AN AUTOMATED IMAGING DATA ACQUISITION AND ANALYSIS SYSTEM
FOR THE SCANNING LASER ACOUSTIC MICROSCOPE

BY
DAVID D. NICOZISIN

B.S., University of Illinois, 1986

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1989

Urbana, Illinois

This thesis is dedicated to my parents,

DEDICATION

Rev.

Fr. George

Sylvia Nicozisin, who taught me long ago that through faith
perseverance, I could succeed at whatever I did.

your love and support.

God bless you both.

Thank you

iii

and
and
for

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Professor William D.
O'Brien, Jr., for all of his encouragement and assistance during
this project, but especially for his undying optimism during some
of the more lean months.

In addition, I would like to thank Diane Agemura and Felice
Chu for their help in testing the new system as well as providing
suggestions along the way. I would also like to acknowledge Ilmar
Hein, Wanda Elliot, Nadine Smith, Rodney Mickelson, and the other

people who provided assistance and advice. Thanks everybody.

CHAPTER

1

2

TABLE OF CONTENTS

INTRODUCTION. . . ¢ ¢ o o « o o o o o o o

THEORY AND BACKGROUND INFORMATION . .

PREVIOUS AUTOMATION SYSTEMS AND ALGORITHMS.

CURRENT SYSTEM. . . <« « « o o o o o o =

SYSTEM VERIFICATION

DISCUSSION.

CONCLUSIONS

REFERENCES.

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

A

H Q@ " M O 0w

2 B OR®" Y

- ° . - - . . . - . - . .
. . -

ATTEN PROGRAM LISTING . .
SPEED PROGRAM LISTING

DISPLAY PROGRAM LISTING

GRAB PROGRAM LISTING.

PLOT PROGRAM LISTING. .

STATS PROGRAM LISTING . .
CHANGE WINDOW PROGRAM LISTING
ACQUIRE FUNCTION LISTING.
HISTOGRAM FUNCTION LISTING.
SPEED PLOT FUNCTION LISTING

CURSOR FUNCTION LISTING

INDEX POINTER FUNCTION LISTING.

STATS FUNCTION LISTING.

18

29

49

55

60

62

64

68

76

77

78

80

82

84

88

90

93

96

98

CHAPTER 1

INTRODUCTION

It is a well-known fact that computers are an integral part
of today's scientific research. Whether théy are used for
acquiring data, processing data, or running simulations, computers
have given scientists the ability to perform tasks that were never
before possible or at least prohibitively time-consuming. As time
has gone on, those tasks have become more involved and more
complicated:; and, consequently, scientists have desired enhanced
performance from computer systems. Computer designers have
answered those desires with supercomputers or specialized data-
processing hardware for specific applications. However, the
computer designers realized that what they were doing, as with all
engineering disciplines, was a practice of trade-offs--in this
case, balancing enhanced speed and performance with current
technology and cost. It is unfortunate that the concept of trade-
offs has become so cliché-ridden, because no truer concept exists
in engineering.

Something similar to this occurred at the Bioacoustic Research
Laboratory at the University of Illinois, Urbana, Illinois,
although perhaps on a smaller scale. Located in the Laboratory is
a Scanning Laser Acoustic Microscope (SLAM), a 100 MHz ultrasonic
microscope. The SLAM has been used in ongoing research in the
areas of biology and metallurgy. The SLAM can be used to measure

such things as the attenuation of sound and the speed of sound in

! 2
a specimen; and through image and data analyses, the SLAM operator
can, for example, characterize biological tissue specimens such as
the content of a particular chemical or, in the case of metallurgy,
characterize metal fatigue. The purpose of this thesis, however,
is not to aiscuss in depth any of the studies involving the SLAM,
but to describe the mechanisms that go into the data analysis on
which those studies rely.

Through initial studies in the wuse of ultrasound to
characterize specimens, it was discovered that much data processing
went into performing that task. However, the data processing can
be very time-consuming, and often time is a constraint for certain
specimens. For example, certain fresh tissue samples must be
analyzed quickly to obtain desired results. Also, to characterize
certain stress fractures in metal correctly, the metal nust be
examined shortly after the fracture is induced. Consequently, a
data acquisition and analysis system using a computer was designed
and built using the currently available resources and technology.

However, it was discovered later that the system did not meet
all requirements and could be enhanced with new resources; and a
new system was designed and built. This was the most recent
system, but it had its drawbacks. A faster, easier-to-use system
that would allow the operator to concentrate more on specimen
preparation and interpreting results and be less concerned with the
actual data processing was desired. However, it was desired that

the user should be able to interact with the system more easily

should it become necessary. In an effort to enhance performance

3
yet again and produce an automated, "user friendly" system, a new
imaging data acquisition and data analysis system was proposed.

This is the subject of this thesis.

CHAPTER 2

THEORY AND BACKGROUND INFORMATION

2.1. Scanning Laser Acoustic Microscope

The scanning laser acoustic microscope (SLAM) (Sonomicroscope
100, Sonoscan Inc., Bensenville, Illinois) is the signal-generating
basis for which the new imaging data acquisition and analysis
system was specifically designed. The SILAM is a 100 MHz ultrasonic
microscope used in examining various types of specimens. A
detailed description of SLAM operation is available from the
references [1-6]; however, a summary of its operation and functions
will be presented here.

A block diagram of the SLAM is shown inr Figure 1. The
specimen is placed on the microscope stage ahd covered with a
special coverslip. The coverslip is a piece of clear 1/4 inch
plastic with a gold film on one side that is thin enough to make
the coverslip semireflective. The gold-film side is placed on the
specimen. A piezoelectric transducer located in the stage is
driven with a 100 MHz signal, and sound is produced that propagates
up through the stage. The stage itself can either be of fused
silica or have a trough to hold a small volume of water. In either
case, the fused-silica or water acts as a low-loss coupling medium
between the transducer and the specimen. The water stage gives a
more uniform sound field but is somewhat more fragile. Once the
sound propagates through the coupling medium, it propagates through

the specimen region and is attenuated and refracted to some degree,

ACOUSTIC
IMAGE
MONITOR

i

VERTICAL & COMPOSITE DATA
HORIZONTAL VIDEO —= ACQUISITION
DRIVERS GENERATOR SYSTEM

t
, |_RECEIVER |

SCANNER !
| PHOTODIODE |

~KNIFE EDGE

COVERSLIP

AREA OF —

SPECIMEN~——=
\\\ STAGE
TRANSDUCER -~ \\ <
PHOTODIODE —1-
v
| RECEIVER |
' H
0-80dB OPTICAL
ATTENUATORS] IMAGE :
] MONITOR
ULTRASONIC (not available with water stage) |
DRIVER

Figure 1. SLAM block diagram.

6
depending on the speqimen. Upon reaching the interface between the
specimen and coverslip, the sound produces a distortion, or dynamic
ripple, in the gold-film surface which oscillates at the acoustic
frequency aﬁd has an amplitude proportional to the acoustic
pressure reaching the interface. From above, a focused laser beam,
séanning in synchronization with a video signal generator, covers
an area of approximately 3 mm horizontally by 2 mm vertically. The
angle of reflected light is dependent on the localized amplitude
of the distortion. A photodiode is used to convert the reflected
laser light into a usable electrical signal. Placed in the path
of the reflected light is a knife edge which blocks a portion of
the light, dependent on the reflected angle. Consequently, the
resulting signal from the photodiode is proportiocnal to the
localized acoustic pressure variations due to the specimen
inhomogeneity. The photodicde signal is sent through a receiver
to the aforementioned video signal generator where it is converted
into a two-dimensional image and displayed on a standard video
monitor.

The SLAM can display three different types of images. The
first is the normal acoustic amplitude image generated by the
photodiode. It represents acoustic pressure amplitude and hence
can be used to assess the attenuation of sound in a specimen. On
the display, bright areas correspond to lower attenuation and
darker areas correspond to higher attenuation. However, due to

some system nonlinearities, the overall acoustic illumination is

7
not uniform; but this problem can be overcome and will be dealt
with in a later section.

The importance of the acoustic image is that it can be used
to calculate the ultrasonic attenuation coefficient. The
attenuation coefficient represents the normalized decrease in
ultrasonic energy after the ultrasound is passed through a
specimen. This is one of the means by which a specimen can be
characterized, since certain changes in the make-up of a specimen
will change its attenuation coefficient.

The second type of image that the SLAM can generate is an
acoustic interference image. This 1image 1is generated by
electronically mixing the output of the photodiode with a 100 MHz
reference signal. Doing this produces an image consisting of
approximately 39 1light and 39 dark alternating vertical bands
(fringes). The bands represent equal phase contours of the
ultrasonic wave after it passes through the specimen. If a
homogeneous medium such as a saline solution (normally used with
tissue specimens as a coupling medium) is placed between the stage
and coverslip, then the vertical interference 1lines should be
straight and equally spaced. If a specimen is placed in the saline
solution, then the interference lines will shift at the interface
between specimen and saline. The importance of this "fringe shift"
is that the magnitude and direction of the shift are dependent on
the localized speed of sound in the specimen relative to the speed
of sound in the saline solution (or whatever is used as reference).

The interference lines will shift to the right if the speed of

8
sound in the specimen is greater than that of the reference, and
to the left if the speed of sound is 1less than that of the
reference.

The speed of sound is another important way to characterize
a specimen, and by placing an unknown sample with a known
reference, the speed of sound in the unknown can be determined.
Since the phase shift at any location within the image represents
the 1localized change of speed, the speed data can vary
significantly depending on the specimen. Obtaining many speed
values for a given specimen and performing statistical analysis can
yield the heterogeneity index (HI) which gives an indication of the
acoustic heterogeneity of a specimen and is useful in
characterizing the specimen.

The third type of image is the optical image. It represents
an image like that of a light microscope. It is produced by a
separate photodiode located within the stage. Since the coverslip
is semireflective, some laser light can pass through the specimen
and reach the photodiode. Only the fused-silica stage has this
photodiode, so an optical image can only be generated while using
that stage. The optical image is useful for pésitioning a specimen
correctly within the viewing area. However, an experienced
operator can usually position the specimen correctly using the
other two types of images as well.
2.2. Available Signals for Analysis

Since this is a data acquisition as well as a data analysis

system, some sort of signal 1is required as an input to be

9
digitized. The SLAM has many electrical signals that allow it to
operate; however, only a few contain information‘useful to the
operator. The first signal is the output of the receiver which
converts the signal from the photodiode in the path of the laser
light reflected off gold film. This can be séen in Figure 1.
(This should not be confused with the photodiode located inside the
fused-silica stage which is used for generating optical images.)
This signal relates to the received light energy which relates to
the received acoustic energy at the specimen coverslip interface.
The receiver output is the basic, unmodified, one-dimensional
signal before being converted to a video signal. " The laser first
scans from left to right, and the time frame during which the
signal returns to the left is known as the backtrace. During this
time, no acoustic energy is received, and the receiver output
represents maximum possible attenuation (zero energy). This is
important because that portion of the signal can be used as a
reference in calculating attenuation. The receiver output can be
used in conjunction with synchronization signals that the SLAM also
generates.

The receiver output is used to generate a video signal that
drives the video monitors. This is the second useful signal
generated by the SLAM. To understand how this signal is generated,
one must first understand what a video signal is. More detailed
information is available [7,8], but a brief description is given

here.

10

The SLAM video output is known as a black and white composite
video signal. An exaﬁple of a composite video signal is shown in
Figure 2. It meets the requirements of such a signal as specified
by the Federal Communications Commission. Basic black and white,
two-dimensional television is reconstructed from a one-dimensional
signal because it represents the motion of a modulated bright spot
traversing the viewing area from left to right and from top to
bottom in a series of straight parallel lines known as rasters.
For most of North and South America and including the United
States, the specification calls for 525 raster lines to make up one
full video frame.

To give the impression of continuity of motion, the frame must
be updated. Because of a biological phenomenon Kknown as
persistence of vision, the human eye is unaware of discontinuity
of motion at frame frequencies greater than 15 Hz. However, the
eye can detect flicker, the changing light intensity as frames are
switched, at frequencies higher than that depending upon the

frequency and brightness of the source. It was found that frame

o Active
Scan
Equalization Vertical
Pulses Sync Puise
. Horizontal U U U
63.5us Syne Pulse Vertical
—
Horizorsal Blanking
Blanking

Figure 2. Example of composite video signal (not to scale).

11
frequencies of 50 Hz or greater were sufficient to overcome this
problem. However, updating 525 lines at that rate requires more
bandwidth; and since television was meant to be modulated and
broadcast over communication channels, this was unacceptable. The
solution to this problem was to divide a complete video frame into
two fields: the odd raster lines and the even raster lines. This
is called interlaced scanning, where every other line is scanned
on a given pass. Interlaced scanning is shown in Figure 3. Since
there are an odd number of lines and because the raster lines
actually have a sliéht downward slope, each field is made up of
262.5 lines, where only half of line 525 is covered during the odd
field, and the other half is covered during the beginning of the
even field. Under the current standard, each field is updated at
a frequeﬁcy of 60 Hz (for reasons having to do with the standard

commercial power being 60 Hz). This gives an effective full frame

Qe N o W

Uy
13
12

15

17
19

16

Figure 3. Interlaced scanning.

12
frequency of 30 Hz, which is fast enough to preserve continuity,
while updating every other line at 60 Hz provides enough average
brightness to eliminate flicker.

The scanning is done by controlling two drivers, that on a
television monitor, control the direction of an electron beam
before it reaches the screen. There is a horizontal driver and a
vertical driver, both of which generate ramp functions that cause
the beam to traverse 1linearly across and down the screen,
respectively. In a composite video signal, the information for
controlling these drivers is contained with the actual picture
information. The information is coded as horizontal and vertical
synchronization pulses. The horizontal pulses have a frequency of
15.75 kHz (60 Hz multiplied by 262.5 raster lines), whereas the
vertical pulses have a frequency of 60 Hz (one for each field).
This means that each raster line is scanned in approximately 63.49
us. Approximately 11 us of that time is used for the sync pulse.
and horizontal blanking. The horizontal blanking is necessary
because it effectively turns off the display as the beam moves back
to the left portion of the screen at the end of a line. This is
called retrace. The rest of the portion of the 63.5 us is the
active scan region; and the displayed information is represented
by a voltage level--the lowest representing black, the highest
representing white, and in between representing some "grey level."
The levels used for blanking and the pulse waveform are voltages

that are less than that of black, making them "blacker than black."

i3

There is also a vertical blanking period that occurs when the
beam retraces from the bottom of the screen to the top. Because
of some pulse equalization to maintain stability, and because it
takes physically longer to perform a vertical retrace, horizontal
scanning continues during the vertical blanking period. This
effectively prevents some of the 525 raster lines from being
displayed; and because the actual time can vary, the number of
eliminated rasters can vary from 20 to 45, depending on the systen.

The overall composite video signal is limited to 4.5 MHz,
again, to preserve bandwidth. The signal level is 1.0 volt peak-
“to-peak, and polarized such that the pulse signal level is the most
negative value and the brightest white is the most positive value.
The actual dc level of the signal is not important, because the
signal is usually ac-coupled to an input.

The SLAM forms a composite video signal by using the
horizontal and vertical drivers that control the laser scanner to
drive a video signal generator as well. Since the receiver output
is a voltage level signal and is already synchronized with the
horizontal and vertical pulses, it can be added to those
synchronization signals. The receiver output is ac-coupled to the
video signal generator, internally dc-restored and scaled to an
appropriate amplitude and added to scaled vertical and horizontal
pulses to form a Eomposite signal that is output to the video
monitor. Those synchronization signals are also available as
separate horizontal and vertical pulses or as one composite

synchronization signal (no active scan information).

14
2.3. Two-Dimensional Images

Since this thesis deals with the concept of imaging, it is
importént to fully understand the principles involved. An image
is merely a fepresentation of something real. In the case of the
SLAM functions, the receiver output and composite video signal both
represent, in the form of a one-dimensional electrical signal,
either the attenuation of acoustic energy or constant phase
contours of that attenuation (in the interference mode). Through
the proper scanning technique, the one-dimensional signal can then
be decoded into the form of a two-dimensional image.

In all the data acquisition and data analysis systems built
for the SLAM, analyses are performed by some sort of computer. 1In
order for the computer to process information, that information
must be in digital form. Consequently, the one-dimensional
electrical signal is digitized. When converting an analog signal
such as the receiver output or composite video signal to digital
representation, via an analog-to-digital converter (ADC), sampling
frequencies are an important consideration. Even after meeting
requirements such as the Nyquist criterion, which requires that the
sampling rate must be at least twice the maximum frequency of the
signal to be sampled, other things must be considered when the
signal represents a full two-dimensional image.

In a two-dimensional image system such as that used in the
SLAM, the pertinent information in the output signals is contained
in blocks that will become raster lines. When that portion of the

signal is sampled by an ADC, each sample that is taken in the area

15
that would be displayed on a monitor is called a pixel, which is
an abbreviation for picture element. The number of bits used to
represent the pixel gives the dynamic range--the numerical distance
between the smallest and the largest representable values. For an
8-bit conversion, there are 2® = 256 possible discrete grey levels,
ranging from O (black) to 255 (white). Also, the more bits, the
smaller the difference between two adjacent grey level values.

The ability to resolve between two adjacent point sources is
called the resolution of an imaging system. The closer the two
point sources are, the higher the resolution has to be to resolve
them. This relates to the pixels because higher resolution
requires more pixels, implying a higher sampling rate.
Consequently, increasing resolution is limited only by the current
sampling technology. The total number of pixels in an image is
given by the number of pixels per line multiplied by the total
number of lines. Although technically incorrect, this is sometimes
called the resolution of a system.

Although the sampling rate seems to represent two different
concepts--maximum resolution in an imaging system, and twice the
maximum possible frequency of a one~dimensional signal--the
concepts are actually related. This is especially true in the case
of a SLAM imaging system, since the image is generated from a one-
dimensional signal. For example, if it is intended to use the
entire 4.5 MHz bandwidth of a video signal, then it is known that
the data acquisition portion of an imaging system must sample the

signal at the Nyquist rate of 9 MHz or faster to prevent aliasing.

