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CHAPTER I: INTRODUCTION

The acoustic wave_equation describing the propagation of
noninfinitismal (finite amplitude) waves in fluids is nonlinear. As a
result, an originally sinusoidal wave is distorted as it propagates.
Higher harmonics are generated at the expense of the fundamental
frequency component. The presence of higher harmonics leads to an
increase in the rate of energy absorption (Keck and Beyer, 1960); the
depletion of the fundamental and the increased space rate of absorption
leads to the saturation of acoustical power (Shooter et al., 1974) and
to a change of beam shape (Lockwood et al., 1973). The amount of
distortion in an acoustic wave depends upon several factors, including
the 1) frequency, 2) source intensity, 3) distance from the source,

4) nonlinear parameter of the medium, and 5) absorbtion in the medium,

In general, an increase in the first four factors increases the
distortion, while increasing the fifth factor has the opposite effect.
Thus, depending upon the combination of these factors, a wave can be
regarded as of infinitesimal amplitude, so that the concepts of linear
acoustics may apply, or it must be regarded as of finite amplitude and
treated accordingly. In the area of biomedical ultrasound, the
frequency-intensity-distance combinations often result in a borderline
case, where care must be exercised to determine the appropriate
“description of the sound field. |
Reasonable theoretical treatments are available to describe

finite amplitude plane waves. However, a commonly employed source of



ultrasound is the circular plane piston, for which no simple comp]éte
theoretical description yet exists for the finite ampiitude'wave
generated. Depending upon the size of the source and the distance at
which measurements are made, such fields can sometimes be approximated
as finite amp]itude plane waves and the plane wave theory can be
applied. However, it is not always clear when such an approximation
can be made.

The project described here was aimed at developing a reliable
technique for the measurement of the harmonic content in an ultrasonic
wave. It is expected that through direct measurements, the gap in
knowledge between the idealized concept of plane finite amplitude
waves and the waves due to a piston source can be filled. For this
purpose, a small size (2 mm diameter) piezoelectric probe was con-
structed and ca]ibrated against a steel ball radiometer. The calibrated
probe was then applied to measure the field generated by a 3.2 MHz,

% inch diameter piston source. The results of the measurements are
presented in this thesis and compared to those predicted by plane wave
finite amplitude theory. Three cases were inVestigated:

1) Axial measurements: The magnitude of the first three harmonics
was measured at different distances from the source (4 cm to 15 cm)
along the axis of the source transducer.

2) Transaxial measurements: The harmonic content transverse to
the main axis was measured at the near field/far field transition
point (12 cm from the source). The beam profile of the first three

harmonics and their change with source intensity are presented.



3) Spatial average harmonic content: The harmonic content of the
sound beam was averaged over an area equal to that of the source and
compared with that predicted by plane wave theory.

The spacially averaged harmonic content agrees approximately with
the plane wave theory up to a source acoustic pressure of two
atmospheres. The axial harmonic content of the particular piston
source was found to be greater than that predicted by a plane wave

theory.



CHAPTER II: THEORY

A. Finite amplitude effect, plane wave theory

'Finite amplitude sound waves occupy the amplitude range between
waves of infinitesimal amplitude and waves whose amplitude is suf-
ficiently large to form a physical discontinuity, i.e. a shock front.
A finite amplitude sound wave propagating through a fluid medium is
distorted due to the nonlinearity in the wave equation and from the
nonlinearity of the equation of state of the medium.

For liquids, the following assumed equation of state is often

used (Beyer, Nonlinear Acoustics):

P =P, + Ale-py/0,) * B/2(p—::>0/po)2

- 2
=0,

- . 2(n2 2
where A = po(aP/ap)p=po, B. po(a P/3p")
P is the acoustic pressure, p is the density, and the zreo subscripts
refer to the parameter values of the undisturbed medium. Using the
above equation of state, Eq. (1), the phase Ve%ocity is (Beyer,

Nonlinear Acoustics) ¢ = Co * (B/2A + 1)u, accurate to the first order

in u, where p is the particle velocity and ¢y is the velocity of the
sound wave at infinitesimal amplitude. Different points along the
wavefbrm with different particle velocity values will therefore exhibit
different local sound speeds. Points with large positive particle
velocities will travel faster than the wave as a whole and points with
negative particie velocity will be retarded. This process is illus-

trated in Fig. 1.



. direction of
propagation

—

Figure 1. Distortion of an originally sinusoidal aneform.



Such distortion is a cumulative process. If the wave is allowed to
travel far enough, the peak will eventually catch up with the axis
crossing point of the wave,forming a physical discontinuity. The
distance from the sound source at which such a discontinuity first
occurs is called the "discontinuity distance", L, and is giVen by

(Beyer, Nonlinear Acoustics)

L = c2/0(1+8/2A)un, ] (2)

where o is the infinitesimal amplitude phase Velocity, w is the
angular frequency, and My is the particle Ve]ocity at the source.
Figure 2 is a plot of the discontinuity distance versus freguency for
a number of source intensities. HoweVer, it must be borne in mind
that L is only a theoretical guantity. In a real medium, dissipation
is present and tends to limit the formation of shocks. Thus a
discontinuity is never formed.

