figure of merit (FoM) equal to the area under the curve. 

To obtain an ROC for a given detector, an experiment was run 1000 times in which 

a speckle pattern was simulated according to the model in (3.3). For each experiment, a 

set of simulations was performed where a line segment of every possible orientation (in 

the sense of Figure 3.1) was immersed in the noise realization. The detector in question 

was applied to the set of noise-only and signal-in-noise realizations, and the numerical 

detector output from each case was recorded. The simulations used a random number 

generator from Numerical Recipes [40] and linear algebra subroutines from LAPACK [41] 

and Matlab [42]. 

For each detector, the result of the simulation was two sets of 1000 x 2(N— 1) detector 

outputs, one for each line orientation in each separate experiment, and 2(N — 1) for each 

noise-only speckle realization. This procedure is equivalent to generating 1000 detection 

statistics for each active hypothesis, and 2(N — 1) for the null hypothesis. For any fixed 

threshold, the expected number of correctly detected signals in the 1000x2 (AT—1) active 

hypothesis realizations is 1000 x 2(N - 1) x pD, where pp is the probability of correct 

detection. Similarly, the expected number of false alarms in the 1000 x 2(N — 1) null 

hypothesis realizations is 1000 x 2(N — 1) x pF, where pp is the probability of false alarm. 

Thus, po and pp can be estimated by 

"° " xooox^-i)0" (3-40) 

and 

" ' 1000 x 2 V - I ) * 3 " ' (3-41) 

where QD and QF are respectively the number of active and null hypothesis test statistics 

exceeding the threshold. 

The variance of these estimates are (pD — pg)/1000 and (pF — pp)/l000 which are 

upper bounded by 2.5 x 10~4, since po and pp lie between 0 and 1. The probabilities 

PD and pp are actually functions of the threshold applied; the locus of (PF,PD) obtained 

by varying the threshold is the ROC curve. The area under the curve, used as a figure 
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of merit, also has variance upper bounded by 2.5 x 10-4; this is actually a loose upper 

bound, however, as it assumes no correlation between po and pF at different thresholds. 

Note that the ROC curves given here represent average detector performance over all 

possible stick orientations. Note also that we have not considered the problem of correctly 

classifying target orientation; if a statistic mismatched in orientation to the target returns 

the maximum value, it is simply accepted as a correct detection. The different detectors 

do not appear to differ in their classification ability, however no complete study of this 

topic has been undertaken. 

The severity of the noise and the power of the detectors evaluated were controlled by 

setting several parameters. First, the "stick length," or linear size of the operator affects 

the performance of the detector in a direct way. A long stick will smooth speckle better 

than a short stick, but possibly at the expense of also smoothing out edge features. In 

practice, we expect that the edges are only locally approximated by the linear model; 

i.e., we assume some curvature to the edges. Therefore in actual image processing, this 

parameter should be set as long as the length over which the edges are expected to be 

roughly straight [14]. In the simulations here, the signal is always matched perfectly in 

length by the detection template. Thus if all noise parameters are set equivalently, a 

longer stick will outperform a shorter stick, since it averages over more data. 

In the simulations presented here, the correlation length of the speckle was controlled 

by changing the size of the smoothing kernel used to introduce correlation to the un­

derlying Gaussian noise; a size of 1 implies white noise with variance 1. The smoothing 

kernel is Gaussian in shape, and is truncated at some point. To keep the simulations to 

manageable length, the kernel size could not be made large enough to allow the noise 

correlation to taper gradually to zero. However, since the goal of the simulations was to 

compare detector performance in arbitrarily correlated noise, the short-term correlation 

is sufficient to model reality. 

In the following subsection, simulation results will be reported in terms of low, medium 

and high signal amplitude. No numerical values are given for signal to noise ratio because 

of the difficulty in defining a meaningful SNR in non-additive, possibly correlated noise. 

The distinctions used here are sufficient to illustrate the relative powers of detectors, over 

a range of signal to noise ratios. 
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3.3.1 Comparison of detectors in white speckle noise 

Figure 3.2(a) shows the ROC curves for the Sticks detector, the deflection-optimal 

detector and the optimal white noise detector defined in (3.7) for a low signal amplitude 

scenario. The noise level is very severe, and no detector does a very acceptable job for 

noise this strong. A sample noise realization at this noise level is given in Figure 3.2(b), 

which shows a diagonal line which is almost totally obscured by the noise. 

Figure 3.3(a) shows ROCs for the Sticks detector, the deflection-optimal detector and 

the optimal white noise detector for a higher signal amplitude white noise simulation. In 

the sample noise realization in Figure 3.3(b), the diagonal line is more prominent than in 

Figure 3.2(b). As in the low signal amplitude case, the three detectors offer very similar 

performance; since the Sticks detector is much more computationally simple than the 

deflection and optimal detection rules, we conclude that the simple linear matched filter 

(Sticks) is sufficient to obtain near optimal performance in the case of white speckle. 

3.3.2 Comparison of detectors in colored speckle noise 

Figures 3.4(a), 3.5(a) and 3.6(a) show ROCs comparing the performance of Sticks 

with that of the deflection-optimal detector and the prewhitened Sticks detector in the 

low, medium and high signal amplitude colored noise cases. Noise realizations at these 

noise levels are presented in Figures 3.4(b), 3.5(b) and 3.6(b). The stick length has been 

changed from the setting used in the white noise case to ensure that it is longer than the 

correlation length induced by the coloring kernel. 

For the low signal amplitude case, we see a clear increase in performance as we move 

from the simple linear Sticks detector to the more sophisticated linear prewhitened Sticks 

detector to the quadratic deflection-optimal detector. This is reasonable, since in general, 

the optimal linear-quadratic detector must be no worse than the optimal linear detector 

and may in fact be more powerful. What is surprising is that, especially in the medium 

and high signal amplitude cases, the deflection-optimal and prewhitened Sticks detectors 

perform almost equally well. This indicates that the optimal linear-quadratic detector is 

dominated by its linear component, which is approximately the same as the prewhitened 

Sticks detector. 
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20 40 60 80 100 120 140 

(b) 

Figure 3.2 (a) ROC curves comparing detectors in white noise with low signal amplitude. 
and (b) Sample image prepared with the signal and noise settings used in calculating 
the ROCs. The signal is a diagonal line barely visible through the noise; this is an 
unrealistically low SNR simulation of ultrasound imaging. The simulation parameters 
used here are stick length = 5, kernel size = 1 (white noise), signal amplitude = 1.0 . 
The poor performance of even the optimal detector is due to the very poor image quality. 
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(a) FA 

(b) 

Figure 3.3 (a) ROC curves comparing detectors in white noise at a higher signal ampli­
tude, and (b) Sample image prepared with signal and noise settings used in calculating 
ROCs. The simulation parameters used here are stick length = 5, kernel size = 1 (white 
noise), signal amplitude = 2.0 . This noise level is much more representative of ultrasound 
image quality than that portrayed in Figure 3.2. The diagonal line is visible, though still 
significantly noise corrupted. Uncorrelatedness of the noise could be achieved in practice 
by decimating the image to the theoretical resolution limit of the device used in producing 
the image. 
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20 40 60 80 100 120 140 

(b) 

Figure 3.4 (a) ROC curves comparing detectors in colored noise at low signal ampli­
tude and (b) Sample image prepared with signal and noise settings used in calculating 
ROCs. The simulation parameters used here are stick length = 7, kernel size = 3, signal 
amplitude = 3.0 . As in Figures 3.2 and 3.3, the signal present is a diagonal line from 
upper left to lower right. As in Figure 3.2, this represents an unrealistic simulation of 
ultrasound speckle. It does serve to illustrate the benefits of prewbitening, however, as 
Figure 3.4 shows a clear improvement of the prewbitening and deflection detectors over 
simple Sticks. 
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(b) 

Figure 3.5 (a) ROC curves comparing detectors in colored noise at medium signal am­
plitude, and (b) Sample image prepared with signal and noise settings used in calculating 
ROCs. The simulation parameters used here are stick length = 7, kernel size = 3, signal 
amplitude = 5.0 . The signal present is again a diagonal line from upper left to lower 
right. This noise level is more representative of ultrasound image quality than that in 
Figure 3.4(b), but still represents a rather low SNR. In this case, the performance of 
the deflection and prewhitened Sticks detectors is approximately optimal, and simple 
Sticks somewhat worse. We conclude that in the medium signal amplitude case, the 
noise coloring is much more important as a corrupting influence than non-Gaussianity. 
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Figure 3.6 (a) ROC curves comparing detectors in colored noise at high signal ampli­
tude, and (b) Sample image prepared with signal and noise settings used in calculating 
ROCs. The simulation parameters used here are stick length = 7, kernel size = 3, signal 
amplitude = 8.0 . The signal present is again a diagonal line from upper left to lower 
right. This noise level is more representative of ultrasound image quality than the noise 
in Figures 3.4 and 3.5. As in Figure 3.5, the deflection and prewhitened Sticks detectors 
give nearly optimal performance. 
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This result, along with the near optimality of Sticks detection of lines in white speckle 

noise, implies that the coloring of speckle affects the performance of a detection rule 

more than the non-Gaussianity of the noise. It also suggests that prewhitened sticks may 

approach optimality in the colored speckle case as nearly as does Sticks detection of lines 

in the white noise case. In colored noise, however, the use of an inverse filter is superior 

to decimation as a whitening operation because the decimation causes a loss in signal 

power without reducing noise power. This is because shorter sticks must be used, since 

the lines to be detected are reduced in pixel length by the decimation. 