16

However, the most important relationship is that between
temporal and spatial frequencies. This is due to the fact that a
physical area is scanned within a certain time period. An example
of this relationship is the SLAM in the interference mode. In this
mode approximately 39 equally spaced vertical lines are generated.
Since the horizontal scanning distance is approximately 3 mm, this
implies that the distance, or period, between lines is around 77
pum. Consequently, this implies a spatial frequency of 1/(77 um),
or approximately 13000 m™*. Spatial frequency can be determined
from the pixel information as well. For example, if a system has
a "resolution" of 390 x 200 (390 pixels per line, 200 lines), then
the period of each interference line will be 10 pixels, with a
spatial frequency of 1/(10 pixels). Because each pixel represents
the average intensity of a physical area of size 7.7 um by 10 um
(3 mm/390 by 2 mm/200), the physical spacing will be 7.7 um
multiplied by 10, or 77 um as before.

However, since the sampled video signal is also a time-domain
signal, the interference lines can be represented by a temporal
period and frequency as well. For example, 1if the active
(displayed) scan time of a raster line is 52.5 us, then the period
of the interference lines is approximately 1.3 us. This implies
a temporal frequency of 770 kHz. In this imaging system, each
pixel would represent 0.13 us in the horizontal direction.
Although the actual time spacing between two adjacent pixels on
different lines is 63.5 us (one full raster line length), it has

no spectral meaning, since this is a one-dimensional signal.

17

The importance of this relationship is that if a spectral
analysis is to be performed on an image, a different basis can be
used. However, the spectral analysis is 1limited to a one-
dimensional analysis of an individual raster line. If analysis of
a particular column or if a two-dimensional speétrum is desired,

only the space domain can be used.

18

CHAPTER 3

PREVIOUS AUTOMATION SYSTEMS AND ALGORITHMS

3.1. Consideration of Previous Systenms

It is important to take a close look at the previous
automation systems used with SLAM, particularly because certain
algorithms were developed to perform the image analysis [9-13].
Therefore, it was unnecessary to develop new algorithms for the new
system, since the original operations were proven to provide valid
results. Consequently, the analysis operations in the new systen
are largely enhanced versions of the previous system. The previous
system will be examined here along with the methods for performing
attenuation coefficient and speed of sound measurements.
3.2. Previous System Hardware and Software

The previous image acquisition and analysis system [14]
consisted of two parts. The acquisition portion of the system was
designed specifically for the SLAM and built mostly from discrete
parts and prefabricated building blocks such as a TRW analog-to-
digital converter board. The ADC was an 8-bit unit, with a 30 MHz
sampling rate, and sampled the receiver output of the SLAM. Since
the receiver output carries no timing information, synchronization
was made thrcugh use of the separate horizontal and vertical pulse
signals. After being sampled, the data were sent to the system's
internal main memory. Because of memory limitations, the image
resolution was 768 x 255 pixels. The 768 pixel specification is

effectively half of what the ADC is capable of performing at 30

19
MHz. Also, the 255 lines represent one field, not a complete
frame, and several of those lines occur during the backtrace and
contain no data. Overall system control was carried out by a Zilog
Z-80 8-bit microprocessor, which was the system-to-user-interface
via a terminal.

The system was also capable of performing high-speed
multiplications and additions, although most analysis was done by
sending image data to the laboratory's Digital Equipment
Corporation VAX 11/730 mainframe computer. The transfer of data
was performed using a 9600 BAUD serial connection. One full image
consisted of 198,208 bytes, and took approximately 186 seconds to
transfer uninterrupted.

The software of the data acquisition system processor was
mainly embedded as an operating system into ROM. However, a BASIC
monitor was provided to allow users to write simple programs to
manipulate data in the system. Most analysis was performed on the
VAX, where the code was written exclusively in FORTRAN.

3.3. Attenuation Coefficient Measurement

The attenuation coefficient represents the normalized
attenuation of acoustic energy after passing through the specimen.
‘To calculate the attenuation coefficient using the SLAM, the
insertion loss (IL) method is used. Using the acoustic image, the
insertion loss technique calculates the difference in amplitudes
of the received signal with and without a specimen of known
thickness in the sound path. For tissue specimens, this can be

performed by placing the specimen with normal saline, since saline

20
is a very low-loss material. The saline then becomes an unblocked
sound path reference. The IL is calculated.several times using
several thicknesses, and then plotted versus thickness. The
attenuation coefficient is determined as the slope of the best-fit
line calculated using the linear least squares method.

In developing this technique on the SLAM, several problems had
to be addressed [13]. They included a low signal-to-noise ratio
(S/N), nonuniform . illumination of the acoustic images, and a
nonconstant raster line reference signal that is dependent dpén the
overall energy of the signal. To compensate for the low S/N ratio,
signal averaging was used. To overcome the nonuniformity of
illumination, a small subarea of the image was used that was
approximately uniform. To account for the changing reference
level, the beginning of each raster line (the reference) was
sampled, averaged, and subtracted from the main signal level.

The actual analysis was performed by the Z-80 microprocessor
system on an area 96 pixels horizontally by 32 pixels vertically
located near the center of the image area. The SLAM was adjusted
to make that region as bright and uniform as possible. Since the
imaging area was fixed, the specimen had to be mobile to allow for
the taking of several measurements in both the specimen and the
reference region. (Note that the reference region-~-the area used
as the unblocked sound path reference--is different from the
reference signal, which is the portion of the receiver ocutput that

occurs during the retrace and represents full attenuation.) For

21
tissue specimens, the mobility was provided by placing the specimen
on a thin sheet of plastic coupled to the SLAM stage with water.

To find a value representing the acoustic illumination of the
image area, an image was acquired, including the reference signal.
The reference signal for each raster line used in the subarea was
averaged using 10 samples and then subtracted from the pixel values
on that raster line. All the pixels in the subarea were averaged.
This procedure was repeated 8 times, and the overall average was
taken. This value was converted to decibels, and then displayed
on the terminal screen approximately every 5 seconds. Equation (1)
is a mathematical description of this process.

n y+31 x+95 |
1 1
o) [)) e
n 3072
1 i=y j=x
where V = the average of the image area averages in decibels,
v;;= the value of the pixel at position (i,3),

r; =the average reference signal level for the i*" raster line,

i
n = the number of times the subarea is averaged,
i = the image row index,
j = the image column index,
x = the starting column number of the subarea, and
y = the starting row number of the subarea.
To measure insertion loss, the specimen was first placed on
the plastic sheet surrounded by saline. Next, the sheet was

positioned so that the saline was in the subarea, and the SLAM was

adjusted to maximize brightness and uniformity in that area.

22
Several values of V (from Equation (1)) were taken in saline by

moving the sheet, and the values were recorded by the operator in

a notebook. Similarly, several values of V were taken in the
specimen region and recorded. Since the saline was assumed
uniform, the saline V values were averaged to form V.. If the

values recorded for the specimen are V., then the insertion loss
values for a particular thickness are given by

IL =V, - V.. : (2)
These insertion. loss values are then used to calculate the
attenuation coefficient as described previously.
3.4. Speed of Sound Measurement

The ultrasonic speed of sound in a specimen can be determined
using the SLAM interference image. The vertical lines, or fringes,
represent equal phase wavefronts of the sound after passing through
the specimen. The specimen is placed on the stage with a
homogeneous reference medium with a known speed of sound such that
the image 1is separated into three horizontal regions. The top
region is the reference medium, followed by the specimen region,
and the bottom 1is also the reference medium. This causes the
interference lines to shift upon entering the specimen region, and
shift back upon reentering the bottom reference region. The
specimen must be prepared properly so that there is not an abrupt
shift in the interference lines. The speed of sound, c¢,, in the
specimen can be determined from the normalized fringe shift, N,

using the following equation derived in [10]:

23

Co 1

Cy = sin { tan™! }
sin 6, (1/tan §y4) - (NXy/Tsin 6,)

where c, = the speed of sound in the reference medium,

(3)

Ao = the wavelength of sound in the reference medium,
8, = the angle of sound, from the normal, in the reference
medium, and
T = the thickness of the specimen.
Only N must be determined; the other quantities are known.

The normalized fringe shift, N, refers to the amount of
lateral fringe shift relative to the fringe spacing. A number of
ways have been used to determine N. The first method required
measuring the fringe shift and fringe spacing by hand directly off
the monitor or from a photograph [10]. This method relied heavily
on operator experience and ability, was time-consuming, and
resulted in only a few speed values per specimen. Subsequently,
a computerized acquisition system was built that used a correlator
to track each of the interference 1lines, and ailowed computer
determination of fringe shift [9,11,15]. Using this method, 30 to
39 speed values could be obtained per specimen which allowed
statistical analysis to be performed more effectively. This
tracking system worked well with homogeneous specimens which have
smooth interference lines; however, on heterogeneous specimens it
often failed.

To analyze heterogeneous specimens, a technique called the
spatial frequency domain technique (SFDT) was developed [11]. It

was later modified [14] to improve results. A brief description

24
of the SFDT is provided here as well as the modifications that were
made.

If one were to plot the pixel values for one raster line of
an interference imége versus their corresponding column index, the
resulting waveform would approximate a sine wave. This is because
the interference lines are alternating light and dark bands. Next,
if one were to plot one raster line from the reference medium and
one from the specimen region on the same plot, it would be apparent
that the specimen sine wave, although of the same frequency, has
shifted in phase relative to the reference region. This is the key
to the spatial frequency domain technique. If the frequency of the
sine waves is ¢,, then the phase shift aA¢(-¢,) is given by

AP (=&o) = 2WYo/ Ay, (4)
where y, is the amount of horizontal shift, and), is the fringe
spacing. Since y,/), is the definition of the normalized fringe
shift N, N is given by

N = Ap(—£,)/27. (5)
To find the phase shift, the Fourier transform of each raster line
must be taken to find its spatial frequency spectrum. Next, the
phases for each 1line are found by picking the phase at the
frequency where the spectrum is a maximum (¢,), and taking the
negative of that value. This is because the sampled data are real,
and from the Fourier transform theory, the magnitude is symmetrical
about the imaginary axis while the phase is symmetrical about the
origin. Also from the transform theory, it is known that there is

a 27 ambiguity problem in determining the phase, since the phase

25
wraps around. To correct this, a phase unwrapping algorithm can
be enployed. An average phase for the reference region is
calculated, and the average is subtracted from each specimen phase
value to yield the phase shift A¢(-¢&,).

Since the data are discrete, the Discrete Fourier Transform

(DFT) is used. The DFT is given by

2
X, = 2 x, e % k=0,1,2, .. .N-1, (6)

where X, is the discrete frequency domain variable with index k, x;
is the discrete space or time domain (depending on the basis used)
variable with index 1, and N is the number of points used in
calculating the transform. The larger N 1is, the smaller the
frequency spacing, or the more "frequency bins" available. The
original SFDT used a 32-point Fast Fourier Transform (FFT) (which
is a computationally fast DFT algorithm, but requires that N must
be a power of 2). It assumed a constant fringe spacing,
approximately 84.5 um (1.5 us in the time domain), and hence a

constant spatial frequency of approximately 11.8 km*'

(temporal
frequency of around 660 kHz). Consequently, when the phase for
each raster line was being calculated, it was always at the sanme
discrete frequency. (Note that this frequency is not exactly the
desired frequency ¢,, because some leakage does occur when using

the DFT. 1In the SFDT and its derivatives, the nearest neighbor

metheod is used, and no interpolation is performed.)

26

The algorithm was lafer modified, because it was found that
for heterogeneous specimens, the actual spacing of the interference.
lines can vary significantly. Consequently, the algorithm woulq
look for the maximum spectral component within a certain band of
frequencies that were known to be the limits of the variations.
Also, because only a certain number of frequencies bins were to be
checked, a normal DFT was calculated for those frequencies alone.
The actual DFT size, N, was expanded to decrease the frequency
spacing. However, since speed variation can be very localized
within a specimen, the actual number of data points used in the
calculation had to be limited to a window length, W, shorter than
N. The remaining N - W data points were zero-padded.

The previous system employed a 768-point DFT. It assumed
temporal frequency limits on the interference lines to be 600 kHz
and 915 kHz. These values correspond to 18 frequency components
that were calculated and checked. A data window length of 20
pixels was used since this corresponded to the average period of
the interference lines in that system. The actual calculations
were performed on the VAX, and the necessary complex exponentials
for calculating the desired frequency components were precalculated
and stored to reduce computation time. Input for the program
included the actual digitized data, and a file the user could
modify which specified the lines to be used as reference and the
starting column of the analysis. After the data were read by the
program, the DFT of the specified frequency components was

calculated. The frequency with maximum spectral -magnitude was

27
found, and its corresponding phase stored. The phase data were
unwrapped. Because of system nonlinearities, the interference
lines tend to have a slight slope as they traverse to the bottom
of the screen. Consequently, instead of finding an average
reference phase value, the algorithm took the reference phase
values and calculated a slope and intercept using the linear least
squares method. Finally, the phase shifts were found for each
raster 1line by subtracting the corresponding reference phase
(calculated by using the raster line index as a range value) from
the current phase. The calculated results were stored in a file,
and could be plotted on paper to see a cross-sectional view of the
speed data versus raster line. This modified SFDT reduced the
overall time needed to produce speed data, and since it worked
vertically, it calculated one speed value for each available raster
line, in this case, 255 values. |

As a means of characterizing how heterogeneous a specimen is,
a heterogeneity index (HI) can be ccmputed from the speed data
[14]. The standard deviation o is a method of computing HI, since
it is a statistical measure of values about a mean. However,
finding the standard deviation of the speed values alone is not
enough. The SLAM system may contribute to this variation through
various sources, including electrical noise, a nonuniform sound
field, and errors caused by finite word length in the data
acquisition and computation portions of the system. Consequently,
a homogeneous medium such as saline, which should have the same

speed value throughout, will have some variation due to system

28
contributions. To correct for this contribution when calculating
the HI, the variation due to the SLAM system is subtracted to yield
variations due to specimen heterogeneity. As a measure of SLAM
system variations, the standard deviation of the reference ﬁedium
is used since it is a homogeneous substance. The standard
deviation of the reference is subtracted from the standard
deviation of the specimen. Equation (7) 1is a mathematical
description of calculating the HI.

HI = (o, - o0,) x 100 (7)
where o, is the standard deviation of the spécimen, and o, is the
standard deviation of the reference. For the previous acquisition
and analysis system, a FORTRAN program run on the VAX was used to
calculate the HI after the user specified the desired regions to

be used in the analysis.

29

CHAPTER 4

CURRENT SYSTEM

The previous system worked well, but it had its shortcomings.
Consequently, a new system was proposed which is the primary
subject of this thesis. The algorithms such as those to compute
the attenuation coefficient and speed data were left essentially
intact because they were effectivé in the previous systen.
However, some problems were revealed with the algorithms and had
to be corrected. Other problens reshlting from incompatibility had
to be dealt with in other ways. What follows 1is an overall
description of the new system, hardware and software, and fhe
decisions that went into the new design.

4.1. Hardware

The first decision to be made was the type of computing
machine on which the analysis necessary for specimen
characterization should be performed. Previous systems had used
both a minicomputer and a mainframe, which provided reasonably fast
computation times. However, the bottleneck in those systems was
the transfer of data from the data acquisition system to the
computer, which, for example, was performed previously using a 9600
BAUD serial connection. In addition, the mainframe was a time-
shared system, and performance was considerably slower during peak
usage hours. Final analysis of the speed and attenuation
coefficient data was performed after completing a SLAM session and

was done off-line. As a result, .it was decided to have a dedicated

30
processing machine for SLAM analysis algorithms. At that time,
there was an IBM Personal Computer AT (AT) available as a resource.
Although actual computation time in the AT was slower than for the
mainframe, it was decided that the shorter transfer time would
shorten overall analysis time, and the AT was selected for the new
system.

The AT uses an 8 MHz 80286 microprocessor for its central
processing unit (CPU). In addition, it also has an 80287 math
coprocessor té enhance the speed of floating pocint operations. The
AT has a 640 kbyte main memory and a 30 Mbyte winchester hard drive
for storing programs and data. Also, an ArchiveXL 5540 40 Mbyte
tape back-up system was obtained. This device occupies a half-
height disk drive space in the AT and uses palm-size tape
cartridges. The tape back-up was obtained primarily as permanent
storage for image files which are too large and accumulate to
quickly to be kept on the hard drive for long periods of tinme.
The AT also has an Enhanced Graphics Adapter (EGA) with a
monochrome monitor which allow for some graphics capabilities.
More detailed information on the IBM PC/AT can be found in the
references [16].

Once the computing portion of the system had been decided
upon, the next decision to be made concerned the data acquisition
section of the new system. The previous system had been designed
and built specifically for the SLAM. Its primary limitations were
the speed and size of its memory. The memory was selected at the

time because it was what was available for reasonable cost.

31
Technology has improved since that time, and memory integrated
circuits are more dense (larger capacity) and faster at a lower
cost. But technology has also improved at the building block level
of system design as well. Devices called video‘frame grabbers have
been built that plug directly into the expansion slots of IBM PC-
type computers, and digitize and store video images. Using the
frame grabber would save much of the time required to design,
build, and debug a new hardware system. Consequently, it was
decided that this would be the approach of the new system; the
frame grabber and the AT would provide a self-contained image data
acquisition and analysis system.

The frame grabber selected was the Data Translation DT2851
video frame grabber. The DT2851 fits into one standard extended
expansion slot in the AT and is powered directly by the AT.
Communications between the AT and the frame grabber are made
through the standard IBM PC I/0 registers. The DT2851 requires a
standard composite video signal as an input. The DT2851 has an 8-
bit 10 MHz ADC which is one-third of the sampling rate of the
previous system (although the effective rate of that system was 15
MHz). However, because of the spacing of the interference lines
and other points of interest, it was decided that the higher
sampling rate was unnecessary. The DT2851 also acquires one full
frame instead of just one field. As a result, one full image is
512 pixels by 480 lines. One full frame requires 256 kbytes of
memory for storage, and the DT2851 has memory for two such frames

(buffers) consisting of dual-ported random access memory (RAM).

32
The buffer memory resides on the AT bus in the logical address
space of the AT's extended memory. This allows both the frame
grabber and the computer to access the memory if desired.