The distorted waveform can be expressed in terms of a sum of

harmonics by Fourier analysis as

0 g;l anin[n(wt-kx)] ‘ (3)

H=u
where u is the particle Velocity, k is the wave number, Bn is the
Fourier coefficient, and n is the harmonic number. For a medium which

has negligible absorption, Bn is given by (Blackstock, 1966)

Bn = [2/nnsin(§l )1+ [2/nm0fT cos n(®-osind)dE] (4)
y=0 3 0
y:



Figure 2. Discontinuity Distance vs. Frequency for Different
Source Intensities(W/cmé) in Water (B/A = 5).
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where I and y are intermediate variables, with y = & - osin®, and ¢ =

X/L = Distance from source at which waveform is measured
Distance from source at which discontinuity is predicted to occur”

To evaluate ® y=0,«we have to solve the equation y = 0, i.e.
$ = gsind., A solution is plotted in Figure 3. Bn values calculated
by this method are shown in Figure 4, for n equal to one, two and three.
As seen from the plot, the higher harmonics increase in magnitude with
distance while the fundémental frequency component decreases in
magnitude, indicating a transfer of energy from the fundamental to the
higher harmonics. At o =1, i.e., X = L, the fundamental has lost 10%
of its amplitude to the harmonics. At o =‘3, the fundamental has Tost
50% of its original magnitude. The second and third harmonics have
peaks around ¢ = 1.3. At this point, the rate of energy gain (due to
transfer of energy from the fundamental) equals the rate of energy lost
(transfer of energy to even higher harmonics).

Figure 4 can be replotted in the form Bn/B1 vs. ¢ to illustrate
the change of wave shape with distance, as shown in Figuke 5. If the
median has no loss, a true sawtooth wave will develop which has as its
Fourier coefficients Bn/B1 = 1/n, so that 82/81 = 0.5, B3/B1 = 0.33,
84/81 = 0.25, etc. From Figure 6, one observes that Bn/Bl increases
with distance, and approaches that of a sawtooth wave at o = 3.

For o less than unity, Eq. 3 can be reduced to the form

B, = 2J,(nc)/no ' ' (5) .

(Blackstock, 1966), where Jn is the Bessel function of the first kind



Figure 3. Locus of Points which Satisfy the Relation
$ = osiné.




Figure 4,

Fourier Coefficient for Distorted WaQe at Different
o Values.
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Figure 5.

Magnitude of Second and Third Harmonic Components
Relative to the Fundamental.
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of order n. By expanding the Bessel function in a power series and
dropping higher order terms, this equation can be reduced to giVe the
second harmonic pressure magnitude as

Po(x) = mL(1+B/2A)/ (0 c3)1Fxp7(0) (6)

and the third harmonic pressure magnitude as

Po(x) = 3[m(1+8/2A) /0, c31%F2x%p3(0) (7)

where Pl(O) is the source pressure amplitude and f is the frequency.
These approximate equations are valid only for small values of the
argument of the Bessel function, i.e. no<<l. \Under these conditions,
the second harmonic increases with x and the square of the source
pressure. The third harmonic increases with the square of the distance
and the third power of source pressure.

Throughout the discussion so far, the absorption of the medium
has been neglected. Theoretical work describing finite amplitude
effects with consideration of absorption has been difficult and
labored. ‘The theories, which are usually based on equations approxi-
mating the exact differential equations, have a rather limited range of
reliability. An alternate route would be to use numerical methods. |

For the purpose of comparing experimental results in this project
with theory, the computation developed by Cook (Cook, 1962) was used.
The ‘method of computation, in his own words, is as follows:

"The wave was allowed to distort while it propagates through a
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small inter9a1, and then was corrected for absorption. This wave of
new shape was then allowed to distort and be absorbed. By assuming
that no discontinuity of the wave shape is formed because of absorption,
one may calculate by this continuing brocess the shape of the wave at
all distances. Although the absorption and generation of the

harmonics are treated independently in each small interval, the end
result contains the interaction between absorption and generation
mechanisms." Figures 6, 7 and 8 are results of his computations. An
f2 dependence of absorption was assumed in his caléulations.

The infinitesimal amplitude absorption coefficient (ao) for water
at 3MHz is about 2.5 x 10'3 np/cm. If the discontinuity distance is
10 cm, o L would be about 0.025. With o L around this value, the
magnitude of the first three harmonics can be Very well approximated
by the absorptionless theory, as is evident from a comparison of

Figures 6, 7 and 8 with Figure 4.