It must be noted that the success of any statistically motivated detection rule is highly 

sensitive both to errors in estimating noise statistics and defining the target model. In 

many situations, including ultrasound image processing, it may not be possible to reliably 

estimate the noise statistics without averaging over an area of image containing unwanted 

statistical variations (such as targets and varying SNR). One possible solution is to use an 

adaptive whitening filter to decorrelate the noise. Since the noise correlation is separable 

into axial and transverse components, a one-dimensional filter can be applied successively 

in each direction, and will be able to operate on the entire image in spite of the changes 

in noise correlation or SNR that occur from region to region. 

Finally, a difficulty arises in detection because the stick model for line segments is 

itself imprecise. If the actual targets are broader than a single pixel, for example, the 

performance of detectors which use off-stick regions of the image may be dramatically 

reduced. The ROC curves presented here thus represent performance bounds on detection 

rules of a fixed order searching a known statistical environment for a precisely defined 

target; actual performance under realistic circumstances will be somewhat less. 

3.3.3 Comparison of rotating kernel techniques 

The rotating-kernel min-max (RKMT) transforms proposed by Lee and Rhodes [26, 

27, 28, 29] and summarized in Table 3.1 are compared in performance with the Sticks 

detector in Figure 3.7. The RKMT detectors differ from Sticks in that instead of simply 

using the maximum stick projection at each point as the test statistic, the RKMT de­

tectors use the difference between the maximum and minimum stick projections. While 
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Figure 3.7 ROC curves comparing Sticks with RKMT detectors in colored speckle noise. 
RKMT detection is suboptimal in constant SNR case, but may be useful for detection 
when the SNR or general brightness level varies within an image. 

the RKMT detectors are suboptimal for the general detection problem, they may find 

application in cases where the target strength varies from point to point in the image, 

or the targets are curving lines. While these scenarios can not be adequately simulated, 

they may nevertheless arise in real imaging problems. 

3.3.4 Comparison of techniques by figures of merit 

The comparison of detection rules in this section is summarized in Table 3.2, in which 

figures of merit are computed for each detector in each experiment by calculating the 

area under the corresponding ROC curve. The values in Table 3.2 have a variance less 

than 2.5 x 10-4. The table contains no surprises; in the white noise case when an optimal 
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Table 3.2 Figures of Merit for Detectors Surveyed 

Detector 

Optimal White 
Deflection 
Prewhitened Sticks 
Sticks 
RKMT 
RKMT-Gauss 
RKMT-triangle 

White 
low amp. 

0.661 
0.642 

-

0.657 
0.595 
0.574 
0.571 

White 
high amp. 

0.932 
0.919 

-

0.930 
0.870 
0.793 
0.781 

Colored 
low amp. 

— 

0.800 
0.784 
0.649 
0.621 
0.631 
0.635 

Colored 
medium amp. 

— 

0.954 
0.954 
0.879 
0.855 
0.802 
0.833 

Colored 
high amp. 

— 

0.997 
0.999 
0.995 
0.993 
0.954 
0.980 

detector is available, it always offers the highest FoM. Otherwise, the deflection detector 

generally features the highest FoM, followed by the prewhitened Sticks detector (in the 

colored noise case), the Sticks detector, and finally the suboptimal RKMT detectors. In 

a few cases, the deflection detector has a lower FoM than another detector. This is likely 

due to the fact that the deflection operators are selected to maximize the deflection 

criterion, not this particular figure of merit, which is a more appropriate measure of 

detector power in non-Gaussian noise. 

In the colored noise cases, the deflection and prewhitened Sticks detectors yield the 

best performance of any technique surveyed here. The deflection detector is quadratic in 

the observation, and requires higher complexity than the linear techniques to compute 

the test statistic at each point. Furthermore, the coefficients used in the deflection 

detector are obtained by solving a large set of equations; solving for the coefficients is 

straightforward, but computation-intensive. The other detectors surveyed do not require 

such elaborate computation to determine the detection rule. 

By comparison, the new prewhitened Sticks detection rule is a linear function of the 

observation, requires low computational complexity (0(iV2) multiplies per pixel, where N 

is the stick length), and offers excellent performance. When second-order statistics for the 

speckle field can be exactly estimated, the prewhitened Sticks detector is the technique of 

choice. Finally we note that when SNR is high, the added expense of estimating statistics 
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for the prewhitened Sticks or deflection detectors may not be worthwhile, since Sticks 

itself compares favorably, especially in the white noise case. 

3.3.5 Enhancement of real images 

The Sticks technique has been very successful in our work in enhancing images for 

boundary detection. While it is impossible to define the "right" answer as precisely as 

in simulations, an image formed by plotting the Sticks detection statistic at each point 

is much smoother and visually more easily interpretable. Figure 3.8(a) shows a 512 x 

442 pixel image of a pig muscle collected with a commercial medical ultrasound scanning 

system. Figure 3.8(b) shows a Sticks processed image, using an operator of length 15 

pixels. This operator size was determined by subjectively estimating the length over 

which the boundaries appear to be composed of straight-line segments. In practice, 

the stick length can often be set using prior knowledge of the specific problem being 

addressed. A comparison of the results with different stick lengths will be presented in 

Chapter 4. 

Note the thin boundary between the two top layers of subcutaneous fat, emphasized 

in the processed image even though it is only a few pixels wide. An equivalent size (for 

example 4 x 4 pixel) median or linear low-pass filter would be incapable of enhancing 

long straight components as well as the present technique, while filtering with a larger 

operator, such as a 15 x 15 filter would obliterate features such as dark gaps between lines 

[43]. Adaptive or stick-like median filters [43, 44] are an alternative to stick-projection 

processing. Finally, the text displayed at the bottom of Figure 3.8(a) is also processed 

and displayed in Figure 3.8(b). The tendency of the Sticks to resolve image features 

into lines is evident in the processed text, where connections are made between letters, 

and between unconnected parts of letters. In medical imaging, tightly curving features 

such as lettering are uncommon; in more general image processing applications, such as 

SAR, intersections of lines at acute angles might be more common. The Sticks technique 

must therefore be used with care, especially in the vicinity of line intersections where the 

templates model the image features very poorly. 
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3.3.6 Threshold selection for Line Detection 

Great care must be used in applying a threshold in real data analysis, as a fixed 

threshold may not be appropriate at every point of the image. Sticks processed images 

were successfully used to estimate fat and muscle thicknesses in ultrasound scans of beef 

carcasses in connection with Beef Ultrasound Grading Project (BUGS) at the Bioacous-

tics Research Laboratory at the University of Illinois (see Appendix A). The data varied 

significantly in quality during this project, and so tissue boundaries were identified by 

extracting a cross-sectional trace, and selecting with the highest point that 1) exceeded 

a low threshold, 2) was a local maximum, and 3) fell between a region known with high 

probability to contain the desired feature. 

More analytically, it is possible to use a threshold which achieves a constant false 

alarm rate (CFAR). A threshold is selected which produces a certain acceptable number 

of false alarms in a region known not to contain a boundary. This threshold is then used 

throughout the image. The performance of this thresholding technique can be analyzed as 

follows. Assume the speckle is Gaussian distributed with first- and second-order statistics 

the same as in Section 3.2.2. Here we will consider the image itself, without the mean 

subtracted off as in that earlier discussion, and neglect interpixel correlations (py =0) . 

We set a threshold two standard deviations above the mean: 

7 = E0[s rx]+2y fE0[(6/sTx)2] 

= srE[x] + 2^/srlRoS 

= Na(2o2)+2Na(2a2) 

= 3Na(2o2), (3.42) 

where 2a2 is the variance of the underlying complex Gaussian random field, IRQ = 

Eo[a%F], s is the stick of the selected orientation and a is the amplitude of the stick 

operator itself. This threshold corresponds to a probability of false alarm of 0.004. 
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The probability of correct detection can be computed with knowledge of the first and 

second order moments under the active hypothesis: 

E i ^ x ] = s^Ei[x] 

= sT(2*= + M=) 

= Na(2a2) + Na/3, (3.43) 

and 

Et[(srx)2] = sTRlS 

= (2o2)2(Na)2 -2(2o2)(Na)2P, (3.44) 

where /? = E\[x], the expected magnitude of a target in the image. 

Under this threshold, the probability of correct detection can be computed as 

VD . erfc [IfMA 
VA[(sTx)»], 

" "*(*&-&)' ( 3 ' 4 5 ' 

which is independent of the template amplitude; equally powerful tests can thus be 

implemented with unit amplitude sticks. 

