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DIVERGENT BEAM
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FOR DIFFERENTIAL THERMOGRAPHY
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Department of Electrical Engineering
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The applications of divergent beam ultrasound . computed
tomography for noninvasively estimating temperature change in
biological tissue, were examined. This study was prompted by the
recognition that both wultrasound speed of propagation and
frequency dependent attenuation (two physical properties
measurable by ultrasound tomography) are temperature sensitive.
Speed generally increases with temperature, and attenuation
coefficient generally decreases with temperature, for nonfatty

tissue.

Compilations of available 1literature data for thermal
dependencies, in biological media were created. Polynomial models
applied to the available literature data suggested that a linear
temperature dependence is a reasonable model over the temperature
range of 10 to 40°C for most tissues. The more sophisticated
models studied did not provide substantially better results.
However, the limited amount of data and the high degree of

variability in the data suggested that more study is needed.

A study of the variance introduced and propagated by the
ultrasound computed tomography data acquisition and image
reconstruction showed that the noise introduced by computation was

small compared to the noise propagated by the computation. If not



for physical difficulties in the available equipment, images of
speed and attenuation coefficient could have been reconstructed
with a variance of 1 part in 103. Temperature changes of 5.5°C
could then be estimated with a standard deviation on the order of

0.5°cC.

Interpolated modeling £for algebraic reconstruction was
examined, but did not demonstrate itself to be economically

justifed over conventional algebraic reconstruction.

The principle conclusion of this work was that the
constraining factor in temperature estimation was the variance in
the available 1literature data. Additional data, with better

variance, are required.
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CHAPTER 1

INTRODUCTION

Temperature measurement in the human body has several
dimensions of medical significance. Gross but localized body
temperature, as measured with a conventional thermometer, provides
a simple monitor of patient state, and can signal danger of
infection or potential enzyme failure that can arise from
prolonged and/or high fever. Spatially more refined measurements,
such as those provided by infrared surface thermography, can
assist in localizing and diagnosing highly vascularized tumor
masses. For hyperthermia treatment (whether as an isolated
therapy, or combined with radiation, chemotherapy, or controlled
drug release), a specific elevated temperature distribution is
desired. If the heating modality does not produce sufficiently
high temperatures at the desired points, the treatment may not be
effective. If the heating exceeds the desired temperature,
needless healthy tissue damage may arise. Thus, accurate

three-dimensional temperature measurement is important.

Unfortunately, most conventional temperature measurement
techniques are invasive. Thermometers and thermistors require a

path into the tissue in order to make a measurement beneath the



surface. Thermocouple wire probes require a path through the
tissue. Whenever tissue is puncturea to accomodate a foreign
object, the patient is subject to painful discomfort and several
risks. The most obvious risk is infection or contamination.
Sterilization procedures can minimize this risk, but at increased
cost. A more subtle risk associated with cancer /treatment
thermometry is metastatic induction. Mechanical injury of tumor
cells can lead to metastases, or tumors at other sites in the
body. Finally, the procedure of inserting several probes, to map
out temperature distribution, can be traumatic, and unintentional
movement of the patient can result in injury along the probe path.
Consequently, truly noninvasive measurement techniques are
preferred. Throughout this work, noninvasive measurement shall
refer to procedures that do not compromise the integrity of the
inherently closed“ surfaces formed by the tissues of the body.
Thus, needle punctures (whether for inserting thermocouples or for
drawing fluid samples) or surgical procedures of almost every Kkind
would be considered invasive. In this context, x-rays and
ultrasound transmitted through the body without rupturing the skin
would be considered noninvasive. Note that defining a procedure
as noninvasive does not imply that the procedure is free from
biological effect. Excessive exposure to x-rays or any form of
ijonizing radiation is generally considered as dangerous and/or
destructive to tissue. Therapeutic and hyperthermic levels of
ultrasound are intended to affect tissue. The question of whether

diagnostic exposure to ultrasound poses any danger 1is as yet

unanswered.



Only a limited number of noninvasive thermometry alternatives
are available at this time for mapping the spétial distribution of
temperature. The most common is infrared surface thermography,
which produces an image of the temperature distribution ét the
skin surface of the patient. This technique can be effective for
locating and diagnosing highly vascularized tumors close to the
surface. It has been a common procedure for breast cancer
screening (Siedband and Holden, 1978). A more general approach,
studied here, is the use of wultrasound to estimate temperature

below the surface, in a two- or three-dimensional reconstruction.

Ultrasound computed tomography can be used to form cross
sectional views of the speed and attenuation of ultrasound in a
subject. The ultrasound 1is propagated into the body using
transducers outside of the body. Thus the modality is
noninvasive. By measuring the time-of-flight and frequency
dependent loss of pulses of ultrasound passing through the body at
a large number of angles, from a large number of views, it is
possible to reconstruct images of the ultrasound speed and
frequency dependent attenuation of the intervening tissue. Since
both speed and attenuation are temperature sensitive (the speed
generally increases and the attenuation generally decreases with
increasing temperature, for smooth, nonfatty tissue), it is
possible to estimate changes in temperature from changes in speed
and attenuation. However, the key to the problem is an a priori
knowledge of the thermal coefficients of speed and attenuation of
ultrasound in biological media. This thesis draws together these

coefficients into a common database, in order to determine what



data are available, and what areas are in need of study. Further,
the accuracy of temperature estimation depends critically on the
accuracy of the reconstruction (which depends on time, amplitude,
and position measurement accuracies, as well as computational
accuracy), and on the accuracy and applicability of the thermal
coefficients. This thesis examines the errors present in a
divergent beam ultrasound computed tomography system, and the
variance in the available thermal coefficient data, in order to
determine the requirements necessary to estimate temperature
changes with an acceptable level of accuracy. Problems associated
with refraction and diffraction are considered, and the
applicability of diffraction tomography to differential

thermography is described.

Some important clarifications in terminology are in order at
this point. Contrary to popular usage, "velocity of propagation”
and "speed of sound" are not interchangeable phrases. Velocity is
a vector quantity, whereas speed is the scalar magnitude of the
velocity. Thus, the term "velocity"™ will be reserved for
discussions of abstract physics, or for measurements where the
direétion of the vector quantity is either explicitly or
implicitly unambiguous. 1In all other applications throughout this
work, the term "speed" will be used, since it is the formally
correct word. Moreover, all uses of the word "speed" shall refer
to the magnitude of the velocity of propagation of ultrasound,

unless explicitly stated otherwise.



Attenuation and absorption are also subject to confusion.
Attenuation describes the loss experienced by a wave as it passes
through a medium. Amplitude attenuation describes a 1loss of
amplitude. Intensity attenuation describes a loss of intensity,
or equivalently, energy. Throughout this work, attenuation will
always refer to intensity 1loss for discussions of physical
phenomena. Absorption is a specific mechanism of attenuation,
whereby ‘energy is converted into another form - typically heat.
Another mechanism for attenuation is scattering, where energy is
redirected away from the direction of propagation of the original
wave. For very homogeneous media, such as water or blood,
scattering 1is small, so the distinction between absorption and
attenuation is often not critical. For heterogeneous media, where
the scattering is not a small effect, it is important to
distingquish between reported values of absorption (loss due to

heat conversion) and reported values of attenuation (total loss).

Another important distinction is between the attenuation and
the attenuation coefficient, or equivalently, between the
absorption and the absorption coefficient. Since attenuation is
generally thought to depend exponentially upon the distance
travelled by the wave, the attenuation coefficient is defined as
the logarithm of the attenuation divided by the path length.
While attenuation is dimensionless, the units of the attenuation
coefficient depend on the type of logarithm used (natural, common,
or other) and the units of distance used. All numerical values
reported or described in this work afe either amplitude

attenuation coefficients or amplitude absorption coefficients.



Intensity attenuation will be reserved for discussions of physical
phenomena. Since the intensity of a plane wave is proportional to
the square of the pressure amplitude, the intensity attenuation

coefficient is simply twice the amplitude attenuation coefficient.

Finally, the term "thermal coefficient" is used throughout
this work to refer to the first order partial derivative, with
respect to temperature, of a given function or ultrasound
property. The speed thermal coefficient is thus the rate of
change of the speed of propagation with respect to temperature.
The thermal coefficient of the attenuation coefficient, also
referred to as the attenuation coefficient thermal coefficient, or
ACTC, 1is the rate of change of the attenuation coefficient with

respect to temperature.



CHAPTER 2

LITERATURE REVIEW

Several authors have considered the possibility of exploiting
the thermal dependency of the velocity of propagation and
attenuation of ultrasound in biological media. Fry and Fry (1963)
observed that the absorption paft of the attenuation yielded
elevated temperatures when tissue was heated with wultrasound.
These temperature changes altered the ultrasound speed, and thus
the acoustic impedance, giving rise to changes in the reflectivity
of the tissue. Thus by heating the tissue with ultrasound,
different B-scan images could be produced for a subject, with the
differences highlighting the absorption (and the speed thermal
coefficient) properties of the tissue. Later, Fry (1975) proposed
heating as a general contrasting process to alter the

visualizability of tissue, and bring out more detail.

Sachs et al. (1972) proposed a thermoacoustic sensing
technique, known as TAST, which examined transmission
time-of-flight measurements through ultrasound locally heated and
unheated tissue. However, in order toc make sense of the results,
a large amount of tissue specific data was required, including

absorption, specific heat, density, and the speed thermal



coefficient. These were combined into one term, the "P-factor,"
which Sachs et al. (1973) reported for several materials,
including water, blood, fat, muscle, and several forms of tumors.
Later, Sachs (1977) proposed this approach as a general tissue
analysis system, reporting speed changes resulting from
temperature changes of as little as 0.2839C, with a 400:1

signal-to-noise ratio, for normal brain.

Johnson et al. (1975), in examining the tomographic
reconstruction of flow-velocity fields, concluded that, given a
reconstruction of the speed of ultrasound for a subject and an a
p:iogi knowledge of speed as a function of temperature, one could
estimate temperature. They predicted that a 0.1% accuracy in
speed would give a 0.5°C accuracy in temperature. More to the
point, Johnson et al. (1977a) suggested that changes in
temperature could be estimated £from changes in speed resulting
from heating, given the speed ﬁhermal coefficient. Johnson et
al. (1977b) proposed modelling the thermal dependence of the
ultrasound speed for tissue, using the thermal dependence of
water, estimated as a dquadratic equation. Rajagopalan et
al. (1979) provided more tissue specific data by using ultrasound
computed tomography to examine the temperature dependencies of the
ultrasound speed in several excised human tissues, including
liver, kidney, spleen, muscle, breast fat and parenchyma, and

spinal cord.



Nasoni et al. (1979) examined the thermal dependencies of the
speed of ultrasound for several tissues, including both in wvitro
and in vivo data for canine kidney. They concluded that although

the speed values varied between in vitro and in vivo measurements,

the thermal dependence (dc/dT) remained within 3% (for kidney).
This invariance suggests that in vitro speed thermal coefficient

measurements could be used to estimate ip wvivo parameters.

Haney and O'Brien (1982) extended the concept of noninvasive
thermography using ultrasound computed tomography to include
frequency dependent attenuation as well as speed, and to suggest
an algebraic reconstruction approach that would provide improved
resolution accuracy (i.e., reduced resolution degradation) at a

computationally reasonable price.

Peyrin et al. (1983) attempted to reconstruct temperature
gradients in a polyvinyl chloride cylinder, using time-of-flight
ultrasound tomograpﬁy, but attributed their lack of guantitative

success to problems with ultrasound refraction.

In all of the above, success in quantitative analysis relied
heavily on a priori knowledge of tissue specific properties. It
is this need for an a priori knowledge database that prompted the
collection of thermal coefficients for speed and attenuation of
ultrasound, for biological media. This database (Haney and
O'Brien, 1985, in press) is contained in Appendices A and B. A
summary of the available information (and an indication of where
little or no information has been collected to date), is given in

Chapter 3.
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CHAPTER 3

THEORY

3.1 INTRODUCTION

The key to noninvasive temperature estimation using
ultrasound is the recognition that both the velocity of
propagation and the attenuation of ultrasound are sensitive to
temperature. By wusing ultrasound computed tomography to obtain
two-dimensional distributions of ultrasound speed and attenuation,
before and after heating the tissue, a temperature change

distribution can be estimated.

In general, the thermodynamics of 1liquids are sufficiently
complex to resist description by a mathematically tractable
equation of state. 1Instead, liquids are best described by partial
derivatives evaluated in the vicinity of the equilibrium state of

the liquid at the time of measurement.

In choosing to approximate a function by partial derivatives,
an additional consideration, maximum error over a specified range,
is introduced. The conventional approach to approximating a

continuous differentiable function £(x), in the vicinity of a

known point X, begins with the Taylor expansion:
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£(x) = £(xqg) + (x-xg)f'(xq) + ST £'' (xg) + o.. (3.1)

As long as the function is continuous and infinitely
differentiable, the complete series will yield the proper values
for f£(x) for any x, given only £(x,), and the derivatives of £(x)
at X0 However, in general, it may be prohibitive to calculate
the infinite series, or the higher order derivatives may not »be
known. Thus an approximation, involving only a finite number of
lower derivatives, may be chosen. Let g(x) be an approximation to

f(x), using only the first N+l terms. Then

_ N . .
(x-xg) ta £ |
g(x) = £(xg) +E Sareaaled (3-2)

i=

Clearly, g(x4)=f(xg). Further, since both f(x) and g(x) are
continuous (by definition for f, and by observation for g), the
epsilon-delta definition of continuity provides an approach for

determining the maximum error in estimating £ as g, in the

vicinity of x,. 1In particular, for any desired degree of accuracy

(error) e, one can find 4 such that
[£(x)-g(x)l<e as long as lx-xol<d (3.3)

This calculation can be <carried one step further, into a

dimensionless estimate, by scaling by 1/f(x). Thus, define
e' = [1-g(x)/£(x)[|*100% (3.4)

Then, for any level of error, for example 5%, a value of 4 can be
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determined such that as long as Ix—xO] remains less than d, then e
remains less than 5%. This range of values, [x4-d,xg+d],
describes the range of 95% accuracy of the approximation g(x),

used to estimate f(x). Similarly, for a chosen range of values

[Xl,le, the maximum error can be computed.

Throughout much of the following, explicit mathematical
representations are either not available or are not tractable.
Thus, whenever an approximation is introduced, the maximum error
associated with a specified range will accompany the
approximation. For the majority of the cases in this work, when
the independent variable =X represents temperature, the value of
the reference point X, will be chosen as 30°C, since this is a
temperature for which published data are commonly reported. This
touches on a major weakness of the available data base; for
practical medical applications, data must be available within the
37-42°C temperature range. In examiniing the maximum error, the
range of temperatures will often be 25 to 45°C. The choice of the
lower temperature is motivated by experimental measurements made
for this work, while the higher temperature has been chosen to
include 42.5°C, a temperature of significance to hyperthermia

applications.

3.2 MOLECULAR LEVEL THERMAL DEPENDENCY

The wultrasonic propagation properties of tissue are
considered to be determined largely at the macromolecular level
(Pohlhammer and O'Brien, 1980). This idea is supported by studies

conducted at least thirty years ago. For instance, Carstensen gt
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al. (1953) found that the wultrasonic attenuation and speed in
blood are determined mostly by protein content, and that the
ultrasonic attenuation coefficient is directly propoftional to the
protein concentration. Several years later, it was shown
(Carstensen and Schwan, 1959) that a small fraction of the
attenuation in blood arose due to its cellular organization. An
early study on liver tissue showed that approximately two thirds
of its attenuation occurred at the macromolecular level, with the
remaining one third being attributed to microscopic structure

(Pauly and Schwan, 1971).

Later (Bamber et al.., 1977), the ultrasonic attenuation
coefficient and mean backscatter amplitude were measured in
various tissues as a function of time after excision up to 120
hours post mortem. During this time period, the ultrasonic
attenuation coefficient did not significantly change while the
mean backscatter amplitude decreased substantially. It was
suggested that the backscatter signal is associated with the
relatively large parenchymal structures which are the first to
disintegrate while the attenuation is associated with the
macromolecular structure which degrades more slowly, thus lending
suppor% to the hypothesis that ultrasonic absorption occurs at the

macromolecular level in biological materials.

The three tissue constituent materials of water, protein, and
fat account for most of the tissue. Table 3.1 shows their ranges
for some biological materials. Each of these will be briefly
discussed because certain aspects of their temperature dependent

behavior are known and thus may contribute to our understanding of
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the temperature dependency of the ultrasonic propagation

properties for biological tissues.

3.2.1 Water

Water is the most abundant tissue constituent, making up as
much as 70 to 80 percent of many tissues. Its concentration is
nonuniformly distributed throughout the body. Adipose tissue
contains about 10% water, whereas blood contains about 83% water.
The total body water is about 60% of body weight for young males,
about 50% for yvoung females, and about 76% for babies. Total body
water tends to decrease with age. Lean body tissue contains about
72% water (Wolf, 1976; Ganong, 1967). Thus, due to its abundance

and variability in tissues, the role of water is explored.

As an approach to understanding the thermal dependence of the
speed of ultrasound in water, consider first the adiabatic

propagation of a sound wave through an ideal gas. Here,

2 =

C = e = e = e

M MCV M

+ - (3.5)

C

RTY RTC_  RT ( R )
_ .k 1
v

where ¢ is the speed of sound, R is the gas constant, T 1is the
absolute temperature, M is the molecular weight of the gas, and Y

is the ratio of the constant pressure and constant volume specific

heats CP and Cy, respectively (Lambert, 1977). If a relaxation

process is involved in the propagation, removing energy from the
otherwise reversible adiabatic process, then Cv varies with

frequency, and
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where w=2x#f is the radian frequency of the wave, T 1is the
relaxation time constant, and CVl and Cyp are the two extreme
values of the specific heat, reached at low and high frequencies,
respectively. This is velocity dispersion. Two important factors
arise in comparing this result to ultrasound propagation in water
and biological tissue. First, over the frequency range of
interest (0.5 MHz to 10 MHz), dispersion is generally considered
to be a negligible effect. Carstensen and Schwan (1959) reported
a "large" dispersion effect of 0.0916% change in velocity over
this range of frequencies for human blood. Dunn et al., (1969)
noted that the velocity dispersion is typically less than 1% for
biological media. Second, the value of X for water varies from
1.0005 to 1.015 from 0°C to 30°C, and is typically less than 1.006
for many tissues (Sehgal and Greenleaf, 1982). Thus the frequency
dependent term of equation 3.6 can be considered to be very small.
Therefore, one would expect an overall square root dependence
between absolute temperature and speed of sound, at least for

gasses. Thus

RT RTO T
c=[-—-2 [--21 + -=- (3.7)
M M 2T0

where, in the vicinity of 30°C (T0=303.15 K), the higher order
terms contribute less than 0.6% over the temperature range of 0 to

100°C, and contribute less than 0.03% from 25 to 45°C.
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Another view 1is offered by considering a steady—-state
ultrasound plane wave propagating through a homogeneous medium.

where the speed of sound is given by

1
e? = - ~ (3.8)
P8
where @ is the mass density of the medium, and fF is the

compressibility (Edmonds and Dunn, 1981). If @ is the isobaric

thermal expansion coefficient, such that

1 av|
6= - ——| (3.9)
V 4T (P
then
~ do
PT) =y + P Lo (1-84T) (3.10)

Typical values of 8 for water and saline in the range of 10 to
40°C, as well as a linear least squares fit to the data, are given
in Table 3.2. The correlation coefficient (r) indicates a high
confidence 1in correlation (better than 99.5% for water, better
than 98% for saline). An even better fit could be obtained by
using a higher order (quadratic) polynomial, but with so few
points the statistical value of the improvement is suspect. For
the saline fit, the probability is only 50% that the quadratic fit
is justified over the linear fit. Using the linear fit for 6, a

more complete estimate of/o would be
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P = py1-8r-G,r?) (3.11)

However, due to the extremely small values of¢9, one can estimate

P=/% with less than 2.2% error over 25 to 45°C, for both water and

saline.

If the ultrasonic propagation can be considered as an
adiabatic process (ignoting losses due to attenuation), then the
compressibility ‘5 can be estimated by the adiabatic
compressibility A?s. Typical values of ﬁg for water in the range
of 10 to 40°C, as well as linear and quadratic least squares fits
to the data, are given in Table 3.3. The linear least squares fit
to these data produces a rather unsatisfying result; the
correlation coefficient for the lineér fit shows a fair confidence
of correlation (90%). The gquadratic least squares fit is
appreciably better. A statistical F-test applied to the relative
change in 2? for the two fits indicates a better than 90%
confidence that the quadratic £fit is more appropriate than the
linear fit. Note that since only four monotonically varying data
points are available. a quadratic fit would be expected to produce
a reasonable fit (and a cubic fit would produce a perfect f£fit),

without regard to the underlying physics of the situation.

The decreasing trends of p and &, imply an increasing trend
in speed with temperature. If indeed ﬁg is quadratic, and is
approaching a minimum (predicted at T=35.4°C by the quadratic fit
in Table 3.3), then the speed should demonstrate a local maximum,

assuming P%/h is essentially constant. Including the temperature

dependence of A, the maximum would be expected near 40.0°C. Aas



18

will be seen below, the thermal dependence of the speed of
ultrasound has been seen to exhibit a maximum in water, but at a
significantly higher temperature (74°C), suggesting that the

quadratic f£it for B  is not a good model.

Experimentally, the temperature dependence of the speed of
ultrasound in water has been studied many times, with various

empirical results. For example, Willard (1947) proposed:
c = 1557-0.0245(T-74)2 (3.12)

where c is in meters per second, and T is in ©C over the range of
25°¢C to 85°c. Other single component 1liquids (alcohols,
hydrocarbons, ethers, etc.) show a linear temperature dependence
over the temperature range of 20°C to 60°C. Only water appears to
have a parabolic temperature dependence. This representation
suggests a peak speed of 1557 m/s at 74°C. Willard further
suggested that for 1low concentrations of other materials
(principly salts) mixed with water, the peak speed and peak
temperature vary linearly with concentration. For example, adding
Na2804 increases the peak speed and decreases the temperature of
the peak, to 1680 m/s and 63°C, respectively, at 1 M concentration
(Stuehr and Yeager, 1965). The elevation of the speed associated

with increasing saline concentration is seen clearly in Table 3.4.