The DT2851 can output the contents of either of its buffers
to a standard analog video monitor with red-green-blue (RGB)
inputs. Although the input is a digitized black and white signal,
the frame grabber can output a color image. This is performed by
using output look-up tables which use the grey level data stored
in the buffers to drive 3 digital-to-analog converters (DAC), one
each for red, green and blue. In this way, "false color" outputs
can be generated to enhance an image. The frame grabber can either
use external synchronization stripped off the incoming composite
video signal, or it can use its own internal synchronization for
displaying images when an external signal is not available or when
frame acquisition is complete. An important function of the DT2851
is the pass~-through mode where an image is digitized and then
reconverted to an‘analog image in real-time. This effectively
allows the image monitor to be used as a normal video monitor where
the user is unaware of the digitization process. The DT2851 has
many other features such as a full screen cross-hair, and input
look-up tables which allow preprocessing changes to incoming data,
and the ability to mask (prevent alteration of) specified bits in
the pixel bytes. Together, they can allow, for example, two 4-bit
images to be combined and displayed in one 8-bit buffer. More in-
‘ depth descriptions of the features and specifications of the DT2851

can be found in its technical manual [17].

33
To increase the speed of some imaging functions, a Data
Translation DT2858 frame processor board was purchased. The DT2858
also plugs into an extended expansion slot of the AT and
éommunicates through the standard I/O registers. However, it
connects to the DT2851 through a pair of 10 MHz asynchronous
parallel I/O ports. These allow high-speed transfer of images
between the two devices without using the AT's bus. Various
logical and arithmetic functions can be performed on images
transferred to the frame processor, such as adding frames or
calculating the logical "AND" of two frames. In addition, these
functions can be used to produce more powerful functions which the
DT2858 performs. These include frame averaging (up to 256 frames
can be averaged), convolutions (to perform filtering), and
histograms. A histogram is a representation of the distribution
of pixel values in an image. It is computed by incrementing a
counter for each grey level value every time that level is
encountered in an image. The DT2858 performs these functions much
faster in hardware than the AT could by running a program. The
DT2858 memory is 256 k by 16-bit words. The longer word length
prevents overflow when adding frames together. More detailed
information on the DT2858 and its features is also available [18].
4.2. Software
Once the hardware decisions had been made and the devices
obtained, it was necessary to start implementing the algorithms
necessary for SLAM specimen characterization. The computer

language "C" was selected for writing the software because it

34
represents the best compromise between the capabilities of a high-
level language and the necessary hardware interaction. Next, the
Microsoft C Optimizing Compiler was employed because it produces
efficient machine code for the IBM PC and compatible machines. To
simplify communications and data transfers with the frame grabber
and frame processor, Data Translation's DT-IRIS software package
was obtained. DT-IRIS is a 1library of subroutines written
specifically for accessing the Data Translation hardware. The
subroutines are called from C programs as functions, the
equivalents of subroutines in the C language. The DT-IRIS routines
access internal functions of the DT2851 and DT2858, and simplify
performing, for example, convolutions, frame averaging, setting
look-up tables, and the transfer of pixel_values in the frame
buffers to and from user-~defined arrays. Information on the
programming ,tools can be found in the references [19-21].

In the sections that follow, the new programs created for data
analysis will be described. Although the basic algorithms remain
the same as in the previous system, several differences exist and
will be examined here. The actual C coding for these programs can
be found in the appendices; however, necessary inputs required from
the user and subsequent outputs are described.

4.2.1. Attenuation coefficient measurement

The process to calculate the attenuation coefficient of a
specimen is very similar to the previous system. The insertion
loss (IL) method is still used. The actual data for calculating

IL is generated by a program called "atten." Atten produces the

35
V values from Equation (1) and stores them in a file. The data are
in a format that can be used by an existing C program called
"regress," which calculates both IL and the attenuation
coefficient.

The program atten calculates V values using Equation (1) with
one important difference. The value r; is no longer available.
Recall that r;, is a reference value for a raster line found by
averaging several samples of the SLAM's receiver signal during the
retrace. Since the DT2851 samples a video signal, that portion of
the receiver signal has been replaced by the horizontal sync pulse
and the horizontal blanking signal. Consequently, it 1is not
available to the user.

This situation presents a problem, because the reference level
of the receiver output varies, depending upon the overall energy
of the signal. Since the composite video signal is created from
the receiver output, the problem carries over into the video signal
as well. Without a reference, reproducible values of V cannot be
obtained. Since it was desired to retain the new frame grabber
imaging system, solutions to the problem were proposed. Software
compensation to the problem was desired so that no external
hardware would be necessary. In this way, the problem would be
invisible to the user. Several software solutions were tried using
difference references and imaging areas, but none of these weré
successful. A hardware solution was created that effectively
created a new composite video signal by adding the receiver output

with a composite-sync-only signal. This was attempted because it

36
was found that the changing reference problenm in the receiver
output was due to the coupling circuit between the receiver and the
video signal generator. When disconnected from the video signal
generator, the receiver reference would stay at a constant ievel.
However, it-was then discovered that the overall receiver output
drifted on an unpredictable dc-offset voltage that could not be
removed without causing the unstable reference signal to recur.
This problem may be due to the age of the SLAM circuitry, and since
it was desired not to modify that circuitry, a compromise solution
was proposed.

The actual solution does not involve any hardware changes, but
requires certain actions to be taken by the user. The solution is
similar to that used in Equation (1) in that a reference level is
subtracted from each pixel value in a raster line. The difference
is that the user must now make the reference available. The
reference 1level in the receiver output represents maximum
attenuation of the acoustic signal as retrace occurs. The solution
to the problem is simply to carry that maximum attenuation into the
viewing area where the data can be digitized and used.

There are a few ways to carry the maximum attenuation into
the displayed image area, all of which effectively "black out" the
left-most portion of the display. It is important that the left
part is used, since the scanning is done left to right and the
actual voltage level of the reference (both the real receiver
output reference and the expanded artificial reference) depends on

the previous raster line energy. Once the reference area is

37
extended into the imaging area, r; is calculated by averaging the
first ten pixel values in each row, and subtracted as shown in
Equation (1).

One way to black out the left-most portion of the screen is
done fairly easily when the water stage is installed. The physical
design of the water stage allows the stage to be moved so that the
transducer and the metal area that surrounds it can be shifted into
the image area. Once the metal area moves into the image area, no
sound is transmitted or received in that portion--maximum
attenuation. The design of the fused-silica stage does not allow
this method. Another way to fully attenuate the signal is to block
the path of the laser light emitted onto or reflected from that
portion of the image. This can be done by removing a portion of
the gold film from the coverslip or by placing a piece of thick
plastic in the path of the laser where the left part of the viewing
area is scanned.

One other phenomenon was observed while the reference problem
was being corrected. When the user wishes to change the overall
signal level of a SLAM image, he can use two different controls.
One is the receiver gain which controls the signal level leaving
the receiver in Figure 1, and the other is the video gain which
controls the signal level of the active scan portion of the video
signal that feeds the frame grabber. The phenomenon discovered was
that changing the video gain has an interesting effect.

To understand the effect, one first has to understand that to

use the insertion loss technique to calculate the attenuation

38
coefficient, the SLAM is assumed to be a linear system. For
example, if one were to plot the V values from Equation (1) versus
known inserted attenuation, then the resulting plot should be a
straight line with some slope m. Apparently, changing the video
gain has the effect of changing the slope; increasing the géin
increases the slope, decreasing the gain decreases the slope. The
actual slope is unimportant, because the attenuation coefficient
itself is calculated from the slope of insertion loss values for
several thicknesses. Consequently, if the SLAM output is linear,
the ratio between the insertion loss values for two thicknesses
will remain constant, independent of the slope of the V values
versus inserted attenuation. The actual value of that slope only
changes the y-intercept on the attenuation coefficient plot.
However, the slope must remain constant throughout the measurement
of all the insertion loss values for all the thicknesses, or the
attenuation coefficient measurement will be invalid.

To take data using the atten program, the specimen is prepared
the same way it has been prepared in the past. The SLAM user then
selects the acoustic image mode and runs the program by typing
"atten" at the prompt on the AT. The image monitor will then
display the same image (in real time) as the SLAM monitor, with two
exceptions. The image monitor also displays an outlined box
(overlaid on the acoustic image) that represents the subarea to be
used for calculating V. This is available to assist the operator
in making that region as bright and uniform as possible. In

addition, an overlaid line drawn from top to bottom on the left

39
‘side of the screen represents the minimum amount of blacked-out
reference area required to calculate V correctly. The next step
is to perform a histogram. This allows as much as possible of the
dynamic range of the frame grabber to be used. The user is
provided with both a graphic representation of pixel value
distribution as well as the absolute minimum, absolute maximum,
average, and most prevalent pixel values. The user adjusts the
receiver gain such that dynamic range 1is maximized without
saturating (level too high) the input. The video gain can only be
changed initially, when calculating the V values for the first
thickness. It should remain at that setting until all the
thicknesses for a particular specimen have been analyzed.

Once these procedures have been completed, the user is asked
for the specimen thickness and a file name to store the data. If
an existing file is specified, atten will append the new data to
the 0ld file. This is done to allow data for several thicknesses
to be stored in one file which can be read in by the aforementioned
regress program. Atten can now calculate the V values for storage.
The minimum-reference line and subarea imaging box remain on the
image display to assist the user. The user has four options while
in the data-~taking mode. To calculate V., a V value in the
reference region (not to be confused with maximum attenuation
reference), the user moves the specimen such that the desired
reference region falls within the imaging box and presses "r" on
the computer keyboard. This causes 8 frames to be acquired and

averaged (to improve the signal-to-noise ratio). The value V, is

40
then calculated and stored in the specified file. In addition, Vr
is printed on the computer monitor. Similarly, to calculate Vg,
the V value for the specimen, the specimen is moved into the
imaging box and the user presses the "s" key. This stores V., in
the specified file and prints it on the screen. The third option
is to terminate the program which is done by pressing the "enter"
key. Finally, if any other key is pressed, V is calculated and
displayed on the screen, but it is not stored in the output file.
This is useful for displaying V values in questionable areas of the
specimen or reference regions before storing them in the output
" file. In addition, each time a V wvalue 1is calculated and
diéplayed, the current absolute maximum and absolute minimum pixel
values are displayed to keep the user aware of pcgsible saturation
problems which may occur after data calculations have begun. Under
such conditions, the data may not be valid, and the user should
begin again. The user may take as many reference and specimen data
points as desired and terminate the program normally. When data
acquisition for all thicknesses has been completed, the user should
run the regress program and specify the corresponding file to
calculate the insertion loss values and the attenuation coefficient
for that specimen.

4.2.2. Speed of sound measurement

Calculation of the speed of sound in a specimen is done in a
manner similar to the previoﬁs systemn. The specimen must be
prepared in the same manner as before. The spatial frequency

domain technique is still used to generate the speed values. The

41
analysis still works from top to bottom, and a linear least squares
algorithm is still used to find a reference phase from the selected
reference regions. Some features of the speed algorithm have
Achanged, however. Because the DT2851 samples a full video frame,
480 speed values are available in one pass as opposed to 255.
Also, the user is provided with many more options that affect how
and where the analysis is performed.

The main modification to the SFDT algorithm was in regard to
the DFT calculation. Although the number of pixels per line of the
current system is somewhat less (33%) than that of the previous
system, the current 512 pixels is more than enough to determine the
frequency of the interference lines. A 512-point DFT was selected
in favor of the 768-point DFT used previously. Using a slightly
wider frequency band than before, 21 discrete frequencies are
checked for maximum magnitude after calculating the DFT.

One other important modification was made. It was discovered
in the course of debugging the new speed program that when an image
with known interference line frequency was analyzed, the program
would pick the incorrect frequency. Figure 4 shows this problem
in more detail. In the figure, a portion of the DFT of three
waveforms is plotted. Each waveform is a sine wave with a period
of 16 pixels. Using a 512-point DFT, the spectral magnitude should
peak at frequency bin 32 with no leakage. For a complex sine wave
e (= cos(¢k) + jsin(¢k)) where ¢ is the frequency of the sine
wave, the DFT in Figure 4 peaks at 32 as expected. According to

the Fourier transform theory [22], if a sine wave is sampled for

42

=== complex sine wave
weeee real sine wave WL=18
real sine wave Wl=100

normalized magnitude

: Y

" it

0 4 8 12 16 20 24 2B 32 36 40 44 48 52 56 60 64
normalized frequency

- Figure 4. Discrete Fourier Transform of 3 sine waves.

a given window length and zero-padded for the remainder of the DFT
length, the resulting spectrum should resemble a sinc function,
where sinc(x) = sin(x)/x. The width of the main lobe of the sinc
function depends on the window length of the sampled sine wave,
with a wide lobe corresponding to a short window length. This is
shown in Figure 4 as the DFT of a real sine wave (sin(¢k)) with a
window length of 100. However, the third plot in Figure 4 is the
DFT of a real sine wave with a window length of 18. In this case,
the resulting DFT is a sinc waveform with a very wide main lobe
that clearly does not peak at 32 as expected (it peaks at 28).
This does not seem to follow the theory which predicts a wide main
lobe that still peaks at 32. This DFT skewing problem stems from
the fact that the sampled waveform is real, whereas the theory
predicts for complex sine waves. Consequently, the DFT will peak
at a frequency at or near the expected frequency, depending upon

the phase of the input.

43

A possible explanation for the skewing problem is that the
all-real frequency components required tovproduce the truncated
sine wave are greater in magnitude than the expected frequency.
Since the amount of truncation is dependent upon the phase, the
frequency component magnitudes will vary. However, apparently the
phases of the frequency components are close in value to the phase
of the desired frequency. This was found to be true in the
previous system as well as in the new system, because acceptable
values for speed were being calculated. Since the phase value of
the selected incorrect frequency is near in value to the actual
phase on a given raster line, the SFDT would produce speed results
that are near the expected values. In the previous system, the
error due to this deviation apparently became part of the overall
system error.

Since the SILAM data acquisition system can produce only real
data, the DFT skewing problem cannot be entirely corrected. It
was desired to allow the skewing problem to contribute as little
error as possible; consequently, a compromise solution was
proposed. The skewing problem is minimized by increasing the
window length. The longer the window length, the closer the DFT
spectrum approaches the actual spectrum for a complex waveforn.
This can be seen in Figqure 4, where the DFT for a real sine wave
with 100 samples clearly approaches that of a complex sine wave:
The current system uses a 26-point window length. This still
produces occasional error, but no more than is due to DFT leakage

(i.e., the current system will choose a frequency within one bin

44
of the actual frequency). Since, as previously discovered, the
phases of the components track the phase of the actual maximum
frequency, the occasional deviation due to incorrect frequency
selection is not readily apparent. The only disadvantage aue to
increased wipdow length is the increased computation time.

Aside from those changes, the new algorithm still
precalculates and stores the complex exponentials from Eguation
(6). It calculates the DFT for the appropriate frequencies, finds
the frequency with maximum spectral magnitude and its phase. The
next steps are to unwrap that phase data and convert the phase data
to speed of sound values using Equations (5) and (3).

Before running the speed calculation program, certain steps
must be taken. The specimen must be prepared such that the
transition between the specimen and reference region is as smooth
as possible. This will allow thé SFDT algorithm to track the phase
values correctly. The size and placement of the specimen are
limited such that some portion of the reference region must be
within the image area. When specimen preparation is complete, the
SLAM is placed in interference mode and analysis may begin.

To perform the speed of sound analysis, the user runs a
program called "speed.® Speed allows the user to change, during
run-time, various factors that affect the analysis. However, many
of these required inputs have default values.

Once the speed program is running, the user has three possible
images on which the analysis can be performed. The first possible

image 1is the one currently stored in the frame grabber's buffer

45
memory. Ordinarily{ this image is the last image to have been
analyzed. By selecting this image, the user can repeat the
analysis, if desired. The second image that can be used is one
that is stored as a file. The user can specify a stored file to
anélyze an image that was acquired at some previous time. The
third, which is also the default image, is to acquire a new image
from the SLAM. Before acquiring a new image, the user is asked if
a histogram is desired. Using the histogram, the dynamic range can
be maximized. Since the SFDT uses the frequency and phase of the
interference lines, the actual distribution of the pixel values is
not as important as is the case of the atten program. It is more
important to prevent saturating the input. When the user is ready
to acgquire an image, the number of frames to average is requested.
The default value is 8 frames.

After the desired image is displayed on the image monitor, the
user must select various parameters for calculating the speed of
sound using the SFDT and Equation (3). The first user input is the
thickness of the current specimen as described in Equation (3).
Because this number varies, it has no default value. The speed of
sound in the reference medium is also required. Since most of the
analysis being performed on the SIAM is for tissue specimens in a
saline reference medium, the default value is 1520 m/s, the speed
of sound in saline at 30°C. Another input requires the type of
stage being used when the image was acquired. The type of stage
affects the value of 4,, the angle of the sound waves through the

reference medium. The user also may specify a "skip value." The

46
skip value directs the analysis to be performed on every raster
line defined by skip value x i (wvhere i = 0, 1, 2, . . .). 8Since
picking a number larger than one can reduce overall analysis
computation time, this is useful for performing a quick analysis
on a questionable specimen. The default skip wvalue is 1, which
directs all 480 raster lines to be analyzed.

Two important user-definable items can have a tremendous
effect on the program output. The first item is the vertical
region of the image where the speed will be calculated. This
~region can be varied, for example, if a specimen has known regiqns
where the speed is expected to vary significantly. In dddition,
a region can be selected if it has a reference-to-specimen
transition that is smoother than other areas. Using the on-screen
cross-hair, the user selects the column that represents the
starting point. During the analysis, 26 pixel values are read from
the image buffer for each raster line using this column for the
first wvalue. The default column makes the analysis region the
approximate center of the image. The other important item is that
the user may select the areas of the image that are to be used as
a reference region. One or two such regions may be specified
within the previously selected vertical band. Two regions are
useful if the specimen lies in the vertical center of the image,
with the reference medium both above and below. If only one region
is specified, the other is automatically disabled. The user
selects a reference region by using the cross-hair to specify a

top row and bottom row for that region. The default is two

. AW

47
regions, one at the top of the image and one at the bottom, which
approximates the regions used on the previous system. The default
values of the starting column and the reference regions are
overlaid on the image monitor prior to selection.

There are two other required user inputs prior to analysis.
The first is a file name which specifies where the results of the
analysis will be stored. The other input is a character string
with which the user can describe or name the specimen.