3.4 Conclusion 

This chapter has discussed the theory of line detection for the case of speckle noise 

such as that which corrupts acoustical and radar images. It represents a comprehensive 

survey of optimal and suboptimal approaches to detecting lines and boundaries in speckle 

noise. The optimal detectors are computationally expensive to implement in practice, so 

suboptimal detectors of linear and quadratic orders are surveyed as well. A statistical 

analysis is performed to compare the relative performances of the optimal and suboptimal 

detection rules under various noise colorings and powers; the resulting receiver operating 

characteristic curves are bounds on the performance of the detectors under ideal circum-
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(a) 

Figure 3.8 A 512 x 442 pixel image of a pig muscle (a) before and (b) after processing 
with length 15 stick operators. The resulting image is further modified by raising each 
pixel to the power 1.5, then renormalizing to 255 gray levels. The processed image is 
clearly enhanced, showing even thin lines without smearing, and rejecting background 
speckle, which typically appears as spots rather than lines. 
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stances. While the analysis as given here is valid only for the case of detecting lines and 

piecewise sticklike curves in Rayleigh speckle, it can be generalized to other multiple or 

composite hypothesis testing problems by using a different set of templates in place of 

the sticks discussed here, and adapting the noise model to fit the true statistics. 

The performance comparison indicates that a linear scheme (Sticks) with the form of a 

matched filter in additive white Gaussian noise performs near optimally when the speckle 

is uncorrelated, for instance if the image has been decimated. In the case of colored 

speckle, a prewbitening step prior to the matched filter can yield dramatic improvement in 

performance if the speckle statistics are exactly known. In the absence of such knowledge, 

however, the Sticks detector is a useful approach that offers reasonable performance in 

a variety of noise environments. The image formed by plotting the Sticks output shows 

even very thin details from the original image clearly, while still smoothing the speckle. 

As a result, the machine detectability of image contours is substantially improved. 
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CHAPTER 4 

APPLICATION OF LINE DETECTION 

TECHNIQUES TO MEDICAL ULTRASOUND 

4.1 Boundary Detection in Medical Ultrasound 

The boundaries of interest in an ultrasound scan correspond to discontinuities be­

tween tissue layers, which are large on the scales of both the wavelength of interrogation 

and the scan line spacing. In the two-dimensional scan plane, these three-dimensional 

surfaces take on the appearance of bright streaks against a darker, less densely reflecting 

background. Features with this appearance are unlikely to occur randomly in speckle 

noise; speckle's correlation structure is more likely to give rise to bright spots of charac­

teristic size [4]. Conventional edge detection procedures, e.g., Canny, Roberts or Sobel 

operators [45, 46] and related techniques such as [22], are ill-suited to detect the bound­

aries because they are not well-modeled as step discontinuities in image intensity. In 

contrast, we have had success with an approach designed to respond preferentially to 

line processes [14, 43]. This approach results in an operator that is sensitive even to thin 

edges, while still providing for speckle reduction. 

To formalize this idea, we have approached the problem of boundary detection with 

the techniques of statistical decision theory. This has led to a number of detection rules 

motivated by a statistical model for the targets and noise. In Chapter 3 we derived 

optimal boundary detection techniques and tested them in simulated speckle to establish 

performance bounds for other detectors. We compared several suboptimal detectors of 

varying complexity and power with the bounds and showed that a simple suboptimal 

detector based on the generalized likelihood ratio test (GLRT) is extremely robust in the 

face of an uncertain or inexactly modeled statistical environment. Furthermore, we were 
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able to quantify the performance lost in using this detector and identify circumstances in 

which that loss was negligible in Chapter 3. This chapter studies that detector in more 

detail, focusing in part on a number of different parameters which can be changed to 

alter its properties, such as the length and thickness of the templates used to model the 

boundaries. 

This chapter also addresses a weakness of the technique in Chapter 3, the assumption 

that all orientation sticks are equally likely at each point. In practice this is not the case, 

since B-mode ultrasound is capable of imaging only those structures normal to the beam. 

To improve upon the performance of the basic technique, the image itself can be used to 

estimate a distribution on the angle of the lines at each point in the image. This prior 

information can help to reject unlikely hypotheses. 

Finally, we introduce the use of false color as a visualization tool, to indicate the 

direction of the most prominent linear image feature at each point. The color can be 

applied to either the original or a processed image, and represents a way of displaying 

additional information on an image without changing the image gray scale itself. This is 

an important issue in medical ultrasound, where sonographers are skilled in interpreting 

unprocessed gray level images. 

These issues are somewhat apart from simple detector power. In Chapter 3, the 

detection scenario was carefully controlled so that the target and noise statistics were 

known; here the various tradeoffs will be quantified by showing the effect of the different 

settings on the processing of a single real image. This test image is given in Figure 3.8(a), 

a scan of the longissimus muscle of a live pig, imaged with a PIE medical ultrasound 

scanning system and a Targa 16 Image Processing card. Each half of this image shows 

three major fat boundaries near the top of the image. These appear as bright streaks 

which grow fainter near the right hand side, especially the second boundary from the 

top, which appears to grow thinner as it fades out. The ability of different algorithms 

to enhance this boundary is a good criterion to use in comparing the performance of 

different detectors. 
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4.2 Effect of Stick Length and Thickness 

The implementation of the Sticks technique requires a tradeoff between effective line 

enhancement and good speckle reduction. To obtain good results, the sticks should be 

made longer than the correlation length of the noise, yet shorter than the distance over 

which the boundaries appear to be straight lines. A longer stick achieves greater speckle 

suppression at the expense of a weaker match with more tightly curving boundaries; sim­

ilarly, "fatter" sticks are more sensitive than thinner sticks to broad but Him boundaries. 

Figure 4.1 shows a composite of images processed with sticks of lengths 1, 15 and 23 

pixels, and thicknesses 1, 3 and 5 pixels. The longer sticks have the effect of blurring 

the speckle in the interior of the muscle, while more clearly emphasizing the boundaries 

between fat layers and the muscle. However, these effects come at the expense of visibility 

of certain image features, such as the thin boundary between the fat layers in the upper-

right corner of the image. Increasing stick thickness has the effect of enhancing the 

relative brightness of the broad boundaries, while introducing some blur in the transitions 

between boundary and off-boundary pixels. More importantly, the use of thicker sticks 

makes very thin boundaries less visible. 

These effects can be more quantitatively studied by considering the statistics of the 

stick operator output. Ideally, we hope to obtain a large valued, low variance output 

when a target is present and a small valued, low variance output when no target is 

present. A useful index of performance is given by 

D(N,M) = 
E[Y(N,M)-Y(N,0)]2 

max(vax(Y(N, M)), vai(Y(N, 0))) 
E[r(iV,M)-F(iV,Q)]2 

vzr(Y(N,M)) 

where 

W M ) = ^ 
M N-M 

5>( i )+ £ XQ(j) 
i=l j = l 

(4.1) 

(4.2) 

This is the output of a size N stick of normalized energy, i.e., one containing N pixels, 

each of height 1/N2. The quantity Y(N, M) is the sum of pixel intensities from M true 

target points and N — M pure noise points, corresponding to partial overlap of a stick 
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detection template with a target. Detection with a stick perfectly fit to the target is 

indicated by Y(N,N), while the stick output under the null hypothesis is F(iV,0). 

The quantity D(N, M) can be interpreted as a signal to noise ratio, since it is pro­

portional to the square of the expected difference in stick output under active and null 

hypotheses, and inversely proportional to the variance under the active hypothesis, which 

is always greater than the null hypothesis variance: 

vzxx[X] = E[(\n + p\2)2]-E[(]n + p\2)]2 

= E[\n + p,\*]-(\p\2 + o*)2 

= E[|n|4] + 4|/z|2E[|n|2] + E[|/z|4] - |/z|4 - 2|/x| V - <r4 

= E[|n|4]+2|/x|V 

= 2<74 + 2 M V 

> var0[X] = 2<r4. (4.3) 

Notably, D(N,M) is related to deflection [36], which is used as a criterion for the 

design of optimal linear-quadratic detection rules in Chapter 3, and also to the contrast 

[2] of the speckle pattern, which has been used in ultrasound tissue characterization (for 

example in [47] and [9]). Intuitively, D(N,M) is large when the difference between the 

conditional means under the two hypotheses are large, and the variance of each is small. 