Several other models for the speed of sound in water have
been presented. At laboratory temperatures, for degassed water in

the neighborhood of 19°C,

c = l461+3.44(T-;19)—O.0185(T—19)2 (3.13)
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where speeds and temperatures are measured in meters per second
and degrees Celsius, respectively (Johnson et al., 1977a).
Warning: the published reference reports the second order term of
equation 3.13 as positive, i.e., +0.0185. However, careful
analysis indicates that the sign of the second order term should
be negative, as shown above. A 20°C change in water temperature
will produce a speed change comparable to the difference between
the speed of wultrasound in water and the speed of ultrasound in
striated muscle. Higher order models (involving polynomials in T
up the 5th order) have been reported in Millero and Kubinski
(1975):

1402.385 + (5.03522)*T (3.14)
(58.3087*1073) *12

(345.300%107%) #13

(1645.13%1079) »r4
(3.9625%10"2) #T>

Q
]

+ 1+ 1

and

(5.03711129) *T (3.15)
(5.80852166%10™2) *T2
(3.34198834*%104) »73
(1.47800417*10°%) »74
(3.14643091%10™9) *T>

1402.38754

Q
]

+ 0+ 1+

and in Slutsky (1981):

c = 1402.73 + (5.03358)*T (3.16)
(5.79506%1 0 2) *#T2
+ (3.31636*10"4)#13
- (1.45262%1076) *74
+ (3.0449%1079)*p>

where ¢ is inm/s and T is in ©cC. Warning: the published
references report the fourth order term of equation 3.15 as

1.47800417*%10"2, and the fourth order term of equation 3.16 as
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positive. However, careful analysis indicates that the equations

should be corrected as shown above.

In each of the above cases a first order approximation can be
found to linearize the model in the region of a specific
temperature. In particular,

~ dc
c(T) = c(To) + (T-Tqg) == (3.17)
daT

where c(T,;) is a reference speed known for temperature Ty, and
dc/4aT is the first order speed thermal coefficient. This
approximation is valid only as long as the higher order terms are
insignificant compared to the linear term. 1In all of the above
models, the higher order terms contribute less than 0.48% over the

temperature range of 25 to 45°Cc, for T0=3o°C.

Ultrasonic attenuation is often considered as two effects:
scattering and absorption. When an ultrasound wave encounters a
region of impedance differiné from the preceding medium, a
fraction of the wave energy is reflected. The enérgy in the
reflected wave is a function of the impedance mismatch, and the
size of the region. If the region is large (with respect to the
wavelength of the ultrasound), the reflection is specular, and the
reflected wave ¢travels off at an angle equal to the angle of
incidence of the incoming wave. However, if the size of the
region 1is small with respect to a wavelength, some of the
ultrasound energy is'scattered in all directions (nonuniformly).
The energy in this scattered ultrasound field which is lost from

the incident wave is proportional to ,X'4 for small spherical



21

scatterers; the energy scattered per unit length is proportional
to )“3 for small cylindrical scatterers (e.g., blood vessels),
provided A is larger than the scatterer (Morse and Ingard, 1968).

Since \=c/f, one would expect:

A -4 24T
A 4 - _____9_____2_ = )0-4( - ———) (3.18)
(1+4T/T0) _ T0
for a spherical scatterer, and
-3
A3 = A PP 2 3.19
= mmoos———— 372 - 0 - ;-- (3.19)
(1+4T/T ) T,
for a «cylindrical scatterer. In the vicinity of 30°0C

(T0=303.15 K), the higher order terms contribute less than 0.76%
over the temperature range from 25 to 45°C. Thus the temperature
dependence of the 1loss due to scattering should be reasonably

linear with temperature change over this range.

In examining absorption loss, one of the more studied models
for absorption is relaxation (Wells, 1977; Carstensen, 1979). 1In
a relaxation process, energy is converted from one mode (e.g., the
ultrasound pressure wave) 1into another (adiabatic temperature
increase, or particle velocity, or molecular rotation, etc.) in an
oscillatory fashion. As long as the phases of the two modes are
properly aligned, the process is reversible, and the ultrasound
wave propagates without 1loss. When the phases of the modes are
not aligned, energy is lost. Sehgal and Greenleaf (1982)
considered pressure and temperature as modes that could model a

number of different relaxation mechanisms. Carstensen (1979)
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modeled the 1loss due to a single relaxation process, in terms of

the absorption coefficient per unit wavelength:
XA =20\ W (3.20)
where w=2%f is the radian frequency of the ultrasound wave, and 7~

is the relaxation time which characterizes the relaxation process.

The absorption per wavelength exhibits a maximum at «?7=1, where it

has a value of “Amax' The relaxation time 2 can be approximated
by

E

RT

where A and R are constants, E is the activation energy of the
process, and T is the absolute temperature (Carstensen, 1979).

Combining equations 3.20 and 3.21, and differentiating,

dot) wyll=w???®) | E

—— ZNAmax s RS L. (3.22)

ar (1+a29?) 2 [RrT2
Thus at low freqﬁencies (v<<1), &) should be proportional to w7
(and thus o should be proportional to fz)n and the thermal
dependence of the absorption coefficient per unit wavelength
should be less than zero. At high frequencies (w##>>1), &) should
be proportional to 14 7, and the thermal dependence should be
greater than zero. Finally, in the neighborhood of the relaxation
frequency (wt=1), the thermal dependence should be .zero. This
behavior is well demonstrated in the neonatal mouse spinal cord

absorption data of Johnston et al. (1979). For frequencies less
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than 0.6 MHz,tx) decreases with increasing temperature over the
temperature range of 2 to 40°C. For frequencies greater than 0.75
MHz, ) increases with increasing temperature over the same range.
In the neighborhood of 0.7 MHz, &) varies by less than 25% over 2
to 40°C, compared to the change in «&d at 2°C as f varies from 0.26

to 1.0 MBz.

In either of the extreme cases (wr<<l or «7>>l), one would
expect the logarithm of &M to be linear with log(?), which in turn

should be proportional to 1/T (according to 3.21). Specifically:

E
= log(2xA_..)+log(w)+log () + zologle)  (w7¢<l)
log (at)) (3.23)
E

log(2%A . )-logw)-log(A) - iElog(e) (“2>>1)

Combining the terms into abstact constants leaves a relation of

the form:

___________ Y a' - b'yT (3.24)
T (1+4T/Tg)

log(st})

n

s Y

-}
H1 T

i

2

+

where the higher order terms contribute less than 0.25% over the
25 to 45°¢ temperature range, in the vicinity of 30°C
(T4=303.15 K). Thus, log(ad) (or 1n(xA), the natural log) should
be linear in 4T, if a single relaxation process is responsible for

the absorption.
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In the real physical world, there is often a superposition of
continuously distributed relaxation processes. Sehgal and
Greenleaf (1982) considered the effect of a continuum of uniformly

distributed relaxation times from 0 to'T', and arrived at
2w w' 1n (Y)
ol = —= sin| ————cgeen- (3.25)

where ¥ is the ratio of specific heats. Since ¢ is typically
close to 1 (see the discussion following equation 3.6), this

equation can be reduced to two cases:

2

w
K = T 1n(Y) (3.26)
-
and
[7V}
A = - 1n()) (3.27)
C

for low («47'<<1l) and high (v2'>>1) frequencies, respectively. In

2, as is

the 1low frequency approximation, R is proportional to w
found in various aqueous solutions of salts, acids and bases,
which exhibit only a few relaxation processes. In the high
frequency case, & is proportional to ¢. As a/r'approaches unity,
the frequency dependence becomes stronger than linear in %, but
weaker than quadratic (wz). This frequency dependence is observed
experimentally in many biological tissues. The thermal dependence
of this model shows the same properties as those in equation 3.22,

For water, 1n(¥) increases 25 times, while ' decreases by two

orders of magnitude as temperature increases from 0 to 30°C. At
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low frequencies, the ~' decrease more than offsets the 1ln())
increase, so d®/dT is negative. However, at high frequencies,
only ln(X) is present, so 4d%/dT is positive. Note that the speed
of sound ¢ changes only by a factor of 1.07 over this range, and
thus does not contribute very much to the change (Sehgal and

Greenleaf, 1982).

From the standpoint of experimental‘ measurements, the
ultrasonic absorption of water is considered to be equal to the
attenuation since water is an isotropic, homogeneous liquid. The
ultrasonic loss in water is much less than that in soft tissues,
although the ultrasonic speed 1is comparable. Thus tissues
containing exceptionally large amounts of water exhibit a
relatively low ultrasonic attenuation, as compared to tissues with
less water. The frequency dependency of the attenuation and
absorption coefficients of tissue differ from water in that, for
tissue, the loss coefficients are roughly linearly proportional to
frequency, whereas for water, the absorption coefficient Iis
proportional to the square of the frequency. As with speed, the
addition of salts, in low concentrations, alters the attenuation,
producing increases for some salts and decreases for others,
depending on the salt involved and the frequency of the ultrasound
(Stuehr and Yeager, 1965). At 37°C, the frequency-free absorption

coefficient is
d/£2 @ 379¢C = 15.7*10"17 s2/¢n (3.28)

where X is the ultrasonic absorption coefficient in Np/cm and f is

the ultrasonic frequency in hertz (Pinkerton, 1949). Table 3.5
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shows how the frequency-free absorption coefficient for water
varies with témperature. The thermal coefficient for the
absorption coefficient varies from -0.62 £o -0.26 *10"17 s2/cm/OC
over the temperature range of 25°C to 45°C. Due to this
variation, it is apparent that a linear temperature dependency
model, comparable to equation 3.17, is inadequate. This view is
supported by the poor value of the correlation coefficient for the
linear fit presented in Table 3.5. Consequently, a gquadratic fit
is considered. Also, prompted by equations 3.23 and 3.24, linear
and quadratic fits to 1n(®%/£2) are included in Table 3.5. 1In
spite of the relatively small value of the linear correlation
coefficient (0.879), the data show a better than 99.9% level of
confidence in correlation. A statistical F-test applied to the
change in Xz between the linear and quadratric fits shows a 99.9%
confidence that the quadratic fit is Jjustified over the linear
fit. These observations are not surprising in light of the large

temperature range involved.

Note that the linear correlation coefficient of the 1log fit
(0.970) is distinctly larger than for the nonlog f£fit.
Nonetheless, the log-linear correlation coefficient also indicates
a better than 99.9% confidence in correlation, as does the nonlog
fit. A statistical F-test of the log-linear and log-quadratic
fits produces exactly the same conclusions (i.e., 99.9%
confidence) as the preceeding nonlog fits, presumably for the same
reasons. Statistically, these two models are comparable at the
0.1% level of confidence. However, an examination of the standard

deviations in the estimated parameters shows that the standard
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deviation in the log parameters ranges from 0.5 to 7.6%, whereas
the standard deviation in the nonlog parameters ranges from 4.6 to
16.3%. Thus one would expect a subtle improvement in using the

log fit.

3.2.2 Protein

There are two distinct types of proteins. One provides
structural features to the body, while the other provides
necessary metabolic functions. The major structural protein,
collagen, 1is believed to play an important role in the acoustical
properties of iissues. There are several reasons for this. One
reason is that collagen, a high tensile strength insoluble fiber,
is the most abundant protein in the human body, constituting from
25 to 33 percent of the total protein, and, therefore, about 6
percent of the body weight (White et al,, 1968). A second reason
is that there 1is evidence which shows that collagen exhibits
different acoustic properties from those of the other common
tissue <constituents (Fields and Dunn, 1973; Goss and O'Brien,
1979; Pohlhammer and O'Brien, 1980). It is known, <for example,
that collagenous fibers exhibit a static elastic modulus (Young's
modulus) approximately 1000 times greater than that of other
tissues (Fields and Dunn, 1973). Since wultrasonic speed is
proportional to the square root of the elastic modulus, this
suggests that the ultrasonic speed would be greater for collagen
than for other constituents. Direct measurements of ultrasonic
speed in tendon threads show this to be the case (Goss and

O'Brien, 1979; Edwards and O'Brien, 1979). The higher speed in
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3.2.3 Fat

Fat is an almost water free tissue. Thus, total body water
is largely inversely dependent upon the total amount of body fat.
Babies generally have less fat than young males, and young males
generally have leés fat than young females. This is reflected in
the average total body water percentages of 76, 60, and 50,

respectively (Bradley, 1972).

At least 10% of the body weight is lipids (fat). The most
abundant type of 1lipid is triglycerides (neutral fat) which is
found throughout the body, and especially in adipose tissue (White

et al., 1968).

There are no known reports of the temperature dependent
ultrasonic propagation properties for 1lipids. However, the
ultrasound speed and attenuation of two oils, castor o0il and
phenylated silicone Dow-Corning 710, are known at 1 MHz (Dunn et
al., 1969). Both oils exhibit a negative thermal dependenc§ for
both speed (Table 3.7) and attenuation coefficient (Table 3.8).
The speed thermal coefficient, dc/dT, for castor o0il remains
fairly constant around -4.2 m/s/°C over the range of 5°C to 35°C,
while for Dow-Corning 710, the coefficient varies from -3.7 ¢to
-2.8 m/s/°cC., The thermal coefficient for the attenuation
coefficient, dA/4T, varies from -10.0 to -2.0 em™1/9C for castor
0il over the range 5°C to 35°C, while for Dow-Corning 710, the
coefficient varies from -6.5 to 1.6 cm'1/°C over the range 15°C to
359c., Fyke et al., (1979) also found a negative thermal dependency

for ultrasonic attenuation for castor 0il, mineral o0il, and an
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of the speed and attenuation coefficient for aqueous collagen
suspension are ©positive and negative, respectively. At 8.87 MHz
and a collagen concentration of 0.5 g per 100 em3, around 15°c,
the thermal coefficient for speed, dc/dT, is 3.28 m/s/°C. When
the concentration is 14.2 g per 100 cm3, the speed thermal
coefficient is 0 (around 15°C), indicating a peak in speed as a

function of temperature.

Frequency-free attenuation coefficients for collagen
suspensions are reported in Table 3.6. The thermal coefficient of
the attenuation coefficient, d(A/fz)/dT, varies from =-2.02 to

-0.06 %1077 sz/cm/°C, depending on frequéncy and concentration.

The above data are too limited in temperature range to
perform a significant least squares fit. However, two interesting
conclusions <c¢an be drawn. First, the data decrease with
increasing frequency, indicating that A is not proportional to £2,
A linear fit of log(A) to log(f) suggests that for these data, A =
afP for 1.69<b<1.77 (r=0.747, 0.670) at 10°C, and 1.01<b<1.10
(r=0.955, 0.986) at 20°C. Note that the fit to the 20°C data is
markedly better than the fit at 10°C. Second, dA/dT is less than
zero for this data. These two observations suggest that from the
standpoint of the relaxation models presented earlier, &<l but it

is not the case that 41<<1.
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collagen implies that <collagen also has a higher characteristic
acoustic impedance. This in turn implies that there will be an
impedance mismatch between collagen and surrounding tissue, and
that collagen is therefore responsible for much of the reflection
and scattering that occur in tissues. This idea is supported by
Fields and Dunn (1973), for instance, who have suggested that
collagen is largely responsible for the echographic

visualizability of soft tissue.

Although collagen is the most prevalent protein, the
nonstructural proteins must also be considered, since qualitative
relationships have been shown to exist between ultrasonic
propagation properties and the total protein concentration. For
example, in an attempt to characterize tissues according to their
ultrasonic attenuation, a number of tissues including brain, liver
kidney, blood, and articular tissues were examined and grouped
according to their function, such as: 1) metabolic material
transport, 2) fat and water stogage, 3) protoplasmic activity,
physioclogical function, 4) structural supporting, stress
conveying, high in stuctural proteins, 5) framework protection, 6)
gasseous exchange (Dunn, 1976; Johnston et al., 1979). Upon
examination of this classification, it was found that there is a
relatively narrow range of attenuation values within each group,
and that the speed of sound increases and the attenuation
approximately doubles from group to group in order of increasing
attenuation. Furthermore, as one proceeds in this manner, tissues
of ever increasing structural protein content are encountered.

This suggests that ultrasonic attenuation <can be used to
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characterize tissues according to functional <criteria, and/or

their protein concentration.

The propagation properties of aqueous solutions of hemoglobin
have been measured more comprehensively than those of any other
solution of biological significance. One of the earliest works in
this area is that of Carstensen et al. (1953), who investigated
the wultrasonic absorption and speed in blood, plasma, and
solutions of serum albumin and hemoglobin, and concluded that the
acoustical properties of blood are largely determined by the
protein concentration. A number of other investigators have
measured the propagation properties of hemoglobin solutions
(Gramberg, 1956; Carstensen and Schwan, 1959; Edmonds, 1962;
Schneider et al., 1969; Edmonds et al,, 1970, O'Brien and Dunn,
1972a, 1972b) at frequencies ranging from 35 kHz to 1.0 GHz,
thoroughly covering a major portion of the frequency range of

relaxation absorption.

Experimentally, Lahg et al. (1978) found loge(a/fz) for human
" breast «cyst fluid to vary roughly linearly with temperature, with
a value of -0.01 °C™1 over the range of 25 to 40°C, They also
concluded that at 25°C, from 1.7 to 115 MHz, the absorption
coefficient is 0.0088*%f1°42 cn™l for cyst ligquid, and 0.0066%f£l <41

em~ ! for plasma.

Ultrasound speed and attenuation coefficient have been
determined 1in aqueous suspensions of collagen over an extended
frequency range at 10°C and 20°C (Goss and Dunn, 1980). As with

aqueous solutions of other biopolymers, the temperature dependence
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oil-polymer mixture under study as a potential tissue phantom.
Least squares fits (linear £for speed; linear, guadratic, and
log(A) 'linear for attenuation coefficient) are included in Tables

3.7 and 3.8.

Both of the linear correlation coefficients in Table 3.7 show
a 99.9% level of confidence in correlation. Although a
statistical F-test applied to the change in )12 for 1linear ys
quadratic fits shows a 95% level of confidence that the quadratic
fit is justified, the ©parameters show a very small relative
standard deviation (less than 1% for castor o0il; 1less than 3.3%
for Dow-Corning 710) for the linear fit, which is significantly
degraded by the quadratic fit (up to 21.5% standard deviation for

both o0ils).

The linear correlation coefficients (0.961 and 0.956) in
Table 3.8 show a 99 and 95% level of confidence in correlation for
castor o0il and Dow-Corning 710, respectively. Although the
quadratic fits are an improvement (and Jjustified at the 99%
confidence level for castor oil, but only at the 75% 1level for
Dow-Corning 710), ~the 1log-linear fit is distinctly better (99.9
and 99.8% level of confidence in correlation for castor oil and
Dow-Corning 710, respectively). A log-quadratic fit is somewhat
justified for Dow-Corning 710 (at the 90% 1level of confidence),
but completely unjustified for <castor oil (at the 50% level of

confidence).
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3.2.4 Summary Of Molecular Level Thermal Dependencies

The thermal properties of the three principle tissue
constituents, water, protein, and fat, can be summarized as

follows.

For water, the ultrasound speed tends to show a locally
quadratic behavior with temperature. 1In the vicinity of 37°C, the
first derivative is positive, indicating that the speed increases
with increasing temperature, while the second derivative is
negative, indicating the presence of a local maximum at a higher
temperature. Several water based solutions show this same
behavior, and changing the concentration of the solute shifts the
temperature of the peak speed. The absorption coefficient in
water tends to increase with the square of the frequency, and
decrease with temperature. Although the absorption coefficient
shows a locally quadratic behavior, as does speed, no local
minimum is found in the range of 0 to 100°C, suggesting that a
more sophisticated function may be applicable. An exponential
decay model is attractive, and fits the available data at least as
well as does the quadratic model. In the vicinity of 37°C, the
first derivative is negative, indicating a decreasing absorption
coefficient with increasing temperature, while the second
derivative is positive, indicating that the absorption coefficient

decreases less rapidly at higher temperature.

Aqueous collagen suspensions show increasing speed with
increasing. temperature, as does water. Also, changing the

concentration of the «collagen changes the speed thermal
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coefficient and shifts the temperature of the peak speed. From 10
to 20°C, the attenuation coefficient decreases with increasing
temperature, Insufficient data are available for further
qualification of this observation. However, human breast cyst
fluid shows an exponential decrease (decay) in attenuation
coefficient with increasing temperature, not unlike the behavior

of the attenuation coefficient in water.

The speeds of ultrasound in both castor oil and Dow-Corning
710 show a 1locally linear thermal dependence, giving decreasing
speeds with increasing temperatures, at a rate comparable to the
increase in speed in water (approximately 3 to 5 m/s/°C). The
attenuation coefficient also shows the same type of thermal
behavior as water, in so far as exhibiting a decreasing
attenuation coefficient with increasing temperature, but the

decrease becomes less rapid at higher temperatures.

3.3 TISSUE LEVEL THERMAL DEPENDENCY

Appendices A and B are a compilation of temperature dependent
measurements of wultrasound speed and attenuation in biological
tissues and fluids. Although many authors have published data on
speed and attenuation measurements at various temperatures, only
those articles that showed a temperature dependence, or provided
sufficient data to approximate a temperature dependence, were

included.
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Some of the information is second hand: references marked
m*l or m*2 were measurements reported by m, although the data were
taken from the extensive compilations of Goss et al. (1978) or
Goss et al., (1980), respectively. All pertinent temperature
information in Parry and Chivers (1979) is included in the data

from Goss et al., (1978) and Goss et al. (1980).