- B. Piston Sources

~ Theoretical analyses of finite amplitude effects often use the
idealized concept of the pléne wave. However, the standard device used
to produce ultrasound is often a plane piston transducer. Because of
diffraction effects, the distribution of intensity in the near field
of a piston source is rather complex: In the infinitesimal ampTitude

case, the axial pressure |p| of a piston source is giVen by (Kinsler

and Frey, Fundamentals of Acoustics) |p| = 2Poe'ax|sin k/Z(Xa-x)[

whére Xy = /xz + az, a is the radius of the piston, x is the distance
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Figure 6. Normalized Fundamental Component for Various
Values of o L. P;(0) is Acoustic Pressure
at the Sour@e, P1(c) is Acoustic Pressure at
o. (After B. Cook, 1962).
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Figure 7. Normalized Second Harmonic Component For
Various Values of ocOL (After B. Cook, 1962).
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Figure 8. Normalized Third Harmonic Component For
Various Values of ocOL (After B. Cook, 1962).
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from source, and P is the acoustical pressure. The axial pressure
exhibits a number of maxima and minima depending on the ratio a/A.
Transverse to the axis, the beam pattern typically has a complex
distribution with side lobes which change in number and magnitude at
different points along the axis. At the last broad maximum around the
near field/far field transition region, the transaxial beam pattern of
the main lobe becomes a uniform Bell shape. Because the field is
better defined in this region, many bio-ultrasound experiments have
been performed in this region of the field. For this field, no simple
complete theoretical description of finite amplitude waves yet exists.
Therefore distortions in this region are frequently analyzed by
assuming that the piston beam is a cylindrically collimated field of
plane anes, for which the theory is well developed. However, the
higher harmonics generated in the field of a piston source depend upon
the three dimensional distribution of the fundamental frequency beam.
It is not evident whether the harmonic components should greatly differ
or closely resemble those predicted by a plane wave theory. The
measurements performed in this project were intended to find an answer
to this question for the special case, of a half inch diameter source

at 3.2 MHz.



CHAPTER III: APPARATUS

The principle goal of the research was to measure the harmonic
content of the signal generated by a piston source. A small diameter
piezoelectric probe was used as a receiver. The output of the probe
was fed to a spectrum analyzer, which determined the harmonic content
of the received ultrasound wave. The probe was calibrated for
sensitivity at harmonic frequemncies against a steel ball radiometer
in a calibrating sound field of insignificant nonlinearity.

The block diagram of the measurement system is shown in Fig. 9.
The tank in which the measurements were made was 22 cm long, 17 cm
wide and 30 cm deep. A 25 cm column of castor ¢il at the end of the
tank opposite to the source transducer was used as an absorber to
reduce standing waves. ATiwneasurements were made in degassed water.

A Ferris model No. 22A variable frequency oscillator was used as
the frequency source. The frequency of the oscillator was monitored
by an HP 5314A frequency counter. To reduce the problem of reflections,
the ultrasonic wave was pulse modulated by a pulsing unit constructed
in this laboratory.

The pulsing unit was used to pulse modulate the signal from the
oscillator to give RF pulses of different on and off times. In the
manual mode, the same unit served as an on/off switch for continuous
wave heasurements. The pulsed signal was then fed to an Amplifier
Research model AR-iOLA broad band power amplifier. This unit was

capable of pro&iding'up to 10 watts of RF electrical power, from 0.5

18
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to 110 MHz. The RF signal was then fed to the ultrasonic transducer.

An HP model RM15 oscilloscope was .connected across the transducer to
monitor the voltage aﬁp]ied to the transducer and to ensure that the
driving signal was not distorted. The source was excited in 50 us
pulses, one thousand times per second. Heating, standing waves, and
echoes were thereby minimized, yet the pulses were long enough to
ensure that continuous wave conditions existed in large portions of a -
pulse. As observed from piezoelectric probe measurements, the pulse
amplitude stabilized in about 20 cycles.

The source transducers were half inch diameter, PZT4 Lead
Zirconate Titanate ceramic transducers from Channel Industries (839
Ward Drive, P.0. Box 3680, Santa Barbara, CA 93105). These transducers
were ceramic discs, with silver electrodes on both faces which served
as the electrical terminals to the transducer. These discs were then
mounted as shown in Fig. 10. A potting compound called Hysol was used
to cement the transducer to its housing. .Eiectrical connection to the
ceramic disc was provided by gold foils about 2 mm wide and 0.25 thick.
Silver paint from G. C. Electronics was used as conductive cement to
make the electrical connection between the gold foil and the transducer
terminals. The D.C. resistance of the e1ectrical connections described
above was measured to be less than 0.1 ohm.

Three different frequencies--3, 6 and 9 MHz, were needed in this
study and were provided by two % inch diameter transducers. A 3MHz
transducer working at its fundamental and third harmonic proVided_

ultrasound frequencies of 3.23 and 10.04 MHz. A % inch diameter, 2 MHz
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transducer working at its third harmonic resonance proVided signals

at 6.81 MHz. In order to provide broad sound beams in some of the
calibration procedures, these transducers were equipped with a detach-
able stainless steel aperture 1/8 inch in diameter.

A 2 mm diameter PZT4 ceramic disc from Valpey Fisher Corporation
(Holliston, Massachusetts) was used as a receiving element. The
resonant frequency of this disc was around 20 MHz in the thickness
mode. The detailed construction of the hydrophone probe is shown in
Fig. 11. The ceramic disc was cemented with silver paint to the end
of a copper rod 5 cm in length and 2mm in diameter. The rod was then
slipped into a nylon insulating sleeve which fit the rod snugly. The
rod and sleeve was in turn slipped into a stainless steel tube 3 mm in
outside diameter. Epoxy adhesive was then applied with a syringe and -
needle to seal off the space between the ceramic disc and the stainless
steel tubing. The outside’face of the ceramic disc was then electri-
cally connected to the stainless steel tubing with silver paint.