If the speckle is assumed to be minimally correlated and described by Rayleigh/Rician 

statistics, the mean and second moment of Y(N, M) are given by 

E[Y(N,M)] = ^ E 
M N-M 

5>( i )+ $>ot7) 

Mpi + (N- M)p0 

N2 (4.4) 

and 

E[Y(N,M)2] = ^ E 
Af N-M 

5>(0+ £*o(y) 
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1 /M \ 2 (M \(N-M \ (N-M > 

= JV?E (j>i(*)J +2 (£*i(*)J( E ôO)J + f E *o(j) 

= -^j {{ME [X2] + M(M - 1)E [art]
2} + 2(N - M)ME [xt] E [ar0] 

+ {(N - M)E [arg] + (N - M)(N -M-l)E [x0]
2}) 

= ^ j (Mo2 + M2^2 + (N- M)oi + (N- M)2p2 + 2(N - M)MpQPi) 

(4.5) 

where pi, po, of and a2 are the means and variances of points in the image, statistics 

that can be calculated by application of the Gaussian moment theorem in terms of the 

underlying Gaussian random field statistics. 

The variance of Y(N, M) is then 

var[r(iV,M)] = E [Y(N, M)2] - E[Y(N, M)]2 

= - ^ [Mo2 + M2p\ + (N- M)oi + (N- M)2p2 + 2(N - M)Mp0Pi 

- {M2p\ + 2(N - M)MpoPi + (N- M)2p2)] 

Ma2 + (N- M)a2 

AT* 

Finally, we calculate D(N,M): 

D(N,M) 

(4.6) 

E[Y(N,M)-Y(N,Q)]2 

vax(Y(N,M)) 
(Mpl + (N-M)p0)

2/NA 

(Ma2 + (N-M)a2)/N* 
(Mpx + (N- M)p0)

2 

(Ma2 + (N- M)a2) 
(4.7) 

in terms of the mean and variance of the speckle pattern. 

For a given target size, D(N, M) increases linearly with increasing stick length, reach­

ing a maximum value when the stick exactly matches the target. When the stick is larger 

than the target, increases in stick size can only extend the operator to include pure noise. 

This results in an increase in M, and a constant value of N, leading to a decrease in 

D(N, M). The value of D(N, M) is plotted for targets of varying length in 5.2 dB noise 
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Figure 4.2 D(N, M) for targets of indicated length in 5.2 dB simulated speckle. As 
stick size increases up to the target length, D(N, M) increases linearly; when stick size 
N is larger than the target size M, D(N, M) decreases, indicating optimal performance 
when the stick is well-matched to the target. 

in Figure 4.2. The figure shows the costs of under- or over-estimating the target size 

when selecting a stick length and thickness. While the costs of under-estimation appear 

more significant, the penalty for over-estimation still must not be ignored. Since stick 

length and thickness are generally set once for an entire image, care must be taken to 

ensure that an adequate value is selected. The potential exists for an adaptive size stick; 

however, this topic is beyond the scope of this dissertation. 
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4.3 Decision Directed Sticks 

Implicitly, the techniques described above have assumed that the boundaries are 

uniformly distributed in their orientation. For the case of medical ultrasound, this is 

an unwarranted simplification, because the modality is physically incapable of imaging 

structures which lie parallel to the interrogating sound beam. In fact, the boundaries 

in an acoustic image will almost all be oriented nearly perpendicularly to the beam 

direction. 

Inclusion of a set of prior probabilities for the line orientation in the detection rule can 

greatly improve on the performance of the GLRT. The GLRT is similar to a likelihood 

ratio test (3.1), except that the numerator 

LRT(x) ~ ^TTfProb [ Receive x | i th target present] (4.8) 
i 

is replaced with a conditional pdf for the maximum likelihood hypothesis: 

GLRT(x) ~ maxProb [ Receive x | i th target present]. (4.9) 

It is most useful when the priors TTJ are unknown. If the priors are known or can be 

estimated, however, we can replace the maximum likelihood estimate in (4.9) with a 

more powerful maximum a posteriori estimate, which we call the decision-directed Sticks 

detector: 

DDS(x) ~ max7rtProb [ Receive x | i th target present ]. (4.10) 

The new test can be implemented by thresholding 

_ m a x x i i V | B , ( I | H i ) 

1 n exp (£(x - Pi)T(x - p^) 
= —max ^ T -

7T0 * exp (xrxT) 

« max Ti exp (^(x, pi) + 7 ^ ( # , # ) j 

« C max exp flog m + —{x,pi)j 
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« m p ^log7rf-(-— {x,pi)j (4.11) 

where (», •) denotes an inner product, pt denotes the ith target, and a2 is the variance 

of the noise, assumed to be white and Gaussian, and C = exp \^(jM,Pi)\ a constant 

with respect to i, since all the sticks are the same length and have equal energy. Note 

that since 0 < %i < 1, it is known that logTr* < 0; thus, the prior term in (4.11) is a 

penalty on less probable orientations. Furthermore, the penalty is possibly quite stiff, 

since lim^o log a; = -co. 

The division of the projection value by the noise variance has an additional inter­

pretation: the prior information attains greater significance in higher noise levels when 

the projection is highly noisy. Conversely, when the noise level is lower, the projection 

information is given more weight. In the case of a very high signal to noise ratio, the 

test reduces to the case of the original Sticks algorithm. If pt has values O or l, as in 

the formulation we have used for line detection, (4.11) reduces to the selection of the line 

sum with the maximum value after a penalty has been applied to terms unlikely to be 

true lines. The original Sticks algorithm is obtained as a special case by assuming equal 

priors, or when the signal to noise ratio is very high. 

Even though it is known that only targets perpendicular to the beam will yield strong 

reflections, it may not be possible to infer a set of prior probabilities from scanning 

geometry alone. Thus, it is highly desirable to estimate the priors from the image itself. 

In [39], we presented the the following method of performing this estimation. First, 

the Sticks algorithm is used to determine the angle of the most prominent line segment 

passing through each point. Assuming additive white Gaussian speckle for simplicity, this 

estimate is the maximum likelihood estimate of the orientation of the line present, if one 

exists. Next, a histogram is formed of the estimated angles near each pixel (e.g., within 

the support of the stick operators). This histogram is normalized to unit volume and 

used as a prior distribution on line segments passing through the point. This technique 

is inspired by the treatment of maximum a posteriori probability estimation in [48]. 

The decision-directed Sticks algorithm can thus be written in three steps [39]: the 

determination of the most probable line direction at each point, the computation of a 

prior probability for each angle at each point, and the computation of the final test 
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statistic: 

a(x,y) = aigmax^2 sg(i,j)f(x - i,y-j) (4.12) 
« j 

irg(x, y ) = E w(x + *\ V + J)I(<x(x, y) = 9) (4.13) 

/'(x,y) = max I logT^ir,y) 4- — J ] s g ( i , j ) f ( x - i , y - j) J , (4.14) 

where f(x, y) is the original image and f'(x, y) denotes the output test statistic, a(x, y) 

denotes the most probable line orientation at point (x,y), se(i,j) is a stick at the 9 

orientation, w(x, y) is a mask function which is unit valued on the union of the support 

of the sticks and zero-valued elsewhere, %g(x,y) is the computed probability of a line at 

orientation 9 at point (x,y), and I(expr) is the indicator function, equal to 1 if expr is 

true, 0 if false. 

Figure 4.3(a) shows the result of a length 7, thickness 1 decision-directed Sticks pro­

cedure The improved speckle reduction and increased contrast of the boundaries between 

fat and muscle layers are clear in a comparison of this figure with Figure 4.3(b), which 

shows an image resulting from length 7, thickness 1 sticks. A vertical slice of each of these 

images is given in Figure 4.4. These slices show the increases in boundary detectability 

that result from using the Sticks and decision-directed Sticks procedures. In Figures 

4.4(b) and (c) the boundaries are marked by narrower peaks, and the non-boundary 

points by lower intensity, especially in the decision-directed Sticks image slice, Figure 

4.4(c). 

4.4 Image Enhancement with False Color 

The Sticks technique can be described as a GLRT for lines in additive white Gaussian 

noise. As such, it is suboptimal even when the noise model is correct. It does, however, 

have the property that pixels are summed along the maximum likelihood target orienta­

tion. It therefore is of value to display not only the magnitude of the test statistic at each 

point, but also the orientation of the stick which produced the maximum output. This 

can be accomplished by assigning each pixel an orientation dependent hue in addition to 

the intensity value proportional to the detector output. 
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(a) 

(b) 

Figure 4.3 Original image processed with (a) length 7, thickness 1 sticks, and (b) length 
7, thickness 1 decision-directed Sticks procedure. 
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Figure 4.4 Vertical cross sections of the original image (a) and the processed images 
in Figure 4.3: length 7, thickness 1 sticks (b), and length 7, thickness 1 decision di­
rected sticks (c). Both processing algorithms are effective at reducing noise and making 
boundary peaks more easily detectable, especially the decision directed approach in (c). 
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The idea of applying false color to an ultrasound image was used in [49] to display 

statistical properties of the backscatter at each point. We feel the notion has broad 

applicability in ultrasound image enhancement and that false color applied to the Sticks 

procedure can significantly improve the detectability of weak features. Additionally, it 

provides image detail that otherwise would not be known. As was the case with the 

decision directed Sticks procedure, the use of false color to display angle information can 

be implemented in conjunction with any Sticks or rotating kernel technique. 