3.3.1 Ultrasound Speed Table

Appendix A reports values of ultrasound speed (m/s) és a
function of temperature (°C) at various frequencies (MHz). For
each biological material, any available physiological state or age
information is included. The ultrasonic frequency of the
measurement is indicated where reported. In many cases, speed
information was available only in the form of graphs. Thus, speed
values marked with an (*) were interpolated from graphs. Where a
speed value was not reported but a speed thermal coefficient was
available, the missing speed value was linearly -estimated, and
marked with a (#). The precision of the speed measurement, where
available, is provided in parentheses following the speed, either
in percent, or as one standard deviation. The speed thermal
coefficient, where reported, follows the error (m/s/°C). For a
large number of <cases, the speed thermal coefficient was not
reported, and hence was estimated by the author as the difference
in speed divided by the difference in temperature. These

estimated coefficients are marked with a (#).
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3.3.2 Ultrasound Attenuation Coefficient Table

Appendix B reports values of ultrasound attenuation
coefficients (dB/cm) as a function of temperature (°c) at various
frequencies (MHz). For each biological material, any available
physiological state or age information is included. The
ultrasonic frequency of the measurement is indicated where
reported. In many cases, attenuation coefficient information was
available only in the form of graphs. Thus, attenuation
coefficient values marked with an (*) were interpolated from
graphs. The precision of the attenuation coeff;cient measurement,
where available, is provided in parentheses following the
coefficient, either in percent, or as one standard deviation. The
thermal coefficient of the attenuation coefficient, where
reported, follows the error (dB/cm/°C *10"3). For a large number
of cases, the thermal coefficient of the attenuation coefficient
was not reported, and hence was estimated by the author as the
difference in attenuation coefficient divided by the difference in

temperature. These estimated coefficients are marked with a (#).

The results of Dunn (1962), Dunn and Brady (1974a and 1974b),
and Johnston et al. (1979) were all based on the same experimental
apparatus, and thus represent the same experiment at different

frequencies.

As an overview of the available data, and as an index, Tables
3.9 and 3.10 are provided. Table 3.9 is a summary of the
ultrasound speed data in Appendix A, indicating the tissues that

have been studied and the range of values that have been reported.



37

Table 3.10 is a summary of the ultrasound attenuation coefficient
data in Appendix B. Casual examination reveals that by comparison
to speed, little daté have been reported on the thermal dependency
of the attenuation coefficient for many tissues. Less casual
examination reveals that many tissues have not been reported at

all (e.g., lung, pancreas, tendon).

3.4 ULTRASOUND COMPUTED TOMOGRAPHY

A wealth of excellent references exist for describing
computed tomography (Gordon, 1974; Mersereau and Oppenheim, 1974;
Rak, 1979; Horn, 1979; Herman, 1980; and countless others). At
the abstract level, measurements are made in some two-dimensional
geometry of a process that can be represented as 1line integral
projections of a two-dimensional function. Appropriate
computations can then be applied to these integral projections to
reconstruct the underlying two-dimensional function. All of this

can be extended to higher dimensional systems.

3.4.1 Measurements

For divergent beam ultrasound computed tomography. acoustic
propagation measurements are made in a sector shaped region of
tissue; see Figure 3.1. The sector 1is then rotated about a
central axis, and the measurements are repeated for many angles of
view. The divergent beam geometry 1is preferred over the more
familiar parallel beam beam geometry (where measurements are made
along parallel lines, forming a rectangular shaped, rather than

sector shaped, region) for large scale, high speed systems, since
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the transducers can be mounted on a nonmoving ring. In Figure
3.1, the distance from the transmitter to the receiver is fixed,
and the center of curvature for the sector 1is 1located at the
transmitting transducer. Thus the receiver traces out a circular
arc, while the transmitter rotates about its position. With only
minor changes in the mathematics, this geometry can be changed to
produce a high speed system by placing several transmitters and
receivers in a ring; see Figure 3.2. 1In this configuration, the
signal from each transmitter is sampled by a sector-shaped
collection of fixed position receivers, rather than one moving
receiver. The center of curvature for this sector is located at
the center of rotation of the system, rather than at the
transmitter. This difference causes all of the sector angles of
the fixed ring system to be 1/2 as large as the angles in the
single pair transmitter-receiver case. The differences in
transmitter-receiver distance are also easy to accomodate. Since
no mechanical motion is required in the ring configuration, data

can be collected as fast as the electronics permits.

Two physical quantities can be readily measured with
ultrasound tomography: time-of-flight and amplitude attenuation.
The time required for an ultrasound pulse to propagate through a
medium is equal to the distance traveled divided by the speed of
propagation. For a heterogeneous medium, the total time-of-flight

is the integral of the inverse speeds:

dx
£ = | ——— (3.29)
c(x)
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The simplest approach to measuring the time-of-flight for a pulse
of uitrasound traveling between two transducers is to measure the
amount of time between the generation of the pulse, and the time
when the received signal exceeds some predetermined threshold.
This approach is susceptible to many sources of error, such as
time walk and time hop, both due to attenuation (Crawford and Kak,
1981). A more robust approach is to correlate the received signal
with a copy of the transmitted signal, and measure the time
difference from the shift in the correlation peak. Let q(t) be
the transmitted signal, and s(t) be the received signal. If the
propagation of ultrasound does not change the character of the
signal significantly, other than to attenuate the signal and to
produce a delay due to the propagation time, then s(t)=Aq(t-t'),
where A describes the amplitude attenuation and t' is the

time-of-flight. By correlating g and s,
R(t") = [q(t)s(t-t™dt = [q(t)Aq(e-t'-t")dt (3.30)

the time-of-flight can be determined from the location of the peak

of the éorrelation curve:
t' = t£" <=> max{(R(t")) over t" {3.31)

In general, the transmitted signal gq(t) is not available, since it
would require ideal measurements made with ideal transducers.
However, a reasonable alternative is to use the received signal
through a reference medium of known properties as the kernal of
the correlation. Let s _(t) be the signal received if the
ultrasound were to propagate through a water path (with speed Cy)

of distance equal to that in the tomography system. The
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time-of~£flight difference, 4t', defined by

dl dl
At = [ == = [t (3.32)
Cw c(x,y)

can be extracted from
4t' =t <=> max(R(t")) = max(/s,(t)s(t-t")dt) (3.33)

As will be seen later, the reconstruction of tomographic data is
greatly simplified if the object being imaged can be assumed to
have finite size and magnitude, and to be surrounded by a region
of =zero magnitude. For water-based tomographic systems, the rays
at the edges of each sector pass through open water (see Figure
3.1). This provides a convenient source for the reference signal
Sy(t), and satisfies the above property (i.e., 4t'=0 at the edges

of each sector).

If the correlation is performed digitally,
R(nt") = t"&s_(mt")s((m-n)t") (3.34)

then the values of s, s,, and R are known only at discrete points
in time (...=-2t", -1t", 0, t", 2t",...). Superficially, this
implies that the temporal resolution for estimating gt' is equal
to the sampling period t". McGill and Dorfman (1984) have
presented a straightforward approach to improve this resolution
(without involving increased sampling rates) using the Fourier
transforms of the signals to determine the location of the peak of
the correlation. A computationally simpler approach, used by

Foster (1985) is to estimate 4t' from a parabolic £fit to the
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correlation at its peak. Let nt" be the time that maximizes
R(nt"). Then, by fitting a parabola to R((n-1)t"), R(nt"), and
R{((n+l)t") (using the notation R(-1), R(0), and R(l), without loss

of generality),

R(-1)-R(1)
at’ =(; + omm e £" (3.35)
2 (R(-1)+R(1))-4R(0)

This provides a simple and effective estimate of gt’'.

The second physical quantity, attenuation, is also an
integral process. The intensity of an ultrasound wave is assumed
to decrease exponentially with distance, as it travels through an
attenuating medium. The wunderlying physical mechanisms of this

process were examined in section 3.2. Let I, be the received

intensity, and I; be the transmitted intensity of the ultrasound

wave. Then,

Ir = Iiexp(—ZAd) (3.36)

where A is the amplitude attenuation coefficient, and 4 is the
distance traveled. For a heterogeneous medium, if specular
reflection can be ignored, the attenuation is also an integral

process:

I, = Iiexp(—ij(x,y)dl) (3.37)

As with the time-of-flight, the transmitted intensity is not
readily available. However, the attenuation with respect to the
attenuation through a comparable water path can be determined

using data from the edges of each sector as a reference:
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Ir = Iwexp(—jé(A(x,y)—Aw)dl) ( (3.38)

where Aw is the attenuation coefficient of water. Again, as with

time-of~flight, preprocessing is required to obtain the integral

process of interest. Specifically,

4A =f(A(x,y)—Aw)d1 = -1n(I,./I,)/2 (3.39)

Two problems exist in this approach. The first 1is that the
"measured intensity" of a pulse is an ambiguously defined concept.
An American Institute of Ultrasound in Medicine document
distinguishes between temporal average and temporal peak intensity
(AIUM, 1984). The second problem is specular reflection. The
energy lost from a wave, as a portion of it reflects off of a
tissue interface, is not an exponential process. Fortunately,
attenuation due to scattering and absorption is frequency
dependent (see section 3.2), whereas specular reflection |is
largely frequency independent. The Fourier transform provides a
convenient mechanism for avoiding both problems by finding the
frequency sensitive portion of the loss. Since the intensity of a
plane wave is proportional to the square of the amplitude of the
wave, it is convenient to use the amplitude of the received signal
to determine the amplitude attenuation coefficient. Let Sw(uq and
S(w) be the Fourier transforms of the water path and sample

signals, respectively. Then
IS(w) | = R IS, (w) | exp(-aA(w)) (3.40)

or
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IS (w) |
4Aw) = -1ln ———=emm -1n(K) (3.41)
s, @) |
where K descibes the frequency independent loss due to reflections
(Crawford and FKak, 1981). Since 4 A(w) approaches 0 as w
approaches 0, one approach is to use Sw(o) and S(0) to normalize K
out of the equation. Unfortunately, the expected values of Sw(o)
and S{(0) are zero. Thus Sw(o+) and S(0%), the values of SW and S
in the neighborhood of #=0, must be used to estimate S, (0)/8(0):
| S)1/1s(0%) |
4A(w) = ~-1n P (3.42)
18, (w) /184 (07) |
Note that this asssumes A(0T)<<R. If a specific frequency
dependency model is assumed (e.g.., AA=A0fb), then a least squares
fit can be used to provide some noise immunity (by using many data

points to estimate a few parameters).

In both cases, time-of-flight and frequency dependent
attenuation measurements are made along discrete 1lines of a
sector; see Figure 3.3. Let Y be the angle of the 1line with
respect to the center line of the sector. The sectors are
measured at discrete view angles. Let & be the angle between some
frame of reference and the center line of the sector. Thus the
data are collected as a function of two angles: © and X. If the
sectors are uniformly sampled in angle X, the geometry is called
equiangular divergent beam tomography. The values of the measured

and extracted property are denoted g(8,X).
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3.4.2 Reconstruction

The reconstruction of the underlying function £from the
integral projections is a mathematically _straightforward but
computationally demanding task. The two most common approaches,
convolution backprojection and algebraic reconstruction, are

described below.

Since the following reconstruction mathematics is indifferent
to whether time-of-flight or frequency dependent attenuation is
being reconstructed, the notation g(@,X) does not need to reflect

which property is being processed.

3.4.2.1 Convolution Backprojection

The most commonly used approach to tomographic reconstruction
is convolution backprojection. The details can be found in many
sources (e.g., Horn, 1979; Rak, 1979; Rak, 1980). For

equiangular divergent beam geometry,

9(9:%) =.[f(x,y)dl (3.43)
and
dar
1
£' (x,y) = -3 (g(8,X)Dcos (X))®(h(X))d & (3.44)
. |
where

2

l X 1 )
h(X) = =f=-=5===] —= [|wl|exp(joX)dw (3.45)
2isin (X)) 27
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and where D is the distance from the transmitting transducer to
the center of rotation, and L is the distance from the

transmitting transducer at view angle 9, to the point (x,y).

Philosophically, this approach arises from the projection
slice theorem, where the one-dimensional Fourier transform of the
integral projection data provides a line (or slice) of the
two-dimensional Fourier transform of the underlying function.
Rather than collect all of the data, £ill in all of the
two-dimensional Fourier space, and then invert, convolution
backprojection takes advantage of the fact that all of the
mathematical processes involved are linear. Thus the contribution
of each individual integral ©projection 1is separately filtered
(convolved), and added (backprojected) into the final solution.
The function h(X) is the kernal of the convolution, and the

integral over @ is the summation of the individual views.

The filter function h(X) is to a large extent a spatial high
pass filter. The Fourier transform H(w) is proportional to |wl|,
along with some geometry dependent factors. Thus H(0)=0, and H(w)
increaées. with increasing W, If digital signal processing is
used, so that‘ZEnX' and #=m#', then it is itempting to sample
H(mw') such that H(0)=0 for m=0. However, a significant error is
introduced by this choice, since m=0 describes not only «w=0, but
also ~w' /24wwt /2, Over this range, H(w) varies by a
nonnegligible amount. A better estimate of the discrete frequency
space function is available from the discrete Fourier transform of

the discrete spatial domain function (Kak, 1980). Thus
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1
= e eme—— =0
gx2 !
hiny'X=0 n even (3.46)
-1
———————————— n odd

and H{mw') can be obtained from the FFT of h(nz{). Digital
convolution is then possible by multiplying H(m«') by G(&,mw') and
taking the inverse FFT. Note that both spatial domain functions,
h(nX') and g(&,nX') must be =zero padded to prevent the cyclic
convolution by Fourier space multiplication from producing spatial

aliasing (Kak, 1979).

3.4.2,2 Algebraic Reconstruction Techniques

An alternative approach to tomographic reconstruction is
offered by modelling the integral projections as 1linear

summations. Consider

g(8,x) =[f(x,y)dl =//A(9,X,x,y)f(x,y)dxdy (3.47)

where A(8,X,x,y) is the contribution that £(x,y) makes to the
measurement g(&,X). Rearranging the two-dimensional arrays of
image points and data points into vectors (using lexigraphical
ordering):

J

Thus the reconstruction problem has been converted to a

conventional problem of linear equations: given g and A, find £.
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To clarify the notation, £(x,y) will always describe a real
continuous function in two independent variables x and y. When
this function is sampled into a two-dimensional M*N matrix, the
elements of the matrix will be denoted fmn' and the value of the
element will be £(mx',ny'), where =x' and y' are the spatial
sampling rates in the x and y dimensions, respectively. Finally,
when the two-dimensional matrix is rearranged by stacking one
column upon another to form a one-dimensional vector, the elements
of the vector will be denoted fj, where the value of the element

is £ . such that j = m + (n-1)M,

Before approaching the solution of g=Af, consider the form of
the geometric description matrix A. Each row i of the A matrix
describes the interaction between the object function £ and the
ultrasound beam at angles @ and X, to form measurement i. The
most simple model for this process is Aij=l if beam i passes
through pixel j, and zero otherwise. This is an attractive model
since Af becomes a multiplication-free computation. Note that

this assumes that f and g are scaled according to unit distance,

so that the "size" of a pixel is unity.

A more realistic model is to let Aij=Lijr where Lij is the
length of the portion of beam i that passes through pixel j: see

Figure 3.4.

In both of the above models, the majority of the elements of
A are equal to =zero. Specifically, if the underlying function
f(x,y) is sampled into an M*N matrix, so that the vector £ |is

1*MN, and integral projections are measured at K angles and L
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views, so that the measurement vector g is 1*KL, then the matrix A
is KL*MN. Although this value may be very large (if K, L, M, and
N, are all 64, then KL*MN is greater than 16*100), it is necessary
to store and maniuplate only the nonzero elements of A. Each row
i describes the interaction of a beam of ultrasound with a line of
pixels through the object. Clearly, however, not every pixel in
the object is in line with each beam. To be specific, if beam i
enters the object at (m,n) and exits at (m+tdam,n+4n), then the

number of pixels involved in the beam, Npix' is constrained by
max(lgml,lanl) < Np;o < lami+lan] (3.49)

Thus for each row of A (each beam), only Npix out of MN values in
the A matrix are nonzero. A very conservative upperbound on Npix
is M+N, corresponding to a beam crossing diagonally through the
rectangular region described by the sampled £ matrix. If the beam
is modeled as having a finite width, then the number of pixels

involved is roughly w*N where w is the width of the beam,

pix’
measured in pixel scale.

The occupancy of the matrix A, measured as the percent of
nonzero elements in the matrix, is thus

N ..
s = 1003 -BX% < 1008 ~—-- (3.50)

For a 64*64 array for £, S<3.125%. This 1is an important
consideration, since the occupancy of a matrix determines the

amount of computation required to manipulate the matrix.
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The model Aij=Lij is based on the assumption that in the

neighborhood of point j, fj

a strong assumption of spatial bandlimitedness. A less strict

can be treated as a constant. This is

assumption 1is that £f(x,y) varies sufficiently slowly in the
neighborhood of the point j that the line integral for the ray

passing near Jj can be evaluated from a bilinear interpolation of

fj and the values of £ for the nearest neighbors to o

Specifically,
94 =f‘imentri(m—x)tri(n—y)dl (3.51)
mn
= szmnftri (m-x)tri(n-y)dl = ‘ZZAij fmn
mn m n
j=m+{(n-1)M
where
l1+z -1<z<0
tri(z) = 941-2 0<£z£1 ‘ (3.52)
0 otherwise

The bilinear interpolation approximates f(x,y) in terms of fmn and
the eight nearest neighbors to point (m,n)<=>j. Since the line
integral can be evaluated independent of the value of fmn' but
instead depending only on the geometry of the data collection, the
contribution of £ . to measurement i (i.e., Ai5) can be
predetermined before data collection, and reused for many
measurements, Although an explicit representation for Aij can be
determined (since the interpolation function is relatively simple
and can be integrated by conventional mathematics), the general

solution 1is sufficiently awkward to make numerical solution

attractive.
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This model causes the number of nonzero entries in A to
increase by roughly a factor of four. Thus the occupancy of A
becomes roughly 12.5% for a 64%*64 object array. However, the
interpolation in this model is effectively equivalent to
increasing the underlying sampling rate, and using larger
matrices. The reduction in error and equivalent sampling rate
comparison for this model is addressed in section 3.6.3, and the
results of a computer simulation analysis are presented in Chapter

5.

The solution of g=Af lends itself to many approaches. The
most direct is to invert A to find £ from g. In general, however,
A is a rectangular matrix (KL*MN), and even when the number of
measurements has been chosen to equal the number of pi#els
(KL=MN), there 1is no guarantee of nonsingularity. Thus
pseudoinverse matrices c¢an be used. As will be seen below.
computationally more attractive methods of algebraic
reconstruction are often used. However, an appreciation of direct
methods is required for later noise related variance analyses. Of
the three types of pseudoinverse matrices, the common underlying
definition is that A% is the pseudoinverse of A if and only if At

satisfies:
A = AA%A (3.53)

(Pratt, 1978). Conditional and least squares inverses, the two
most general of the pseudoinverses, always exist, but may not be
unique. The generalized inverse is the most constrained of the

pseudoinverses, and is unique if it exists at all. 1In general, if
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a* is a least squares pseudoinverse (i.e., A* satisfies 3.53

above, as well as AA#=(AA#)T), then
£1 = A#g (3.54)

provides the best (least squares) estimate of £ given g and A.
Note that if a generalized inverse A™ exists, then £' is not only

a least squares solution, but moreover, it has minimum norm.

The 1least squares pseudoinverse is readily available

(Luenberger, 1969):

a#

((ATa)=1aT ier (aTA)"1 exists (3.55)

AT (@aaT)-1 iff (anT)"1 exists

The first case describes an overconstrained system, where the
number of measurements exceeds the number of pixels. This is
often the configuration of choice. If no noise is present, a
unique solution will exist if the measurements are consistent.
The second case describes an underconstrained system, where at
best a continuum of nonunique solutions can be found. 1In this
case, £f' will have minimum norm over the set of nonunique

solutions.

Although the matrix aTa {or AAT) is very large (MN*MN, or
KL*RL for AAT), and solving matrix inversions is very time- and
space-consuming, this computation can be performed once for a
given geometry, and used countless times to reconstruct any number
of objects studied with the same geometry. Thus the cost of
computing (ATA)'1 can be amortized over a large number of later

reconstructions. As noted earlier, only the nonzero elements of
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the matrix need to be stored and manipulated. A further economy
can be achieved by recognizing that each value of the matrix is
used once in the reconstruction. Thus the entire matrix need
never reside in the central memory of the computer performing the
reconstruction, but instead could reside on a magnetic disk or
tape. Current computer technology readily supports the concept of
performing the calculations associated with one row of the matrix,
while the next row is being concurrently loaded from disk (using
direct memory access). Specialized computer systems, or
"reconstruction engines,"™ can be readily designed to take
advantage of the intensely parallel nature of the computation

involved.

For individual reconstructions (i.e., other than the mass
produced reconstructions suggested above), a computationally
attractive alternative to direct inversion is iterative
approximation. The name "algebraic reconstruction technique," or
ART, is conventionally used to describe only iterative approaches,
not direct solutions. The essence of additive iteration,

(additive ART) is
g+l = gn 4 p(qg,afn) (3.56)

where £0 is some initial guess for £, AfP® is the projection of
guess f£%, and D(a,b) is a directed measure of how close vector a
is to vector b. An excellent example is the projection iterative

method described by Huang (1977):
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fn+l = fn d e n—— A. (3.57)

where Ai is the i'th row of the A matrix. One full iteration is

defined by evaluating 3.57 for each of the I rows of A, Repeated
iterations of this method will produce one of the following
results: i) convergence to the solution, if a unique solution
exists, ii) convergence to the (least squares) nearest solution
(from the starting guess) if the solution is not unique, or iii)
cyclic convergence (i.e., £P=fP*I put £0#e+l)  §f no solution
exists. This 1last case arises if the system is overconstrained,
and noise in the system causes the equations to become

inconsistent.