The tube and the copper rod were finally connected, respectiVely,
to the ground and central conductor of a 50 @ RG 174 coaxial cable.

The cable length was 1.5 feet and was connected directly to an HP 85 -
52A Spectrum Analyzer. Because the piezoelectric receiver (hydrophone)
is a phase sensitive device, it was important to adjust it so that the
receiving element was parallel with the source transducer. The hydro-
phone Was therefore mounted on a turn and tilt positioner, which allowed
rotation in two orthogonal planes. The entire setup was then mounted

on an X Y Z positioner for placement of the hydrophone.
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CHAPTER IV: CALIBRATION

A. Source

Due to diffraction, the intensity distribution near a piston
source is Very complex. Therefore no attempt was made to measure the
intensity distribution at the source. Instead, the aVerage source |
intensity was measured. The aVerage source intensity was defined as

I = Total acoustical power output from the source
av  Effective area of source

To obtain the total acoustical power, the radiation force on an
absorber which intercepted the entire beam was measured. The arrange-
ment for measurement is shown in Fig. 12. The absorber was a
rectangular block of soab rubber, 4 cm by 4 cm in area and 3 cm thick.
The vubber target was suspended with surgical silk in the shape of an
inverted "V". The radiation force was determined by measuring the
deflection of the rubber target and solving the force triangle, which
gives F, = mgd/1 for small d. Here, F, is the radiétion force, m is
the weight of the target in water, g is the graVitational acceleration,
d is the horizontal deflection of the target, and 1 is the effective
length of the pendulum system. Since the force per unit area on an
absorbing target, i.e. the radiation preSsufe Pr is giVen as Pr = I/c0
where Co is the smalI amplitude phase velocity, and I is the incident
intensity, the total acoustical power W, which is the integration of

intensity over the beam, is related to the radiation force by the

exbression W= Slds ='fcoPrds = CoFr’ where s is the area of the beam.

24
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The intensity reflection coefficient of sound at the water and
rubber interface was estimated by a pulse echo method to be around
0.03. The assumption of a totally absorbing target was therefore valid.

The absorbing target was then placed at 3 cm from the source to
measure the total acoustical power. At this distance, nonlinear los-
ses in the medium are negligible. A plot of the measured. total
acoustical power vs. the square of drive voltage of the 3.2 MHz source
is giQen in Fig. 13. As seen from the plot, the source transducer had
negligible notrilinearity up to at least 5.7 watts of acoustical output.

For some aspects of this study, a knowledge of source pressure was

2

needed. It was estimated as P0 av

= P loay

B. Hydrophone

The sensitivity of the hydrophone at the first three harﬁonic
frequencies of the 3.2 MHz source was obtained by comparison with the
steel ball radiometer at intensities low enough so that the nonlin-
earity of the medium was negligible. The steel ball radiometer
consisted of a type 440c stainless steel sphere, 1.6 mm in diameter,
that was suspended by a nylon monofilament in a bifilar suspension.
For this arrangement, the intensity is related to the radiation force
Fr on the sphere through the expression (Dunn et al., 1977)

I-= Frcc/naZY, where a is the radius of the sphere, Y is the acoustic
radiation force function described below and < is the infinitesimal

amplitude wave Ve]ocity. Here Fr was agéin obtained by observing the

deflection of the pendulum system and solving the force triangle, so
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that F,. = mgd/1, for small deflection d.

The "Y" parameter is a function of Ka, where K is the propagation
constant and a is the radius of the sphere. The sensitiVity of the
steel ball is therefore a function of both frequency and ball size.

| The "Y" value for the steel sphere used has been calculated by Hasegawa
(Hasegawa, 1969) and has been verified experimentally by Dunn et al.
"(Dunn, 1977). The Ka and Y values for the steel ball of this study at

frequencies of interest are listed in Table 1.

TABLE 1

Ka and Y Values For Frequencies Used In Calibration

f Ka Y
3.23 Mhz 10.14 .79
6.87 MHz 22.84 .88

10.06 MHz 33.45 .92

At the frequencies of calibration, streaming may have a significant
effect on the ball deflection. An acoustical window was therefore
placed in front of the steel ball to reduce this form of interference.

The ca]ibratign of the receiver had to be accompiished in a
Tinear acoustic fie]d in order to make possible the measurement of

nonlinear effects. This required using small source intensities and
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working as close to the source as possible. HoweVer, to proVide a
uniform yet broad enough calibration field, one must work beyond the
near field distance of the source, which is given approximately by

d = az/x, where a is the radiué of the source and A is the wavelength
of sound in the medium. It was found that due to finite amplitude
effects, a half inch diameter source at 6.81 and 10.06 MHz could not
generate such a field without appreciable distortion.