The problem of displaying angle and intensity as a color is one of displaying a hue, 

saturation and intensity (HSV) color space. This is complicated, because while HSV is a 

natural space for describing perceptible colors, not every HSV triplet can be made up of 

the red, green and blue (RGB) components which compose standard computer displays. 

Thus, the mapping from HSV to RGB space is not exact or unique. Figure 4.5 was 

produced using the procedure shown in Table 4.1. 

Example images resulting from enhancement with false color are shown in Figures 4.5 

and 4.6. These figures show the original image and the Sticks output image in false color 

obtained by coding the orientation of length 15, thickness 1 sticks as a hue. Note that the 

uncolored images can be obtained from the colored ones by summing red, green and blue 

components and normalizing to suit the display's dynamic range. In clinical applications, 

the ability to display additional information without "corrupting" the original image is 

important because the expertise of the ultrasound sonographer is highly specialized in 

analyzing images with standard appearance. 

Figure 4.5(a) and Figure 4.6(a) show the raw false color images, where hue is equally 

distributed over all angles. Figure 4.5(b) and Figure 4.6(b) show the same images, but 

with a color map which shows almost a full spectrum of color in the range of angles 

that describe the fat boundaries near the top of the image. The colored circle visible in 

the image was superimposed on the raw image and processed along with the rest of the 

image; its color at various points on its diameter indicates the hue assigned to boundaries 

at corresponding orientations. 

The colored images, especially the (b) images show clearly that the outermost fat 

boundary is in actuality two separate boundaries, a fact which is much more visually ap­

parent than in the corresponding gray scale images. Thus, a more precise characterization 
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(a) 

Figure 4.5 Original image with false color applied to indicate the direction of the most 
prominent stick at each point. The hue applied is obtained from the direction of the 
most prominent length 15, thickness 1 sticks at each point. The colored circle visible in 
the image was superimposed on the raw image and processed along with the rest of the 
image; its color at various points on its diameter indicates the hue assigned to boundaries 
at corresponding orientations. The image shows a range of hues along curving lines, such 
as the fat boundaries near the top of the image. Image (a) is obtained by distributing 
hues evenly about the color circle; Image (b) is the result of warping the colormap to 
show a full spectrum along the broad boundary at the top of the image. 
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Table 4.1 Conversion from (H,S,V) to (R,G,B) color space. Adapted from [1]. 

function (h, s, v) -»• (rt g, b) 

h = h / 60 
i = floor (i) 
f = h - i 
p = v * ( l - s) 
q = v * ( l - s*f) 
t = v * ( l - s*( l - f)) 
case i of 

0 

end 

(r, g. b) = (v, t, p) 
(r, g. b) = (q, v, p) 
(r, g. b) = (p, v, t) 
(r, g. b) = (p, q, v) 
(r, g, b) = (t, p, v) 
(r, g, b) = (v, p, q) 

Notes: 
h is an angle between 0° and 360° 
s is the saturation value set to some constant between 0 and 1 (unused in this application) 
value is normalized to lie between 0 and 1 
outputs, r, g and b all fall between 0 and 1. 
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(a) 

Figure 4.6 Sticks image with false color applied to indicate the direction of the most 
prominent stick at each point. The hue applied is obtained from the direction of the 
most prominent length 15, thickness 1 sticks at each point. The colored circle visible in 
the image was superimposed on the raw image and processed along with the rest of the 
image; its color at various points on its diameter indicates the hue assigned to boundaries 
at corresponding orientations. The image shows a range of hues along curving lines, such 
as the fat boundaries near the top of the image. Image (a) is obtained by distributing 
hues evenly about the color circle; Image (b) is the result of warping the colormap to 
show a full spectrum along the broad boundary at the top of the image. 
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is possible with the colored images. Because of this revealing demonstration, we believe 

that the use of false color is a very promising technique with potential to significantly 

improve the capability of diagnostic imaging devices. False color allows two additional 

degrees of freedom in the display (only one of which is used here), which can be used to 

supply additional information to the user. Most importantly, the additional information 

can be introduced into the display or switched off without qualitatively changing the 

appearance of the scan. Further research is required to determine the best quantities to 

encode using false color. 

4.5 Conclusion 

This chapter has discussed the use of the Sticks algorithm to enhance images for 

boundary detection. The technique operates by applying a set of templates as a filter 

bank and retaining the largest filter output at each point as a test statistic. It has 

been shown that by modifying the length and thickness of the templates, the technique 

can be made more sensitive to thicker lines, or achieve a different trade-off between 

speckle suppression and the ability to follow tightly curving boundaries. We have also 

demonstrated a technique for estimating from the image itself the prior probability of 

a line of any orientation passing through each point, which results in greater speckle 

rejection and better performance of the detection procedure. Finally, we have presented 

a means of displaying the angle information at each point as a false color. This is an 

extremely promising idea because it allows for entirely new information to be incorporated 

into an image without affecting the gray level value of the original image. 

Note that the class of rotating kernel detectors to which these algorithms belong is 

far broader than that which can be surveyed here. Lee and Rhodes [26, 27, 28, 29] and 

Hou and Bamberger [30, 31] have experimented with similar approaches. In our own 

work, we have used the median operation [43] in place of a sum, and obtained results 

similar to those produced by the Sticks algorithm. These methods have applicability in 

medical ultrasound imaging because of their ability to enhance the linear image features 

which correspond to tissue boundaries. They also may find applicability in other forms of 
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coherent imaging, such as microwave synthetic aperture imaging, because of the statistical 

and physical analogy between the speckle noise in these two imaging modalities. 
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CHAPTER 5 

DETECTION IN RADIO FREQUENCY (RF) 

ULTRASOUND 

5.1 Detection of Large Scatterers 

The techniques studied to this point have been successful in facilitating computer 

detection of boundaries of interest in ultrasound images. The images studied in Chapters 

3 and 4 were produced by non-coherent processing which makes the detection process 

less sensitive to deviations from the ideal behavior of the radio frequency (RF) signal. 

Under ideal circumstances, however, the loss of phase in the non-coherent processing 

can lead to a significant performance loss. In this chapter, we will attempt to estimate 

this performance loss and quantify the amount of distortion that a coherent system can 

tolerate. A successful coherent demodulation approach has the potential to significantly 

improve the boundary resolution capacity of a system by making it possible to detect 

more precisely the locations of boundaries that fall between resolution cells. Essentially, 

this detection would combine the stages of image formation and boundary detection. 

The model for the RF trace is a signal of the form: 

r(t) = E ^ p ( t - 2 t ) c o s ( w ( ( - T k ) ) 4 - E A p ( t - 2 f ) c o s ( w ( t - l f ) ) 
k I 

= n(t) + EAp(*- r i )cos(w(*-T | ) ) , (5.1) 
i 

where the diffuse reflectors' scattering strengths are denoted ak, and the strengths of the 

specular reflectors are denoted 0k. Under the assumptions that scatterers are densely 

spaced and have independent, identically distributed scattering strengths, the resulting 

signal can be written as the superposition of Gaussian noise and reflected copies of the 

interrogating pulse from the specular scatterers. 
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True ultrasound traces deviate from this model in a number of ways. Notably, 

frequency-dependent pulse attenuation and non-linearities such as phase aberration in 

the interrogation process lead to distortion of the pulse shape. In addition, the initial 

phase of each trace is often uncertain because the transducer is manually positioned, a 

process which can easily lead to uncertainties in position on the order of a fraction of 

a wavelength (approximately 0.1 mm at 1.5 MHz). Finally, phase aberration leads to 

widening of the focal region and adds uncertainty to any estimate of transverse correla­

tion. Signal processing approaches to counter these aberrating effects have not yet been 

successful, and such non-idealities invariably lead to suboptimal coherent detection. 

5.2 RF Signal Model 

If a large scatterer is located at depth z within a trace, the trace will have the form 

r(t) = n(t) + pp(t - 2z/c) cos(w (t - 2z/c)) (5.2) 

around time t« 2z/c, where c is the speed of sound, and 

r(t) = n(t) (5.3) 

otherwise. As in Chapters 3 and 4, we assume that targets lie along roughly straight 

lines within the scanning coordinate system. Thus, when a sufficiently strong scatterer 

is present in one RF trace, the same structure will also be seen in nearby traces. For 

example, if a target is present at location (XQ, to) in the scan plane, then for values of x 

close to Xo, and some value of 9, 

r(x, t) = n(x, t) +0p(t- T(x, 9)) cos (ut - uT(x, 9) - <f>(x, 0)), (5.4) 

where 

T(x, 9)= tQ- 2 ( x ~ X o ) tan 9 (5.5) 

as shown in Figure 5.1, and <p(x, 0) represents the initial phase of the pulse, which is 

in general unknown, and which may vary with x due to the uncertainty in transducer 
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Figure 5.1 Imaging geometry, linear scanning. 

positioning. Note that in a particular scanning geometry, the distance x — XQ may be 

a function of depth (time), for example in a sector scan, where scan lines are spaced 

linearly in angle. 