Once the inputs have been entered by the operator, speed
calculations begin automatically. When the analysis is complete,
the speed data and other pertinent information are ‘stored in the
specified file. Next, a plot of speed versus raster 1line is
displayed on the image monitor (the plot uses the second of the two
buffers in the frame grabber; the interference image remains stored
ih the buffer). This gives immediate results to determine whether
or not the analysis was successful. After this, the user can store
the interference image‘in a specified file if desired. To aid in
the calculation of the heterogeneity index, the user can perform
statistical analysis at this time. If this option is selected,
the operator uses the cross-hair on the speed versus raster line
plot to specify the regions where the mean and standard deviation
of the speed data are to be calculated. The results of the
statistical analysis are displayed on the computer monitor and
stored in a specified file. Upon completion of this speed analysis
session, the user can either quit or may continue with either the

current interference image or a new one.

48

Aside from the main "atten" and "speed" programs, there are
other programs available to assist the user in image and data
manipulation and analysis. For example, there is a program called
"display" which can perform three different functions, depending
upon what is typed on the command 1line. If, for example, the
operator types "display" alone, the frame grabber is put in pass-
through mode. If “display off" is typed, the display is turned
off. If "display <file name>" is typed, the image stored at <file
name> is displayed on the image monitor. Typing "grab <file name>"
at the command line causes 8 frames to be acquired and averaged and
stored at <file name>. Using "plot," a plot of speed versus raster
line can be produced from a speed output data file entered on the
command line. The default is to plot the speed data on the image
monitor. However, by typing an additional character on the command
line after the file name (for example, "plot <file name> x," where
"x" is any character), the speed data will be plotted on the
computer monitor. In this mode, a hard-copy printout of the plot
can be produced. A program called 'stats" allows for post-
processing of the speed program output data file specified on the
command line and calculates the mean and standard deviation of
user-selected regions. This can be performed if the user does not
‘wish to do it while the speed program is in use. The last program,
called "changew," allows the user to change the location and size

of the box used to calculate the V values in the atten program.

49

CHAPTER 5

SYSTEM VERIFICATION

Although the algorithms for calculating the attenuation
coefficient and the speed of sound in a specimen are essentially
taken from the previous system, it was important to verify the
results in the new system. A verification test designed
specifically for this purpose was used on the previous system and
was subsequently applied to the new system as well. Details of
this test can be found in the references [23]. However, the tests
for both the attenuation coefficient and the speed of sound involve
using a standard whose attenuation coefficient or speed of sound
value was calculated by some independent method.

Before verifying that the new system could produce acceptable
attenuation coefficients, it was important to establish the
linearity and accﬁracy of the IL values calculated from the V
values produced by the atten program. This was done by employing
precision electrical attenuators that were placed between the
ultrasonic driver and the transducer, as in Figure 1. There is an
impedance mismatch between the wultrasonic driver and the
attenuators that causes the output power of the driver to change
when the attenuators are switched into the system. To minimize the
mismatch problem, a large amount of baseline attenuation (10 dB)
was added. To compensate for the decrease in signal, the receiver
gain was increased. This tends to increase the signal-to-noise

ratio, but frame averaging reduces the effect of the noise.

50

To evaluate the linearity, a thin layer (< 10 um) of saline

was placed on the stage under a coverslip. The V values for the
saline were calculated as a function of inserted electrical
attenuation. Setting V. in Equation (2) equal to V,, the average
of the V values calculated for 0 dB (relative) inserted electrical
attenuation, insertion loss values were calculated as a function
of the inserted attenuation. Insertion loss for a given video gain
setting is plotted versus inserted electrical atfenuation in Figure
5. Recall that in Chapter 4, the video gain has an effect on the
overall slope of this 1line. (The insertion loss is essentially
calculated by subtracting a constant value from the V values--the
slope is unaffected.) The overall shape of the plot is somewhat

parabolic; however, in a given operating range, assume the plot can

CMEASURED INSERTION LJSS (dB)

2 O 4N W s U o
§ W S N S S}
XX\

T T T T T T T Y T T T T T T T T T 7 T
g 1.2 3 4 S 6 7 8 9 10 1M 12 13 14 1S 16 17 18 13 20

INSERTED ELECTRICAL ATTENUATION (aB)

Figure 5. Measured insertion loss vs. inserted electrical
attenuation.

51
be considered linear. The data were analyzed using linear least
squares regression. The best-fit line chosen was one encompassing
the values from 0 dB to 15 dB. This gives a slope of approximately
0.87 and a correlation coefficient of 0.994. The error associated
with the slope was 0.008. Consequently, the assumption of
linearity in a given range is valid. Above 20 dB, the pixel
distribution is reduced enough to prevent the algorithm from
extrapolating accurate results, and the plot will reach some
constant level. Performing the regression on all the data reveals
the slight nonlinearity, but the analysis for most specimen occurs
within smaller, approximately linear portions of the operating
environment.

To determine the accuracy of the insertion loss values, the
V values for a thin layer of saline were measured with varying
amounts of inserted electrical attenuation. Since saline is a
homogeneous medium and the subimage area used by the atten program
was unchanged, variations in the measured values is assumed to be
the result of electrical noise, variations in laser and transducer
power, and other unknowns in the overall system. Twenty values
were recorded for each_of four levels of attenuation at a given
video gain setting. The mean and standard deviations were computed
for each 1level. The accuracy of V, calculated as two standard
deviations of the mean, was *#0.35 dB. Since IL is calculated bf
subtracting one V value from another, the accuracy in IL 1is

calculated according to

AIL = [((AV)? + (av,)?).) (8)

52
The A refers to the accuracy associated with a quantity. With an
accuracy of *0.35 dB for both AV, and AV, yields an accuracy for
IL of +0.5 dB.

Once the linearity and accuracy of the insertion loss values
were verified, it is important to evaluate the accuracy and
precision of the attenuation coefficient measurement. A 10% bovine
serum albumin (BSA) solution (10.0 gm BSA per 100 ml distilled H,0)
was used as a standard. The absorption coefficient for BSA has
been determined independently with an overall uncertainty of *5
percent. Since scattering is negligible in homogeneous liquids,
the attenuation coefficient was assumed to be equal to the
absorption coefficient. The temperature of the BSA solution while
on the stage with the laser and ultrasound on has been determined
to be 30°C. The absorption coefficient of 10% BSA at 30°C and 100
MHz is 4.18 dB/mm with an overail uncertainty of +0.21 dB/mn.

The attenuation coefficient for BSA was determined on the SLAM

by calculating the insertion loss values for various thicknesses

of BSA solution. To control the thickness, a metal spacer (a
washer) was used to contain the solution. To calculate IL from
Equation (2), a V. is needed. The average of several V values

taken for a very thin layer of BSA (< 10 pum) are used for V..
Then, six to nine V values were calculated for each four
thicknesses of the BSA solution. The four thicknesses used were
0.356, 0.710, 0.920, and 1.080 mm. The accuracy of the spacer
measurement was *2.5 um, and since this contributed less than 0.3

percent uncertainty to the error of the attenuation coefficient,

53
the thickness unce;tainty was ignored. This procedure was
repeated, and the V values were input into the regression program.
The program generated two attenuation coefficient values of 4.27
dB/mm and 3.97 dB/mm, and the 95 percent confidence intervals for
those two values were 3.55 to 4.99 dB/mm (16 percent) and 3.34 to
4.61 dB/mm (+16 percent), respectively. Using the known value of
4.18 dB/mm, the errors in the calculated values were -2.2 percent
and 5.0 percent respectively. With a 5 percent overall
uncertainty for the literature value, and using the higher error
value of 5 percent, the accuracy uncertainty becomes *10 percent
(the sum of +5 and *5 percent). Since the 95 percent confidence
interval was +16 percent, the precision is therefore *16 percent.

The accuracy and precision of the spatial frequency domain
technique used to calculate the speed of sound values were also
tested. Dow Corning 710 oil was used as a standard. It has a
published speed of sound value of 1340 m/s at 30°C. Normal saline
was used as a reference medium and has a reported speed of sound
value of 1520 m/s also at 30°C. The speed values were calculated
for several thicknesses of 710 oil by using metal washer spacers
as in the attenuation coefficient determination. A small drop of
710 oil was placed in the middle of the spacer, and saline was
added that surrounded the oil. Since the saline and the oil do not
mix, a smooth transition region exists between the twoc separate
substances, meeting the requirements of the SFDT algorithm.

The results of this test were inconclusive. The speed of

sound was calculated for several thicknesses, and the results had

54
means in the range 1265 m/s to 1290 m/s with standard deviations
rahging from 4.0 to 8.0. Since the results were consistent but not
accurate (relative to the assumed 1340 m/s), Equation (3) and the
manual method described in [10] were used to check the values.
This method, which measures the fringe sﬁift directly and does not
use the SFDT, is not as precise as SFDT. However, it can determine
values within a given range with reasonable accuracy. Applying the
manual method, speed values in the range of 1270 mn/s were
calculated, agreeing with the speed program output.

The reason for the discrepancy is unknown. In addition, the
speed.program has been used to calculate the speed values of
certain biological specimens whose characteristics were known in
advance. In those cases, the output of the speed program was
approximately the expected results. Actual verification of the
speed analysis will be determined at a later date, with either a

new Dow Corning 710 oil sample, or with some other standard.

55

CHAPTER 6

DISCUSSION

6.1. Comparison of the New System to the Previous System

Since the current system was conceived and built as an
improvement,over the previous system, it is important to compare
the two systems. Most importantly, the new system should maintain
the ability to produce acceptable results for speed of sound and
attenuation coefficient measurements. The data used to calculate
the attenuation coefficient have been shown to have errors that are
approximately equivalent to the previous system, and is therefore
acceptable.

Actual verification of the speed of sound measurement is
currently unavailable, although speed values calculated using the
SFDT agreed with values derived using a different method.
Consequently, it has been assumed that the speed program is
functioning correctly. Theoretically, it should perform at least
as well as the previous system, since the technique is essentially
the same. Factors that affect the error are a shorter DFT length
(less frequency leakage) than the previous system and the corrected
skewing problem in the current system. An actual comparison cannot
be determined until the new system is retested with another
standard.

In terms of other factors, however, the new system does
perform better than the previous system. The data generated are

more easily manipulated. All data produced are stored in

56
accessible files on the AT or backed up on tape (which can be
easily restored). Linear regression used to calculate the
attenuation coefficient from the insertion loss values can be
repeated if desired. Speed data can be plotted and printed when
required by the user. The previous system allowed only a large
plot printed on a line printer attached to the VAX. The new system
allows quick plots on the computer or image monitor, and smaller,
more manageable printed plots. Also, the images are easily stored
and manipulated to reproduce speed data or to display images for
presentation.

Visibly displaying images is a major advantage over the
previous system, which merely stored the image data and performed
analysis by manipulating image data files. Using the image monitor
allows the user to see where the image is analyzed. When using the
atten program, the user is given a visible measurement region to
ensure that correct data are being taken. This reduces
questionable results produced from having air bubbles or other
disturbances in the measurement region. The previous system relied
heavily on operator experience to do this; however, the user was
still essentially %blind." In performing speed of sound
measurements, the user can instruct the algorithm where to perform
the analysis. This allows much more flexibility for specimens with
specific multiple regions or for specimens that are not positioned
in an easily analyzed manner. The previous system had the
capability to change the reference regions and starting column used

in the analysis. However, these values were stored in a file, and

57
could not be changed.during run-time, and of course, the user was
unable to see exactly where the analeis was being performed.

Having a self-contained system is also an advantage over the
previous system. The user 1is provided with an operating
environment with which many people are already familiar (IBM PC and
the Disk Operating System (DOS)), or that they can easily learn.
It is not required to send data to a different location as was done
previously. As a result, the data acquisition and analysis system
merely becomes a part of the overall SLAM system.

Another important advantage over the previous system is the
time required to analyze the data. The amount of time - for
calculating the V values using the atten program is approximately
the same as the previous system (though the set-up time may be
reduced) . However, because the V values are stored in a file
instead of written by hand as was done previously, the user can
input that data file into the regress program and get immediate
results upon completion of data acquisition. Previously,
calculation of insertion loss and attenuation coefficient was
usually performed after the SLAM session was complete. The time
required to perform the speed analysis has also been reduced.
After specimen preparation was completed, the previous system
required as much as 7 minutes during peak VAX usage to produce 255
speed values. If the user wanted to see the results, he was
required to go to another room to get a printout of the speed data.
The current system requires approximately 1 minute to respond to

the required inputs and approximately 2 minutes to perform the

58
analysis. After the 3 minutes, the user is provided with a visual
result of the 480 speed values calculated, at which time he may
either statistically analyze the results or repeat the procedure
if those results were unsatisfactory.

Perhaps the only disadvantage of the new system is the
compromise solution made for the atten program. Recall that the
user is required to provide a blacked-out reference area on the
left side of the image to produce valid results. Using the water
stage, this is not as much of an inconvenience. However, when
using the fused silica stage, greater care must be taken. With
operator experience, the requirement merely becomes part of the
overall specimen preparation process, but again, the solution is
at best a compromise.

6.2. Future Work

Although the new system is an improvement over the previous
system, certain things should be done to make the new system even
better. Many of these ideas were part of the original proposal for
a new automated system, but development problems and time
constraints caused those of lesser importance to be put aside for
the time being. However, in the future, the separate image data
acquisition and analysis programs should be combined in one menu-
driven program to make almost all the data manipulation invisible
to the usér. Also, the system cannot presently produce a hard copy
of an image. Such an ability would be useful for presentations and
reports. This problem may be rectified shortly when the AT becomes

part of the laboratory computer network. Certain other computers

59
in the laboratory .with frame-grabbing capabilities have the
necessary printer drivers as well. In addition, future work should
make more use of the abilities of the DT2851 frame grabber. The
abiiities to manipulate images and to produce enhanced false-color
images have not been fully utilized at present.

An important consideration to future work should also be the
floating reference problem described in Chapter 3. The solution
used in the current system fdr the atten program is a compromise,
and it would be desirable to correct the problem in a manner
invisible to the user. Unfortunately, to fully correct it, the
SILAM circuitry may have to be modified or replaced. However, some

other solution may be proposed.

60

CHAPTER 7

CONCLUSIONS

A new imaging data acquisition and analysis system was
proposed to enhance the features of the Scanning Laser Acoustic
Microscope. After considering different options and the advantages
and disadvantages of each, an operating environment was selected.
The current system employs an IBM PC/AT with an installed Data
‘Translation video frame grabber to acquire and process data. This
‘system differs significantly from the system it replaces. However,
the methods used to characterize 'specimen characterization,
attenuation coefficient and speed of sound, remain similar to those
used in the previous system.

Aside from merely generating data, the current system also
provides an environment with which the user can actively interact.
Through image displays and other visual information, the user can
better understand and affect the various analyses that the system
is capable of performing. Once data acquisition has been completed
and the user adds the required inputs, the system performs the
necessary analysis and makes the output readily available to the
user. The capabilities of the system have not yet been fully
tapped, and certain other features need to be utilized more
extensively.

The system is capable of producing valid data, as was its
predecessor. Problems with floating signal levels, video gain

setting, and idiosyncracies of the Fourier transform initially

61
produced unexpected‘results. Certain steps had to be taken that
involved compfomises to get the system to function correctly. Some
of those steps proved to be satisfactory. However, iﬁ the future,
some other solutions may prove to be necessary to produce a
genuinely automated system. Also in the future, the speed program
must be validated before results can be assumed accurate, and
published. It is hopeful, however, that the current system will

prove to be an effective resource in SLAM research.

(1]

(2]

(3]

(4]

[51]

(el

(7]

(8]

(21

[10]

(11]

62
REFERENCES

Whitman, R. L. and A. Korpel, "Probing of Acoustic Surface
Perturbations by Coherent Light," Applied Optics, vol. 8,pp.
1567-~-1576, 196°9.

Korpel, A. and P. Desmares, "Rabid Sampling of Acoustic
Holograms by Laser-Scanning Techniques," Journal of the
Acoustical Society of America, vol. 45, pp. 881-884, 1969.

Kessler, L. W., P. R. Palermo, and A. Korpel, "Practical High
Resolution Acoustic Microscopy," Acoustic Holography, G. Wade,
editor, vol. 4, Plenum Press, New York, pp. 51-71, 1972.

Kessler, L. W., "Review 1in Progress and Applications of
Acoustic Microscopy," Journal of the Acoustical Society of
America, vol. 55, 909-918, 1974.

Kessler, L. W., "Introduction to Acoustic Imaging Systems,"
Acoustic Imaging, G. Wade, editor, Plenum Press, New York, pp.
43-63, 1976.

Kessler, L. W., "Imaging with Dynamic-Ripple Diffraction,®
Acoustic Imaging, G. Wade, editor, Plenum Press, New York, pp.
229-239, 1976.

Shure, A., Basic Television, John F. Rider Publisher/ Inc.,
New York, 1958.

Zworykin, V. K. and G. A. Morton, Television, John Wiley and
Sons, Inc., New York, 1954.

Embree, P. M., S. G. Foster, G. Bright, and W. D. O'Brien,
Jr., "Ultrasonic Velocity Spatial Distribution Analysis of
Biological Materials with the Scanning Laser Acoustic
Microscope," Acoustical Imaging, M. Kaveh, R. K. Mueller, and
J. F. Greenleaf, editors, vol. 13, Plenum Press, New York, pp.
203-216, 1984,

Goss, S. A. and W. D. O'Brien, Jr., "Direct Ultrasonic
Velocity Measurements of Mammalian Collagen Threads," Journal
of the Acoustical Society of America, vol. 65, pp. 507-511,
1979.

Embree, P. M., K. M. U. Tervola, S. G. Foster, and W. D.
O'Brien, Jr., "Spatial Distribution of the Speed of Sound in
Biological Materials with the Scanning Laser Acoustic
Microscope," IEEE Transactions on Sonics and Ultrasonics, vol.
SU-32, pp. 341-350, 1985.

[12]

[13]

(14]

[15]

[16]

[(17]

(18]

[19]

[20]

[21]

(22]

(23]

63

Tervola, K. M. U.-and W. D. O'Brien, Jr., "Spatial Frequency
Domain Technique: An Approach to Analyze the Scanning Laser
Acoustic Microscope Interferogram Image," IEEE Transactions

on Sonics and Ultrasonics, vol. SU-32, pp. 544-554, 1985.