The problem was dealt with by reducing the effective diameter of
the source. A %" thich steel plate with a 1/8" diameter hole was placed
in front of the source, thus reducing the effective source aperture to
about 1/8" diameter. The transaxial beam pattern of these sources with
reduced'éperture is plotted in Fig. 14, normalized to have the same
peak value. Measurements were made at 12 cm from the sdurce for 3 and
6 MHz, and 8 cm from the source for 10 MHz. To ensure that these
calibration fields had negligible nonlinearity at calibrating levels,
the pressure magnitudes at the calibration position were measured for
several source voltages. The méasured pressure values are shown in
Fig. 15 against source voltages. The deviation from linearity at the
calibration levels was found to be less than 3%.

The techniques described above were used to calibrate the hydro-
phone, and the figures of'sensitivity are given in Table 2. The steel
ball radiometer determination of intensity is accurate to within x10%.
The uncertainty in pressure magnitude due to averaging of the bell
shaped calibration beam over tﬁe'area of the hydrophone probe was

about 5% for 3.23 MHz, 10% for 6.87 MHz, and 20% for 10.06 MHz.
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These estimated maximum errors are also listed in Table 2. Since the
same field was used for steel ball deflection measurement of intensity,
and the steel ball was of similar size as the hydrophone, the
"averaging" errors may in part cancel each other during the calibration

process.

TABLE 2

Hydrophone Sensitivity And Error Margin

Frequency Sensitivity (V/P) Maximum Error
3.23 MHz .017 volt/atm. 15%
6.87 MHz .030 volt/amp. 20%
10.06 MHz .039 volt/amp. 30%

C. Linearity of Transmitting-ReceiVing System

The 11nearity of the source transducer was illustrated by the
total acoustical power'measurement mentioned in the section on source
calibration. The total acoustical power was found to be linearly
dependent upon the square of source voltage up to at least 5.7
acoustical watts.

Linearity of the complete measuring system including the trans-
mitter and receiver was further checked by observing the output of the

hydrophone at a distance of 2 cm from the source. At this distance,



33

the magnitude of the received fundamental component followed the drive
Qo]tage Tinearly up to the point of maximum driVe, about 27 volts rms
across the transducer. This drive level produced about 5.7 watts
acoustical power, and a local pressure of six atmosphekes at one of
the near field maximum at which the hydrophone was placed. The
magnitude of the harmonics was found to be always less than 5% of the
fundamental throughout the range of measurement. The entire measure-
ment system was therefore believed to be approximately linear up to

the drive level stated -above.

D. Effective Area of Source

The effective area of the piston source is approximated in this study
to be the same as the surface area of the source. However, due to edge
effects, this may not be an accurate estimation. It was observed that
at some point along the axis of the piston source, the measured axial
pressure reaches 2.7 times that of the estimated average source pressure.
This contradicted the results of the plane piston theory which predicts
a maximum increase of a factor of 2. An investigation of the effective

area of the source is now in progress.

E. Reliability Of Hydrophone Measurements

The re]iability of the hydrophone measurements is discussed

separately in the Appendix,
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CHAPTER V: DATA AND DISCUSSION

Previous discussion in Chapter 2 indicated that the pressure
distribution in the near field of a piston source is very complex and
~ that no satisfactory theory yet exists to predict the behavior of
finite amplitude waves in this region. In the absence of an applicable
theory, the approximate picture is often used--that the sound beam from
a piston source is a collimated plane wave up to approximate]y.az/k
from the source, and within this region, the acoustic pressure
magnitude is essentially uniform with distance.

However, the actual field, especially along the axis of the piston,
departs markedly from a constant value. The pressure amplitude
fluctuates widely near the source, and in the vicinity of the 1a§t
broad maximum the axial pressure increases substantially. In this
region, a large portion of the energy'in the beam is concentrated in
an area much smaller than the area of the piston source, a phenomenon
which is called "self focusing" by some researchers (Zemanek, 1971).
The word "focusing" here and throughout the discussion is used loosely
to refer to the concentration of energy due to diffraction.

Considering the above mentioned facts about a piston source, the
plane wave approximatioh at its best has the character of an averaging
effect, and in some cases, depending on the value of a/A and the
distance from the source, may be totally inaccurate. To provide some
insight into the problem, this section reports on the measurement of
harmonic content in the field generated by a 3.23 MHz, %“ diameter

piston source. Three cases were investigated.
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Case I. Axial Behavior

A. A fixed source level at 3.1 atm (3.3 W/cmz), variable distance.

Figure 16 shows the values of the pressure amplitude along the
axis at an average source pressure of 3.1 atm (3.3 W/cmz). It was
observed that starting at 3 cm from the source, the amﬁ]itude of the
first harmonic (i.e. the fundamental) rises continuously until it
reaches a peak value of 8.5 atm at 7 cm from the source. The acoustic
pressure then begins to decrease, but at a slower rate, as the probe is
moved further away from the source. Thus for this particular trans-
ducer, the axial pressure at some points can be as much as 2.7 times
greater than the estimated source pressure, i.e. an jncrease in
intensity by a factor of 7.