The Gaussian random process n(x, t) is the sum of reflections from many small unre-

solvable scatterers within the resolution cell. Its correlation is approximately separable 

into axial and transverse correlations, with the t (axial) correlation due to intersymboi 

interference-like effects, and the x (transverse) correlation due to pulse diffraction. In 

this discussion, we will consider only noise correlation in the axial direction, but in prin­

ciple, the extension to detection in a speckle field with two-dimensional correlation is 

straightforward. 

5.3 Detection Environment 

The detection environment in which RF routines must operate is more uncertain 

than that of processed images because, in addition to the effects of noise coloration, the 

signals are degraded by such effects such as phase aberration and frequency dependent 

attenuation. These can lead to significant and currently unpredictable loss of focus and 
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pulse distortion. In this section, we explore the effects of a few types of non-idealities in 

RF detection and compare their effects on detector performance. 

5.3.1 White noise 

In the white noise case, the observed signal over each of N lines is given by 

x(t, i) = n(t, i) + p(t - If) cos(& +wt), i = 1,2,..., N (5.6) 

where n(t) is a white noise process and fc is a phase offset on the zth scan line due to 

uncertainty in the initial position of the transducer. When fa is non-zero, it is generally 

unknown. 

The detection scenario is analogous to a communication system of N channels. The 

optimal detection statistic is the sum of terms obtained by demodulation and matched 

filtering on each channel: 

A(ar) = E / P(* - Ti) [(*(*» 0 cosM) * LPF(t)] dt, (5.7) 
i JTt 

where *LPF(t) denotes convolution with a low-pass filter to remove double frequency 

terms in the demodulation, and the integral in (5.7) is performed over all time, but 

effectively limited to a region around Ti where p(t — Ti) has its energy. This sum of 

integrals is a generalization of the matched filer to the multichannel detection problem. 

In (5.7), the signal is demodulated using only the in-phase component, which yields 

an optimal detector when 0 = 0; non-zero values of <£ lead to suboptimal performance 

of the coherent detector. In this case, optimal detection is performed with a quadrature 

detector sensitive to energy at the modulation frequency, but insensitive to phase errors: 

A(z) = 5 3 f p(t - Ti) [x(t, i) cos(ut) * LPF(t)] dt 

+ f p(t- Ti) [x(t, i) sin(wt) * LPF(t)] dt 
JTi 

(5.8) 

where the integrals are in the vicinity of Ti, as in (5.7), and LPF(t) is a low-pass filter used 

to remove double frequency terms after quadrature demodulation. The Sticks detector 
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described in Chapters 3 and 4 is essentially the maximum of a set of sums of absolute 

values, rather than magnitudes squared: 

A(r) = £ I f p(t - Ti) [x(t, i) cos(ut) * LPF(f)] dt 
i l JTi 

+ \J p(t - % ) [x(t, i) sin(wt) * LPF(t)] dt (5.9) 

since ultrasound images are usually formed from magnitude rather than intensity images. 

5.3.2 Colored noise 

In the more general case where the received signal has axial coloration, a prewbitening 

filter must be used. In this case, the detection statistic is given by 

where 

A(x) = E f P(* " £-)*(*» «*) cos(ut)dt, 
i JTi 

p(t)= jh-x(r)p(t-T)dT, 

x(t, i) = f h~l(r)x(t - r, i)dr, 

(5.10) 

(5.11) 

(5.12) 

and h~l(t) is the whitening filter for the noise, i.e., 

h(t) = jh~l(r)n(t - r)dr (5.13) 

is a Gaussian white noise process. 

When the data are delayed by an unknown phase, a quadrature detector must again 

be used: 

A(z) = £ \f p(t - Ti)[x(t, i) cos(wt) * LPF(t) * hrl]dt 

+ \[p(t - Ti)[x(t, i) sin(wt) * LPF(t) * h~l]dt , (5.14) 
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where, as before, *LPF(t) denotes the filter used to remove double frequency terms, and 

h~l(t) is the whitening filter, applied to the pulse, as in (5.11), as well as to the received 

signal. 

5.3.3 Pulse distortion 

Due to non-linearities in the propagation of sound waves in tissue, ultrasound systems 

have to contend with pulse distortion. Pulse distortion is simulated by adding in a 

filtered version of the pulse instead of a pure version, while detection is still performed 

by correlating with an unfiltered pulse. Coherent and energy detectors are identical in 

form to those in (5.7) and (5.8). 

Pulse distortion can be modeled more generally as a non-linear process by which pulse 

energy is shifted to higher harmonic frequencies. This has the effect of distributing some 

signal energy to other frequencies within the passband of the demodulator and other 

energy into the stopband, where it is severely attenuated by the demodulation process. 

Thus pulse distortion can be considered as a problem of energy loss as well as spectral 

modification of the pulse, and true detector performance is in fact worse than indicated 

below. 

5.3.4 Comparison of detector power by simulation 

These detection scenarios were simulated to produce receiver operating characteristic 

(ROC) curves which measure the relative performances of the different detectors. For 

each simulation, 100 random scans were generated, with and without a target, according 

to the model in (5.2) and (5.3). Targets were assumed to appear at a known location at 

one of 20 possible orientations across the scan lines. For each noise realization, detector 

outputs were produced for each target orientation, leading to a total of 20 detection 

statistics per simulation. ROC curves were obtained by thresholding the set of all the 

detection statistics and plotting for each threshold the probability that an output value 

exceeding that threshold corresponds to a true detection versus the probability that 

it corresponds to a false alarm. The simulation parameters were set to be typical of 

ultrasound imaging systems (carrier frequency of 1 MHz, sampling rate 25 MHz, pulse 
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Figure 5.2 ROC curves showing the effect of phase uncertainty on detection in white 
noise. 

duration 20 p sec). The signal to noise ratio was set empirically at -7dB for all simulations 

so that variations in ROC curves could be easily compared. As in earlier simulations, the 

detector was told the target location and the angles at which the target could appear. 

In the case of techniques dependent on statistical information, the noise statistics were 

provided to the detectors. 

Figure 5.2 shows the ROC curves resulting from simulations of the coherent detector 

at varying degrees of phase coherence with respect to the target. Phase errors can arise 

from slight motion of the transducer during a scan or by tissue motion due to, for example, 

respiration. Motion on the order of a fraction of a wavelength can lead to serious loss 

in detector power. Errors in sensor positioning also occur in synthetic aperture radar 

(SAR), and can potentially be corrected by a number of auto-focus algorithms that have 

been developed for use with SAR [50]. 

Figure 5.3 shows the ROC curves for the coherent detector, the quadrature energy 

detector and the Sticks detector in white noise. The coherent detector significantly 

outperforms the energy and Sticks detectors, but the energy and Sticks detector perform 
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Figure 5.3 ROC curves showing performance gap between coherent detector and energy 
detector in white noise. 

comparably. Figure 5.4 shows ROC curves for colored noise simulations. As in the 

simulations in Chapter 3, the prewbitening filter improved performance over coherent 

detection in colored noise and, as in the white noise simulation, the energy and Sticks 

detectors are far inferior to the coherent detectors. 

Figures 5.5 and 5.6 show ROC curves for simulations of ultrasound pulse distortion 

in white and colored noise, respectively. Pulse distortion was simulated by convolving 

the received pulse with a copy of itself, approximately doubling its length, but leaving its 

Gaussian shape intact. Detection was done by correlating with an undistorted copy of the 

pulse; in ultrasound the true nature of pulse distortion is unknown. In both cases, again, 

coherent processing, even with a mismatched template, is superior to energy detection. 

Finally, Figures 5.7 and 5.8 show the effect of a frequency shift on coherent and en­

velope detection in white and colored noise. This form of pulse distortion is common in 

ultrasound imaging, as tissue is a dispersive medium, attenuating higher frequencies more 

than lower ones which results in a shift of the pulse's center frequency. For this figure, 

the frequency of demodulation was set to 80% of the frequency of modulation, and curves 
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Figure 5.4 ROC curves showing effect of noise coloration on detector performance. 
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Figure 5.5 ROC curves showing effect of pulse distortion on detector performance in 
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Figure 5.6 ROC curves showing effect of pulse distortion on detector performance in 
colored noise. 

were plotted for a coherent detector and an energy detector. In the white noise case, the 

energy and Stick detectors offered an advantage over the frequency-mismatched coher­

ent detector, but in colored noise, the coherent detector outperformed the noncoherent 

detector. 

5.4 Conclusion 

The simulations presented here have shown that coherent detection of boundaries in 

RF ultrasound is a practical goal. While phase errors can lead to significant performance 

losses, the coherent detectors were somewhat less sensitive to the pulse distortions and 

noise colorations simulated here. In contrast, the energy detector yielded much lower 

performance, and was itself more sensitive than expected to the distortions simulated. 