Perhaps the most common variation on the above is the use of

relaxation parameters (Herman et al., 1975):
g+l - g0 4 p(g,afD) (3.58)

where r is chosen to alter the rate of convergence. For r>l, the
iteration will rapidly approach the solution, but may overshoot
and produce artifacts in the final image. For r<l
(underrelaxation), convergence 1is slowed, but artifacts due to
overshoot are reduced. The choice of r=0.75 is popular (Herman,

1975; Johnson et al., 1977b).
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3.4.2.3 Limited Viewing Angles

A significant problem arises in applying divergent beam
ultrasound computed tomography to human body studies.
Specifically, for uniform estimation of the underlying function,
360 degrees worth of viewing angles must be available. (The outer
integral over @ in the convolution backprojection runs from 0 to
27.) Since ultrasound will not propagate readily from soft tissue
to bone, or from tissue to air (as in the 1lungs or in the
occasionally gas—-filled gastro-intestinal tract) due to
reflection, very few areas of the body are readily available for
360 degrees of data acquisition. The principle exception to this
is mammography, where ultrasound computed tomography has been

used.

For the rest of the body, only 1limited viewing angles are
available. Algebraic methods, such as ART, are formulated
independent of the underlying geometry. Thus missing angles can
be accomodated by simply deleting rows from the A matrix. For
iterative solutions, this runs the risk of making the solution
less stable. For direct solutions, the pseudoinverse matrix must
be recomputed, which may not be economical for a single
reconstruction. Convolution backprojection, on the other hand, is
not designed to work with less than complete data. One approach
to this problem is to iterate between convolution backprojection
and ART, using the algebraic representation of the problem to
estimate the projections that would have been measured at the

missing angles (Heffernan and Robb, 1983).
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Independent of the
projection data
function. In the case ©

are reconstructed:

dl dl
4t = = - | ———mmm
CW C(XIY)
1
Cw
If the time-of-flight

physical dimensions of
millimeters, then f(x,y)

ultrasound speed,
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Reconstruction

reconstruction method used, the measured

are manipulated to recover the underlying object

f the time-of-flight data, inverse speeds
= /%(x,y)dl
(3.59)
1l
c(x,y)
is measured in microseconds, and the
the tomography system are measured in

will have units of ps/mm. To recover the

1
C(X,y) = =—mmmmmm————e (3.60)
(1/c-£(x,y))
where c(x,y) will have the units of mm/ps.
For frequency dependent attenuation, the log of the loss is
used:
IS (w) |
4A W) = -20log ——-———- = f(A(XrY)‘AW)dl
18, @) |
(3.61)
=> £(x,y) = A(x,y) - A,
The reconstructed attenuation coefficient function f£(x,y) will

have units of dB/mm, assuming as before that the system dimensions

are measured in millimeters.

The object attenuation coefficent,
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as a function of frequency, is readily available from:
Aw,x,y) = £(x,y) + AW (3.62)

See section 3.2 for values of A,

3.5 DIFFERENTIAL TOMOGRAPHY AND DIFFERENTIAL THERMOGRAPHY

If the relationship between speed and temperature, or
attenuation and temperature, is known precisely, and all of the
relevant tissue properties are known for the tissue under
investigation, then a single measurement of ultrasonic properties
should be sufficient to determine the temperature. The large
range of variation in ultrasound properties and thermal
coefficients in Tables 3.9 and 3.10 suggests that a single
measurement would be insufficient to properly characterize the
tissue temperature. Note however that the tables are not very
comprehensive: Table 3.10 is missing data in many entries, and
both tables omit several tissues, including blood vessel,
intestinal wall, and pancréas, as well as the many forms of
abnormal tissues and tumors. In light of the relatively small
amount of available data, one may question whether the available
data are truly representative of the temperature dependent
interaction of ultrasound with biological media. Regardless,
given the data currently available, absolute noninvasive

thermography does not seem promising at this time,
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However, estimating a temperature change resulting <from the
application of some external energy source is still tractable. If
a Taylor expansion of the ultrasound speed (or attenuation
coefficient) as a function of temperature can be validly modeled
as a first order polynomial, as in equation 3.17, then

dc €y1-cg

Ci=Cg = == AT or 4T = ==—== (3.63)
daT dc/4aT

where €y is the speed measured before heating, and c¢; is the speed

measured after heating. The same applies for the attenuation

coefficient., If a first order polynomial is not sufficient to

model the temperature dependency over the temperature range of

interest, then a second order polynomial may be tried. However,

to estimate temperature, equation 3.63 is still applicable, with
dc| dc a2c

dT|Tyt  &T 4T

where Ty' is an estimate of the starting temperature. This is a

linearization of the quadratic polynomial in the neighborhood of
To', and as such, Ty' need not be equal to Ty, the true starting
temperature, as 1long as the second order term of the quadratic
contributes little due to the difference between TO' and Tg or T
(i.e., the temperature change must be small). As will be seen in
Chapter 5, the second order polynomial approach is more
appropriate for attenuation coefficients than for speed. Note
that applying two doses .of heating, and measuring three speeds (or
attenuations) does not in general improve the solvability of the

problem. With two doses of heat, there will be two temperature
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changes to compute, and thus no net information has been gained.
Even if the energy in the two heat doses is ‘the same, the
temperature change may not be constant unless the specific
absorption rate of the tissue is independent of temperature in
this temperature range. In this case, if the temperature
dependence is linear, the three measurements will represent three
points along the same line, and no real information will have been
obtained by the third measurement (although the variance of the
estimation may improve due to better signal to noise statistics).
If the temperature dependence is quadratic then the three points
could be fit to a parabola, and thus all be useful. However, in
the case of quadratic (i.e., nonlinear) temperature dependence,
one would not expect a constant specific absorption rate (i.e., a
linear response). Thus two equal exposures would probably not
yield two equal temperature changes. Thus little should be gained

by making more than two measurements.

An interesting alternative to linear estimation exists in the

case of ultrasound speed. If equation 3.5 is valid for tissue,

2
¢y RO, U /M T9)y  To*aT Ytay

T S YAt S e U A4 (3.65)

co>  RT¥om 1o To J

If 4Y is small with respect to ), then

- = - 1 (3.66)

should estimate temperature changes, assuming Ty is known or can

be guessed. Sehgal and Greenleaf (1982) reported 1n(Y) changing
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by a factor of 25 over the temperature range of 0 to 30°C for
water. This corresponds to 4)= 0.015 for )= 1.015 (or 1.47%).
In the case of in vivo measurements, if T; can be estimated as
body temperature (e.g., 37°C, or 310.15 K), then 4T becomes

readily available from two speed measurements.

For attenuation modeled as a relaxation process, the
temperature dependence of the relaxation time has the effect of
shifting the &) relaxation curve in frequency space such that “616
=‘foi. This conclusion arises from the fact that all occurrences
of T in the relaxation model (both the single relaxtion model in
equation 3.20, and the multiple process model, equation 3.25,
represented as o)) are in products with #. Thus any percentage
decrease in 7 is indistinquishable from the equivalent percentage
increase in . If AMj(w) is the frequency dependent attenuation
coefficent of the first measurement (before heating), and AAl(w)
is the attenuation coefficient of the second measurement, then the
peak of theii cross correlation in 1log frequency space will

identify the effective shift of the curve:

4@W<=> maX/AAO(ln(w))AAl(ln(w)—ln(aﬂ))dln«o) (3.67)
where “& = “b‘“{ The above integral can be simplified by
recognizing that dln(w) = de/, Given the effective shift in

frequency space,

E E EaT . EaT
In(d&) = === = === = —=msmmmemee T e (3.68)

where E is the activation energy, and R is a constant. 'E and R
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can be collapsed into one tissue specific parameter for the sake
of modeling. Thus the 1log of the frequency shift should be

proportional to the temperature change, which can be estimated if

Ty is known or can be guessed.

With the exception of the ratio of squared speed method, all
of the above requires an a priori knowledge of tissue specific
parameters, which may not be directly measurable in a noninvasive
manner. For this reason, Appendices A and B, containing
literature values for speed and attenuation coefficient for
various biological tissues, have been compiled. An analysis of

these data with the above models is presented in Chapter 5.

3.6 ERROR ESTIMATION

A noninvasive estimate of internal temperature would be of
little value without an estimate of the variance associated with
that temperature. Several sources of error are inherent in
ultrasound property measurements. These errors are then
propagated through the tomographic reconstruction process, and
finally influence the outcome of the temperature estimation. The
following material examines the errors in measurement and
estimation that are independent of the experimental facility that
might be used to make the measurements. Experiment-specific error
sources associated with the apparatus used in this study will be

examined in Chapter 5.
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3.6.1 Physical Sources Of Experiment Independent Error

Conventional ultrasound computed tomography measurements are
based on the assumption that the ultrasound wave propagates along
a straight path through the tissue under investigation. Although
this assumption is valid for x-ray tomography. there are several
physical mechanisms that introduce errors in ultrasound
propagation measurements. When a wave passes from a region of one
speed of propagation to a region of another speed at an angle
other than normal incidence, the wave path bends according to
Snell's Law: the ratio of the speeds is equal to the ratio of the
sine of the angle of incidence to the sine of the angle of
transmission., If the second region can be modeled as a layer with
parallel sides, then compared to straight path propagation, the
ultrasound will follow a slightly longer path through a layer of
relatively higher speed, and a slightly shorter path through a
layer of relatively lower speed; see Figure 3.5. If
time-of-flight is measured with respect to time-of-flight through
a homogeneous reference medium, the effect of refraction is to
decrease the variation in time-of-flight due to the
inhomogeneities, and thus result in underestimation of the speed
differences. Peyrin et al., (1983) attributed their difficulties
in tomographic reconstruction of PVC cylinders to refraction
error. Refraction will also change the amplitude of the received
pulse by directing the pulse slightly away £from the receiving
transducer. This will not change the spectral content of the
received signal, however, if the bending is frequency independent.

Thus refraction (by itself) should not have a major effect on
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attenuation as measured by equation 3.42.

Veldcity dispersion causes different frequencies of
ultrasound to propagate at different speeds. If refraction is
present to bend the beam, then dispersion will broaden the beam
due to variation of transmission angles resulting from frequency
dependent variations in speeds. If diépersion is present, the
spectral characteristics of the ultrasound wave will be altered,
producing errors in estimating the attenuation. Time-of-£flight
estimation can also be affected if the spectral characteristics of
the received pulse are changed sufficiently to affect the
correlation (with a water path reference signal) used to estimate
time delay. Note that dispersion has been assumed to be
negligible in section 3.2, and is included in the discussion here

only for completeness.

The interaction of an ultrasound wave with edges, or regions
comparable in size to a wavelength of the ultrasound, results in
frequency dependent scattering, or diffraction. Since the effect
is frequency dependent, diffraction changes the spectral
characteristics of the received pulse, and thus alters both the
attenvation and the time-of-flight estimation. One approach that
addresses diffraction and refraction problems is diffraction
tomography, where the wultrasound far field is sampled for each
viewing (illumination) angle, in order to obtain a sufficient
amount of information to reconstruct the wave field in the tissue
under investigation. Pan and Kak (1983) present a comparison of
various diffraction tomographic reconstruction algorithms. The

sophistication of the model used to describe the interaction of
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ultrasound with the tissue determines the completeness with which
diffraction and refraction are accounted for. Unfortunately, the
sophistication of the model also determines the complexity of the
solution. Thus ultrasound diffraction tomography appears to be
the most comprehensive (and the most difficult) approach to fully
analyze the interaction of ultrasound with tissue. Since the
temperature estimation procedures of section 3.5 are independent
of the reconstruction algorithm used, they should be equally

applicable to diffraction tomography.

3.6.2 Errors In Property Estimation

If the time-of-flight is estimated from the location of the
peak of a correlation between a known, noise-free reference
signal, and a time-delayed, scaled, noisy copy of that signal, and
the noise has a zero mean and is independent, then the expected
value of the measured time delay a4t' is equal to the true time
delay. The variance of the time delay is given by

N
var(gt') = -3 (3.69)
EB
where N is the power of the noise, E is the power of the received

signal, and B is the normalized rms bandwidth

B2 = (2m2 /——--¥oll___ - (2m 2Bl (3.70)

flesw(f)lzdf - )z(flsw(f)|2df 2
7
[15,(6) 12at {15, (£) 12af

where S (f) is the Fourier transform of sy,(t), the reference

signal (Burdic, 1984). For ultrasound tomography., the individual
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reference signals at the edges of each fan are not noise-free.
However, a relatively «clean estimate can be formed by averaging
these signals over several fans. Also, the received signal
through the tissue is not simply a scaled noisy copy of the
reference signal. The frequency dependency of the attenuation
(which is the basis for the determination of the attenuation)
changes the spectral characteristics of the received signal.
Fortunately, the experimental variance of the water path
measurements can be readily determined from the tomographic data
by correlating the signals at the edges of the fans with each
other. Note that the expected value of 4t' for these fans is
zero. The experimental variance of the tissue measurements can be
determined from the data only if a 1large number of pulses of
ultrasound are recorded for each sector and viewing angle.
However, in light of the effect of attenuation on the spectral
characteristics of the tissue path signals, one would expect
equation 3.69, and the experimental variance of the water path
measurements, to be a lower bound on the variance of the tissue
path time delay estimation. The results of nontomographic (i.e..,
fixed position) measurements of water' and a tissue mimicking

phantom material are presented in Chapter 5.

The attenuation estimation can also be examined. If the
received signals can be modeled as a clean signal plus zero-mean,
independent noise, then the expected value of the Fourier
transform of the received signal is equal to the Fourier transform
of the expected signal (i.e., the clean signal). The variance of

the Fourier transform is more difficult to analyze without a
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specific noise distribution, since the bandlimited discrete
Fourier processing that is performed produces aliasing of high
frequency noise. The attenuation is determined as the log of the
ratio of the Fourier transforms of water and tissue path signals,
so that the expected value of the attenuation will be the true
attenuation if the noise distribution has a sharp peak at zero
(i.e., zero mean and a small variance). The experimental variance
of the attenuation of the water path signals can be readily
determined from the tomographic data, since all of the signals at
the edges of each fan can be used. Note that as with the time
delay estimation, the expected value of 4A(w) for the water path
measurements is zero. The variance of the tissue path attenuation
should be the same as the variance of the water path attenuation,
since the 1logarithm converts an exponential decrease into a
biasing shift, as long as the noise decreases with the signal
amplitude. If the noise does not follow the decrease in signal
due to the tissue, then the variance of the tissue attenuation
will be greater than the water path attenuation variance. Note
.that as with the time delay estimation, determining the
experimental variance of the tissue measurements requires a large
number of recorded pulses of ultrasound. Thus the water path
attenuation can be used as a lower bound for the tissue
attenuation. The results of nontomographic (i.e., fixed position)
measurements of water and a tissue mimicking phantom material are

presented in Chapter 5.
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3.6.3 Impact On Reconstruction

The effect of noise on convolution backprojection can be
readily analyzed if the noise can be assumed to be independent
(from measurement to measurement). If f' 1is the reconstructed
estimation of £, then the expected value of f' is £ if the
expected value of the noise is zero (i.e., the noise has zero

mean). The variance of f£f'(x,y) can be determined from

27

1
var (£' (x,y)) = [z (var (n)D2cos? () )®(h2 (X))d 8 (3.71)
L
[¢)

where the above variables have the same interpretaion as in
equation 3.44 (Kak, 1979). As noted in the previous section, the
experimental variance of the noise can be estimated from the
variance of data at the edges of each fan (i.e., the water-path

only signals). Thus var(n) = var(gw),

The effect of ‘noise on algebraic reconstruction can be
readily analyzed. Let n; be a random variable representing the
noise associated with measurement g;, such that g = Af + n. Let
f' be the least squares estimate of f given g and A, as produced
by the least squares pseudoinverse matrix at (i.e., £' = A#g). If
the noise is independent and has zero mean, then the expected
value of £' is £. and the variance of the noise can be estimated
from

1

var(n) = —— ((g~Af')T(g-Af')) (3.72)
KL

and the image variance can be estimated from
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var(f'.

3) = var (n)A#j- (3.73)

J

(Ratz, 1978). If the statistical properties of the noise <can be
determined a priori, this information can be used to weight the
pseudoinverse matrix to provide a better f£fit. Aside from the
water path variance at the edges of each fan, this a priori
information is not available in general £for wultrasound computed

tomography.

If an iterative method is wused, such as the projection
iterative method shown in equation 3.57, then the presence of
noise may prevent the solution from being unique. The cyclic
convergence of the projection iterative technique does not insure
a minimum variance solution. Moreover, the variance estimate of

TA) _l

£'. still requires (A as shown in equation 3.73. Thus

j i3
iterative algebraic reconstruction may be easier to compute, but
the method forfeits a direct estimate of the variance of the

reconstructed image.

The choice of binary, linear, or interpolated modeling for
the A matrix results in decreasing modeling error at the expense
of increasing computation. If the underlying continuous,
bandlimited function £(x,vy) is discretely sampled at a
sufficiently high rate (specifically, greater than twice the
highest frequency present in the function), then f£(x,y) can be
recovered from £ . by convolving the samples with an appropriate
low pass filter. (The details of the Nyquist sampling theorem are
not critical to this discussion. A thorough presentation of this

topic can be found in any text on digital signal processing.) This
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is a computationally expensive task, however, since recovering
each point (x,y) involves information from all of the M*N sample
points. Both the binary and the linear models assume that £(x,y)
changes sufficiently slowlf that it can be modeled as a constant
for each pixel. Computationally this is attractive, since the
value of f(x,y) can be estimated from the sampled point fmn
nearest to (x,y). The mean squared error between the true value
of the function £f(x,y) and the estimated value £f£'(x,y) is a
measure of the error associated with wusing f£' for calculations
rather than £. For a given function f(x,y), this error will in
general decrease as the sampling rate increases, since the pixels
will be smaller and will better fit the continuous function. Note
however that increasing the sampling rate in both the x and vy
directions results in a squared increase in the computation time
required to manipulate all of the points. The interpolated model
estimates £(x,y) in terms of the nearest neighbor fmn' as well as
the eight neighbors of (m,n). As noted earlier in the analysis of
the interpolated model, the contribution of fmn and its neighbors
to any given measurement should involve roughly four times more
computation than for the linear model (since some of the neighbors
of (m,n) would already be involved in the beam computation for the
linear model). However, the mean squared error between the true
value f£(x,y) and the interpoclated estimated value £"(x,y) will
tend to be less than the mean squared error for the simple nearest
neighbor estimate used by the binary and linear models., since the
interpolatéd model will tend to follow the function from pikel to
pixel, while the nearest neighbor model remains constant until the

pixel-pixel boundary. where it changes abruptly to the value of
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the next pixel. One measure of the benefit ys cost of the
interpolated model over the linear model is the degree to which
the linear model sampling rate needs to be increased to obtain the
same level of mean squared error obtained by the interpolated
model. Since the interpolated model requires four times more
computation, if the linear model requires more than a factor of
two increase in the sampling rates for both x and y to obtain a
comparable mean square error, then it would be cost effective to
choose the interpolated model over the linear model.
Unfortunately, mean squared error is not a linear function, so it
is not possible to study the set of continuous bandlimited
functions as a superpostion of basis functions. It is also not
tractable to evaluate g priori the mean squared error for all
possible functions. For these reasons, a computer simulation was
performed to examine the mean squared errors resulting from linear
and interpolated modeling of two-dimensional sine wave fields of
various frequencies. Since superposition can not be wused, the
calculated mean squared errors can not be used directly for
studying arbitrary functions. BHowever, the trends in mean squared
error for the various frequencies are indicative of the expected
behavior for regions of arbitrary functions. The results of this

analysis are presented in Chapter 5.

It should be noted that previous studies have shown that the
variance exhibited by convolution backprojection (parallel beam
geometry) is close to the theoretical algorithm independent 1lower
bound on variance (Rak, 1979). Thus the only apparent advantage

of algebraic reconstruction over convolution reconstruction is the
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ability to estimate the variance of the noise (and thus the
variance of the reconstruction) from all of the data present,
whereas convolution backprojection estimates the noise variance

only from the water path signals at the edges of each fan.

3.6.4 Impact On Interpretation

The interpretation of the reconstruction further modifies the
variance of the estimation. For ultrasound speed as deterimined
by equation 3.60, the variance of the interpreted speed is

1
4

var(c) = ¢ ~~1 var(c.) + var(f) (3.74)

Cw

where var(c_), the variance of the speed of water measurement used
for a reference, 1is independent of the variance of f. If this
~value is sufficiently small, or otherwise not available, as may be

4

the case for values taken from the literature, then c“var(f) is a

useful lower bound.

For attenuation, as determined by equation 3.62, the variance
of the interpreted attenuation is the sum of the reconstructed

variance and the variance of the reference watér attenuation:
var (A) = var(f) + var(Aw) (3.75)

assuming the variance of A is independent of the variance of f£f.
If var(Aw) is not available (as may be the case for values taken
from the literature), then var(f) is a useful lower bound on the

actual variance.
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3.6.5 Impact On Temperature Estimation

All of the previously examined variances combine to influence
the variance of the estimated temperature change. For linear (or
linearized quadratic) models, such as equation 3.63, the variance
of the temperature change is

var (¢ ar (c
var(4aT) = —-———ll— + Y——i—gl— + var(dc/dT)—:i ————— (3.76)

assuming that the variations in €y, cg and dc/dT are all
independent. This equation applies equally for linear models of
attenuation. The variances of the thermal coefficiénts, as

available from the literature, are presented in Chapter 5.

If equation 3.66 is applicable for -estimating temperature
change from the ratio of speeds, then
var{4T) = T 4 -~ var(cy) + 4 --= var(cp) (3.77)
0 4 1 6 0
c c
0 0
if Ty is known, and the variations in cj and cg are independent.