The second and third harmonics exhibit a‘rapid increase in
magnitude with distance. Going from 3 cm to 6 cm from the source, the
second harmonic magnitude increased by almost tenfold. A plane wave
theory would predict the second harmonic magnitude to increase with
P12(0) X, i.e. going from 3 cm to 6 cm, the second harmonic magnitude
should be about doubled. Obviously, the measured second harmonic
magnitude is increasing at a much faster spatial rate than that
predicted by a plane wave theory.

The increase can be explained qualitatively by a "self focusing"
model, applicable to the point of near field/far transition. The

hypothesis is that: a) The fundamental and higher harmonic energy is
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concentrated into consecutively smaller areas as the wave moves away
from the source, resulting in higher acoustical pressure values for

both. b) The generation of higher harmonics is increased due to the
increase in the magnitude of the fundamental hypothesized in a).

Since the fundamental magnitude changes with distance, a more
meaningful wéy to express the harmonic content would be to use the
relative harmonic magnitude Pn/Pl’ where Pn is the magnitude of the
nth harmonic, and Pl is the magnityde of the fundamental at the same
distance. Figure 17 is a plot of Pn/Pl as a function of distance from
the source.

It is perhaps interesting to note that at distances between 11
and 15 cm, the ratios of the second and third harmonic magnitudes to
the magnitude of the fundamental reach a maximum of one half and one
third, respectively, which is expected for a sawtooth wave. From the
plane wave finite amplitude theory, this occurs around ¢ = 3, i.e.
at three times the discontinuity distance. With the source pressure
used in the measurement, o = 3 corresponds to a distance 45 cm from
the source. If a plane finite amplitude wave were to generate the
above mentioned amount of distortion at 15 cm from the source, a
source pressure of 9 atm (three times higher than the source pressure
used) would be required. The previous observation that the funda-
mental magnitude increases by a factor of three along the axis agrees
approximately with this figure.

B. Fixed distance at 12 cm from source, Variable source level.

Discussions in -the theory section indicated that the finite
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at a source pressure of 1.56 atm. The pressure distributions showed
the expected bell-shaped amplitude variation across the axis, with
minor lobes at larger distnaces from the axis. These beam profiles
were approximately symmetrical around the main axis. It was observed
that the beam widths of the higher harmonics were smaller than the
fundamental, so that the relative harmonic magnitude Pn/Pl was highest
on axis, and decreased as the probe was moved off axis.

This observation may be explained as follows: At the near field/
far field transition region, the magnitude of the fundamental is
highest on axis and decreases on points off axis. Since the second
and third harmonic magnitudes are proportional respectively to P12 and
P13 (Eg. 6, 7), it is expected that transverse to the axis the higher
harmonics will change at a faster spatial rate than the fundamental,
resulting in a beam profile sharper than that of the fundamental.
Lockwood et al. (Lookwood et al., 1973) reported a similar sharpening
of the beam profile with harmonic number at the far field of a piston
source. ‘According to their analysis, if the directivity function of
the fundamental is D{6), and the distance from the sources is much
less than the discontinuity distance, the directi?ity function of the
nth harmonic would be D"(e). HoweVer, at the near field of a piston
source, the equation is not expected to be applicable.

It was further observed that the beam widths of the three
harmonic components broaden with increasing source level. Figure 22
is an illustrative plot of beam patterns for high and low source pres-

sures, normalized to have the same peak values for easy comparison.
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The.half power beam width of the fundamental is widest, about
4.6 mm for a source pressure of .38 atm, increasing to 5.5 mm at a
source pressure of 3.1 atm, a factor of 1.2 increase. The second
harmonic is about 3.2 mm wide at a source pressure of .38 atm, increas-
ing to 4 mm at a source pressure of 3.1 atm, a factor of 1.3 increase.
The third harmonic is about 2.3 mm wide at a source of .78 atm,
increasing to 3.7 mm for a source pressure of 3.1 atm, a factor of
1.6 increase. Table III is a list of the half power beam width for

the three harmonics at various source levels.

TABLE 3

Half Power Beam Width (mm) For The Three Harmonics At Different Source

Pressures. fl = 3.23 MHz f2 = 6.87 MHz f3 = 9.69 MHz
Poav(atm)
.31 .78 1.56 2.18 3.10
Beam width for fl 4.4 4.6 4.8 5.0 5.5
Beam width for fz 3.2 3.2 3.0 3.4 4.0
Beam width for f3 ——— 2.3 2.5 2.7 3.7

The broadening of the fundamental beam profile is probably a
result of the extra attenuation (transfer of energy to higher harmonics)

caused by nonlinear effects. The more intense part of the beam suffers
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greater attenuation than the off axis portions, so that the beam
pattern appears more blunt than for the small amplitude case. The
broadening of the higher harmonic beam profiles is probably a result
of saturation. The amplitude of the higher harmonics cannot exceed
that of a sawtooth wave, i.e. Pn/P1 has a maximum value of 1/n. When
the axial harmonic magnitude approaches this limitation, the growth
rate with source pressure tends to slow down. The harmonics in the
off axis portions of the beam then grow at a faster rate relative to

those in the on axial portion, resulting in a broader beam profile.