In spite of the uncertain statistical environment of RF ultrasound, the non-coherent 

processing typically done to produce B-mode ultrasound appears to involve significant 

sacrifices in performance. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary of Research Results 

This thesis has presented the results of a comprehensive study of the problem of 

boundary detection in medical ultrasound. In many cases, the boundary detection ap­

proaches require knowledge of the statistical behavior of ultrasonic backscatter; these 

statistics are derived from physical principles, and a plausible probability density func­

tion for images is derived. 

Boundaries between tissue layers are surfaces which are observed in cross-section; 

when an image is formed, they have the appearance of curving lines against a dark back­

ground. The curves are broad enough that, in the vicinity of each boundary point, they 

can be approximated by straight-line segments of some orientation. This simplification 

allows the problem to be reformulated as a problem of line detection, in which a compos­

ite hypothesis test is used to distinguish which orientation segment (if any) is present at 

each pixel. A number of different detection rules were surveyed, including the optimal 

likelihood ratio test, a test based on the deflection criterion, and "Sticks" techniques, 

template-projection based tests reminiscent of matched filtering. These detection rules 

were compared by simulation under controlled circumstances, and it was found that 

the Sticks and deflection approaches were nearly optimal in uncorrelated speckle, but 

Sticks was significantly suboptimal in colored speckle. In the case of colored speckle, 

a prewbitening filter can be used in conjunction with the Sticks technique to improve 

performance to nearly that of the deflection detector. The prewhitened Sticks approach, 

however, is highly sensitive to errors in the estimation of noise parameters and signal 

form. 
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In contrast, the basic Sticks technique was shown to be a practical image processing 

technique, and to have many useful extensions. For example, we presented a technique 

for enhancing boundary detection by estimation of the most likely angles at each point, 

and a technique of coding the orientation of the angle of the most prominent fine segment 

at each point onto a false color. This allows the display of additional information without 

obscuring the image's gray levels. 

Finally, we have presented additional simulations which suggest that coherent pro­

cessing of RF ultrasound is a practical goal with the potential to dramatically improve the 

performance of mathematical detectors of line segments in medical ultrasound imagery. 

6.2 Suggestions for Future Work 

The ideas in this dissertation led to many interesting ideas on which work should be 

continued. Some of these are listed below: 

6.2.1 Experimental verification of statistical analysis 

The statistical discussion in Chapter 2 is a powerful framework within which many 

problems may be formulated. In particular, the variance of image moment estimates has 

real applicability to many current approaches to tissue characterization. Experimental 

validation of the results in Chapter 2 would make them even more valuable. The validity 

of the statistical model presented for image intensity is somewhat conjectural at this time, 

especially for points where a target is visible, or where scatterer density is low. Ideas 

such as modeling backscatter with a K-distribution are under discussion in the literature 

[10, 51] but little experimental data have been given to verify the model. 

6.2.2 Sequential detection 

In Chapter 4 the trade-offs of operator size were quantified, and it was determined that 

it is highly desirable to match the detection template as well as possible to the targets 

of interest. Practically, this can be accomplished by performing hypothesis testing at 

each point by a sequential procedure [33]. This would involve performing detection with 
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operators of several different scales and using some criterion to decide at which scale to 

make the final detection. This is reminiscent of the adaptive size median filters described 

in [44, 43]. 

6.2.3 Adaptive filtering 

The rotating template approach to boundary detection is essentially a two-dimensional 

adaptive filter allowed to adapt within a small set of possible orientations. This approach 

has the advantage of being efficiently implementable with a bank of filters, but may be 

overly constrained with respect to other optimality criteria. Further work in identifying 

reasonable criteria and exploring gradient-based techniques for optimizing the template 

at each point may lead to useful techniques of ultrasound image enhancement. This idea 

may also be implemented in a manner similar to those in [43, 44]. 

6.2.4 Pixel- or scale-recursive algorithms 

For application to large images, or in a sequential detection setting where detection is 

performed using successively larger templates, the Sticks technique can be implemented 

with a fast algorithm which exploits certain properties of the templates. For example, 

each length N projection as in (3.1) is the sum of a length N — 2 projection and the 

intensities of two additional pixels. Similarly, stick projections can also be recursively 

computed from previously computed stick projections at adjacent locations. These re­

cursive computations can result in significant computational savings. 

6.2.5 Edge linking 

6.2.5.1 Dynamic programming 

In some cases where a binary edge map is desired, the enhanced images produced by 

the Sticks technique may be insufficient. In these cases, an edge linking approach such 

as that described in [52] may be able to produce smooth lines across discontinuities in 

the Sticks processed images. 
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6.2.5.2 Active contour models 

Along similar lines, the approach of active contours or Snakes has been used to con­

nect possibly discontinuous boundaries in images. Chalana et al. [53] have used this 

approach to detect cardiac boundaries in echographic sequences. Their approach has 

great potential, but requires user input to specify a starting segment for the algorithm. 

The Sticks technique is complementary to this approach. 

6.2.6 Multiscale ultrasound tissue characterization 

One idea that surfaced in the course of this research is the idea that ultrasound scatter­

ing is fundamentally a multiscale phenomenon. This is because ultrasound interrogation 

inherently separates the scatterer population into three regimes: scatterers much larger 

than a wavelength, those much smaller than a wavelength, and those about the same size 

as a wavelength. Large scatterers reflect ultrasound coherently, while smaller scatterers 

give rise to diffuse speckle noise. Scatterers about the same size as a wavelength, however, 

are ignored by this scattering model. The relative sizes of populations of different scale 

scatterers are, however, of fundmental importance in tissue characterization. 

By the use of different frequencies of interrogation, the properties of intermediate size 

scatterers can be investigated. Furthermore, the multiscale interpretation of scattering 

may lead to a general theory of multispectral ultrasound image formation, new pulse 

designs based on wavelet functions, and important contributions to the understanding of 

ultrasound scattering. 
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APPENDIX A 

MEASURES OPERATING MANUAL 

* * 

* Measures Operating Manual (MOM) * 

* Revision 0.8 * 

* * 

* Rich Czerwinski * 

* University of Illinois * 

* May 10, 1994 * 

* * 

* Touched up and revised slightly for * 

* inclusion in prelim document. * 

* rnc March 9, 1995 * 

1.0 Introduction 

This is a guide to the software used in the automatic 

estimation of fat and muscle thicknesses in the Beef 

Ultrasound Grading System (BUGS) project [1], [2], 

ongoing at the University of Illinois. 

The software described in this document has all been 

developed for the specific purpose of facilitating the 

boundary detection. Some of this work has been published 

in the open literature [3], [4] and more publications have 

been submitted for peer review [5], [6] . 
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The software is of three varieties: 

i) stand-alone code written in C 

ii) Matlab m-files which are interpreted by Matlab, 

a commercial software package sold by The MathWorks, 

Katick, MA. 

iii) scripts which execute a number of C programs, unix 

commands or Matlab m-files in batch mode. 

The m-files will be translated into C code at some future 

date, at which point the image analysis software will be 

completely stand-alone (i.e., will not require the presence 

of commercial software.) 

2.0 Input/Output 

2.1 Preprocessing 

The BUGS system collects a large amount of data from each 

carcass. Each scan is done with two transducers, each of 

which collects data at each of the various gain settings. 

The Measures programs do not yet operate on RF data; instead 

the raw data must be processed into images via the following 

procedure: 

i) extract a-lines, 

ii) Hilbert transformation, 

iii) time-gain compensation, 

iv) spatial transformation (i.e., displaying pixels in 

their appropriate physical position, using the 

transducer position information collected at scan time), 

v) compounding images from left and right transducers, 

so an entire half carcass can be seen in a single image. 
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The preprocessing and naming convention of RF data files is 

discussed in [7]. 

2.2 Input Files 

2.2.1 Image files 

The input image files required by the measures programs are 

stored in 

(horizontal scans) 

/bugs/images_rich/anml_xxx/cold/c?cgc???.pgm 

/bugs/images_rich/anml_xxx/hide_on/n?cgc???.pgm 

/bugs/images_rich/anml_xxx/hide_off/f ?cgc???. pgm, 

(skin scans) 

/bugs/images_rich/anml_xxx/cold/cs?gc???.pgm 

/bugs/images_rich/anml_xxx/hide_on/ns?gc???. pgm 

/bugs/images_rich/anml_xxx/hide_off/fs?gc???.pgm, 

where the unix wild card character '?' shows where the different 

files' names differ. The 'cgc' string appearing in all the file 

names indicates a compounded left/right transducer image, with 

time-gain compensation. 

2.2.2 Position files 

Every horizontal image file is accompanied by a position file 

which indicates the absolute positions of the image with respect 

to the carcass spine. The position files are found in 

/bugs/images_rich/anml_xxx/cold/c?cgc???. pos 

/bugs/images_rich/anml_xxx/hide_on/n?cgc???.pos 

/bugs/images_rich/anml_xxx/hide_off/f?cgc???.pos . 
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2.3 Output Files 

The Measures routines produce an output file 

/bugs/results/measures-xxx, 

which is a listing of animal numbers, carcass ID numbers, and 

measurements, which is suitable for processing using SAS. 