Tervola, K. M. U., S. G. Foster, and W. D. O'Brien, Jr.,
"Attenuation Coefficient Measurement Technique at 100 MHz with
the Scanning Laser Acoustic Microscope," IEEE Transactions on
Sonics and Ultrasonics, vol. SU-32, pp. 259-265, 1985.

Steiger, D. L., "Ultrasonic Assessment of Skin and Wounds with
the Scanning Laser Acoustic Microscope," M.S. thesis,
University of Illinois, Urbana, IL, 1986.

Foster, S. G., "An Image Digitizing System for the Scanning
Laser Acoustic Microscope," M.S. thesis, University of
Illinois, Urbana, IL, 1981.

Technical Reference to the Personal Computer AT, International
Business Machines Corp., Boca Raton, FL, 1985.

User Manual for the DT2851 High Resoclution Frame Grabber, Data
Translation, Inc., Marlborough, MA, 1988.

User Manual for the DT2858 Auxiliary Frame Processor, Data
Translation, Inc., Marlborough, MA, 1988.

Kernighan, B. W. and D. M. Ritchie, The C Programming
IL.anguage, Prentice-Hall, Englewood Cliffs, NJ, 1978.

Microsoft C 5.1 Optimizing Compiler User's Guide, Microsoft
Corporation, Redmond, WA, 1987.

User Manual for the DT-IRIS Sukroutine Library, Data
Translation, Inc., Marlborough, MA, 1988.

Oppenheim, A. V., and R. W. Schafer, Digital Signal
Processing, Prentice-~Hall, Englewocod Cliffs, NJ, 1975.

Steiger, D. L., W. D. O'Brien, Jr., J. E. Olerud, M. A.
Riederer-Henderson, and G. F. 0dland, "Measurement Uncertainty
Assessment of the Scanning Laser Acoustic Microscope and
Application to Canine Skin and Wound," IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Contrel, vol. 35,
pp. 741-748, 1988.

APPENDIX A ATTEN PROGRAM LISTING

#include <isdefs.h>
f#finclude <iserrs.h>
#include <conio.h>
#include <math.h>

#include <stdio.h>
#include <malloc.h>

/**fr*******ﬁ**if********'\‘********‘fr*******fn‘(***************ﬁ*****ﬁ*******fn‘\'**i‘r/

1* */
/* "atten” calculates values for finding insertion loss and attenuation */
/* coefficient. These values are stored in a file and formatted ¥/
/¥ such that they can be used by the program called "regress.” */
* */

/***a‘(*#‘k**************************"r*****a\"{rﬁ******v\'**ﬁ*********#********ftﬁ'***/

main()

int i, j=0, k, line[8], row, col, height, length, minpixel, maxpixel;
int *red, *green, *blue, *ref, *values;

long int binl[2561];

float db, total, temp, curref, thick;

char ch=0, filename[40];

FILE *fptr, *outptr;

/7\'*)‘(*******7\’1\'fl***ﬂ***********fﬂ'\'*****x’k*****ﬁ*i\'************‘k******‘k**ﬁ'l'h\'l’r**fr*‘frﬁw‘n‘f/

/* :‘f/
/* 1i,j,k - counters and array pointers */
/* line{] - array used to store line data to frame grabber for drawing */
/* row, col, height, length - specify the subimage area used for data */
/* minpixel - the minimum pixel value e/
/* maxpixel -~ the maximum pixel value */
/* red,green,blue - pointers to arrays that hold the values for ILUT */
/* ref - pointer to array that holds the reference pixel values */
/* values - pointer to array that holds subimage area pixel values */
/* binl[] - array that holds the histogram bin values */
/* db - the value calculated for the subimage area w*/
/* total - temporary value used for summing up pixel values in subimage area */
/* temp - temporary variable v/
/* curref - average of the reference values of the current raster line *f
/* thick -~ specimen thickness ¥/
/* ch - temporary character variable for user input *f
/* filename[] - user-specified output file name ¥/
/* fptr - file pointer to subimage area box data */
/* outptr - output file pointer */
/fr f:/

/J\'**)‘:*fr*'k*'kft*fc***t*******frif*fr-lr*ir***fr*ir**ir)’r******Yt*f(*ﬁ***ﬂ**ﬁ***)‘rft*k:‘rﬁfciﬂn‘n‘r vere 1':*1’(/

/[allocate memory for the following arrays and report allocation errors *f

red = (int *)calloc(256, sizeof(int));

if (red == NULL) { printf("red allocation failed"); exit(); }

green = (int *)calloc(256, sizeof(int));

if (green == NULL) { printf("green allocation failed"); exit(); }
blue = (int *)calloc(256, sizeof(int));

if (blue == NULL) { printf("blue allocation failed"); exit(); }
ref = (int *)calloc(1000, sizeof(int));

if (ref == NULL) { printf("ref allocation failed"); exit(); }
values = (int *)calloc(10000, sizeof(int));

if (values == NULL) { printf("values allocation failed"); exit(); }

/* open file that contains box size and location information */
fptr = fopen("c:\\slam\\attwin.pos", "r+");
fscanf(fptr, "Zd Zd Zd 24", &row, &col, &height, &length);
felose(fptr);

/* initialize and reset frame grabber *f

IS_IRITIALIZE();

64

APPENDIX A ATTEN PROGRAM LISTING, Continued

IS_RESET();
IS_SET_SYNC_SOURCE(1);
IS_PASSTHRU();
IS_SET_GRAPHIC_POSITION(row,col);
IS_SET_FOREGROUND(1);

/* set-up input look-up table 7 so that box can be overlayed on screen */

/*

for (i=0; i<256; i+=2)
{

red{i] =
green{il] i;
bluefi] = i;
red{i+l] = 255;
green(it+l] = 0;
bluef{i+l] = 0;

i;

}
IS_LOAD OLUT(7,red,green,blue);
draw box and reference line on screen w*/

line[0}
line[1l}
line[2]
line(3]
linef4]
line([5]
line[6] row;

line[7} = col;
IS_FRAME_CLEAR(0);
IS_DRAW_LINES(0,4,line);
IS_SET_GRAPHIC_POSITION(0,10);
line{0] = 479;

line[1l] = 10;
IS_DRAW_LINES(0,1,line);
IS_LOAD MASK(1);
IS_SELECT_ILUT(5);
IS_SELECT_OLUT(7);
IS_PASSTHRU();

IS_DISPLAY(1);

row;
col + length -
row + height -
col + length -
row + height -
col;

P

E I O

printf("\nAdjust SLAM so that image area in box is as uniform and bright”);
printf("\nas possible. A black reference region must include the area");
printf("\non the left side of the screen. When complete, hit any key");
printf("\nto perform histogram. Adjust receiver gain to maximize ");
printf("\nbrightness without saturating.");

ch = getch();

/* set-up display so that box and line will not be overwritten by image o/

IS_ACQUIRE(0,1);
IS_SELECT_ILUT(0);
IS_LOAD_MASK(0);

IS_SELECT OLUT(0);
IS_SELECT INPUT_FRAME(1);
IS SELECT OUTPUT FRAME(1);
IS_PASSTHRU();
IS_DISPLAY(1);

/% perform histogram on image for proper dynamic range set-up o/

hist(1,1);
IS_LOAD_MASK(1);
IS_SELECT_OUTPUT_FRAME(0);
IS_SELECT_INPUT FRAME(0);
IS_SELECT_ILUT(5);
IS_SELECT OLUT(7);
IS_PASSTHRU();
IS_DISPLAY(1);

65

APPENDIX A ATTEN PROGRAM LISTING,

/* obtain output file name and specimen thickness

printf("\nOutput file name: ");

scanf("4s", filename);

outptr = fopen(filename,"a");
printf("\nSpecimen thickness (micrometers): ");
scanf("Z£", &thick);

fprintf(outptr,™t ZEf\n",thick/1000.0);

printf("\npress 'r’ for reference and ’'s’ for specimen. ");
printf£("\npress ENTER to quit. \n");

/* begin taking data

while ((ch = getch()) 1= 13)
{

Continued

*/

*/

/* acquire and average 8 frames to buffer 1 (will not overwrite box and line)*/

IS_ACQUIRE(O,1);
IS_SELECT_ILUT(Q);
IS_LOAD_MASK(0)};

acquire(8,1);

IS_LOAD_MASK(1);
IS_SELECT_INPUT_FRAME(0Q);
IS_SELECT_ILUT(5);

IS”SET_ACTIVE REGION(0,0,512,512);

/* perform histogram to get pixel information

IS_HISTOGRAM(1l, binl);
IS_SET_ACTIVE_REGION(row,0,height,10);

/* get reference pixel values from left portion of screen

IS_GET_REGION(1,ref);
IS_SET_ACTIVE_REGION(row,col,height, length);

/* get subimage area pixels from boxed region

IS_GET_REGION(1,values);

IS_PASSTHRU();

binl([0] ~-= 16384; /* histogram calculated for 512x512
/* find the minimum and maximum pixels

for (i=0; i<256; i++)

{
if (binl{i] != 0)

{

minpixel = i;
i = 256;

}

1
for (i=255; i>=0; i--)

{

if (binl{i] !=0)
{
maxpixel = i;
i= ~-1;
}

}

/* calculate the average reference value and subtract it from each pixel in
/* the subimage area. Then add all of theses normalized pixel values.

total = 0.0;
for (i=0; i<height; it++)

curref = 0.0;

kg /

Ve /

k3 /
3 /

u'(/
f:/

66

APPENDIX A ATTEN PROGRAM LISTING,

for (k=0; k<10; kt++)
curref += (float)ref{i*10 + k};
curref /= 10.0;
for (k=0; k<length; k++)

temp = (float)values[i*length + k] - curref;
total += temp;

}
}
if (total <= 0)
total = 1.0;

/* convert the total value to decibels and display it on the screen, and
/* write to the output file if necessary.

db = (10.0 * loglO(total/(float)(length*height)))
printf("<min: %3d max: Z3d> atten: \x1B[7mZ7.3f dB\x1B{Om\n",
minpixel,maxpixel,db);
if ((ch == 'z’) || (ch == ’s’))
fprintf{outptr, "Zc¢ Z7.3f\n", c¢h, db);

/* close output file and reset frame grabber
fclose(outptr);

IS_RESET();
IS_END();

Continued

*/
*/

*/

67

APPENDIX B SPEED PROGRAM LISTING

#include <math.h>
#include <stdio.h>
#include <isdefs.h>

#include <iserrs.h> /******k*ﬁ******************#********************ﬂ/
f#fdefine WINLEN 26 /* DFT window length, no. sample points used */
f#define LOW 28 /* lower bound of DFT frequency indecies checked */
#define HIGH 48 /* upper bound of DFT frequency indecies checked */
#define SLAMFRQ 100.0 /* ultrasonic frequency of SLAM--100 MHz v/
ftdefine REFVEL 1520.0 /* reference speed of sound in saline--1520 m/s */
#define DFISIZE 512 /* DFT size used in calculation */
f#idefine SAMPLFREQ 8752.0 /* sampling frequency in kHz */
#define LIMIT 3.14 /* limit in radians used for unwrapping phase */
fidefine DEFAULTCOLUMN 232 /* default analysis starting column */
#define DEFAULTTOP1 0 /* default of top of reference region 1 %/
#idefine DEFAULTBOT1 79 /* default of bottom of reference region 1 */
#idefine DEFAULTTOPZ 400 /* default of top of reference region 2 X/
f#fdefine DEFAULTBOT2 479 /* default of bottom of reference region 2 e/

/*****ffft**‘kfr****ﬁﬁﬁ**************ﬁff***f(*f(ﬁ****f:*f(*/

/*'i\'\‘rft*********************i’\'i’ﬂ’n'r*‘h‘kfr‘k‘ka’n\'ff*********************1\'*)‘(1\'****ﬁ*v\'s’:*fn‘(*ft*/
/* This program uses the selected interference image of a specimen to find “f
/* the speed of sound in that specimen. The program uses a spatial frequency”/
/* method to calculate the speed after selecting a desired reference region ¥/

/* and then stores and plots the resulting data. */
/***************************‘k**************ﬁ*****frw*****************:’rftﬁ"h‘n\'**fr)‘l/

float phase[480];
main()
{
FILE *outptr;
int i, 3, k, ref(21(2], xbeg, thick, skip=0, total=0, datbuff[WINLEN],
reftotal=0, flagl=0, flag2=0, curbuf=1, avgnum, lines([2];
float dcoffst=0, delta, oldphase, corcoef=0, x, r, z, tempmag,
pi=4.0*atan(1.0), magl(480], freq{480], phs(480],
recoef [HIGH-LOW+1] [WINLEN], imcoef[HIGH-LOW+1]{WINLEN];
char ch, filename(80], infile[80], repeat='y’, specname{80], input[20};

int startcol{480],toprefl{512],botref1({512],topref2{512],botref2[512],refspeed,
stage = 0;

Yo 7e Fe ¥ ¥ e v 3t v Jr 3 3 e e e ¥ 3 Ve Ve v g 3t Y ol 3 Yo v v ol e e oy Ve v o o' e e ate 3 e Ve v Yo vie ot v Y o vie o ol o 9 e v 3 v 7 o Yoo o vl e e e Ye o ve e Ye o
/ /
/* ‘.’t/
/* phase[] - contains initially all phase values, then converted to speed */
/* ref{]l[] - array that contains the boundaries for the reference regions ¥/

/* xbeg - beginning column of analysis */
/* thick -~ thickness of current specimen w/
/* skip - skip value of analysis--raster line (0 + skip*i) *f
/* total - total number of raster lines used in analysis */
/* datbuff[] - array containing the pixel values from frame grabber */
/* reftotal - total number of reference lines used in analysis e f
/* flagl - when set, indicates that reference region 1 is valid wf
/* flag2 -~ when set, indicates that reference region 2 is valid : *f
/* curbuf - currently displayed buffer */
/* avgnum - number of frames averaged for analysis */
/* lines{] - array containing end point of a drawn line wf
/* dcoffst - the average pixel value of the current window (and raster) *f
/* delta - difference between current phase value and old phase value wf
/* oldphase - phase value immediately preceding current phase value o/
/* corcoef - correlation coefficient of best fit phase reference line w*/
/* x - current pixel value minus the dc offset value (dcoffst) o/
/* r - sum of real parts of DFT calculation of current frequency o/
/* =z - sum of imaginary parts of DFT calculation of current frequency */
/* tempmag - sum of r squared plus z squared */
/* mag{] - array containing all the maximum magnitudes w/
/* freql] - array containing all the selected DFT frequencies v/
/* phs{] - array containing the unwrapped phase values v/
/* recoef{][] - array containing the real coefficients of DFT summation e/
/* imcoef{]{] - array containing the imaginary coefficients of DFT sum e/
/* repeat - flag used to continue analysis--while ’y’, continue */
/* input{] - array used to contain input number string */

/* startcol, toprefl, botrefl, topref2, botref2 - arrays temporarily */

APPENDIX B SPEED PROGRAM LISTING, Continued

1* containing pixel values overwritten by display *f
/* refspeed - speed of sound in reference medium */
/* stage - flag signifying which stage is being used */
* */

/ P ¥ e Ve e e e e Ve e Ve v v e Ve e e o vie o Ve Ve A o Ve o o8 Vi o S o W 0 O Ve e e A o A e e S e T S e ol e o R A R e e e ke i g s S e e v e st e e /

printf("\nThis program calculates the cress-sectional speed from a ");
printf("displayed image.\nDefault values for inputs are given by \"{]\".\n");

while (repeat != 'n’) /* continue analysis until changed */
{

[**%%x% set up frame grabber board for analysis calculation of speed #wwiwwudks/
IS_INITIALIZE(); /* initialize frame grabber ve /
IS_SELECT_OQUTPUT_FRAME(O); /* select buffer 0 for image output */
IS_SELECT_ILUT(0);

IS_SELECT_OLUT(0); /* select output lookup table 0 w/

IS_LOAD_MASK(0);

IS_SET_ACTIVE_REGION(0,0,512,512);

IS_DISFLAY(1); /* turn image display on */
JRetidddekdek® ghtain desired image on which to perform analysis ¥w¥ddshiristid/

print£("\nls desired image currently being displayed? {n] ");

if ((ch=getche()) != ’y’) /* if image is display go to analysis */
printf("\nDo you want to use an image stored in a file? ([n] ™);
if ((ch=getche()) == 'y’)
{
printf(”"\nfile name: "); /* retrieve image from file */

scanf("2s",infile);
while ((i=IS_RESTORE(0,0,0,infile)) != 0)

printf("\nreenter file name: ");
scanf("Zs",infile);

else

{ /* if real time image desired, *f
IS_RESET(); /* reset frame grabber, */
/* set sync source to external, ¥/
if ((i = IS_SET_SYNC_SOURCE(1)) != 0)
{ .