Case III. Spatial Average Harmonic Content

The fact that beam widths of the higher harmonics are smaller than
the fundamental showed that the harmonic energies are more concentrated
around the axis. As a result, the spatially averaged value of the
harmonics should be smaller than the axial value. Since the hydrophone
responds to pressure rather than intensity, we define a quantity called
spatially averaged pressure. It is obtained by integrating the pres-
sure magnitude over an area equal to the effective area of the source,
and then dividing the integral by the source area. This quantity will
represent that measured when the entire beam is intercepted by a pres-
sure sensitiVe deVice, such as a large size piezoelectric receiver.

Figure 23 shows the spatially averaged pressure of the three
harmonics at different source pressures. If Fig. 23 was compared with
the axial plot on Fig. 18, one observes that the aVeraged pressure 1is

generally lower in magnitude than the corresponding axial Va1ue, as
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amplitude effect increases with source acoustic pressure. Figure 18
shows the values of the pressure amplitude for different source 1eVels,
measured at 12 cm from the transducer. The dotted line represents a
linear extrapolation of the magnitude of the fundamental, based on low
amplitude measurements. As seen from the curVe, the fundamental
component deviated substantially from linearity as source drive was
increased. The amount by which the fundamental pressure deviates from
its linearly extrapolated value is plottéd as amplitude of fundamental
acoustic pressure/extrapolatedvalueon Fig. 19 for different source

levels., At about 1 W/cm2

average source intensity, the deviation from
linearity is about 5%. At a source level of 4.5 N/cmz,vthe fundamental
drops to 75% of its linear value. In terms of intensity, the funda-
mental has dropped to 55% of its linearly extrapolated value.

Figure 20 is a plot of the relatfve harmonic content Pnlpl for the
second and third harmonics. The relative harmonic content reaches the
value of one half and one third for the second and third harmonic

respectively at the highest source intensity used (4.5 W/cmz), and

seems to be leveling off at that drive level.

Case II. Transaxial Measurements

To gain some insight into the spatial distribution of harmonic
energy in the finite amplitude beam from a piston source, the hydro-
phone . probe was moved perpendicular to the main axis and field plots
_ for the first three harmonics were obtained.

Figure 21 is a sample plot of the transaxial pressure distribution
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expected. In order to compare the re]atiVe harmonic content Pn/P1 for
the two cases, Fig. 23 is replotted as Pnav/PlaV VS. source pressure,
as shown in Fig. 24. A comparison of Fig. 24 with Fig. 20 indicates
that the spatially averaged relative harmonic content is in genaral
Tess than the axial value. However, since the beam width of the
higher harmonics is broadening with source intensity at a faster rate
than the fundamental, the averaged harmonic content is closer to the

axial value at higher source intensities.
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CHAPTER VI: COMPARISON WITH THEORY

It isof interest to‘compare the measured data with the "approx-
imate picture" which assumed uniform plane waves. Using a B/A value
of five for water, the discontinuity distance for the experimental

conditions can be found (Eq. 2),as listed in Table 4.

TABLE 4

Discontinuity Distances Of The Source Levels Used

IoaV(w/cmZ) Poav(atm) L(cm)
.05 .38 120

21 .78 60

.83 1.56 30

1.62 2.2 20
3.28 3.1 15
4.55 3.7 13

Given L and the distance from thé source X, one can find the
harmonic magnitude based on a plane wave theory from Figs. 4 and 5 in
Chapter II. The computed and measured values of relative harmonic

content are plotted in Figs. 25, 26 and 27.
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Figure 25 compares the harmonic content at different distances
along the axis for a source pressure of 3.1 atm. Figure 26 compares
the on axis harmonic content at 12 cm from the source with different
source pressures, and Fig. 27 compares the spatially aQeraged harmonic
content at the same distance. The first two comparisons (axial Values)
indicates that the measured harmonic content is much higher than that
predicted by a plane wave theory. The third comparison indicates that
the spatially averaged harmonic content agrees well with the plane

wave theory except at high source pressures.
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SUMMARY

Apiezoelectric hydrophone was constructed and calibrated against a
steel ball radiometer. The calibrated hydrophone was then used to
measure the magnitude of the first three harmonics of the ultrasound
field generated by a 3.2 MHz, % inch diameter plane piston source.
The measurements indicate that the axial pressure of the fundamental
component at thé‘last broad maximum of the ultrasonic beam can be as
much as 2.7 times that of the averaged source pressure. The axial
harmonic content increases rapidly with distance and approaches that
of a sawtooth wave at approximately 12 cm from the source at a
moderate source intensity of»3.3 W/cmz. The beam profiles of the
three harmonics were measured at 12 cm from the source, where it was
observed that the beam width of all three increased with source
intensity. It was further observed that the beam width of the higher
harmonics is sharper than that of the fundamental so that most of the
distortion occurs near to the axis. As a result, if the harmonic was
spatially aVeraged over an area equal to that of the source, the
resulting value is less than the axial value. The spatially aVeragéd
harmonic content so obtained is found to agree with the prediction by
a plane wave finite amplitude theory up to a source pressure of 2 atm.
The Qalidity of the hydropﬁone measurement technique was confirmed by
comparing the measurements with those obtained by a filtering plate

‘technique. The discrepancy was within 10%.