If Ty is estimated, then a third term, (AT/TO)zvar(To), must be
added.

If equation 3.68 is applicable for estimating temperature

change from the shift of the attenuation spectrum, then

2 R2 var (aa/)
var (4T) = TO ————————— (3.78)

where the variance in the frequency shift can be determined by the
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same variance analysis as was applicable for the time delay
estimation, as shown in equations 3.69 and 3.70. For the
frequency shift case, however, the "time domain" signal S,(t) is
Aw) ., while the "frequency domain" spectrum Sw(“o is a(t), the
Fourier transform of the attenuation spectrum (i.e., the Fourier
tranform of the log of the Fourier transform of the received
signal). Again, if T; 4is not known and must be estimated, an

additional term of (AT/TO)zvar(TO) must be added.
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CHAPTER 4

EXPERIMENTAL FACILITY

4,1 PHYSICAL DESCRIPTION

The ultrasound computed tomography apparatus involves a 62.1
* 62,1 * 41.0 (depth) ocm (inside dimensions) Plexiglas tank,
holding approximately 148 liters of water. In the bottom center
of the tank, a triaxial shaft transmits mechanical power from the
three drive motors below to a 25,5 * 19,0 * 18.5 cm water-proof
gearbox inside the tank. A coaxial shaft exits the top of the
gearbox to provide a shaft for mounting the transmitting
transducer, and a boom arm for mounting the receiving transducer.
The water temperature is controlled by a Haake E-2

heater-circulator in the tank. See Figure 4.1.

The distance from the central axis to the transmitting
transducer is typically 10.4 cm. The distance from the trasmitter
to the receiver is typically 20.4 cm. Thus each sector is 20.4 cm
"deep," and roughly centered at the center of rotation. See

Figure 4.2,
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4.2 MECHANICAL DESCRIPTION

Details of the mechanics and control electronics for this
system can be found in Lerner (1979) and Berkwits (1980).
However, the salient features are repeated here. The tank
provides three degrees of rotational freedom: i) the gearbox and
transducers rotate as a unit about the central axis of the system;
ii) the transmitter and receiver boom arm rotate in alignment
above the gearbox to sweep out sector shaped regions; iii) the
receiver boom can swing independent of the transmitter, in order
to measure the ultrasound beam profile. All three motions are
produced by d.c. motors, driven by integrated pulse proportional
control from an interface driven by a SYM-1 microcomputer. Angle
encoders with 0.1° resolution are attached to each drive shaft
entering the grearbox, to provide the SYM-1 with angle position
information. The SYM-1 communicates with a Perkin-Elmer 7/32
minicomputer via a 16 bit parallel I/0 cable. The SYM-1l acts as a
slave to the 7/32, accepting motion commands and providing angle
information on request. The SYM-1 also asynchronously signals the
7/32 during each data acquisition sector, to indicate that the
transmitter and receiver are in proper orientation £for data
collection. For this thesis. only the first two degrees of
freedom (base and fan) are used. Moreover, the transmitter is
mechanically coupled to the receiver boom arm, to insure constant
alignment. The base angle encoder is in direct mechanical
connection with the grearbox, so that € measurements have a
resolution of 0.1°. However, the fan position encoder is coupled

to the transmitter and receiver through the 2:3 ratio gears in the
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gearbox. Thus the measurements of sector angle X have a
resolution of 0.15°, The base is capable of rotating 180°. For
this work the fan only swings out 40.8° sectors (collecting data
from the central 33.6° section for reasons explained in the

following chapter), although larger sectors are possible.

4.3 ELECTRICAL DESCRIPTION

Pulses of wultrasound (at a 4 kHz repetition rate) are
produced by a Panametrics 5050 PR pulser-receiver, connected to a
Panametrics 1 inch diameter, 5 MHz center frequency, focussed (f£=5
inches) transducer. The ultrasound propagates through the water
in the tank to a 1 mm diameter PZT disk hydrophone probe (mounted
on the end of a 4.9 cm section of coaxial hardline). The center

frequency of the probe is 20 MHz.

The received signal from the probe is returned to the
amplifier circuits of the Panametrics 5050 PR, before being passed
through a variable attenuator (0, 1, 2, 3, and 6 dB) to a 50 MHz,
eight bit analog to digitial data acquisition system. This system
consists of two TRW 1007J 25 MHz A/D converters, operating
interleaved, connected to 8 Kbytes of high speed memory. Thus,
160 microseconds of raw rf signal can be digitized. In practice,
however, 2.40 microseconds (120 data points) are sufficient to
capture the 5 MHz pulse. The data from the acquisition system are
then read into a Perkin—~Elmer 7/32 minicomputer for storage and

analysis.
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4.4 SETUP AND PROCEDURES

Due to the size of the tank (148 liters), the use of highly
degassed saline is prohibitive. Instead, the tank is filled with
tap water, and heated to 45°C the night before an experiment.
Outgassed bubbles are brushed off of the underwater surfaces. The
water is then allowed to cool overnight, to reach a typical
initial temperature of 23°C. The water is then warmed to 25°C,

and the first set of data are collected.

The processes of warming and data collection is repeated for
30, 35, and 40°c. At 40°C, few or no bubbles are present,
indicating that the heating/degassing process removes most of the
air to prevent gross ultrasound diffraction due to bubbles

comparable in size to a wavelength of ultrasound.

To minimize physiological changes to the tissue due to
exposure to tap water, an acoustically transparent normal saline
cell is used. The cell consists of a saline filled latex condom.
A 5.08 cm diameter lucite disk at the bottom (sealed end) and a
5.08 cm diameter lucite tube near the top (open end) produce a 12
cm long (average length) cylindrical region for the tissue. The
disk and tube have a notched edge to allow rubber bands outside of

the cell to hold the lucite pieces in place.

The tissue under examination is cut approximately into a 2.54
cm disk, and held in place against a 2.54 cm diameter lucite disk
by means of a thin latex band. A rod attached to the 2.54 cm disk
holds the tissue sample at the proper depth in the saline cell.

See Figure 4.3.
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A tissue mimicking phantom material, supplied by
Dr. E., L, Madsen of the University of Wisconsin at Madison, was
also studied, but in a nontomographic modality. A 2.54 cm thick
sample of material, with Saran wrap front and back layers, was
inserted into the beam, with the trapsducers at a stationary
position. Ultrasound pulses were recorded after passing through
the sample. and compared to pulses passing through a direct water
path when the sample was removed. Each pulse was digitized into
120 samples by the 50.05 MHz analog to digital converter. The
amplitude of the water path pulse was adjusted (by varying the
pulser controls and the gain of the receiver) to nearly £ill (90%)
the dynamic range of the eight bit converter at the temporal peak
of the pulse. Four received water path signals, and four sample
path signals, were temporally averaged to form one water-sample
pulse pair for later analysis. This temporal averaging was also
done for 64 water path signals and 64 sample path signals. The
entire process (both 4 and 64 averages) was repeated on separate
occasions, at 20.5°C and 22.59C, respectively. Time-of-flight and
frequency dependent attenuation were determined for each pulse
pair. This experiment provided an estimate of system performance
and noise levels. independent of the tomographic reconstruction
processing. Measurements were repeated for a 5.08 cm sample of
the same material, as well as a 2.54 cm sample of castor oil. The
results (which were compared to measurements made by several other
laboratories by Madsen and Frank, 1984) are presented in Chapter

5.
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4,5 DATA ACQUISITION AND ANALYSIS

Eéch 33.6° fan is divided into 57 data collection positions.
Data collection consists of sampling 120 points of the raw
received signal, to capture the 5 MHz center frequency pulse. An
adaptive timing program on the 7/32 attempts to keep the leading
edge of the pulse positioned approximately 1/3 of the way into the
120 byte buffer, by changing the time when data recording begins.
The value of the starting time is stored with the data, so that no
information is 1lost. This insures that all of the pulse is
captured. After each fan, the base rotates to the next viewing
angle. Fifty views are collected over 180°., Fans are collected
alternately clockwise and counterclockwise, for every other view,
to minimize excess fan motion. One complete scan requires
approximately 11 minutes. Tﬁe data are stored on magnetic tape

for later analysis.

The first step in the data analysis 4is to extract the
differences in time-of-flight between the measurements at the
edges of the fans (assumed to pass through water only, and thus
used as reference waveforms), and those in the middle of the fan.
The time-of-flight difference is determined by correlating the
reference waveform with the subject waveform. The correlation
maximum, and its two neighboring points, are fit to a parabola to
estimate the true location of the peak. This location, along with
the starting time of the waveforms, determines the time-of-flight

 difference for the subject waveform.
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Eight frequency dependent attenuation coefficient estimates,
from 3.52 to 6.26 MHz, are also made. The log of the magnitude of
the Fourier transform of the reference waveform is subtracted from
the log spectrum of the subject waveform, and scaled by -20 to
give dB of attenuation. The above range of £frequencies is

dictated by the energy content of the reference pulse.

Following data extraction, intermediate filtering and
backlash correction (to account for the fact that alternate scans
are collected clockwise then counterclockwise) are applied. The
data are also balanced, so that the edges are always zero or
positive. This handles the case of the edge of the saline cell

coinciding with the edge of the sector.

The nine files (one time-of-flight, eight attenuation) are
then reconstructed by convolution-backprojection, as described by
Rak (1979). The resulting time image is then converted to a speed
image, as described by -equation 3.60. The eight attenuation
images are dimensionally correct as is. The constant attenuation
difference for the water (equation 3.62) can be subtracted at

leisure,
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CHAPTER 5

RESULTS

5.1 ANALYSIS OF LITERATURE DATA

Appendices A and B contain a compilation of temperature
dependent ultrasound property measurements of biological media
available from scientific literature. Appendix A reports values
of ultrasound speed as a function of temperature; Appendix B
reports values of ultrasound attenuation coefficient as a function
of temperature. Following each set of related measurements, the
results of least squareé fits to the data are presented. If two
or more measurements were reported, a linear least squares fit is
presented. If three or more measurements were reported, a
quadratic least squares fit 1is presented as well. Let vyi
represent the 1i'th measurement, and let x; represent the

corresponding temperature. Define
I

for 0<j,k<I=K. If the data are to be £fit to a J'th order

polynomial:

y(x) = By + Byx + Bgx? + ... + BgxJ ‘ (5.2)
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then the least squares fit is given by
B=%x1y or B. =Zx-'1 .Y, (5.3)
J X kj~k

Unless specified otherwise, all statistical computations are drawn

from Bevington (1969).

For each fit, several auxilliary parameters are included.
The standard deviations of the fit coefficients are included in

parentheses beneath the coefficient. These are found from
o2 = s2x .. and  s.4. = O3 (5.4)
J JJ L ] ® J ®

where the variance of the data with respect to the f£fit, sz, is

defined by
2 ! 5 2 |
§¢ = ————- 2 (y(%35) - y;) (5.5)
N-J-1 i e
This variance (also known as the unexplained variance) is

presented in the form var=... in the appendices, on the same line

as the standard deviations.

The correlation coefficient (the square root of the ratio of
the explained variance to the total variance) is presented in the

form r=..., and is computed from

p = [E2¥IE) Z Y (5.6)

The probability that random data could have produced a value of r

as large as the value computed from the available data is

presented in the form P =,.,, where the value has been computed by
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a program given by Bevington (1969). This probability. which is
strictly valid only for linear least squares fits, is a measure of
confidence that the data are correlated to a staight 1line
(specifically, that the data are not random, or correlated to some
function very much different from a straight line). Thus small
values of P, indicate high confidence. For subsequent processing,
0.05 (95% confidence) is used as a threshold for accepting linear

fits as applicable approximations for modeling the data.

Where four or more measurements have been reported, both
linear and quadratic fits can be compared to determine if the
quadratic fit is a statistically significant improvement over the
linear fit. Although both fits are present for data sets of only
three measurements, at least four measurements are required to
evaluate the relative merit of the fits. Let F be defined as

(N-0) (s7)2 = (N-3-1) (s,)?
ek LA tiat i L (5.7)

where (sl)2 is the unexplained variance of the 1linear £fit, and
(52)2 is the unexplained variance of the quadratic fit. Then F
has a two-dimensional chi-squared distribution, with 1 and N-J-1
degrees of freedom., respectively. Large values of F indicate that
the unexplained variance of the quadratic fit is much smaller than
the unexplained variance of the 1linear fit, and thus that the
quadratic fit better models the data than does the 1linear fit.
The probability that random data could have accounted for a value
of F as large as the value computed from the available data is

presented in the form Pp=,.., where the value has been taken from
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a table in Bevington (1969). Since this is a tabular estimate,
the actual value of the probability is less than or equal to the
reported value. Thus small values of Py indicate a high
confidence that the quadratic fit is justified over the linear
fit. As with the probability of correlation, the value of 0.05
(95% confidence) 1is used as a threshold for accepting quadratic

fits as applicable approximations for modeling the data.

5.1.1 Analysis Of Ultrasound Speed Data

The statistical tools of section 5.1 were applied to the
speed data in Appendix A to find 1linear and quadratic least
squares fits to the ultrasound speed as a function of temperature.
The results are included in that appendix. As a summary of the
significance of these calculations, Table 5.1 is provided,
indicating the total number of sets of data available for study
(grouped according to tissue), the number of sets for which linear
least squares fits could be examined (i.e., sets with three or
more measurements), the number of sets for which the probability
of correlation was statistically significant at the 0.05 (95%
confidence) level., the number of sets for which quadratic least
squares fits could be compared to linear fits (i.e., sets with
four or more measurements), and the number of sets for which the
quadratic fit was a statistically significant improvement over the

linear fit at the 0.05 (95% confidence) level.



84

Of those sets of measurements that provided a sufficient
amount of data to examine the linear least squares fit, the
majority (65 out of 72) showed a high probability of correlation
(95% or better) with a straight line, suggesting that a linear
least squares fit is a good model for ultrasound speed as a
function of temperature. Of those sets of measurements that
provided a sufficient amount of data to examine a quadratic least
squares fit as well, less than half (24 out of 57) showed a high
probability (95% or better) that the quadratic fit was Jjustified
over the linear fit. Notable cases include: blood, where only 1
out of 5 quadratic fits were justifed; 1liver, where 4 out of 5
quadratic fits were Jjustified; and brain, where 10 out of 25
quadratic fits were Jjustified. The weight of these numbers
suggest, in general, that blood would be best fit by a linear
temperature model, that liver would be best £fit by a quadratic
temperature model. and that brain is somewhere in between. For
the other tissues, only small numbers of sets of data are

available, and conclusions drawn from them would be suspect.

Graphs of dc/dT yg c¢ at 37°C, based on the linear and
quadratic fits for which the confidence exceeded 95%, are
presented in Figures 5.1, 5.2, and 5.3. Figure 5.1 describes the
speed thermal coefficients of various fluids (aqueous and vitreous
humor, blood, milk, and water); 5.2 describes the speed thermal
coefficients of various nonfatty tissues (breast muscle and
parenchyma, cornea, lens, liver, kidney, central nervous system
tissue, psoas muscle, sclera, skeletal muscle, and spleen); 5.3

describes the speed thermal coefficients of various fatty tissues
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(breast fat and parenchyma, peritoneal fat, and stomach (omentum)

fat).

Two observations are immediately apparent from the graphs.
First, the central nervous tissue values are distinct in speed
values from the other nonfatty tissues, and share the same range
of wvalues (both in speed and in thermal coefficients) as the
fluids. Second, the fatty tissues are distinct from the nonfatty
tissues and fluids, both in terms of lower speeds, and lower

(negative) speed thermal coefficients.

5.1.2 Analysis Of Squared Speed Ratio Thermal Model

To test the hypothesis that the speed of ultrasound in
biological media 1is ©proportional to the square root of the
absolute temperature, and thus that temperature change could be
estimated with equation 3.66, the following statistical model was

used:

c \2 Ty —T
(__1_) 1 -asp TTTo (5.8)

€0
If speed is indeed proportional to the square root of the absolute
temperature, then the expected value of a is 0, and the expected
value of b is 1. Speed vs temperature data from Appendix A were
used to test this hypothesis by two approaches. For each set of N
measurements (only if N>4), N-1 relative speed changes and
relative temperature changes were computed. Approach 1 computed
the changes relative to the first speed and temperature reported

for that set. Approach 2 computed the i'th changes relative to
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the i+l1'th speed and temperature reported £for that set. Thus
Approach 1 considered changes with respect to a (relatively) fixed
starting point, whereas Approach 2 focused only on incremental
changes. For both approaches, the coefficients a and b were
determined by least squares fit. The standard deviations of the
coefficients, the unexplained variance, linear correlation
coefficient, and the probability of correlation were also

determined.

To test the hypothesis that a=0, a statistical t-test was

used on the parameter

(5.9)

(5.10)

and X is the mean value of the temperatures. For each least
squares fit, the hypothesis a=0 was rejected if t exceeded the 95%
confidence value for the Student's t distribution given by a table

in Spiegel (1961).

To test the hypothesis that b=l, a statistical t-test was

used on the parameter
t = e (5.11)

For each least squares fit, the hypothesis a=0 was rejected if t
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exceeded the 95% confidence value for the Student's t distribution

given by a table in Spiegel (1961).

Tables 5.2 and 5.3 show the results of Approaches 1 and 2,
respectively. Each table indicates the number of data sets
available for study (grouped according to tissue type) with four
or more measurements, the number of sets for which the probability
of correlation (using eqdation 5.8 as a model) was at least 95%,
the number of sets for which the hypothesis a=0 was accepted at
the 95% level of confidence, the number of sets for which a=0
might be marginally accepted (i.e., rejected at the 93% level but
accepted at the 99.5% level), the number of sets for which the
hypothesis b=1 was accepted at the 95% level of confidence, and
the number of sets for which b=1 might be marginally accepted

(i.e., rejected at the 95% level but accepted at the 99.5% level).

Several observations can be made concerning Table 5.2 and
Approach 1. Of the 57 available data sets, most (47) provided a
good (95% confidence) linear least squares fit to equation 5.8,
and more than half (37) accepted the hypothesis a=0. However,
much less than half (15) accepted the hypothesis b=1, In
particular, for those tissue groups with several available data
sets (blood, liver, and nervous tissue), the acceptance of b=l was
not strong (2 out of 5, 1 out of 5, and 11 out of 26,
respectively). These numbers suggest that equation 5.8, and thus
equation 3.66, and the general concept that ultrasound speed may
be proportional to the square root of absolute temperature, is
probably a poor model for estimating temperature in biological

tissue. The strong acceptance of a=0 does not contradict this
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conclusion, but merely supports the notion that zero temperature
change corresponds to zero speed change. The rejection of b=l by‘
water is consistent with the earlier model of water as having a
quadratic (rather than square root) temperature dependence, and
that the change in specific heat with temperature (equation 3.65)

is not negligible in water.

The most apparent conclusion to be drawn from Table 5.3
points to the weakness in Approach 2. Of the 57 data sets
available, only 12 provided an adequate least squares fit to the
model. This 1is not an indictment of the model (since Approach 1
gave a fairly strong correlation response: 47 out of 57).
Rather, the problem 1lies in the fact that most of the relative
temperature and speed changes were huddled together. Approach 2
computed the 1i'th change with respect to the i'th and i+l'th
measurements. Since the temperature measurements tended to be
uniformly spaced (e.g., 10, 20, 30, ...), the relative temperature
change tended to be constant (e.g., 10°C), varying only in the
division by the absolute temperature. As a result, the least
squares fitting process was called upon to find a line through a
series of y values, all with nearly the same x value. Such a
process is highly sensitive to noise, and thus it 1is not

surprising that the overall performance of Approach 2 was poor.

5.1.3 Analysis Of Ultrasound Attenuation Coefficient Data

The statistical tools of section 5.1 were applied to the
attenuation coefficient data in Appendix B to find linear and

quadratic 1least squares fits to the wultrasound attenuation
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coefficient as a function of temperature, and to the natural log
of the attenuation coefficient as a function of temperature. The
results are included in that appendizx. As a summary of the
significance of these calculations, Table 5.4 is provided,
indicating the total number of sets of data available for study
(grouped according to tissue), the number of sets for which linear
least squares £fits could be examined (i.e., sets with three or
more measurementf), the number of sets for which the probability
of correlation was statistically significant at the 0.05 (95%
confidence) level, the number of sets for which quadratic 1least
squares fits could be compared to linear fits (i.e., sets with
four or more measurements), and the number of sets for which the
quadratic fit was a statistically significant improvement over the
linear fit at the 0.05 (95% confidence) level. The numbers for
the natural log fits to the attenuation measurements are included

in parentheses in the table.

Of those sets of measurements that provided a sufficient
amount of data to examine the linear least squares fit, less than
half (36 out of 90, and 42 out of 90 for the log £fits) showed a
high probability of correlation (95% or better) with a straight
line, suggesting that a 1linear 1least squares fit is not
necessarily a good model., either for the attenuation coefficient
as a function of temperature, or for the log of the attenuation
coefficient as a function of temperature. Notable cases include:
blood, where 5 out of 6 linear fits were good; peritoneal fat and
kidney, where 0 out of 7 and 0 out of 5 f£fits were good,

respectively; and spleen, where 5 out of 10 fits were good, but 8
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out of 10 log fits were good. These numbers suggest that a linear
least squares fit to the attenuation coefficient, or the 1log of
the attenuation coefficient, as a function of temperature, would
be a good choice for blood and a poor choice for peritoneal fat
and kidney. In choosing betweeﬁ fitting the attenuation
coefficient or the log of the attenuation coefficient, only 1liver
and spleen show a bias toward the log fit. Thus the log-linear
fit, while perhaps applicable to some special cases, does not in

general seem appropriate.