IS_ENDQ); /* if there is no sync source, *f

exit(); /* exit program. o/
IS_PASSTHRU(); /% set display in pass-thru mode.*/
IS_DISPLAY(1);
printf("\nWould you like to perform a histogram first? [n] ");
if ((ch=getche()) == 'y’)

hist(0, 1); /* call histogram function. o/
fflush(stdin);
printf("\nHow many frames would you like to average? [8] ");
gets(input);

if (inputl0] == 0)
avgnum = 8;
else
avgnum = atoi(input);

if (avgnum < 1)

avgnum = 1;
printf("\nAcquiring and averaging %d frame(s) from SLAM.",avgnum);
acquire(avgnum,0); /* call acquire funtion to acquire ¥/
/* and average j frames tc buffer 0.¥/

70

APPENDIX B SPEED PROGRAM LISTING, Continued

}
IS_SET_SYNC_SOURCE(0); /* set sync source to internal. wf

/********************* sather analy5is information *lr****t***********ﬁ*v\'**v\'ﬁ‘h*/

printf£("\nEnter specimen thickness in micrometers: ");
scanf("Zd",&thick);

fflush(stdin);
printf("\nWhat is the reference medium speed (m/s) ? [15201");
gets(input);
if (input{0] == 0)
refspeed = 1520;
else
refspeed = atoi(input);
if (refspeed <= 0)
refspeed = 1520;

/* determine which stage is being used (effects speed calculation) i/
stage = 0;
printf("\nWhich stage is being used? (’g’ for glass, ’'w’ for water) {gl ");
if ((ch = getche()) == 'w’)
stage = 1;

/* skip value determines whether a full analysis (480 lines) or a reduced */
/* (and faster) analysis is performed. A skip of k uses every kth line. v/

while ((skip < 1) || (skip > 20))
{

£flush(stdin);
printf("\nEnter skip value ([1] uses all 480 raster lines): ");
gets(input);
if (input[0] == 0)
skip =
else

skip = atoi(input);
if ((skip < 1) || (skip > 20))
printf("\n** skip value must be between 1 and 20. **");

IS_GET_PIXEL(O,DEFAULTTOP1,0,512,toprefl);
Is GET _PIXEL(0,DEFAULTBOT1,0,512,botrefl);
IS_GET_PIXEL(O DEFAULTTOP2,0,512, topref2);
IS_GET_PIXEL(O,DEFAULTBOTZ,0,512,botref2);
IS_SET_ACTIVE REGION(O,DEFAULTCOLUMN,480,1);
Is GET REGION(O startcol);

IS SET_ _FOREGROUND(255) ;

IS_SET_ _GRAPHIC POSITION(DEFAULTTOPl 0);
lines[0] = DEFAULTTOP1; lines[1] = 511;
IS_DRAW_LINES(0,1, llnes)

IS SET GRAPHIC _POSITION(DEFAULTBOTL,0);
lines(0] = DEFAULTBOT1;

IS_DRAW“LINES(O 1, llnes);
IS_SET_GRAPHIC_POSITION(DEFAULTTOPZ,0);
lines{0] = DEFAULTTOPZ;

IS_DRAW_LINES(O,1, l1nes)

Is_ SET GRAPHIC POSITION(DEFAULTBOTZ 0);
lines[0] = DEFAULTBOT2;
IS_DRAW_LINES(0,1,lines);

IS SET GRAPHIC POSITION(O DEFAULTCOLUMN) ;
lines([0] = 4797 lines{l] = DEFAULTCOLUMN;
IS_DRAW_LINES(O 1,lines);

printf("\nDo you want to use the default region specifications? [n] ");
ch = getch();

IS_PUT_REGION(O,startcol);
IS _PUT_ _PIXEL(O, DEFAULTTOPl 0,512, toprefl);
IS_PUT_PIXEL(O DEFAULTBOT1,0,512,botrefl);

APPENDIX B SPEED PROGRAM LISTING, Continued

IS_PUT_PIXEL(O,DEFAULTTOP2,0,512,topref2);
IS_PUT_PIXEL(O,DEFAULTBOTZ2,0,512,botref2);

if (

ch 1= 'y’)
/* set reference regions manually */

printf£("\nUse arrow keys to move cursor to desired postion.");
printf(”\nArrow keys on number pad with NUM LOCK on move by 10’s");
printf("\nHit \"enter\"” to select postion.");

printf("\nSelect column where velocity will be calculated.”);
cursor{&j,&xbeg);

do /* continue region setting until */
/* both selected regions are valid. %/

{

flagl = 0;

flag2 = 0;

printf("\nSelect start and end rows for two reference regions; ");
printf£("\nsetting bottom row at value lower than top row disables");
printf(" region.");
print£("\nReference region 1l: select top row. ");
/* cursor function returns current position */

cursor{&ref{0]{0],&3);
printf("\nReference region 1: select bottom row.");
cursor(&ref{0]([11,&j);

/* if bottom row < top row, disable region 1 */

/* by setting flagl. */
if (ref[0][0] > ref{0]1[1])

flagl = 1;

printf("\nReference region 2: select top row. ");
cursor(&ref{1]{0},&j);
printf("\nReference region 2: select bottom row. ")
cursor(&ref(11(1],&j);
if (ref{1]{0] > refl[l][1])

flag2 = 1; /* if bottom row < top row, disable region 2 */
/* by setting flag2. */
/* if both regions disabled, report error. *f

if ((flag2 == 1) && (flagl == 1))
printf("\n** Can’t disable both regions. **");

while ((flagl == 1) && (flag2 == 1)); /* condition of do while loop */

}

else
/% default region specifications: ¢/

{
xbeg = DEFAULTCOLUMN; /% starting column. *f
ref{0][0] = DEFAULTTOP1; /* region 1 start. w/
ref{0}[1] = DEFAULTBOT1; /% region 1 end. wf
ref{1](0] = DEFAULTTOP2; /* region 2 start. */
ref{1](1] = DEFAULTBOTZ; /" region 2 end. *f
}

/* obtain information for output data file. w/

printf(”\nEnter output data file name: ");

scanf("%s",filename);

fflush(stdin);

printf("\nEnter the name of the specimen: \n--> ");
gets(specname);
printf£("\n\n");

[Fdderdkihk calculate DFT summation exponential coefficients ¥wivediciirsis /

for (J=LOW; j<=HIGH; j++) /* only calculate for necessary w/
{

/* frequencies. o/
for (k=0; k<WINLEN; k++) /™ also only for WINLEN values */

71

APPENDIX B SPEED PROGRAM LISTING, Continued

{ /* (the other DFTSIZE-WINLEN values */
x = 2.0%pi*(float)(j*k)/(float)DFTSIZE;

/* are effectively zero-padded). w/
recoef[j-LOW]l [k] = cos(x); /* calculate real part of coef. */
imcoef[j-LOWl[k] = -sin(x); /* calculate imag. part of coef. */

}

/**ﬁ****‘frfrﬁ*i{**w******‘k‘Iﬂ\'*******************ﬁ*********************fr*‘k**‘k****ft/

/* begin analysis: find frequency with peak DFT magnitude and record phase */
,*************************************)‘(1\‘**************1\‘*1‘(***********‘fr**‘k*****/

total = 0; /* reset raster line total. */
for (i=0; i<480; it+=skip) /* use only every (skip value) line ¥/
{
dcoffst = C.0; /* reset dec offset. *f
magl[i]l = 0.0; /% reset current maximum magnitude. */
if (i250==0) /* print every 50th index as time. ¥*/
printf("Zd ",i); /* until completion indicator. *f

/* obtain data from frame grabber length WINLEN starting with value at xbeg */
IS_GET_PIXEL(O,i,xbeg,WINLEN,datbuff);
for (j=0; J<WINLEN; j++)
dcoffst += (float)datbuff[jl;
dcoffst /= (float)WINLEN; /* calculate average (dc) value. */

/* calculate DFT of current data sequence using precalculated exponentials., */
for (j=0; j<=HIGH-LOW; j++)
{

= 0.
(

r 0; z =0.0; /* reset DFT summations. o f
for =

k=0; k<WINLEN; k++)

{ /* subtract dc value before mult. ¥/
x = ((float)datbuff(k] - dcoffst);

r += x * recoef{jl[k];

z += x * imcoef{jl(k};

/* find if magnitude ofDFT of current frequency is greater than max. */
if ((tempmag=sqrt(r*r + z*z)) > magl(i])
{

/* if new maximum, *f
mag(i] = tempmag; /* change maximum, */
phase[i] = -atan2(z,r) + pi; /% calculate phase, *f
freq{i] = SAMPLFREQ/DFTSIZE*(j+LOW); /* find frequency */

}

}

total = total + 1; /* increment total and continue on next */
/* raster line. */
IS_END(); /* turn off frame grabber driver. e f

/**************** unwrap phase data ********‘f(********‘k**ﬂ**f(‘ff‘k*‘kff}'{*f:**f(:'f!’:*’.'()'r/

oldphase = phase(0]; /* set old phase to first phase value wf
phs[0} = phase(0];
for (i=skip; i<480; i+=skip)

{
delta = phase{i] - oldphase; /* calculate delta. o/
oldphase = phase(i]; /* update old phase. e/

/* unwrap the data: if the difference between current phase and the most */
/* recent phase value (oldphase) is greater the limit then offset phase */
/* by the require amount. *f
if (fabs(delta) < LIMIT)
phase{i] = phase{i-skipl + delta;
else
phase[i] = phase[i-skip] + delta - 2.0%pi*(int)(delta/pi};
phs{i] = phase{i];

[iewddidhnenik call speed funtion to convert phase to speed FFEFFFIk kI
speed(ref, thick, &corcoef, skip, refspeed, stage, &reftotal);

/* open file to record data *f
while ((outptr=fopen(filename,"w")) == NULL)

/'h

APPENDIX B SPEED PROGRAM LISTING, Continued

printf("\nCan’t open file Zs, enter new name: ",filename);
scanf("%s",filename);
f£flush(stdin);

}
fprintf(outptr, "\nTotal number of raster lines used: 24", total);
fprintf(outptr, "\nFor specimen: ");
fputs(specname,outptr);
fprintf(outptr, "\nSpeed analysis calculated at column Zd", xbeg);
if (flagl != 1)
fprintf(outptr, "\nReference region 1: starting row - Zd ending row - %d",
ref{01[0],ref[01{1]);
else
fprintf(outptr, "\nReference region 1: DISABLED"});
if (flag2 != 1) _
fprintf{outptr, "\nReference region 2: starting row - Zd ending row - Zd",
ref{1]1{0},ref{11(1]);
else
fprintf(outptr, "\nReference region 2: DISABLED");
fprintf(outptr, "\nTotal number of reference lines used: 2d", reftotal);
fprintf(outptr, "\nCorrelation of best fit reference phase: Zf",corcoef);
fprintf(outptr, "\nSpecimen thickness: 27d micrometers", thick);

fprintf(outptr, " Reference speed: Zd m/s”, refspeed);
fprintf(outptr, "\n\nLine Frequency Phase Speed \n");
fprintf(outptr, " (kHz) (rad) (m/s)\n\n");
for (i=0; i<480; it=skip)
fprintf(outptr, "%-4d . Z5.1f Z-8.5f %210.5f\n",
i,freq{il,phs{i}, phase[i]);
fclose(outptr);
call velplot funtion to plot the speed data o/

velplot(phase,total,skip);

IS_INITIALIZE();
IS_SET_ACTIVE_REGION(O,xbeg,480,1);
IS_GET_REGION(O,startcol);
IS_SET_GRAPHIC_POSITION(O,xbeg);
lines{0] = 479; lines{l] = xbeg;
IS_DRAW_LINES(O0,1,lines);

printf("\nHit SPACE BAR to toggle between image and plot or ENTER ");
printf("to continue");

curbuf = 1;

while ((ch=getch()) != 13)

{
if (curbuf == 0)

{
IS _SELECT_OLUT(7);
curbuf = 1;

}

else

{
IS_SELECT_OLUT(0);
curbuf = 0;

}
IS_SELECT_OUTPUT_FRAME(curbuf);

}
IS_PUT_REGION(O,startcol);

IS_END();
print£(”"\nDo you want to save this image in a file? [y] ")
if ((ch=getche()) != 'n’)
{
printf("\nEnter file name (8 characters + 3 for extension: ');
scanf("%s",filename);
IS_INITIALIZE();

while ((i=IS_SAVE(0,0,1,0,filename)) != 0)
{

printf("\nreenter file name: ");
scanf("7s",filename);

}
IS_END();
}

73

APPENDIX B SPEED PROGRAM LISTING, Continued

printf("\nWould you like to perform statistical analysis on the current ");
printf("speed plot?\n"});
printf(" (analysis can only be performed if skip =1) [n]l “);
if (((ch = getche()) == ’y’) && (skip == 1))
stats(phase, thick, xbeg, specname, filename);

printf£("\nWould you like to continue? {y] ");
repeat = getche();
skip = 0; /* reset skip value */

}

/***ﬁ*ﬁ*******#**ﬁ*fr*i_\-*fr*******w*ﬁv\'***fr***ﬁ*****ﬁ*******w************ﬁ'i\-*fn’r*\'h‘n't/
/* Speed Function */
/* This function takes an array of phases and converts it to an array of */
/* speeds for each raster line used. The speeds are calculated using the */
/* spatial frequency domain algorithm. ¥/

/*******************\’r********\‘(1\'1‘:********1\'*#******k*********fr*********f(**v‘t*a‘n’e*a‘v/

speed{int ref(21[2], int thick, float *r, int skip, int refspeed, int stage,
int *total)
{

int i, j, k, 1;
float wavelng, theta, sum x=0., sum_y=0., sum_xx=0., sum_yy=0.,temp,n=0.0,
sum_xy=0., delta, b, m, fn, vl, v2, v3, v4, pi=4.0%atan(l.0);

/**********'fr**********ﬁfr**ﬁ****'fr*****‘k\‘rf(***‘lr’/r**‘k***********ft*frﬁ*ifft*ﬂfn’r*":'h Ve e)’r\‘r/
/* ref[]l[] - the array of the start and end points of the reference regions */

/* thick - thickness of the specimen */
/* *r - pointer to the correlation coefficient */
/* skip - the skip value e/
/* refspeed - the reference speed in meters per second */
/* stage - flag to tell which stage is being used */
/* “*total ~ pointer to the total number of reference lines used f
/* wavelng - wavelength of sound in the reference medium wf
/* theta - angle from normal of the acoustic beam in the reference medium e/
/* sum_x - sum of the raster line indices wf
/* sum y - sum of the phases /
/* sum _xx - sum of the squares of the raster line indices */
/* sum_yy - sum of of the squares of the phases */
/* sum_xy - sum of the product of the raster line indices and phases */
/* delta, fn, vi, v2, v3, v4, temp - temporary storage variables */
/* m - slope of the best-fit reference-phase line wf
/* b - intercept of the best-fit reference-phase line of
/* n - total number of reference lines used for least squares algorithm o/

/‘l'\'*1’(*******ﬁ*****1\'************'kfr‘fr‘irfr’Ir‘lr**fn\"i\"In’('k*’k**)’r******ft**ﬂfrkﬁ*k*ffﬁrfr\’n‘n‘('ﬂn‘(¥ 1'(1'\(1':/

/* calculate some values required for algorithm */
wavelng = (float)refspeed/SLAMFRQ;

if (stage == 0) /* glass stage v/
theta = asin((float)refspeed®0.707107/5968.0);

else /* water stage */
theta = asin((float)refspeed*sin(10.0%pi/180.0)/1508.0);

/* This section calculates a best-fit reference-phase using a least o/
/% squares algorithm. o/
/* using the ref[][] array and the skip value find the correct values *f

if ((ref{0]([(0] Z skip) != 0O)

J = (ref[01[0] - (ref([01(0] Z skip) + skip);
else

j = refl01{0};
k = ref[0]{1};

74

/*

/*

/ff
/3\'

APPENDIX B SPEED PROGRAM LISTING, Continued

for (1=1; l<=2; 1++)
{
for (i=j; i<=k; it+=skip)
{

n += 1.0;

sum_x += (float)i;

sum_y += phase[i];

sum_xx += (float)i * (float)i;
sum_yy += phase[i] * phaselil;
sum_xy += (float)i * phase(i};

}
if ((ref{11{0] % skip) != 0)
J = (ref[11({0} - (ref{11[0]1 Z skip) + skip);

else

J = ref(13(0};
k = ref{1]({1];
}

calculate the slope and intercept of the best-fit reference phase line

delta = sum_xX*n - sum_X*sum_X;

m = (sum_Xy*n - sum_x*sum y)/delta;

b = (sum_xx*sum y ~ sum_x*sum_xy)/delta;
temp = delta * fabs(sum yy*n-sum _y¥*sum y);

calculate the correlation coefficient

if (temp > 0.0)
*r = (sum_Xy*n - sum_x*sum_y)/sqrt(temp);

vl = thick * sin(theta);
vZ2 = vl * tan(theta);
v3 = (float)refspeed/sin(theta);

once all values and the best-fit line have been calculated, perform
conversion of the phase values to speed values for each raster line,

for (i=0; i<480; i+=skip)
{
fn = (phase[il - (m * (float)i + b))/(2.0%pi);
vt = fn * wavelng * tan(theta);
phase[i] = v3 * sin(atan2(v2, (vl - v4)))

*total = (int)n;

f(/

*/

7':/
)\'/

75

APPENDIX C DISPLAY PROGRAM LISTING

f#include <isdefs.h>
#include <iserrs.h>
main(arge,argv)

int argc;

char *argv(];

IS_INITIALIZE();
IS_RESET();
if (stremp(argv([l],"off") != 0)
{
IS_DISPLAY(1);
if (argv(1l] != 0)
IS_RESTORE(0,0,0,argv{1]);
else
{
IS_SET_SYNC_SOURCE(1);
IS_PASSTHRU();
}

}
IS_ENDO);

76

APPENDIX D GRAB PROGRAM LISTING

#include <isdefs.h>
#include <iserrs.h>

/1\‘1\'***********************x’f*:\'**f\'*'fn‘(****s‘(********i\‘**ﬂ******ﬁ**)‘r**ﬁ*k**v‘n‘n‘r**a‘n‘n’rﬁ/

/* fl/
/* 'grab’ <filename> acquires and averages 8 images, and stores the */
/* resulting image at the user-specified name from the command line. ¥/
/i\' w‘t/

/********i\“k*****1\‘*******************'k**'k'k*’k*'k**‘k*****************ﬁ**‘k*w’n‘r’ln‘rs'n‘rff’lt/

main(argc,argv)
int argc;
char *argv{80];

int i; [Fededddeddedcde dede dededede e s ded Sededede e fe e dede e deded /
if (argvil] != 0) /* if there are command line */
/* arguments, then initialize */

IS_INITIALIZE(); /* frame grabber. */

IS RESET(); [b s eI de e dede SR de e de e e e e deSe fe de dede e de de e [

IS DISPLAY(1);
if ((i = IS_SET_SYNC_SOURCE(1)) != 0)

IS_END();
exit();
} /)’r'!rft‘k***fr*'[t***’k*****ft*fv'f(*fn‘r*a’rs’t)'n'n’(fr/

/* acquire and average 8 frames */
/*frﬁ"f(‘kﬁ******ffﬂ'***‘k*fr‘l\'*fr:’n’r*s‘n‘ff:k)‘n‘n‘c/

printf("\nAcquiring and averaging 8 frames from SLAM."):

acquire(8,0);