APPENDIX
RELIABILITY OF THE HYDROPHONE MEASUREMENTS

Since we did not expect the measured harmonic content to be sup-
ported by an established theory, significant conclusions were possible
only after good assurance that what we measured did indeed represent
the acoustic field. There are two main reasons for concern.

1. The probe was three to four fundamental anelengths in
diameter and as large as 12 wavelengths for the third harmonic. It
therefore cannot be considered small compared to wavelength. The
effects of reflection and diffraction caused by the probe might
seriously disturb the field that was supposedly being measured.

2. The resonant frequency in the thickness mode of the probe is
ardund 20 MHz. Near the resonant frequency, the hydrophone exhibits a
drastic change in sensitiVity over a small frequency range. The
frequencies we were interested in were not far from that resonant
frequency. Moreover, because the thickness of the receTVing element
is not small compared to the diameter, other modes of resonance may be
present. Accordingly, rather complex responses to different
frequencies might be anticipated. Since the source transducers came
at fixed frequencies, ft was not always possible to calibrate the
hydrophone at the precise frequency desired. For example, the hydro-
phone probe in this research was calibrated at 6.87 MHz, but the
secoﬁd harmonic frequency that was measured was at 6.46 MHz, i.e. 8%

lower than the calibration frequency. Therefore doubts as to the
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accuracy of calibration remained. These doubts were eventually

removed by tests and other observations that are now outlined:

A. Total Power Test

By the law of conservation of energy, the spatial sum of all
harmonic intensities in a beam must equal the total acoustical power
of the beam. The total acoustical power can be measured accurately
by a radiation force method as depicted in the section on source
calibration.

The spatial distribution of acoustical pressure, and hence
intensity, has been measured at various levels as described preViously.
This intensity distribution data was spatially integrated to giVe the
total power, and plotted against total power at the source in Fig. 28.
As seen from the plot, the total power and the spatial sum of harmonic

intensities agree with each other to within 10%.

B. Filtering Plate Method For Harmonic Intensity Measurements

The sound power transmission coefficient for a plate inserted
in a uniform medium is given, for oblique incidence, by (Officer,

Introduction to the Theory of Sound Transmission):

T = 4/[40052(bzh)+(m1+m2)251‘n2(b2h)] (8)
where m1 = pzszlplsl,vm2 = l/ml, Sq = c1/cosel, S, = c2/c0592,
b2 = an/sz, and sinel/sine2 = C1/°2' Pqs Cqs Poo cz'are respectively

the density and Ve1oc1ty of the medium and the plate. el and 62 are
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respecti&e]y the angle of incidence to the plate and the angle of
refraction in the'plate.

If the wave is incident normally to the plate, and if the plate
thickness is half a wavelength of the second harmonic, the plate will
provide perfect transmission for the second harmonic and have maximal
attenuation to the fundamental and the third harmonic. The transmission
coefficient for such a plate is depicted in Fig. 29 for materials of
different acoustical impedances. However, if the plate is rotated so
fhat the wave is incident at an angle 6 with the normal, the frequency
of maximal transmission is shifted upward according to Eg.8. This
predicted shift in pass frequency with 6 is plotted in Fig. 30. Thus
by rotating the plate, one can tune the filter plate to the frequency
of interest.

In order to reduce the effect of reflection from the filtering
plate, the source was pulsed to give 30 usec on time and 150 usec off
time. An aluminum plate 0.510 mm thick was used as the filtering
plate. A 1/16" diameter steel ball was suspended behind the plate
.for intensity measurements.

The filter plate was rotated until a maximum in deflection of the
steel ball was observed. Since the steel ball radiomater requires at

least % W/cm2

for accurate measurements, a peak source intensity of
3.3 W/cm2 was required to generate sufficienf second harmonic intensity
for deflection.

After intensity measurements, the steel ball was replaced by a

hydrophone and the transmission coefficient of the plate to the three
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different harmonics was measured by comparing the harmonic magnitudes
with and without the plate. The intensity transmission coefficient,
defined as (Pressuré magnitude behind the plate/Pressure magnitude
without the p1ate)2 is 1isted in Table 5 for the three harmonic

frequencies.

TABLE 5

Intensity Transmission Coefficient Of Filtering Plate

Frequency Intensity Transmission Coefficient
3.23 MHz .028
6.46 MHz 774
9.69 MHz .046

As seen from the table, about 3% of the fundamental and 5% of the
third harmonic were able to pass the filter plate. The intensity
measured with the ball behind the filtering plate is therefore a sum
of harmonic intensities. If we neglecf harmonics higher than the
third, the intensity measured with the ball can be expressed as
Imeasured = Il(.028)>+ 12(.774) + I3(.046) where Il, I2 and 13 are
intensities of the three harmonics incident upon the filter plate.
I1 and I3 can be estimated by hydrophone measurements. With Il’ I3

and I known, 12 can be computed. The second harmonic intensity

measured
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obtained by this technique was compared with hydrophone measurements
made preQious1y. The agreement was within 15%. In terms of pressure
measurements, the agreement would be about 7.5%, well within the

accuracy of the measurement methods.
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