Of those sets of measurements that provided a sufficient
amount of data to compare a quadratic least squares fit to the
linear fit, less than a third (19 out of 66) showed a high
probability (95% or better) that the quadratic fit was justified
over the linear fit. 1In choosing between fitting the attenuation
coefficient or the log of the attenuation coefficient, only blood
showed a bias toward the log fits, and only brain and spinal cord
showed a bias away from the log fit. The lack of strong evidence
supporting the linear or the quadratic fits suggests that the data
available either follow a function more sophisticated than a
straight line or a parabola, or that the data available have a
fairly high noise content, considering the amount of data
available. The lack of strong evidence supporting 1log £fits ys
nonlog fits also suggests sophisticated functions or high noise.
From a purely economical standpoint, the additional <cost of
computing the 1log fits seems unjustified in light of the lack of

supporting evidence.
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Graphs of dA/dT ys A at 37°C, based on the 1linear and
quadratic fits for which the confidence exceeded 95%, are
presented in Figures 5.4, 5.5, and 5.6. Figure 5.4 describes the
attenuation coefficient thermal coefficients (ACTC's) of blood;
5.5 describes the ACTC's of various nonfatty tissues (heart,
liver, central nervous system tissue, and spleen); 5.6 describes
the ACTC's of various fatty tissues (peritoneal fat and

unspecified fat).

Several observations can be made concerning these graphs.
The majority of the ACTC's are negative, for all three groups
(blood, nonfatty, and fatty tissues), suggesting that in general
the attenuation coefficient decreases with increasing temperature
for most biological media, for frequencies between 0.1 and 10 MHz.
In comparison to the relaxation models in Chapter 3 (either
equation 3.20 or equation 3.25), this would suggest «7<1. The
attenuvation coefficients of blood are distinctly smaller than
those of the nonfatty and fatty tissues. This is an expected
observation, arising in the difference in densities between the
media. The ACTC's of blood, however, are comparable to those of
the nonfatty and fatty tissues, at comparable attenuation
coefficient levels. The distinction between fatty and nonfatty
tissues 1is 1less well defined. At lower attenuation coefficient
levels, the ACTC's of the two groups are comparable. At higher
attenuation coefficient levels, the ACTC's of the nonfatty tissues
appear dgreater (more negative) than those of the fatty tissues.
However, due to the small number of data points available, this is

not a strongly supported conclusion. Overall, the graphs show an
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increasing (i.e., increasingly negative) trend in the ACTC's with
increasing attenuation coefficient levels, Although not shown in
the graphs, there is a general trend of increasing attenuation
coefficient with increasing £frequency. This trend is clearly

visible in the numerical values in Appendix B.

5.1.4 Analysis Of Frequency Shift Thermal Model

Data from Appendix B were used to test the hypothesis that
temperature change could be estimated from a change in relaxation
time, as detected by a shift in frequency, for attenuation due to
relaxation absorption. As argued in Chapter 3, an increase in
temperature should result in a decrease in relaxation time. Due
to the symmetric relationship between time and frequency in the
relaxation mathematics, a decrease in relaxation time should be
equivalent to a shift of the absorption spectrum, «A(f), to higher
frequencies. This shift should be 1linear in log-frequency, so
that oA(log(f)) at one temperature should match «A(log(f)+log@f))
at another. The log-frequency shift, log(@f), should then be
proportional to the temperature change, according to equation
3.68, for changes that are small compared to the absolute starting

temperature. Thus the model
log(ef) = a + baT (5.12)

can be used to test if the log-frequency shift varies with the
temperature. If the log-frequency shift is indeed proportional to
the temperature change, then the expected value of a is 0, and the

expected value of b is greater than 0, and should vary from tissue
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For each set of attenuation coefficient values from Appendix
B where at least three temperatﬁre measurements were available for
each of at least three frequencies, the data were preprocessed as
follows. First, the attenuation coefficient was divided by the
frequency. The objective of this computation was to obtain a
value proportional to the absorption per unit wavelength, A,
since A=c/f. Since speed values were not available for these
measurements, it was not possible to incorporate the temperature
dependence of the speed in this analysis. This represents a
potential source of error. The second step was to convert the
frequency of each measurement to log-ffequency. Then, for each of
the N(N-1)/2 pairs of temperatures (assuming N temperatures
reported for each frequency), the log-frequency shift logwf) was
determined iteratively, by performing linear and quadratic least
squares fits to the data set formed by A(log(f))/f for the first
temperature, combined with A(log(f)+log(f))/f for .the second
temperature. The value of log(df) was iteratively adjusted to
minimize the wvariance of the fit. Double precision (64 bit)
computations were used to insure at least four digits of accuracy
in the value of log(4f). For each of the N(N-1l) fits (linear and
quadratic combined), the values of log{@f) and the temperature
difference divided by the square of the absolute temperature (see
equation 3.68), along with the appropriate r or F statistic, were

produced.
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Of the 22 independent data sets, an average of 9 1log( £f) -
temperature change pairs were generated per set. Of these 206
pairs, 50 were rejected from further analysis on the basis of
inadequate probability of correlation (at the 95% 1level of
confidence), leaving 156 pairs. For those data sets that retained
at least three pairs, a lineér least squares fit to equation 5.12
was computed. A quadratic fit was computed as well, principally
because it was easier to perform both linear and quadratic fits
using the computér program employed, than to suppress the
quadratic fit. There is no special physical significance to a
quadratic f£it in the context of this analysis. The results of

these fits are presented in Table 5.5.

Several observations can be made concerning Table 5.5 and
this analysis. Although the amount of data available for this
analysis wa; not large (22 sets), nearly 76% of the data (156 out
of 206 1log-frequency - Femperature change pairs) showed an
acceptable level of confidence that the absorption spectrum at one
temperature matched the shifted absorption spectrum at another
temperature. However, of the 16 sets of data that had enough data
points to test equation 5.12, only four sets showed an acceptable
level of confidence that the log-frequency shift varied 1linearly
with temperature change. Three possibilities are suggested by
these observations: either the linear and quadratic fits used in
the iterative process of determining the log-frequency shift were
poor estimators of absorption spectrum similarity, or the
log-frequency shift does not in general vary linearly with the

temperature change, or there was too much noise in the available
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data to allow this analysis. The lack of temperature dependent
speed information for this data (discussed earlier) may have‘

contributed to the noise in this case.

Of the four sets that did show a significant linear
relationship between log-frequency and temperature change, only
the bone and one of the liver data showed a reasonable possibility
that a=0. For the blood (and the quadratic fit to the spleen), a
was greater than twice its standard deviation different from O.
For the o0dd liver data set, b was less than 0, which is contrary

to the physics of the model.

The major weakness of this model 1lies in separating the
absorption spectra from the attenuation spectra, and aligning them
at different temperatures. The process of sliding one spectrum
against another in log-frequency space does not take into
consideration losses due to reflection or scattering. Two
conditions would make this analysis ideal. First, a large number
of frequencies should be used to measure the attenuation spectrum
at different temperatures. More frequencies imply better
statistics and better noise immunity. This can be achieved
readily by the use of broadband pulse measurements, such as those
used by the tomographic apparatus described in this work. The
second condition 1is to «collect attenuation measurements in the
neighborhood of the relaxation maximum (eoz=1). By obtaining a
uniquely identifiable reference point, i.e., the peak of the
absorption spectrum, it is possible to normalize the spectra at
different temperatures, and thus minimize the errors due to

reflection and scattering. This second condition can be difficult
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to realize, since the frequency of the absorption peak tends to be
large. Using a continuum of relaxation processes as a model,
Sehgal and Greenleaf (1982) estimated the frequency of the peak
for kidney to be greafer than 1.1 MHz, for liver +to be greater
than 7.7 MHz, and for blood to be greater than 16.7 MHz. Although
practical for kidney, these measurements would be challenging for
liver, since 7 MHz implies a loss of 5 to 10 dB/cm. To employ a
broadband pulse covering from 3.5 to 14 MHz (with 7 MHz in the
middle of the log-frequency space) would imply high frequency
attenuation on the order of 10 to 20 dB/cm. For a 2.54 cm section
of tissue _(as used in the tomographic apparatus described in
Chapter 4), this would require a system with a dynamic range of at
least 25.4 to 50.8 dB, assuming no noise. The eight bit A/D
converter used by the apparatus provides at best 42 dB of dynamic
range, since each bit contributes 6 dB, but one bit is lost since
the signal is bipolar. Further, although the converter samples at
50 MHz, the input bandwidth 1is 1less than 10 MHz (designed to
prevent aliasing in the 25 MHz components of the converter), which

would additionally complicate the high frequency measurements.

5.2 ANALYSIS OF TANK PARAMETERS

The errors introduced by the physical apparatus used to
collect the data necessary for reconstructing speed and
attenuation coefficient are unique to each facility. Cnly the
errors and limitations associated with the apparatus available for
this research will be discussed. Thése errors fall into two

general catagories: mechanical and electrical.



97

5.2.1 Mechanical Errors

As described in Chapter 4, the data were collected at 57
points of a 33.6° fan. The 3:2 gear ratio in the fan beam
mechanics implies that the 0.6° angle between data points within
each fan corresponds to 0.4° angle change as measured by the angle
encoder. This encoder has a 0.1° resolution, with a +0.05°
uniform error. The mechanical 1linkage introduces wobble and
backlash errors as the receiver is swept across the fan. To
minimize these errors, data were collected while the receiver was
in motion (to avoid start/stop vibration and positional error),
and the mechanical limits of travel of the fan were set four data
points (i.e., 3.6°) wider than the 33.6° data collection width, on
each side (for a total of 40.8°), to allow the receiver time to
speed up before and slow down after data collection. A Dbacklash
analysis was performed by correlating the time-of-flight
projections from pairs of successive fans (i.e., Ssuccessive
views). The object under investigation (a 25.4 mm diameter disc
of excised rat 1liver) was assumed to offer an essentially
nonvarying profile over the 3.6° difference in viewing angles
corresponding to two successive views (of the 51 views collected
over 180° of total viewing angle). Since the receiver sweeps out
fans in alternating directions (left-to~right for one fan, then
right-to~-left for the next), the location of the correlation peak
is an indication of the degree of backlash between sweeps. The
variation in the location of . the peak is an indication of the
degree of wobble. This analysis showed a zero mean position error

for the points‘in each fan, but the error was distributed over + 1
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point width (i.e., 0.6° actual position, or 0.4° encoder
position). Note that this is eight times larger than the encoder
resolution error (0.05°9), which has thus been considered
negligible for this case. The random position error blurs
together the data in each ©projection, resulting in a random,
spatially varying, anisotropic distortién in the reconstructed
image. The spatial extent of the blurring can be considered by
examining the disténce traveled by the receiver between data
points. Since the distance from the receiver to the center of
rotation of the fan was 204 mm, the receiver traveled 2.136 mm
between data points within each fan. Thus the spatial extent of

the blurring in the reconstructions should be on the order of

(less than) 2 mm.

A separate analysis of information content obtained from the
57 points for each of 51 views showed that reconstruction onto a
32 by 32 point matrix would give an information ratio (number of
measured values to number of reconstructed pixels) of 2.84 to 1
(i.e., this would represent an overconstrained system) with a
pixel scale of 2.03 mm. The use of a higher density matrix (with
a smaller spatial scale and thus a higher spatial resolution) was
not justified in light of the above distortion scale. Note also
that collecting more points per fan (up to four times more would
be possible, limited by the 0.1° resolution of the angle encoder)
would also be unjustified, due to wobble error and subsequent

spatial distortion.
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5.2.2 Electrical Errors

Electrical errors arose both from electrical noise and the
use of an eight bit, 50.05 MHz analog to digital converter.
Experimentally, the values reported by the A/D were biased, with a
mean of 132 (rather than 127.5, the middle of the 0 to 255 range
of this device), and random noise was typically on the order of 1
step when the gain of the receiver was set to give near full scale
signal levels (10 to 245) at the peak of the pulse. In the
absence of noise, the quantization error of the A/D would be 0.5
(one half of a step), comparable to half of the experimental
noise. For water path signals, the standard deviation of the 120
points of the sampled waveform was typically between 25.8 and
29.3, varying according to the settings of the pulser-receiver
(which produced differing waveforms for different settings).
Overestimating the standard deviation of the noise as 1, the ratio
of signal energy to noise energy (estimated by the ratio of signal
variance to noise variance) was on the order of 666:1 to 859:1 for
water path signals, and significantly 1less for sample path
signals, corresponding to the attenuation of the signal by the
sample. The noise had a direct impact on attenuation estimation,
and an indirect impact on time-of-flight estimation, as will be

seen in the following section.

5.3 ANALYSIS OF PROPERTY ESTIMATION

The study of castor oil and a tissue mimicking phantom
material as supplied by Dr. E. L. Madsen (see Chapter 4) provided

an experimental basis for examining the errors introduced by 1)
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time-of-£flight estimation by windowed correlation, and 1ii)
frequency dependent attenuation by spectral subtraction (see

Chapter 3).

Theoretically, equation 3.69 provides an estimate of the
error introduced in the time-of-flight calculations. Using the
variance of the signal and the variance of the noise as estimates
of the energy in the signal and the energy in the noise,
respectively, and the rms bandwidth as calculated by equation
3.70, the variance in the time-of-flight estimation was calculated
as 14 to 21 *107° psz for water, 14 to 17 #*10"4 for castor oil,
and 0.8 to 3.0 *10~4 for the phantom material. The mean values of
the time-of-flight difference for these measurements were 0.0 ps
(since the water path was the reference), 0.3 to 0.4, and 0.77 to
0.80, respectively, varying with temperature. Experimental
variances, obtained by comparing time-of-flight determinations
between the 4 pﬁlse average and 64 pulse average data sets (see
Chapter 4), were on the order of 6 *10"% for castor oil, and
between 10”4 to 1077 for the phantom material. Since only a small
number of determinations (two to four) were used to estimate these
experimental variances, it is not surprising that the experimental

variances are less than the theoretical variances,

The ratio of noise variance to signal variance (1.1 to 1.5
*10™3 for water, 2 to 3 *10™2 for castor oil, and 0.5 to 1.8 *1072
for the phantom material) implies a comparable error in spectral
estimation, prior to the attenuation estimation by subtraction of
the logs of the spectra. The mean values of the attenuation

coefficient differencé (at 1 MHz) corresponding to the above
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measurements were 0.0 dB/mm (since the water path was the
reference), 0.61 to 0.70, and 0.47 to 0.56, respectively, varying
with temperature. Experimental variances, obtained by comparing
the attenuation coefficient determinations of the 4 pulse average
and 64 pulse average data sets (see Chapter 4), were of the order
of 1073 for castor o0il, and between 10"3 and 10~° for the phantom

material.

5.4 EXPERIMENTAL RESULTS - RAT DATA

A cooperative study between the Bioacoustics Research
Laboratory and the Food Science Department of the University of
Illinois was undertaken to determine the relationship between
acoustic properties and tissue constituents in normal and alcohol
induced fatty liver in white laboratory rats. The animals were
pair fed, so that for each pair of rats, one received an alcohol
rich diet, while the other received an isocaloric normal diet.
Between January 16 and February 14, 1984, nine pairs of rats,
ranging in time on diet from 7 to 36 days, were sacrificed, and
their livers were examined. Four separate ultrasound measurements
were performed on each liver: a Scanning Laser Acoustic
Microscope (SLAM) was used to measure speed and attenuation at 100
MHz, a radiation force balance was used to measure the attenuation
coefficient at 1.4, 4.2, 7.0, and 9.8 MHz, a transient
thermoelectric'effect apparatus was used to measure the absorption
coefficient at 1 MHz, and the ultrasound computed tomography
apparatus described in this work was used to measure speed and

attenuation coefficient over the range of 3.3 to 6.3 MHz. The
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tissue was also subjected to biochemical assay to determine 1lipid

(fat) content. This study was described by Haney et al., (1984).

Due to limited resources, the tomographic reconstructions
could not be performed at the time of the data acquisition.
Consequently, for each of the nine pairs of 1livers, the £full
digitized signals (120 samples per pulse, 57 sector angles by 51
views) were stored on magnetic tape. For each liver, Qata were
collected at 25, 30, 35, and 40°C. As the temperature increased,
both the time-of-flight and the attenuation decreased. This
behavior is consistent with a positive speed thermal coefficient
and a negative attenuation coefficient thermal coefficient, as are

common in Appendices A and B.

Subsequent reconstructions using convolution backprojection
onto a 32 by 32 point array were disappointing. The reconstructed
speed images showed a reasonable value for the speed in water (1.5
+0.01 mm/Ps), elevated values for saline (1.52 to 1,55 mm/Ps), and
an unreasonable variation in liver speed (1.54 to well over 1.6
mm/Fs), with the distinction between saline and tissue difficult
at best. The expected values at 25°C are 1.496, 1.497, and
roughly 1.58 mm/Ps (using Table 3.4 for the first two estimates,
and Appendix A for the last), respectively. Figure 5.7 shows a
typical speed image (rat T-1033), and the "best" speed image (rat

T-1026) produced.

The reconstructed attenuation coefficient images were equally
dissapointing. Each attenuation data set consisted of eight

images at frequencies from 3.3 to 6.3 MHz. Figure 5.8 shows
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typical (rat T-1033) and "best" (rat T-1026) images for the
attenuation coefficient at 4.1 MHz. A conventional model for
attenuation coefficient is A=A0fb, where £ is in MHz, and 1<bx2.
A least squares fit to this model, using the eight attenuation
images, refused to produce acceptable fits for any of the livers.
A comparable least squares fit, performed with the attenuation
coefficient data at 4.2, 7.0, and 9.8 MHz from the radiation force
balance, produced excellent fits for all 18 livers. Including the
l.4 MHz data also measured by the radiation force balance somewhat
degraded the fits, but not to the extent seen in the tomographic

reconstructions.

Two sources of difficulty are immediately apparent to explain
the lack of acceptable results for this experiment. First, any
wobble or backlash would have had a severe impact on the high
contrast edges between the saline and the liver tissue. Although
the spatial extent of this noise should have been 1limited, it
would make data near the edges of the tissue fairly useless for
subsequent analysis. The second difficulty is related to the
question of the beam path. Although the beam width was assumed to
be small (approximately 5A, or 1.5 mm), the tissue thickness being
imaged was only 3 to 4 mm. Even a minor alignment error could
result in the ultrasound beam being split, and simultaneously
traveling inside and outside of the tissue, following two paths of
different speed and attenuation. Reflections at the edges of the
acoustic cell and at vthe edges of the tissue may have been
responsible for the elevated saline speed values. In general, the

fundamental assumption that the wultrasound beam followed a
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straight path through the sample, may not have been justified.

This is a major weakness in ultrasound tomography in general.

5.5 ANALYSIS OF RECONSTRUCTION
5.5.1 Convolution Backprojection

For tomographic reconstruction, the impact of noise can be
studied from equation 3.71. A simple model was chosen to describe
a 25.4 mm diameter disc of liver tissue located at the center of
rotation of the water filled tomography system. The following
parameters were used: 1.58 mm/ps speed for liver; 1.49 mm/Ps
speed for water; 20°C. Data were simulated for 57 points over
33.6° of fan angle, and 51 views over 180° of view angle.
Time-of-flight differences varied from 0.0 (throﬁgh water only) to
0.971 FS (through the diameter of the disc), as a function of fan
angle. This corresponded to a local inverse speed of 0.0 Ps/mm in
the water, and 0.03823 Ps/mm in the tissue. (Inverse speed is the
amount of time per unit distance the pulse is delayed, relative to
the water-only path, by passing through a given region; see
Chapter 3.) Figqure 5.9 shows the inverse speed image model used

for this analysis.

Reconstruction was performed by convolution backprojection
onto a 32 by 32 point array, where the width of the array was set
equal to the width of the fan at the center of rotation. For a
transmitter to center distance of 104 mm, the array width was 62.8
mm. The noise-free reconstruction produced numerically reasonable

inverse speeds: 0.000357 ps/mm ‘for water (0.0 expected), and
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0.03863 ps/mm for tissue (0.03823 expected), with variances of
3.58 *10™% and 8.50 *107© psz/mmz, respectively. Since this was a
noise-free reconstruction, the variances describe the
nonuniformity in the reconstruction, produced by limited viewing
angle artifacts and computational roundoff errors. Figure 5.10

shows the reconstructed inverse speed image.

Equation 3.71 was used to examine how noise in the data
affects the reconstruction. The variance in the time-of-flight
was chosen as 1070 Psz/mm2 for the water, and 10™4 Psz/mm2 for the
tissue. The computation reported a mean variance of 4.16 x10-4
Psz/mm2 for the water inverse speeds, and 9.51 %10~4 }Jsz/mm2 for
the tissue inverse speeds. The variances in these estimations
were 2.57 *10~8 and 6.40 *10"8, respectively. This "variance of
variances"™ can be interpreted again as arising from limited view
angle artifacts and computational limitations, and indicates the
degree - of wvariability in the "reconstruction variances" given
above. Note that the mean variances are two.orders of magnitude
larger than the variances in the noise-free mean reconstruction.
Thus, in this simulation, the error introduced by the convolution
backprojection computation is small, at least compared to the
error propagated through the convolution backprojection
computation (originating in the projection data). Figure 5.11

shows the reconstructed variance image.
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5.5.2 Algebraic Reconstruction

For algebraic reconstruction, the relative merits of linear
vs interpolated modeling were examined by computer simulation. A
two-dimensional wave field was defined by f(x,y)=g(x)*h(y), where
g(x)=sin(2wnx+$) and h(y)=sin(2wny), for 0<x,y<l. This field was
sampled by a 16x16 point array, for values of n from 1 to 7 cycles
across the array. The case n=0 is uninteresting, since f is
constant, and both linear and interpolated modeling provide error
free results. For values of n greater than 7, the Nyquist
sampling rate criterion is not satisfied. For a given ¢u these 7
wave fields defined a family. Eleven families, corresponding to
values of¢¢ from 0 to 7/2, were simulated, for a total of 77 wave
fields. Figure 5.12 shows an example of a wave field, with n=3

and (p=2/10.