IS_SET_SYNC_SOURCE(0);
/'k********)’r*****f(\’(**ft'lr*ﬁ*)’n’r*:’cfm’n‘t*f.—/
/* store the resulting image at ¥/
/* the prespecified name */
/*ft*fr***ﬁ'*'l\'*'h'A'*ert*ir‘kﬁ*a‘(*‘kfn’n’cY::’::’r)‘:)‘n‘r/

while ((i=IS_SAVE(0,0,1,0,argv([1])) != 0)
{

printf("\nreenter file name: ");
scanf("Zs",argvil])
}
IS _ENDQ);
}
else

printf("\nprogram format: grab <desired file name>");

77

APPENDIX E PLOT PROGRAM LISTING

#include <stdio.h>
f#include <graphs.h>

/*************1{******************************'k**W*****fl****fr*****i\'*‘k*fr*Yc**ft:\'*/
/* ‘’'plot’ uses velplot to plot speed data values output from the program */

/* speed. It automatically finds the number of points to plot */
1% If any character is entered on the command line other than the ¥/
/* desired file name, the plot is made on the computer monitor. *f

/****7\‘**********ﬁ**v\'*****’h**********************************‘h********ﬁ****ﬂ'ﬁ*/

main(argc,argv)

int argce;
char *argv(];
{

float x[480], y[480], templ, temp2;

int i, total, offset, temp3, nxdiv, nydiv, npts;

char line{80],ch1[101,ch2[10],ch3[10],ch4{10},ch5(10],ch6{10];
FILE *fptr, *oubptr;

if ((fptr=fopen(argv{l],"r")) == NULL)

{printf("can’t open file Zs.",argv{1l]l);exit();}
fgets(line, 80, fptr);
fscanf(fptr, "%Zs s Zs Zs Zs s Zd",chl,ch2,ch3,ch4,chS,ch6,&total);
for (i=0; i<12; i++)

fgets(line, 80, fptr);
offset = 480/total;

if (argec == 2)

for (i=0; i<480; i+=offset)
fscanf(fptr, "Zd Zf Zf Z2£", &temp3,&templ,&temp2,&x[i]);

}
else
{
for (i=0; i<total; i+t)
fscanf(fptr, "Zd %Zf Zf Zf",&temp3,&templ,&temp2, &y[i]);
x{il = (float)temp3;
}
}
fclose(fptr);
/* check if any other character was entered on the command line o/

if (arge == 2)

velplot(x,total,offset); - /* if not, plot on image monitor */

/* otherwise, use GraphiC routine to plot on computer monitor and allow for */

/* a hard-copy of speed plot. wof
else

printf("\nSpecifying an output file name of anything but ’'notek’");
printf{"\nallows a speed plot to be printed out.\n For printout,”);
printf(" hit space bar upon plot completion,\n and follow the");
printf(" instructions given.")};

printf("\n\noutput file name: ");

scanf("Zs",line);

/* GraphiC functions for plotting i/
bgnplot(1,’g’,line);
startplot(8);
font(l,"simplex.fnt",'\310'," n' H :," vl’: I'H "’l 1);

page(9.0, 6.855);
area2d(8.0, 6.);
upright(1l);
nxdiv = 12;
nydiv = 10;

npts = total;

78

APPENDIX E PLOT PROGRAM

scales(nxdiv,nydiv,x,y,npts);
xname(""\310Raster Line Index");
heading("\310SPEED OF SOUND vs RASTER LINE™);
yname("\310Speed (m/s)");

curve(x,y,npts,0);

endplot(};

itopplot():

LISTING, Continued

79

APPENDIX F STATS PROGRAM LISTING

f#include <stdio.h>
#include <math.h>
main(argc,argv)
int argce;

char *argv(];

FILE *fptr,*outfptr;

float speed{480],templ,temp2,mean,stdev,sum;

int i,j,total=480,0ffset,rline,region=0,leftb,rightb;

char line[80],ch1{40],ch2{10],¢ch3[10],ch4[10],ch5[10],ch6{10],
title_string([80],column_string(80},thickness_string[80];

if ((fptr=fopen(argv{ll,"r")) == NULL)

{printf("can’'t open file Zs.",argv[1]);exit();}
printf("output file name (specifying an existing file will ");
printf("cause current\ndata to be appended to previous data): ");
scanf("%s",chl);
while ((outfptr = fopen(chl, "a")) == NULL)

{

printf("\nCan’t open file Zs. Enter new file name: ",chl);
scanf("%s",chl);

}
fgets(line, 80, fptr);
fscanf(fptr, "Zs %s s 2s Zs Zs Zd",chl,ch2,ch3, ché,ch5,ch6,&total);
fgets(line, 80, fptr);
fgets(title_string,80, fptr);
fgets(column_string, 80, fptr);
for (i=0; i<4; i++)
fgets(line, 80, fptr);
fgets(thickness_string, 80, fptr);
for (i=0; i<4; i++)
fgets(line, 80, fptr);
if (total != 480)
{

printf£("\nThis program can only be run on data with all 480 lines.");
exit();

for (i=0; i<480; i++)

fscanf(fptr, "%d Zf Zf %Zf", &rline,&templ,&temp2, &speed[i]);
felose(fptr);
velplot(speed,total,l);
fprintf(outfptr,"Data from the file: Zs\n",argv(1l]);
fputs(title_string,outfptr);
fputs(column_string,outfptr);
fputs(thickness_string,outfptr);
printf("\nHow many regions would you like to specify? ");
scanf("%d", ®ion);
for (i=1l; i<=region; i++)

{

printf("\nSelect left boundary of regiom Zd. ", i);
index_pointer(&leftb);

printf("Zd”, leftb);

printf("\nSelect right boundary of region Zd. ", i);

index_pointer(&rightb);

while (rightb < leftb)
{
printf("\nRIGHT BOUNDARY MUST BE GREATER THAN LEFT BOUNDARY.");
printf("\nSelect right boundary of region Zd. ", i);
index_pointer(&rightb);

}

printf("Zd",rightb);
total = rightb - leftbh + 1I;
sum = 0.0;
for (j=leftb; j<=rightb; j++)

sum += speedl[j];
mean = sum/(float)total;
sum = 0.0;
for (j=leftb; j<=rightb; j++)

sum += (speed{j] -~ mean)*(speed[j] - mean);
stdev = sqrt((double)(sum/(float)total));
printf(”\nmean = 210.5f std = Z8.5f", mean, stdev);
fprintf(outfptr,

80

APPENDIX F STATS PROGRAM LISTING, Continued

"\nREGION 7Zd: lines 2Z3d to Z3d mean = %10.5f std = 7Z8.5f",
i, leftb,rightb,mean,stdev);
}
fprintf(outfptr,"\n\n\n");
fclose(outfptr);

#include
#include
#include
#include
main()

int

APPENDIX G CHANGE WINDOW PROGRAM LISTING

<isdefs.h>
<iserrs.h>
<conio.h>
<stdio.h>

i,j,k,line{8], row, col, height, length, templ, temp2;

char ch

FILE *fptr;

fptr = fopen("c:\\slam\\attwin.pos", "r+");
fscanf(fptr, "2d Zd %Zd Zd", &row, &col, &height, &length);
IS_INITIALIZE();

IS_RESET();

IS SET SYNC _SOURCE(1);

Is SET ACTIVE _REGION(row,col,height, length);
is DISPLAY(I),

Is_ SET GRAPHIC POSITION(row,col);
IS_SET_FOREGROUND(1);

for

(i=1; i<256; i+=2)
IS_LOAD_OLUT_SVAL(0,1i,255,0,0);

line{0] = row;

line{l] = col + length -
line[2] = row + height

[
R

’
:
’
:

line{3] = col + length
line{4] = row + height -
linel[5] = col;

line(8] = row;

line{7] = col;

IS_FRAME_CLEAR(0);

1S _DRAW LINES(O 4,line);

IS LOAD _MASK(1);

IS SELECT _ILUT(5);

1S PASSTHRU()

1S) _DISPLAY(1);

prlntf("\nChange current attenuation measurement region? ");
if ((ch = getche()) == 'y')

{
printf(”\nMove cursor to desired upper left corner and hit RETURN");
cursor (&row, &col);
printf("\next move to desired lower right corner and hit RETURN");
cursor(&templ, &temp2);
height = templ - row + 1;
length = temp2 - col + 1;
if ((height < 1) || (length < 1))
{

printf("\nSelected region not valid");
fclose(fptr);

IS_RESET();

IS_END();

exit();

}
if (height*length > 10000)
{

printf("\nSelected region too large");

fclose(fptr);

IS _RESET();

Is END()

ex1t()

}
fseek(fptr, (long int)0,0);
fprintf(£fptr,"23d Z3d 2Z3d Z3d",row,col,height, length);
IS_SET_ACTIVE_REGION{(row,col, helght length);
IS_ _SET GRAPHIC . POSITION(row,col);
IS SET | —FOREGROUND(1);
IS_LOAD OLUT_SVAL(0,1,255,0,0);

line[0] = row;

line[l] = col + length - 1;
line[2] = row + height - 1;
line{3] = col + length - 1;
line{4] = row + height - 1;

line(5] col;

82

APPENDIX G CHANGE WINDOW PROGRAM LISTING, Continued

line[6] = row;

line{7] = col;
IS_LOAD_MASK(0);
IS_FRAME_CLEAR(0);
IS_DRAW_LINES(0,4,line);
IS_LOAD_MASK(1);
IS_SELECT_ILUT(S);
IS_PASSTHRU(Q);
IS_DISPLAY(1);

}
fclose(fptr);
IS_ENDQ);

83

APPENDIX H ACQUIRE FUNCTION LISTING

#include <conio.h>

#include <stdio.h>

#include <5158io0.h>

fidefine DELAY 16000 /* delay value between grabbing frames */
/*****'A'*************l\'**********ﬂ'**IV**i'r*ﬁ'1\'*********************k*ﬁ*ﬁ****’l:ﬂ'ff*'hffﬁ/

/* */

/* acquire() is a function which replaces the IS_ACQUIRE() subroutine in *f

/* the DT-IRIS subroutine library. The frame grabber board has a hardware *f

/* sync problem which causes the acquire

and average function of IS_ACQUIRE */

/* to produce a jittery image. acquire() performs the same acquire and */
/* average as IS_ACQUIRE but adds a delay in between grabbing frames to wf
/* allow the frame grabber to regain sync. It requires two inputs: */
/* frames ~ specifies the number of frames to average *f
1 buffer -~ specifies to which buffer the final image is sent */
r W/
/* (this function is very hardware-interaction intensive. for a detailed */
/* understanding of what is being performed, consult the DT2851 manual.) */
* *

/********************ft******’fr**ffit*\'t*ft*l‘f*Y\'Yr*f{f(}'t‘k*‘f(ﬁ‘)‘(ﬁf(*ﬁ‘*f(*****f(l‘l****fl’**1k’k fn’n‘n’n‘(/

acquire(int frames, int buffer)

unsigned int input,output,index=0,j,templ, temp2, temp3, temps, buf=0;

int flag = 0,i;

/***ﬁ‘*****ﬁ*************ﬁ*****1‘:**3’(***'l\'****'k**a\'*****1‘{*****1\‘********’I\"A'n\"i\‘*)‘n’n\)‘n’n‘n‘r/

/% e/
/* input - used for reading data from the I/0 registers */
/* output - used for writing data to the I/0 registers */
/* index, j - are loop indecies o/
/* templ, temp2, temp3 - used to store original status register contents */
/* temp4 - temporary variable */

/* buf - mask used for setting status registers to use correct frame buffer */

/* flag - is a flag used for checking when frame grabber and/or frame *f
TAd processor are ready */
/* i - a loop counter *f
/* */
/**)‘r**\‘r************t\‘)’ﬂ\‘****7'\'*a\'frw‘n\—:’n’r*k*ln’n’r1'(e 3t e 3l e 3 3 3l 3 3% 2T 3T v 9% 3l % ol e 3k ol o ol o e v o o' S ol o e Ve v et Ve vl ot /
input = inpw(INCSR1); /* set the frame grabber to finish o
output = input | 0x0008; /* current function s f
outpw(INCSR1,output);
while (flag == 0) /* wait for frame grabber to signal *f
/* that it is ready o/

input = inpw(INCSR1);

if ((input & 0x0080) == Q)
flag = 1;

}

if (buffer != 0) /%
buf = 0x0080;

templ = inpw(INCSR1); /*
temp2 = inpw(INCSR2);

temp3 = inpw(OQUTCSR);
outpw(INCSR2,0x0010 | buf); /%
outpw(INCSR1, 0x0088);

flag = 0;

while (flag == 0) /*

{

input = inpw(INCSR1);
if ({(input & 0x0080) == 0)

flag = 1;
/*
/i\'
/'k
/*
if (frames > 1) /%

/*

set buffer mask to selected buffer ¥/

save current status register values */

select buffer and video input funct */

wait for ready */

when complete, one frame has been */
grabbed. if only 1 frame selected, */
no averaging required--can return Y/
to main program. e/
Otherwise, must send this frame and */
subsequent frames to frame processor¥/

84

APPENDIX H

outpw(STATUS, 0x0000);
outpw(CONTROL, 0x0004);
flag = 0;

while (flag == 0)

{
input = inpw(STATUS);

ACQUIRE FUNCTION LISTING, Continued

/* for averaging. *f

/* wait for frame processor ready */

if ((input & 0x0010) == 0)

flag = 1;
}

outpw(CONTROL, 0x0004);

/* set look-up table 0 with */

for (index=0; index<256; index++) /* 1 to 1 values */

{
outpw(LUT_INDEX, index);

outpw(LUT_DATA, index);
}

outpw(CONTROL, 0x0024) ; /* set look-up table 1 with wf
for (index=0; index<256; indext+) /* values for calculating */
{ /* average. */

outpw(LUT_INDEX, index);
outpw(LUT_DATA, (unsigned int)(index*frames));

}

outpw(CONTROL, 0x0004);
outpw(X_OFFSET, 0x0000);
outpw(¥_OFFSET, 0x0000);
outpw(INCSR2,0x0060 | buf);
outpw(INCSR1,0x0088);
flag = 0;
while (flag == 0)

{

input = inpw{(STATUS);
if ((input & 0x0002) !

/* send first frame ‘to frame e/
/* processor */

= 0)

{
outpw{CONTROL, 0x0004) ;

flag = 1;
}
}

outpw(CONTROL, 0x0005) ;
flag = 0;
while (flag == 0)

{

input = inpw(STATUS);
if ((input & 0x0001) !

= 0)

{
outpw{CONTROL, 0x0004);

flag = 1;
}
}

for (i=1l; i<frames; i++)

flag = 0;
while (flag == 0)
{

/* acquire and add additional e/

/* frames to frame processor o/
/* memory until requested total */
/* frame value is reached /

input = inpw(INCSR1);
if ((input & 0x0080) == 0)

flag = 1;
}
outpw(INCSR2,0x0010 | buf);
outpw(INCSR1,0x0080);
flag = 0;
for (j=0; J<DELAY; j++) flag=0; /* wait the required delay */

outpw(INCSR1, 0x0088);
while (flag == 0)
{

input = inpw(INCSR1l);

if ((input & 0x00
flag = 1;

80) == 0y

85

APPENDIX H °~ ACQUIRE FUNCTION LISTING, Continued

}

flag = 0;

while (flag == 0)
{

input = inpw(STATUS);

if ((input & 0x0010) == Q)
flag = 1;

}

outpw(CONTROL, 0x1204);
outpw(X_OFFSET, 0x0000);
outpw(Y_QFFSET, 0x0000);
outpw(INCSR2,0x0060 | buf);
outpw(INCSR1,0x0083);
flag = 0;
while (flag == 0)

{

input = inpw(STATUS);

’ if ((input & 0x0002) != 0)
{
outpw(CONTROL, 0x1204);
flag = 1;
}
}
outpw(CONTROL, 0x1205);

flag = 0;
while (flag == 0)
{

input = inpw(STATUS);
if ((input & 0x0001) != Q)
{

outpw(CONTROL, 0x1204);
flag = 1;
}

}

/* when all frames have been sent and added in the frame processor, perform */
/* averaging by division of sum using DT2858 successive approximation funct */

flag = 0;
while (flag == 0)
{

input = inpw(STATUS);
if ((input & 0x0010) == 0)
{

outpw(CONTROL, 0x0022) ;
flag = 1;
}
}
outpw(X_OFFSET, 0x0000);
outpw(Y_OFFSET, 0x0000);
outpw(CONTROL, 0x0023);
flag = 0;
while (flag == 0)
{

input = inpw(STATUS);
if ((input & 0x0001) != 0)
{

cutpw(CONTROL, 0x0022);

flag = 1;
}
}
/* after division is completed, send the averaged image back to the selected */
/* frame buffer. */
flag = 0;

while (flag == 0)
{

input = inpw(INCSR1);

}

APPENDIX H ACQUIRE

if ((input & 0x0080) == 0)
flag = 1;

}
outpw(INCSR1, 0x0008); :
outpw(INCSR2,0%0070 | buf);
flag = 0;
while (flag == 0)

{

input = inpw(STATUS);

if ((input & 0x0010) == 0)
flag = 1;

}

outpw(CONTROL, 0x0008);
outpw(X_OFFSET, 0x0090);
outpw(Y_OFFSET, 0x0000);
outpw(INCSR1,0x0088);
outpw(CONTROL, 0x0009) ;
flag = 0;
while (flag == 0)

{

input = inpw(STATUS);
if ((input & 0x0001) != 0)

{

outpw(CONTROL, 0x0008) ;
flag = 1;

}

}

FUNCTION LISTING,

outpw(INCSR1, templ);
outpw(INCSR2, temp2);
cutpw(OUTCSR, temp3) ;

/* restore original status &/
/* register contents and return */
/* to main program o/

Continued

87

APPENDIX I HISTOGRAM FUNCTION

f#include <isdefs.h>
#include <iserrs.h>
#include <graphs.h>
hist(int buffer, int flag)

{

unsigned long int bin[256}, temp, maxvalue, a;

int i, maxpixel, minpixel, curx, maxvpix, contflag=0;
float total;

char ch;

while (contflag == 0)

{
maxvalue = 0;
curx = 100;
if (flag == 0)
contflag = 1;
IS_HISTOGRAM(buffer, bin);
if (flag != 0)
IS_PASSTHRU();
bin{0] ~= 16384;
for (i=0; i<256; i++)

{
if (bin{i] != 0)
{

minpixel = i;
i = 256;
}

}
for (i=235; i»>=0; i--)
{
if (bin(i] t= 0)
{

maxpixel = i;
i=-1;