A copy of the measures output file is stored compressed in 

/home/wdo/rnc/analysis/working/measures_xxx. Z 

for backup purposes. 

An error file 

/home/wdo/rnc/analysis/errors_xrx.Z 

can be produced by directing stderr to a file while running 

the script. The error file is useful in determining if the 

script has run to completion, or if some files need to be rerun. 

3.0 Measures Files 

3.1 C Files 

The following are the executable C files used in estimating 

fat and muscle thicknesses: 

/home/wdo/rnc/analysis/cfiles/pgmchar_to_sun 

— Convert pgm format to sunraster. 

/home/wdo/rnc/analysis/cfiles/sunshiftup 

— Shift image columns up so the skin surface is in row 0. 

/home/wdo/rnc/analysis/cfiles/sticks 

— Image line enhancement program as described in [3] . 

/home/wdo/rnc/analysis/cfiles/sun_to_ml 

— Convert sunraster image into Matlab readable format. 

/home/wdo/rnc/analysis/cfiles/slices 

— Extract five, ten and fifteen cm vertical slices and 

write to a Matlab readable file. 
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/home/wdo/rnc/analysis/cfiles/number 

— Extract animal id information from position file and 

store it so that info is available to a Matlab m-file 

at a later time. 

/home/wdo/rnc/analysis/cfiles/one_stika 

— Modified Sticks algorithm used in processing skin scans. 

/home/wdo/rnc/analysis/cfiles/one_stikb 

— Ditto above. 

The source code for these programs is found in the files 

listed below. Indented are the names of the files that 

must be compiled externally and linked with the main program: 

/home/wdo/rnc/analysis/cfiles/sources/pgmchar_to_sun. c 

/home/wdo/rnc/analysis/cfiles/sources/jmast.c 

/home/wdo/rnc/analysis/cf iles/sources/sunraster. c 

/home/wdo/rnc/analysis/cfiles/sunshiftup.c 

/home/wdo/rnc/analysis/cfiles/sources/jmast.c 

/home/wdo/rnc/analysis/cf iles/sources/sunraster. c 

/home/wdo/rnc/analysis/cfiles/sticks.c 

/home/wdo/rnc/analysis/cfiles/sources/jmast.c 

/home/wdo/rnc/analysis/cfiles/sources/sunraster.c 

/home/wdo/rnc/analysis/cfiles/sun_to_ml.c 

/home/wdo/rnc/analysis/cfiles/sources/jmast. c 

/home/wdo/rnc/analysis/cf iles/sources/sunraster. c 

/home/wdo/rnc/analysis/cf iles/sources/savemat. c 

/home/wdo/rnc/analysis/cfiles/slices.c 

/home/wdo/rnc/analysis/cfiles/sources/savemat.c 

/home/wdo/rnc/analysis/cfiles/number.c 

/home/wdo/rnc/analysis/cfiles/sources/savemat.c 

/home/wdo/rnc/analysis/cfiles/one_stika.c 
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/home/wdo/rnc/analysis/cfiles/sources/jmast.c 

/home/wdo/rnc/analysis/cf iles/sources/sunraster. c 

/home/wdo/rnc/analysis/cfiles/sources/savemat.c 

/home/wdo/rnc/analysis/cf iles/one_stikb. c 

/home/wdo/rnc/analysis/cfiles/sources/jmast.c 

/home/wdo/rnc/analysis/cfiles/sources/sunraster.c 

/home/wdo/rnc/analysis/cfiles/sources/savemat.c 

The externally compiled files contain functions needed to 

save sunraster files, and Matlab files. 

3.2 M-files 

3.2.1 Primary processing programs 

The following files run under Matlab in batch mode, 

invoked directly from the unix shell: 

/home/wdo/rnc/analysis/mfiles/cold.m 

— Process cold files. 

/home/wdo/rnc/analysis/mfiles/hideon.m 

— Process hide on files. 

/home/wdo/rnc/analysis/mfiles/hideoff.m 

— Process hide off files. 

3.2.2 Auxiliary files 

The following files contain functions called by the 

m-files listed in section 3.2.1 : 

/home/wdo/rac/analysis/mfiles/first_peak.m 

— Find location of first peak in a sequence of 

data past a given point. Locations of peaks 

are obtained from maxes.m, described below. 

/home/wdo/rnc/analysis/mfiles/horiz_thick.m 

— Find fat and muscle thickness given a vertical 
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cross section, and fat and muscle thickness 

mean and standard deviation. Works by finding 

the location of the local maximum of greatest 

value within a range defined by 

(skin position + fat thick mean +/- two standard deviations) 

for fat and 

(skin pos. + meas. fat thick + muscle thick mean +/- two std dev) 

for muscle. The result is scaled by 1/20 since 

each pixel represents 0.5mm . 

/home/wdo/rnc/analysis/mf iles/loc .m 

— Find location of the largest peak in a sequence 

in a given range. This works by taking the list 

of maxima provided by maxes.m (see below), and 

finding the list entry in the given range for 

which the function has the greatest value. 

/home/wdo/rnc/analysis/mf iles/maxes. m 

— Return indices of local maxima in a data sequence. 

This is a key routine. It works by first convolving 

the data sequence by the filter [13 1], then computing 

a first order difference y(k) = x(k) - x(k - 1). 

Locations of local extrema are places where y(k) y(k+l) < 0. 

In other words, where y(k) changes sign. A local maximum 

is any local extremum where y(k+l) > y(k). 

3.2.3 Data file 

/home/wdo/rnc/analysis/mf iles/measures, m 

— Contains the mean and standard deviation information for 

fat and muscle thickness at all measurement locations. 
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3.2.4 Debugging tool 

/home/wdo/rnc/analysis/mfiles/mark.m 

— Utility function to mark a specified point on a Matlab plot 

3.3 Scripts 

The following files are unix shell scripts which perform series of 

operations on the images in batch mode: 

/home/wdo/rnc/analysis/scripts/process 

— Process data files from a particular animal into results files. 

/home/wdo/rnc/analysis/scripts/process_cold 

— Process only cold data files. 

/home/wdo/mc/analysis/scripts/process_hide_on 

— Process only hide_on data files. 

/home/wdo/rnc/analysis/scripts/process_hide_off 

— Process only hide_off data files. 

4.0 Processing Mechanics 

This section is devoted to describing the mechanics of the data 

processing in a step by step fashion. The processing sequence 

is slightly different between horizontal and skin scans, but the 

flow of the processing is not dependent on carcass state (i.e., 

cold, hide on, hide off) except in the names of files. We step 

through the processing of a horizontal scan first, then show 

how a skin scan differs. 

4.1 Processing a (cold) horizontal scan 

The following steps are done from a unix shell: 

i) Convert pgm file to sunraster file called cold_xxx_temp 

ii) Copy cold_xxx_temp to cold_xxx_templ (this appears to be 

obsolete). 

iii) Shift columns up so that skin surface is flush with the top 
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of the image window. Store output file in filename.sun 

(e.g. clcgcm02.sun). 

iv) Run Sticks on filename.sun, length 31 stick, raising each 

pixel to 1.5 power and renormalizing to 255 gray levels to 

enhance lines. Store output in filename.sti31 . 

v) Convert sunrasterfile filename.sti31 to Matlab readable form 

filename.mat . 

vi) Extract vertical slices of Sticks output image at five, ten 

and fifteen centimeters from the spine. Store the slices in 

filename.mat . 

vii) Read animal carcass ID from position file; store ID number 

as animal number in filename.mat . 

viii) Remove all *temp* files. 

The following steps are done within a Matlab m-file, executed in batch 

mode from within the unix shell. 

ix) Load filename.mat . 

x) open output file measures_xxx . 

xi) Load in fat, muscle thickness mean and standard deviation 

for 5cm location. 

xii) Locate the skin surface. 

xiii) Identify the fat/muscle boundary. 

xiv) Identify the back wall of the muscle. 

xv) Compute fat and muscle thicknesses. 

xvi) Print data line to output file 

xvii) Repeat xi) through xvi) for 10 and 15 cm locations. 

The following steps are done from the original unix shell. 

xviii) Copy measures_xxx to /bugs/results/measures-xxx 

xix) Compress *.sun, *.mat, and *.sti31 
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4.2 Processing a skin scan 

The processing of a skin scan is the same as the processing of a 

horizontal scan except for a few key differences: 

i) Mo shifting of columns is necessary. 

ii) The line enhancement program is the simpler onestika or 

onestikb, instead of full Sticks. 

iii) There is no need to produce a Matlab readable version 

of the Sticks output image, or extract slices, because 

these things are incorporated in onestika and onestikb. 

4.3 Executing the Programs 

The software is executed by typing (at a unix prompt on ecstasy) 

cd "mc/analysis/working 

nice process xxx >& errors.xxx & 

compress measures_xxx errors.* >& /dev/null 

The result is a measures results file in the /bugs/results/ 

directory, a local copy of the measures results, a local 

error file, and various intermediate output files. 

These commands can themselves be executed in a script. 
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