The mean squared error between f£(x,y) and the linear (nearest
neighbor) model was computed by numerical integration, with 19x19
steps for each of the 16xl16 pixels. The mean squared error
between f(x,y) and the interpolatéd model was computed at the same
resolution. An earlier simulation using only a 9x9 step per pixel
resolution differed from the 19x19 step resolution results by only
1.7%. Due to the computational costs, analysis at higher
resolutions (beyond 19x19) was considered unjustified. Figures
5.13 and 5.14 show the effective wave fields used by the nearest
neighbor and 1linear interpolated models, respectively for the

field shown in Figure 5.12.
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Two results were immediately apparent from the simulation.
First, the value of the phase ¢>for the 11 families of wave fields
was insignificant. For a given value of n, all 11 phases yielded
the same mean squared error for the linear model, and the same
mean squared error for the interpolated model. This is an
expected result due to the underlying digital signal processing
assumption that opposite edges of the wave field are continuations
of each other (i.e., the top edge is continuous with the bottom
edge, and the left edge is continuous with the right edge). The
second result, which was anticipated but not strictly expected,
was that the mean squared error of the 1linear model was larger
than the mean squared error of the interpolated model, varying
from 1.5 times larger at the highest frequency, to 36 times larger
at the lowest frequency. The mean squared error itself decreased
with decreasing frequency, by over two orders of magnitude for the
linear model, and by nearly three orders of magnitude for the

interpolated model, over the range of frequencies studied.

Comparing the mean squared errors to determine equivalent
sampling rates, the mean squared error of the interpolated model
at the highest frequency (7 cycles) fell between the mean squared
errors of the linear model at 5 and 6 cycles. The most favorable
estimate, 7/5, suggests that if the 1linear model sampling rate
were increased by a factor of 1.4, it would be comparable to the
interpolated model at high frequencies. At the 1lowest frequency
(1 cycle), the mean squared error of the linear model fell midway
between the mean squared errors of the interpolated model at 2 and

3 cycles. Using the estimate 2.5, this suggests that if the
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linear model sampling rate were increased by a factor of 2.5, it
would be comparable to the interpolated model at low frequencies.
Chapter 3 argued that since the interpolated model is four times
more computationally expensive to compute than the linear model.
the interpolated model would be economical only if the effective
sampling rate difference were a factor of two (in each of two
dimensions) or better. At high frequencies, this criterion is not
satisfied, and thus the interpolated model is not cost effective
over the linear model at high frequencies. At 1low frequencies,
the criterion is satisfied, suggesting that interpolated modeling
would be cost effective over linear modeling at 1low frequencies.
The break even point, where the effective sampling rate factor is
two, is reached in the neighborhood of less than 2 cycles for the

linear fit, and less than 3.5 for the interpolated fit.

These results are consistent with an analysis by Parker et
al. (1983), who examined the one-dimensional interpolation
problem, and observed that the linear (nearest neighbor) approach
acted as a low pass filter that effectively passed low frequency
signals, but poorly attenuated high frequencies beyond the upper
limit set by the Nyquist rate. The interpolated approach was
superior in attenuating these high frequency out-of-band signals,
but at the price of attenuating some of the high frequency in-band
signals (i.e., signals within the Nyquist limit). Thus a signal
rich in high frequency (in-band) energy would be poorly handled by

the interpolated model.
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Therefore, if the function (image) under analysis is smoothly
varying, in the sense that it has been oversampled by at least a
factor of 2 in each dimension (i.e., more than twice as many data
points than are required by the Nyquist sampling criterion, in
each direction, have already been sampled), then the interpolated
model is cost effective over the linear model. This conclusion
can be broadened to include functions sampled at the Nyquist rate,
but with only relatively small regions of high frequency
variations. In general, however, functions sampled at or near the
Nyquist rate in order to minimize data acquisition and storage
costs will not be cost effectively handled by the interpolated
model. Therefore, in general, the linear model will be more cost
effective than the interpolated model. Considering the
observation (Rak, 1979) that reconstruction by convolution
backprojection exhibits a variance close to the theoretical lower
bound, further study of algebraic reconstruction for purposes of
establishing a lower bound on the variances associated with
differential thermography is unjustified. However, the use of
algebraic reconstruction in an application that requires the
variance of the reconstruction to be determined from all of the

available data may still be appropriate.

5.6 ANALYSIS OF TEMPERATURE ESTIMATION

The effects of the various error sources can be combined to
examine the net error in estimating temperature. In the
convolution backprojection analysis, a variance of 9.5%10~4

}xsz/mm2 was reported for the time-of-flight reconstruction of data
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with an inherent variance of 1074, Assuming the variance in the
speed in water to be negligible, equation 3.74 predicts that the
variance in the estimated speed of sound in the tissue should be
5.9%10"3, The first half of equation 3.76 predicts that the
variance in the speed will contribute 5.3*107309C2 to the variance
in the temperature, if the speed thermal coefficient dc/dT is
modeled as 1.5 mm/Ps/OC. The last portion of the equation deals
with the error introduced by the variance in the speed thermal
coefficient. If the standard deviation of the speed thermal
coefficient is modeled as 0.1 (which is consistent with the least
squares models in Appendix A), and the temperature change is
estimated as 5.5°C (corresponding to a shift from 37°C to 42.59C,
which would be an expected shift for hyperthermia applications),
then the variance contributed to the temperature estimation by the
speed thermal coefficient will be 0.13449C2. This variance is 25
times greater than the variance introduced by the data collection
and reconstruction process. The standard deviation of the total
variance would then be 0.3738°C. It is readily apparent that the
determining factor in this analysis is the variance in the speed
thermal coefficient. To achieve a minimally acceptable standard
deviation of 0.25°C (corresponding to an accuracy of 0.5°C modeled
as a 2 standard deviation limit), the standard deviation in the
speed thermal coefficient would have to be reduced to 0.068 pse
This implies that the speed thermal coefficient must be at least
22 times larger than its standard deviation. Of the eight sets of
liver data in Appendix A, only two sets have such small standard
devations., Of the 42 sets of liver attenuation coefficient data

in Appendix B, only one set has the thermal coefficient dgreater
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than 20 times its standard deviation. Since equation 3.76 1is
equally valid for attenuation coefficient based temperature
estimates as for speed based temperature estimates, this implies
that the majority of the available attenuation coefficient data is
incapable of estimafing a 5.5°C change in temperature with a 0.5°C
accuracy. Note that to reach the level where the variance due to
the uncertainty in the speed thermal coefficient is comparable to
the variance due to the data collection and reconstruction, the
standard deviation of the speed thermal coefficient would have to
be reduced to 0.0198 ps. This corresponds to a factor of more
than 75 between the speed thermal coefficient and 1its standard
deviation. It is clear that much work needs to be done to improve
the statistics of both the speed and attenuation coefficient

thermal coefficients.
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CHAPTER 6

CONCLUSIONS

This dissertation has attempted to study the nature of the
problem of noninvasive differential thermography using divergent
beam ultrasound computed tomography. Several conclusions have

been presented throughout the analysis. In summary,

i) Both ultrasound speed and frequency dependent
attenuation coefficient are temperature sensitive, and in
principle. measuring changes in these properties could be
used to estimate temperature change. Ultrasound speed tends
generally to increase with temperature for nonfatty tissue,
and decrease with temperature for fatty tissue. The
ultrasound attenuation coefficient tends to decrease with
temperature for both fatty and nonfatty tissues, but the rate
of decrease tends to be greater for fatty tissues. However,
a critical factor in temperature estimation, based on speed
or attenuation coefficient, is a thermal property database

for biological tissue.
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ii) Attempts to apply a Taylor expansion approximation
to the thermal properties of tissue by fitting simple
polynomial models to the thermal dependence of speed have
shown that over the temperature range from 10 to 40°C, speed
tends to be linear in temperature for most tissues, although
liver may be better modeled by a quadratic thermal
dependence. A linear model for the attenuation coefficient
in blood also seems appropriate, but the attenuation
coefficients of most other biological media tend to follow a
quadratic, or more <complicated dependence on temperature.
Working with the log of the attenuation coefficient does not
provide substantially better results. However, a serious
question must be asked concerning the amount of error in the
available information. Careful, reproducible measurements of

the thermal properties of tissue are called for.

iii) Two more sophisticated models, derived £from the
physics of simple systems, did not provide substantially
better results than the simple polynomial models. The ratio
of squared speeds model suggested that speed does not depend
strictly on the square root of the absolute temperature. The
frequency shift model also failed to show a strong dependence
of the shift of the absorption spectrum on the temperature.
Although difficult to perform, this model calls for further
study at higher frequencies, to identify whether the problem

lies in the data or the model.
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iv) There 1is a high degree of wvariability in the
measured properties reported in the scientific literature,
suggesting both that absolute thermometry is not possible
without further data, and that relative thermometry is also
in doubt without more refined data. A "role call" of tissues
described by " scientific literature shows that a significant
amount of basic sonometry needs to be performed to build up

the available knowledge base.

v) To measure speed and attenuation coefficient
ﬁoninvasively, ultrasound computed tomography can be used.
With the apparatus available, time-of-flight can be measured
with a variance of 1 part in 104, and attenuation can be
measured with a variance of 1 part in 102 to 103. Images of
speed and attenuation coefficient can then be reconstructed
with a variance of 1 part in 103. To perform the
reconstruction, convolution backprojection is computationally
efficient, and provides a variance close to thé theoretical
limit. The noise introduced by the computation is small
compared to the noise propagated through the computation,
originating in the measured data. Algebraic reconstruction
provides the advantage that the variance of the
reconstruction can be determined from all of the available
data, while convolution backprojection is 1limited in its
ability to extract variance information from the data, and
relies on external determinations of data variance.
Interpolated modeling for algebraic reconstructioh can be

cost effective for smoothly varying oversampled data, but in
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general may not be justified.

vi) Several difficulties need to be resolved with the
facilities available in the Bioacoustics Research Laboratory
at the University of Illinois at Urbana-Champaign. Backlash
and wobble in the mechanics of the scanner introduce
anisotropic spatial distortions that can not be readily
removed, either by averaging or by digital signal processing
techniques. Resolution of this problem either calls for the
use of tensioned belts (to remove backlash), or significant
redesign to minimize mechanical errors in general. Although
the dynamic range of the analog to digital conversion for
digitizing the ultrasound pulses is good, the bandwidth is
too limited to study absorption spectral _shifts. This
limitation is in the process of solution (Embree, 1986) in
the development of a data acquisition system for other
ultrasound devices in the lab. Finally, proper support of
tissue samples suggests the design of a system with the
mechanics either above, or to the side of the sample under

study.

vii) Using the available 1literature data for thermal
coefficients, and the divergent beam ultrasound computed
tomography apparatus in the Bioacoustics Research Laboratory.
differential temperature estimation could be performed with a
standard deviation on the order of 0.5°C, for temperature
shifts of 5.5°C (i.e., from 37°C to 42.5°C). The critical
factor in this estimation is the variance in the speed

thermal coefficient, based on data from the tissue database.
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A major theme in the above discussion is the need for more
thermal property ﬁeasurements, covering more tissues, with greater
repeatability. Since thermal property measurements are no better
than the underlying parameter measurements, this calls for better
ultrasound speed and attenuation coefficient measurements to be
made from imaging systems. Diffraction, refraction, multipath,
and limited view problems limit the applicability of conventional
ultrasound‘ computed tomography. The general problem of inverse
scattering, and diffraction tomography in specific, holds the key
to forming quantitative ultrasound property images. Advanced
imaging techniques, as well as basic sonometry to increase the
size and reliability of the tissue database, are the necessary
steps toward furthering noninvasive temperature estimation through

ultrasound imaging.
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Table 3.1.

Percentage

constituent materials

concentration

ranges

Tissue Constituents

for

the
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three

of water, total protein, and fat
Those in parentheses

for various biological materials.

were calculated (Pohlhammer and O'Brien, 1980).

Biological
Material Water
Brain 72-85
Cartilage 70-73
Cerebro-Spinal

Fluid 99
Eye-Aq/Vit

humor 99-99.9
Fat 107°5
Heart 63-79.2
Kidney 75.9-82.7
Liver 66.9-80.3
Milk-whole 87-88
Striated

Muscle 63-75.7
Plasma 90-95
Spleen 74.4-77.4
Testis 84.0-85.0
Tongue 61-74.3

Chvapil, 1967

Robb~-Smith, 1954
Mathews, 1975

Dawson, 1972
Wolf, 1976
Galton, 1971

Nyborg, 1975

Ganong, 1967
Neufeld, 1937

QO SHHEFWHDAFrOD WO T 0

White et al., 1968
Van Heyningen, 1962

Total
Protein

0.015-0.040

0.01-1.0
3.2-17.0
15-19
15.4-16.8
16.5-21.2
3-4

17.3-21.8
5.4-8.0
17.1-18.8
(9-11)
13.7-18.5

Altman and Dittmer, 1961

Ruch and Patton, 1966
Watt and Merrill, 1963

Freese and Lyons, 1979

Carstensen et al., 1953

Wolf and Leathem, 1955

Fat

8.6

0.00

0.004-0.007
50-86
3.6-21
3.3-6.7

3. "'10
3.

References

arg

a,b,f,h,1i
C,j,d,k
b,c,d
b,c,d
b,c,d,1
d,g

b,c,d
m,ar,jrg,n,o
b,c,d

Prq

d



Table 3.2. Thermal Expansion Coefficients

Thermal expansion coefficients for distilled degassed
water, and normal (0.9%) saline (Edmonds and Dunn,
1981).

T @ -_water 5 © -, saline

(°C) (c~ly %1073 (c1) *10"

10 9.45 8.46 |

20 21.19 23.89

30 30.75 29.94

40 38.93 40.07

O, = 0.580 + 0.980*r  (¥1077)  £=0.997
Gs = 0.370 + 1.009%T  (*107°) r=0.985

Table 3.3. Adiabatic Compressibility

Adiabatic compressibility for distilled degassed water
({Edmonds and Dunn, 1981).

T A water

(°C) (82/N) *10-11

10 47.842

20 46.161

30 45.443

40 45.338

B = 48.254 - 0.0823*T (*10"11) r=0.919

50.224 - 0.279*T + 0.00394*T2 (*10-11) r=0.999

on

A
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Table 3.4. Speed of Sound in Seawater

Speed of sound in seawater at 1 atm
and temperature.

salinity
and Kubinski, 1

975).

as

Saline Concentration

10%

20%

30%

function
Speeds are in m/s (Millero

0 1402.39

5 1426.15
10 1447.24
15 1465.88
20 1482.28
25 1496.62
30 1509.06
35 1519.74
40

1528.80

1415.85
1438.99
1459.52
1477.64
1493.58
1507.51
1519.59
1529.96
1538.76

1429.17
1451.63
1471.57
1489.20
1504.70
1518.25
1529.98
1540.04
1548.54

1442.48
1464.31
1483.68
1500.79
1515.83
1528.97
1540.34
1550.07
1558.29

1455.84
1477.12
1495.94
1512.51
1527.05
1539.73
1550.69
1560.09
1568.05

Table 3.5. Absorption Coefficient in Water

Frequency-free ultrasonic absorption
function of temperature in water (Pinkerton, 1949).

T o/ 2
(°c)
0 56.9
5 44,1
10 35.8
15 29.8
20 25.3
30 1%.1
40 14.61
50 - 11.99
60 10.15
70 8.71
80 7.89
90 7.24
100 6.87

X = 39.69 ~ 0.4167*T
X= 49.45 ~ 1.167*T + 0.00777*72
3.733 - 0.02093*T
3.982 - 0.0401*T + 0.0002%T2

1n X)
In{)

(sz/cm) x10-17

[ B a i a

coefficient



Table 3.6. Attenuation Coefficient in Collagen

Summary of collagen suspension frequency-£free
attenuation coefficient data as a function of collagen
concentration and frequency (Goss and Dunn, 1980).

A/£2 (s2/cm) *10"17
10°¢ 20°¢ 10°¢ 20°C

freq c=0.49% c¢c=0.52% c=0.23% ¢=0.34% ¢c=0.17%

8.87 35.5 33.1 14.0 19.3 10.1
14.8 25,9 18.7 9.9 12.5 5.8
20.7 28,2 14.7 11.2 9.3 4,6
26.7 28.7 13.8 14.0 10.0 3.2
32.6 30.2 10.0 11.0 9.2 2.5
38.6 26.6 7.6 10.6 6.6 1.0
44,4 25.2 7.0 9.9 6.9 0.6
50.5 18.5 5.3 9.5 5.4 0.4
56.4 15.4 - 7.1 3.2 3.5

Table 3.7. Speed of Sound in 0Oil

Speed of ultrasound as a function of temperature for
castor oil and phenylated silicone Dow-Corning 710 oil
(Dunn et al., 1969).

T castor o0il Dow-Corning 710
(°C) (m/s) (m/s)
0 1580 1446
10 1536 1409
20 1494 1378
30 1452 1349
40 1411 1321
c 1579.0 - 4,22*T r=1.000

oCo
dc

1442.6 - 3.10*T r=0.998
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Table 3.8. Attenuation Coefficient in 0il

Ultrasound attenuation coefficient at 1 MHz as a
function of temperature for castor o0il and phenylated
silicone Dow-Corning 710 oil (Dunn et agal., 1969).

T castor_oil Dow-Corning_ 710

(°c) (cm~1) (cm~1)

0 0.26 -

10 0.16 0.135

20 0.096 0.070

30 0.057 0.040

40 0.037 0.024
A,, = 0.2318 - 0.00549*T , r=0.961
Ag, = 0.2582 - 0.0108*T + 0.00013*T r=1.000

In(A J) = ~1.3506 - 0.0493*T r=1.000
Ajc = 0.1580 - 0.00363*T , r=0.956
Ajec = 0.2193 - 0.0098*T + 0.00012*T r=0.998

In(Agl) = -1.4673 - 0.0574*T r=0.998
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Table 3.9. Summary of Appendix A

Summary of Appendix A, indicating tissues, temperature

ranges, speed ranges, speed thermal coefficient ranges
(at 37%C) and species reported.
Speed Thermal
Tissue gemps Values Coefs @37°C Species
, C m/s m/s/°C hbcefmp
Blood 10-44 1475-1590 1.30: 2.00 h ¢
Bone - - -
Breast, parenchyma
and fat 22-43 1471-1572 -0.07: 2.52 h
Cerebrospinal
Fluid 24-25 1509-1515 - h
Eye 29-37 1560-1572 1.50 h
aqueous h. 4-37 1462-1530 1.86: 2.03 P
cornea 4-37 1537-1588 1.37: 1.62 h P
lens 4-37 1617-1673 0.69: 1.10 h p
sclera 4-37 1609-1656 0.97: 1.20 h P
vitreous h. 4-37 1458-1542 1.81: 2,95 hb P
Fat 20-37 1430-1581 -7.4 b
breast 22-43 1435-1481 -0.24: 1.48 h
orbit 20-37 1462-1582 -7.06 h
peritoneal 10-60 1345-1680 -7.14:-2.81 b
stomach 35-44 1394-1455 -3.,43:-2.56 c
Heart 35-43 1592-1602 1.25 c
Kidney 17-44 1508-1589 1.05: 1.35 h c
Liver 5-65 1490-1690 0.20: 1.40 hbc P
Milk 10-50 1483-1560 0.60: 1.50 b
Muscle
breast 22-43 1543-1580 1.31: 1.86 h
ext. to eye 20-37 1612-1631 1.21 h
psoas 17-41 1459-1581 1.05: 1.11 h
skeletal 35-43 1588-1630 0.56: 1.23 c
Nervous Tissue
brain 0-67 1424-1580 0.67: 2.86 h c £
optic nerve 20-37 1615-1644 -1.71 h
spinal cord 17-41 1456-1544 0.78: 2.20 h
Spleen 17-43 1528-1609 1.22: 10.6 h c
Water 23-45 1492-1536 1.51: 2.80
h human
b bovine
c canine
e equine
£ feline
m mur ine
P porcine

no data reported



Table 3.10. Summary of Appendix B

Summary of Appendix B, indicating tissues, temperature
ranges, attenuation coefficient ranges, thermal
coefficient of attenuation coefficient ranges (at 37°¢),
and species reported.

Atten Thermal
Tissue Temps  Coefs Coefs @37°C Species
C dB/cm dB/cm/°C hbcefmp

*10°3

Blood 10-40 0.009-1.15 ~5.,00:-0.10 h c

Bone 5-60 28,5-81.0 120.0:200.0 e

Breast - - C-

Cerebrospinal
Fluid - - -

Eye - - -
aqueous h., -~
cornea -
lens -
sclera -
vitreous h. -

Fat 4-49
breast -
orbit -
peritoneal 10-60
stomach -

Heart 10-37

.00-20.8 -577.:-83.3 P

[ SR |

.00-16.0 -1143.:147, b
.09-0.70 -5.81: 2.86 c
Kidney 4-37 .50-12.6 52.9: 88,2 P
Liver 4-65 .89-24,0 ~294.: 225, hb P
Milk - - -
Muscle

breast - - -

ext. to eye - - -

psoas - - -

skeletal - - -
Nervous Tissue :

brain 10-58 0.30-9.00 -84.,2:-14.3 b £

optic nerve - - -

spinal cord 2-45 0.10-1.13 -=10.0:-2,50 m
Spleen 10-58 1.00-31.8 -465.: 26.3 b

ool ]

human

bovine

canine

equine

feline

murine

porcine

no data reported

i rmo oo
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Table 5.1. Results of Least Squares Fits to Appendix A

Summary of least squares fits to the speed data in
Appendix A, 1indicating tissues, number of data sets
available, number of data sets with three or more
measurements, number of data sets with significant
probability of correlation (95% 1level of confidence),
number of data sets with four or more measurements, and
number of data sets with significant probability that a
quadratic fit is justified over a linear least squares
fit (95% level of confidence).