}

total = 0.0;
for (i=0; i<256; i++)

total += (float)bin[i]*(float)i;
if (bin[i] > maxvalue)

{

maxvalue = bin[i];

maxvpix = i;

}

}
total /= (512.0%480.0);
a = maxvalue/320;
for (i=0; i<256; i++)

temp = bin(il];

bin[i] = bin([il/a;

if ((bin{i] == 0) && (temp != Q))
bin[i] = 1;

}
_setvideomode (_ERESNOCOLOR) ;
for (i=0; i<256; i++)

{
if (bin[il != 0)

_rectangle(_GBORDER, curx,330-(int)bin{i], curx+l,330);
curx += 2;

}
_moveto(100,330);
_lineto(611,330);
_settextposition(25,0);
printf("low: 23d high: Z3d mean: 76.2f max pixel: %3d",
minpixel,maxpixel,total,maxvpix);
_settextposition(1,0);
if (flag == Q)
printf("press any key to continue.”);
else

LISTING

printf{"press SPACE BAR for another histogram or RETURN to exit.”);

88

}

APPENDIX I HISTOGRAM FUNCTION

ch=getch();
if ((flag t= 0) && {(ch == 13))
contflag = 1;
}
_displaycursor(_GCURSORON);
setvideomode(DEFAULIMODE);

LISTING, Continued

89

APPENDIX J SPEED PLOT FUNCTION LISTING

#include <isdefs.h>
#include <iserrs.h>
#include <stdlib.h>
#include <string.h>

/***************ﬁ************‘k*********'A'*******1’!*************************k’k/

* wf
/* velplot() is a function that plots the speed data on the image */
/% monitor. It requires the following inputs: *f
A y[1 - array of data points to be plotted (480 maximum) */
/¥ count - the total number of points to be plotted *f
/* offset - is the skip value between indecies for each data point */
/* */

/**************************************fr********************************frﬁ*/

velplot(float d(480], int count, int offset)

int ch([128]1,1i,j,1line(960],row,col,max=0,min=5000,b,coll,col2, temp;
float a,temp2, y[4801;
static char cstr(l="0 40 80 120 160 200 240 280 320 2360 400 4407,
static char xstr{l="raster line index", vstr{]="Speed m/s";
static char hstr{]="SPEED OF SOUND IN SPECIMEN VS RASTER LINE";
char ystr[40], tstr{l0];

/****Ye***ﬁ**********ﬁ*ﬁ****ff*1’!************fr*‘k*'h***********s’f‘k**ﬁ*ﬁ***»‘c**ft*a’n‘n‘n’cs’r/

I */
/* chi] - temporary array to send characters to be displayed to framegrabber */
/* i, j - loop counters * /
/* line[] - array to send line plotting coordinates to frame-grabber *f
/* row, col - contain current graphic position for frame-grabber */
/* max - highest value of points to be plotted o/
/* min - lowest value of points to be plotted */
/* b - normalized minimum value */
/* coll, col2, temp - temporary variables v/
/* a - scaling factor for plots */
/* temp2 - temporary floating point variable ve f
/* cstr{], xstr([], hstr{], vstr[] - static character strings for plot labels */
/* ystr{}, tstr{] - temporary character string wf
/*)’r/

/***ﬁﬁ*ﬁﬁﬁ*************‘k*'f('lr‘lt*ih\'*'h'lr‘k***‘k*’\"k~Irvr*******r\'***********1‘(*****1\'*1\'1\'1’:1‘0‘: s'ﬂ\'/

IS_INITIALIZE(); /* initialize frame-grabber */
IS_FRAME CLEAR(1); /* clear frame buffer 1 wf
IS_SET_SYNC_SQURCE(0); /* set sync source to internal ¥/
IS_LOAD OLUT_SVAL(7,0,0,0,115); /* set colors for: background */
IS_LOAD OLUT_SVAL(7,255,250,250,250); 1* heading *f
IS_LOAD OLUT SVAL(7,254,180,180,180); [* borders w*/
IS_LOAD OLUT_SVAL(7,253,210,200,200); /* numbers o/
IS_LOAD OLUT_SVAL(7,252,255,255,000); /% plot */

IS_SET_FOREGROUND(252};
IS _SELECT_OUTPUT_FRAME(1);
IS_SELECT_OLUT(7); /% select output look-up tbhl 7 ¥/

for (i=0; i<480; it+=offset)
yli} = d[i];
for (i=0; i<480; it=offset)

if ((int)y{i] > max) max=(int)y([i]+1; /* find maximum value *f

if ((int)y[il < min) min=(int)y[il]; /* find minimum value o/

b = min - (min Z 10); /* set normalized minimum to a */

/* next lowest value divisible ¥/

/* by 10. *f

/* calculate the scaling factor ’a’ by dividing the available number of */

/* lines by the difference between the maximum and normalized minimum *f

90

/*

APPENDIX J SPEED PLOT FUNCTION LISTING, Continued

if ((max - b) > 0) /* if max - b > 0, calculate a
a = 400.0/((float)(max ~ b)); /* accordingly

else
a=1,0; /* otherwise set a to 1.0

for (i=0; i<480; it+=offset) /* normalize, scale, and round

/* all array values.
yii]l = (y[i] - b)*a;
md(&ylil);
}

Using rescaled array values, plot the speed values

col = 30;

row = 440 - (int)y[0];
IS_SET_GRAPHIC_POSITION(row,col);
for (i=0; i<2*(count-1); i+=2)

line(il

= 440 - (int)yloffset®(i/2+1)];
line(itl] =

30 + offset*(i/2+1);

}
IS_DRAW LINES(1,count-1,line);

/* Calculate and plot the borders for the graph

IS_SET_FOREGROUND(254);
IS_SET_GRAPHIC POSITION(440,30);
for (i=0; i<24; i++)

line[i*8] = 440;
line{i*8+1] = 30+(i+1)*20;
line{i*8+2] = 438;
line{i*8+3] = 30+(i+1)*20;
line{i*8+4] = 442;
line[i*8+5] = 30+(i+1)*20;
line[i*8+6] = 440;
line{i*8+7)] = 30+(i+1)*20;
}

IS_DRAW_LINES(1,96,line);
IS_SET_GRAPHIC_POSITION(440,30);
coll = 30;
col2 = 2;
for (3=0; j<2; j++)

{

for (i=0; i<8; i++)

{

line{i*8] = 440-(i+1)*50;
line{i*8+1] = coll;
line{i*8+2] = 440-(i+1)*50;
kine{i*8+3] = coll-2;
line{i*8+4] = 440-(i+1)*50;
line(i*8+5] = coll+tcol2;
line{i*8+B] = 440-(i+1)*50;
line(i*8+7] = coll;

}
IS_DRAW_LINES(1,32,line);
IS SET_GRAPHIC_POSITION(440,510);

coll = 510;
col2 = 1;
}

/* Calculate the speed values for the y-axis using a and b and convert the
/* values to characters. Send the characters and the static strings to the
/* frame grabber for plotting.

IS_SET_FOREGROUND(253);
IS_SET_GRAPHIC POSITION(444,27);
for (i=0; i<57; i++)

ch{i] = (int)ecstr(i];
IS_DRAW_TEXT(1,57,ch);
temp = (b + (int)(100.0/a)¥*4);

*/
*/

*/

*/
*f

*/

7’{/

7'{/.

*/
%y

91

APPENDIX J SPEED PLOT FUNCTION LISTING, Continued

itoa(temp, tstr,10);

strepy(ystr,tstr);

for (i=3; i>=0; i--)
{

temp = (b + (int)(100.0/a)*i);
itoa(temp,tstr,10);
strecat(ystr,tstr);

}

for (j=0; j<=4; j++)
for (i=0; i<4; i++)

IS_SET_GRAPHIC_POSITION(12+100%j+14%*i,18);
ch[0] = (int)ystrii+j*4];
IS_DRAW _TEXT(1,1,ch);
}
}
IS_SET_FOREGROUND(255);
IS_SET_GRAPHIC_POSITION(464,190);
for (i=0; i<17; it++)
chlil = (int)xstr{il;
IS_DRAW_TEXT(1,17,ch);
for (i=0; i<11; it++)

{
IS_SET_GRAPHIC_POSITION(140+i*14,8);
ch[0] = (int)vstr{i];
IS_DRAW_TEXT(1,1,ch);

}
IS_SET_GRAPHIC_POSITION(10,100);
for (i=0; i<4l; i++)

chii] = (int)hstrlil;
IS_DRAW_TEXT(1,41,ch);
IS_DISPLAY(1);

IS_END();
}

rnd(float *value)

int rvalue, ivalue;

float temp;

temp = *value;

value = (fleoat)((int)(temp) + (int)(2(temp - (int)temp)));

92

APPENDIX K CURSOR FUNCTION LISTING

#include <isdefs.h>
#include <iserrs.h>
#include <string.h>
f#idefine UP_ARROW 72
f##define DOWN_ARROW 80
#define LEFT_ARROW 75
#define RIGHT_ARROW 77
f#define SHIFT UP 56
#define SHIFT_DOWN 50
#define SHIFT_LEFT 52
f#define SHIFT RIGHT 54
#define ENTER 13
cursor{int *row, int *col)

int currow, curcol, temp{3400], ch[20], i, temp2;
char keyl, key2, cstr{5], rstr{5], fstr{20];

static char strl{]="ROW: ", str2{]=" COL: ", str3[]l="0",

IS_SET_ACTIVE_REGION(457,361,22,151);

IS_t GET] REGION(O temp);

IS SEI GRAPHIC POSITION(462 370);

IS “SET FOREGROUND(ZSS)

IS SET_. _BACKGROUND(0) ;

IS SET_| _MODE(1);

IS8T REPORT CURSOR .. POSITION(&currow, . &curcol);
IS CURSOR(I)

prxntf("\n ROW: 2Z3d COL: Z3d\x1B(ZdD", currow, curcol, 21);

temp2 = currow;
itoa(temp2,rstr,10);
strepy(estr,rstr);
if (currow < 10)

strepy(cstr,strd);
strcat(cstr,rstr);

else
if (currow < 100)

strepy(estr,str3d);
strcat(cstr,rstr);

}

strepy(fstr,strl);
strcat(fstr,cstr);
strcat(fstr,str2);
temp2 = curcol;
itoa(temp2,rstr,10);
strepy(cstr,rstr);
if (curcol < 10)

strepy(cstr,stré);
strcat(cstr,rstr);
}

else

{

if (curcol < 100)
{
strepy(cstr,strd);
strcat(cstr,rstr);

strecat(fstr,cstr);
for (i=0; i<18; i++)
ch{i] = (int)fstr(i];
IS _DRAW TEXT(0,18,ch);
while ((key1=getch()) t= ENTER)

{
if (keyl == 0)

{
key2 = getch();
switch(key2)

93

APPENDIX K CURSOR FUNCTION LISTING, Continued

case UP_ARROW:
currow == 1;
if (currow < 0)
currow = 479;
break;
case DOWN_ARROW:
currow += 1;
if (currow > 478)
currow = 0,
break;
case LEFT_ARROW:
curcol -= 1;
if (curcol < 0)
curcol = 511;
break;
case RIGHT ARROW:
curcol += 1;
if (curcol > 511)
curcol = 0;
break;
default:
break;
}

}

else
{
switch(keyl)

{
case SHIFT UP:
currow -= 10;
if (currow < Q)
currow += 480;
break;
case SHIFT DOWN:
currow += 10;
if (currow > 479)

currow -= 480;
break;
case SHIFT_LEFT:
curcol -= 10;
¥ if {curcol < 0)
curcol += 512;
break;

case SHIFT_RIGHT:
curcol += 10;
if (curcol > 511)
curcol -= 512;
break;
default:
break;
}

}

IS_SET_CURSOR_POSITION(currow, curcol);

printf(" ROW: 23d COL: 7Z3d\x1B[ZdD", currow, curcol, 21);
temp2 = currow;
itoa(temp2,rstr,10);
strepy(cstr,rstr);
if (currow < 10)

strepy{cstr,stré);
strecat(cstr,rstr);

}

else
if (currow < 100)
streopy(cstr,str3d);

strcat(cstr,rstr);

}

APPENDIX K CURSOR FUNCTION LISTING, Continued

strepy(fstr,strl);
strcat(fstr,cstr);
strcat(fstr,str2);
temp2 = curcol;
itoa{temp2,rstr,10);
strepy(cstr,rstr);
if (curcol < 10)

{

strepy(estr,stré);
strcat(cstr,rstr);

}

else

{

if (curcol < 100)
{
strepy(cstr,strd);
strcat{cstr,rstr);

}
strcat(fstr,cstr);
for (i=0; i<18; i++)

ch{i] = (int)fstrl(il;
IS_SET_GRAPHIC_POSITION(462,370);
IS_DRAW_TEXT(0,18,ch);

}
IS_CURSOR(0);
IS_PUT_REGION(O,temp);
*TOW = CUrrow;
*col = curcol;

95

APPENDIX 'L INDEX POINTER FUNCTION LISTING

#finclude <isdefs.h>
#include <iserrs.h>
fiinclude <string.h>
#define LEFT_ARROW 75
#define RIGHT_ARROW 77
#define SHIFT LEFT 52
#define SBIFT RIGHT 54
#define ENTER 13
index_pointer(int *col)

int currow, curcol, ch[20}, i, temp2;
char keyl, key2, cstr{5], rstr[5], £str[20];
static char strl([]="CURRENT INDEX: ", str3{]="0",
IS_INITIALIZE();
IS_SELECT OUTPUT_FRAME(1);
IS_SELECT_OLUT(7);
IS_SET_ACTIVE_REGION(457,361,22,151);
IS_SET_GRAPHIC_POSITION(462,370);
IS_LOAD_OLUT SVAL(7,251,0,0,250);
IS_SET_FOREGROUND(251);
IS_SET_BACKGROUND(255);
IS_SET_MODE(1);
IS_REPORT_CURSOR_POSITION(&currow,&curcol);
currow = 479;
if ((curcol < 30) || (curcol > 509))

curcol = 30;
IS_SET_CURSOR_POSITION(currow, curcol);
IS_CURSOR(1);
temp2 = curcol -~ 30;
itoa(temp2,rstr,10};
strepy(cstr,rstr);
if (temp2 < 10)

{

strepyl{cstr,stré);
strcat(estr,rstr);

else
{
if (temp2 < 100)
{

strepy(cstr,str3d);
strcat(cstr,rstr);

}
strepy(fstr,strl);
strcat{(fstr,cstr);
for (i=0; i<18; i++)

ch[i] = (int)fstrli];
IS_DRAW TEXT(1,18,ch);
while ((keyl=getch()) != ENTER)

{
if (keyl == 0)
{

key2 = getch();
switch(key2)

{
case LEFT_ARROW:
curcol -= 1;
if (curcol < 30)
curcol = 508;
break;
case RIGHT_ ARROW:
curcol += 1;
if (curcol > 509)
curcol = 30;
- break;
default:
break;
}

else

str4(]="00";

96

APPENDIX L INDEX POINTER

{
switch(keyl)

{
case SHIFT_LEFT:
curcol -= 10;
if (curcol < 30)
curcol += 480;
break;
case SHIFT RIGHT:
curcol += 10;
if (curcol > 509)
curcol -= 480;
break;
default:
break;

}

IS_SET_CURSOR_POSITION(currow, curcol);
temp2 = curcol - 30;
itoa(temp2,rstr,10);
strepy(estr,rstr);
if (temp2 < 10)

{
strepy(cstr,stré);
strecat(cstr,rstr);

else
{
if (temp2 < 100)
{

strepy(cstr,str3d);
strcat(cstr,rstr);
©}
}
strepy(fstr,strl);
strcat(fstr,cstr);
for (i=0; i<18; i++) .
ch{i] = (int)fstr(i];
IS_SET_GRAPHIC_POSITION(462,370);
IS_DRAW TEXT(1,18,ch);

}
IS_CURSOR(0);
IS_SET_CONSTANT(1,0);
IS_END();
*col = curcol - 30;

FUNCTION

LISTING

97

APPENDIX M STATS FUNCTION LISTING

#include <math.h>
#include <stdio.h>
stats(float speed[480], int thick, int col, char titlel[], char filename(])
{
FILE *outfptr;
float mean,stdev, sum;
int i,j,total=480,0ffset,rline,region=0,leftb,rightb;
char line[80];
printf£("\n\noutput file name (specifying an existing file will ");
printf(" cause current data \nto be appended to previous data): ");
scanf("%s",line);
while ((outfptr = fopen(line, "a")) == NULL)
{
printf£("\nCan’t open file Zs. Enter new file name: ", line);
scanf("%s",line);

}
fprintf(outfptr,"Data from the file: Zs\n", filename);
fputs(title, outfptr);
fprintf(outfptr, "\nSpeed analysis calculated at column Zd\n", col);
fprintf(outfptr, "Specimen thickness: 2d micrometers\n", thick);
printf("\nHow many regions would you like to specify? ");
scanf("Zd", ®ion);
for (i=1; i<=region; i++)

{

print£("\nSelect left boundary of region Zd. ", i);

index pointer(&leftb);

printf("Zd",leftb);

printf(”"\nSelect right boundary of region Zd. ", i);

index_pointer(&rightb);

while (rightb < leftb)
{
printf("\nRIGHT BOUNDARY MUST BE GREATER THAN LEFT BOUNDARY.");
printf("\nSelect right boundary of region Zd. ", i);
index pointer(&rightb);

}
printf("Zd",rightb);
total = rightb - leftb + 1;
sum = Q.0;
for (j=leftb; j<=rightb; j++)
sum += speed(j];
mean = sum/(float)total;
sum = 0.0;
for (j=leftb; j<=rightb; j++)
sum += (speed{j] -~ mean)*(speed[j] - mean);
stdev = sqrt((double)(sum/(float)total))
printf("\nREGION Zd: lines Z%3d to Z3d mean = 710.5f std = 78.5f\n",
i, leftb, rightb, mean, stdev);
fprintf(outfptr,
"\nREGION Zd: Llines Z3d to Z3d mean = Z10.5f std = Z8.5f",
i, leftb, rightb, mean, stdev);

fprintf(outfptr,"\nin\n");
print£("\n\n");
fclose(outfptr);

98