Tissue Number of Data Sets Available
total N>3 P_.<0.05 N>4 Pp0.05

Blood 8 6 4 5 1l
Bone - - - - -
Breast, parenchyma
and fat 2 2 2 2 1
Cerebrospinal
Fluid 1l - - - -
Eye
aqueous h., 1 1 1 1 1
cornea 2 2 2 2 0
lens 4 2 2 2 1l
sclera 2 2 2 2 1
vitreous h. 4 3 3 3 0
whole 1 - - - -
Fat
breast 1 1 1 1l 0
orbit 1 - - - -
peritoneal 1 1l 1 1l 1l
stomach 3 2 2 - -
unspecified 1 - - - -
Heart 1 - - - -
Kidney 7 4 4 1 1
Liver 13 8 6 5 4
Milk 2 2 2 2 2
Muscle _
breast 1 1 1 1 0
ext. to eye 1 - - - -
psoas 1 1l 1 1 0
skeletal 6 4 4 - -
Nervous Tissue
brain 27 26 24 25 10
optic nerve 1 - - - -
spinal cord 1 1 0 1 0
Spleen 2 2 2 1 0
Water 1 1 1 1l 1

Totals 96 72 65 57 24
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Table 5.2. Results of Square Speed Ratio Model (fixed)

Results of least squares fit of speed vs temperature
data to equation 5.8, using Approach 1 (fixed
reference), indicating number of data sets available,
number of data sets with a significant probability of
correlation (at the 95% level of confidence), number of
data sets for which the hypothesis a=0 was accepted at
the 95% level of confidence, number of data sets for
which the hypothesis a=0 could be marginally accepted,
number of data sets for which the hypothesis b=l was
accepted at the 95% level, and number of data sets for
which the hypothesis b=1 could be marginally accepted.

Tissue Number of Data Sets
total Prgo.os a=0 a=0 b=1 b=1
marginal marginal

Breast
parenchyma
and fat

Eve
aqueous h.
cornea
lens
sclera
vitreous h.

Fat
breast
peritoneal

Kidney

Liver

Milk

Muscle
breast
psoas

Nervous Tissue 2

Spleen

Water

G e RIS I i s s G AR €SOR ST VXD COee e e G T . D et G e i G i K O S S O G R i SR Y A GAGD A G SR WS WS WU WA Cut S i . Sy G o S R

Totals 57 47 37
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Table 5.3. Results of Square Speed Ratio Model (incremental)

Results of least squares fit of speed vs temperature
data to equation 5.8, wusing Approach 2 (incremental
change), indicating number of data sets available,
number of data sets with a significant probability of
correlation (at the 95% level of confidence), number of
data sets for which the hypothesis a=0 was accepted at
the 95% level of confidence, number of data sets for
which the hypothesis a=0 could be marginally accepted,
number of data sets for which the hypothesis b=l was
accepted at the 95% level, and number of data sets for
which the hypothesis b=l could be marginally accepted.

Tissue Number of Data Sets
total P,.<0.05 a=0 a=0 b=1 b=1
marginal marginal

Breast
parenchyma
and fat

Eye
aqueoue h.
cornea
lens
sclera
vitreous h.

Fat
breast
peritoneal

Kidney

Liver

Milk

Muscle
breast
psoas

Nervous Tissue 2

Spleen

Water

Totals
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Table 5.4. Results of Least Squares Fits to Appendix B

Summary of least squares fits to the attenuation
coefficient data in Appendix B, indicating tissues,
number of data sets available, number of data sets with
three or more measurements, number of data sets with
significant probability of correlation (95% 1level of
confidence), number of data sets with four or more
measurements, and number of data sets with significant
probability that a quadratic fit is justified over a
linear least squares fit (95% 1level of confidence).
Numbers 1in parentheses describe the results of linear
and quadratic fits to the natural log of the
measurements.,

Tissue Number of Data Sets Available
total N>3 P <0.05 N>4 Pp<£0.05
6) 5(5) 6(6) 0(3)
3) 3) 0(0)
Breast - -
Cerebrospinal
Fluid - - - - -
Eye
aqueous h. - - - - -
cornea - - - - -
lens - - - - -
sclera - - - - -
vitreous h. - - - - -
whole
Fat
breast - - - - -
orbit -
peritoneal 7
stomach -
unspecified 5 2(2) 2(2) 2(2) 0(0)
Heart 24 6(6) 2{(2) 6(6) 0(0)
5
2

1
l
1
|
1

;(7) 6(0) 5(3) 2(2)

Kidney 5(5) 0(0) - -
Liver 4 42 (42)14(17) 32(32)12(12)
Milk - - - - -
Muscle
breast - - - - -
ext. to eye -~ - - - -
psoas - - - - -
skeletal - - - - -
Nervous Tissue
brain 7
optic nerve - -
spinal cord 5 4(4) 2(2) 4(4) 2(1)
Spleen 10 10(10) 5(8) 5(5) 1(1)

Totals 121 90(90)36(42) 66(66)19(19)

5(5) 3(3) 5(3) 2(0)
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Table 5.5. Results of Frequency Shift Analysis

Results of fitting linear and quadratic curves to the
data set formed by combining the absorption spectrum at
one temperature with the log-frequency shifted
absorption spectrum at another temperature. 1Included in
the table are the number of data sets available (grouped
by tissue), the number of data sets with at least three
log-frequency - temperature change pairs, the number of
data sets with a significant probability of correlation
(at the 95% level of confidence), and the number of data
sets with a significant probability that a quadratic fit
is justified over a linear least squares fit (95% level
of confidence).

Tissue Number of Data Sets
total M>3 P,<0.05 Pp<0.05

Nervous Tissue,
brain
Spleen

Totals 22 1

o))
-3
-t
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FIGURES



Figure 3.1. Divergent beam geometry with a single
transmitter-receiver pair. For each sector, the
tranmitter turns and the receiver sweeps so as to
maintain a constant alignment. Sectors are repeated at

multiple view angles (8).
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Figure 3.2. Divergent beam geometry with multiple fixed
position transducers. Each transducer serves both as a
transmitter (for one view) and as a receiver (for all of
the other views).



Figure 3.3. Divergent beam data collection geometry
with a single transmitter-receiver pair. Data are
collected at multiple discrete sector angles (X), then
the apparatus 1is rotated about its central axis for

multiple view angles (&).
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@ @ P

™~ f{m,n-1)

Figure 3.4. Algebraic reconstruction geometry. The
object function £(x,y) 1is sampled into fone and the
points are uniquely labeled so f n<=>fs5 (l<m<M, 1<n<N,
1<j<MN). The 1nf1uence of plxel 3 on beam i is
approximated by L, r where L;. is the length of beam i
that passes througﬂ ﬂlxel Je 13
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Figure 3.5. Refractive bending. By Snell's Law, the
ratio of the speeds is equal to the ratio of the sines
of the transmitted and incident angles. Thus if c¢y>cq,
the beam will follow a "longer”™ path through the meditm
of higher speed (longer with respect to the straight
line path), and arrive at a later time, leading to an

underestimation of ¢c5, Equivalently, if cy<cj, then c3
will tend to be overéstimated.
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AN
PE N
7/32 . . -
R T
GEAR BOX
SYM~-1 <__\ | U
MOTORS AND
ANGLE ENCODERS

Figure 4.1. The ultrasound computed tomography tank,
showing the water bath tank, transducers, drive
mechanics, and heater circulator (E-~2) for temperature
control. The PE 7/32 computer directs all operations
and data acquisition. The SYM-1 microcomputer acts as a
slave processor to control the motors and monitor the
transducer angles.



137

Figure 4.2. Divergent beam sector dimensions. The
sector angle spans -16.8° < A < 16.8° in 57 steps; the
view angle spans 0° < & < 180° in 51 steps (typical
values).
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WATER SALINE
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Figure 4.3. Saline cell and tissue holder. The 1lucite
spacer disk is held in place by an elastic band around
the outside of the cell. The saline level is kept
higher than the surrounding water level to maintain a
positive pressure on the cell walls and keep the cell
from collapsing. A 13 g lead fishing weight assists in
providing stability. The tissue sample is held in place
against the tissue holder disk by means of a 5 mm
(typical) wide latex band (the same material as the cell
wall).

138



dc/aT (m/s/°C)

c @37°C (m/s)

L
Ag - Aqueous Humor
Bl - Blood
Mi - Milk
Vi - Vitreous Humor
Wa - Water
2
e
i
{h { B
o
jes3 /% m
Fva 5l B8/
EA?
M
%ML
<
- -
<
o -
Bt
? I T T T 7 T 7
1500 1525 1550 1575 1600 1625 ‘ 1650 1675

Figure 5.1. Speed thermal coefficient (dc/dT) ¥s speed

at 379C for various fluids.
one standard deviation.

The error bars represent *
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Figure 5.2, Speed thermal coefficient (dc/dT) ys speed
at 37°C for various nonfatty tissues. The error bars
represent + one standard deviation.
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Fb - Fat, breast

Fbp - Fat, breast and parench.
Fp - Fat, peritoneal

Fs - Fat, stomach
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1400 1425 1450 1475 1500
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Figure 5.3. Speed thermal coefficient (dc/dT) ys speed
at 37°C for various fatty tissues. The error bars
represent + one standard deviation.
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Figure 5.4. Attenuation coefficient thermal coefficient
(dA/dT) w8 attenuation coefficient at 37°C for blood.
The error bars represent + one standard deviation.
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Figure 5.6. Attenuation coefficient thermal coefficient
(dA/dT) ws attenuation coefficient at 37°C for various
fatty tissues. The error bars represent + one standard
deviation.
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Figure 5.7. Reconstructed speed images of excised rat
liver, showing typical (rat T-1033, above) and best (rat
T-1026, below) results available.
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Figure 5.9. Inverse speed image model used for
reconstruction analysis. The background values are 0.0
Ps/mm; the foreground values are 0.03823 Fs/mm.



7

w:?

Figure 5.10. Reconstructed inverse speed image produced

by convolution backprojection, based on 57 goints
33.6° of fan angle, and 51 views over 180° of
angle, for the model shown in Figure 5.9. The
background value is 0.000357 ps/mm, and the
foreground value is 0.03863 ps/mm.

over
view
mean
mean
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Figure 5.11. Reconstructed v?riagce &mage, assuming a
background variznce of .107° pus4/mm“, and a foreground
variance of 10~ sz/mm2 (similar in appearance to
Figure 5.2). 2Thezmean background value in this image is
4.16 *10™ ps /mm%, and the mean foreground value 1is

9.51 %104 Fsz/mmz.
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Figure 5.12. Simulated continuous wave £field, with
three cycles (n=3), and a phase offset (¢) of /10.
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Figure 5.14. Simulated linear interpolated wave field,
with three cycles (n=3), and a phase offset (§) of /10,
on a 16x16 point array.
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APPENDIX A
ULTRASOUND SPEED

Ultrasound speed as a function of temperature for biological
material. NR indicates data not reported. Values marked with an
(*) were interpolated from graphes. Values marked with a (#) were
estimated by the author (see text for details). Following each
block of data are linear and quadratic (if 3 or more data points
are available) 1least squares fits. The correlation coefficient
(r=...), the estimated variance of the data with respect to the
fit (var=...), the probability that random data could have
produced such a linear fit (P_=,.,.), and thf probability that
noise could have accounted for the change in YX“ between the linear
and the quadratic fits (Pp=,..) are provided. .See Chapter 5 for a
more detailed explanation of these statistical parameters. The
standard deviations of the coefficients of the fits are included
in parentheses under the coefficients. References marked m*l or
m*2 were measurements made by m, but the data were taken from Goss
et al. (1978) or Goss et al. (1980), respectively.

Tissue/Material
species thermal
state/age freq temp speed (dev) coef ref
MEz °C  m/s m/s/°C
Blood
human
fresh, 5 25 1565 * 2,20 # Kikuchi
heparinized, 30 1576 * 1.40 # et al.
whole, 40% hct 40 1590 * (1972) *1
= 1525.42859 + 1.62857*T r=0.993 P,=0,077
(6.38877) (0.19795) 2 var=4.,57143
= 1470.00000 + 5.13333*T - 0.05333*T r=1,000

(0.00000) (0.00000) (0.00000) var=0.00000



Blood
human
fresh, 5 26,8
heparinized 40.5
= 1534,47974 + 1.29926*T
(0.00000) (0.00000)
human
< 21 days 1-15 27
44

= 1516.97656 + 1.48235*T

(0.00000) (0.00000)
human

heparinized 2 22.4

22.6

23.2

24,2

= 1719.35681 - 6.88774*T
(144.32841) (6.24512)

= 9317.34473 - 659.15070*T + 13.98481%T2

1569.
1587.1 #

1557

1582.2 #

1565
1570

1549,
1556.

3

*

6
4
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1.3 Bakke et al.
(1975) *1
r=1.000

var=0,00000

1.48 Bradley &
Sacerio
(1972) *1

r=1.000

var=0,.00000

(8%) 25.0 # van Venrooij
(1.5%) (1971) *1
(0.7%) 6.80 #
(0.3%)
r=0.615 Pr=0.385
var=76.44297
r=0.847

(6952.74707) (596.78369) (12.79467) var=69.66178 Pp=0,50
human
fresh, 5 25 1522 * 2.40 # Kikuchi
plasma 30 1534 * 1.40 # et al.
35 1541 * 1.80 # (1972)*1
40 1550 *
= 1477,59998 + 1.82000*T r=0.994 P,=0.006
(4.52161) (0.13711) var=2.35000
= 1446.84998 + 3,77000*T - 0.03000%T2 r=0.997
(32.41801) (2.03963) (0.03130) var=2.45000 Pp>0,50
human
NR, NR 10 1500 * 2.50 # Carstensen
albumen 20 1525 * 2.50 # et al.
12.5 & 30 1550 * 2.00 # (1953).
40 1570 *
= 1477.50000 + 2.35000%*T r=0.999 Pr=°°001
(2.37171) (0.08660) var=3,75000
= 1471.25000 + 2.97500%T - 0.01250%T2 r=1.000
(3.11247) (0.28395) (0.00559) var=1.25000 Py=0,50



Blood
NR, NR 10
albumen 20
6.2 % 30
40
= 1452.,50000 + 2.50000%*T
(4.33013) (0.15811)
= 1440.00000 + 3.75000*T
(0.00000) (0.00000)
canine
fresh, 5 25
heparinized, 30
26% hct 35
40

(9.04323)

1497.19995 + 1.84000*T
(0.27423)

1475
1505
1530
1550

* ¥ ¥

- 0.02500%T2
(0.00000)

1541
1556
1561
1570

% W ¥ %

= 1435.69995 + 5.74000*T - 0.06000*T2

Breast, fat with parenchyma

" ot W e e s vt Gt e Pt S S . S - A — > G

(64.83602)

(4.07926)

human

(15.42494)
(89.75390)

22.5
25.8
27.8
30.2
32.2
35.1
38.0
40.1
42.5

excised

1526.23474 ~ 1,.26109*T
(0.48312)

(0.06261)
1494.7 (4.1)
1487.5 (5.5)
1491.5 (5.5)
1497.8 (5.7)
1500.9 (6.2)
1471.3 (9.7)
1471.3 (13.1)
1474.2 (13.4)
1475.9 (12.8)

1475.94836 + 1.93783*T — 0.04893*T2
(0.08590)

(5.63661)

3.00 # "
2.50 #
2.00 #

r=0.996
var=12.50000

r=1.000
var=0.00000 Pp=0.000

P =0.004

3.00 # Kikuchi

1.00 # et al.
1.80 # (1972)*1

r=0.979
var=9.40000

r=0,989
var=9.80000 Pr>0.50

P,=0,021

-2.18 # Rajagopalan
2.00 # et al.

2.63 # (1979).
1.55 ¢
-10.2 #

0.00 #

1.38 #

0.71 #

r=0.717

var=78.67373
r=0.734
Var=87.07650 PF>O.50

P,=0.030
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Breast, parenchyma

Breast, parenchyma

human '
excised NR 22,5 1539.4 (4.5) 1.91 # Rajagopalan
25.8 1545.7 (4.0) 2.65 # et al,
27.8 1551 (4.6) 2.96 # (1979).
30.2 1558.1 (3.9) 2.00 #%
32.2 1562.1 (4.1) 0.83 #
35.1 1564.5 (7.6) -0.07 #
38.0 1564.3 (6.4) 2.52 #
40.1 1569.6 (6.3) 0.96 #
42,5 1571.9 (6.4)
= 1507.02905 + 1.57491*T r=0.968 Pr=o,ooo
(5.11747) (0.15365) var=8.65950
= 1448.29797 + 5.31104*T -~ 0.05715*T2 r=0.989
(18.44787) (1.15854) (0.01766) var=3.67864 Pr=0.025

Cerebrospinal Fluid

human
fresh 2 24.4 1515 (3.0%) -9.17 # van Venrooij
25.0 1509.5 (0.5%) (1971) *1
= 1738.66650 - 9,16666*T r=1.000
(0.00000) (0.00000) var=0,00000
Eye
human
P. M. 2.5 29 1560 1.50 # Tschewnenko
37 1572 (5) (1965) *1
= 1516,50000 + 1.50000*T r=1.000
(0.00000) (0.00000) var=0,.00000
Eye, aqueous humor
porcine
8 hrs. 4 4 1462.51 (2.13) 2.22 # Rivara &
p. M. 15 1486.94 (2.48) 2.03 # Sanna
25 1507.25 (2.86) 1.87 # (1962)*1
37 1529.63 (3.08)
= 1455,43494 + 2.03198*T r=0,999 Pr=0-0°1
(1.39917) (0.05919) var=2.08381
= 1453,17261 + 2.37152*T — 0.00826*T2 r=1.000

(0.11157) (0.01299) (0.00031) var=0,00574 Pp=0,025



Eye, cornea

Eye, cornea
human
24-48 hrs.
pP. m.

= 1536.97852
(0.56616)

= 1536.73975
(1.17462)

porcine
8 hrs.
p. M.

= 1531.66833
(0.81488)
1532.14648
(1.63192)

human
24-48 hrs.
p. m.

= 1615.25842
(1.74670)

= 1612.43677
(0.21206)

human
30-40 hrs.
pP. M.

= 1606.29980
(0.00000)

porcine
fresh,
within 2.5

= 1619.60999
(0.00000)

4 4
15
25
37

+ 1.33390*T
(0.02395)
+ 1.36973*T
(0.13671)

4 4
15
25
37

+ 1.50885%*T
(0.03447)
+ 1.43708*T
(0.18993)

4 4
15
25
37

+ 0.89390*T
(0.07389)
+ 1.31740%*T
(0.02468)

2.5 29
37
+ 1.10001*T
(0.00000)

4 23
hrs. 37

+ 1.00000*T
(0.00000)

1542.03
1557.64
1569.91
1586.38

(4.05)
(4.13)
(3.76)
(3.87)

- 0.00087*T2
(0.00323)

1537.68
1554.86
1568.43
1587.92

(4.02)
(3.88)
(4.10)
(3.53)

+ 0.00175%T2
(0.00448)

1617.51
1629.98
1638.84
1647.11

(4.01)
(2.98)
(3.17)
(3.53)

- 0.01030%T2
(0.00058)

1638.2
1647

l1642.61
1656.61 #

1.42 # Rivara &
1.23 # Sanna
1.37 # (1962)*1

r=1.000
var=0.34119
r=1.000

var=0.63605 Pp>0.50

l1.56 # Rivara &
1.36 # Sanna
1.62 # (1962)*1

r=0,.,999
var=0.70681

r=1.000
var=1.22769

1.13 # Rivara &
0.89 # Sanna
0.69 # (1962)*1

r=0.993
var=3.24754

r=1.000
var=0.02073

1.10
(1965) *1

r=1.000
var=0.00000

1.00 Jansson &
Sundmark
(1961) *1

r=1.000

var=0.00000

P,=0,000

P,=0.001

P,=0.007
PF=0005

# Tschewnenko
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Eye, lens

porcine
8 hrs.
p. m.

= 1635.75854 + 1,02525*T

(1.45586)

= 1633.44934 + 1.37184*T

(0.61772)

Eye., sclera

human
24-48 hrs.
Ps M.

= 1604.91016 + 1.15320%*T

(1.14167) (0.04830)
= 1603.51050 + 1.36327*T
(1.60112) (0.18634)

porcine
8 hrs. 4 4
P. W, 15
25
37

= 1612.62891 + 1.20191*T

(1.85673)

= 1609.62500 + 1.65274*T

(0.06285)

4 4

15

25

37
(0.06159)

(0.07189)

4 4

15
25
37

(0.07855)
(0.00731)

Eye, vitreous humor

human
24-48 hrs.
p. m.

= 1451.40344 + 1.94168*T

(0.40291)

4 4

15
25
37

(0.01704)

1638.71 (3.65)
1652.42 (3.5)

1662.20 (3.72)
1672.75 (3.12)

- 0.00843*72
(0.00170)

1609.12 (3.76)
1622.06 (4.25)
1635.12 (3.71)
1646.75 (3.94)

- 0.00511*72
(0.00440)

1616.07 (4.14)
1631.92 (4.01)
l644.12 (3.92)
1655.76 (3.86)

- 0.01096*T2
(0.00017)

1458.91 (1.95)
1481.02 (1.86)
1499.76 (2.05)
1523.20 (2.14)

= 1451.07959 + 1.99029*T - 0.00118*T2

(0.75141)

(0.08745)

(0.00206)

var=1,18178

var=0,00182

var=0.26029

1.25 # Rivara &
0.98 # Sanna
0.88 # (1962)*1

r=0.996

var=2.25610

r=1.000

var=0.17590 PF=0'25

1.18 # Rivara &
1.31 # Sanna
0.97 £ (1962)*1

r=0.998

var=1,38739

r=0.999

1.44 # Rivara &
1.22 # Sanna
0.97 % (1962)*1

r=0.996

var=3.66957

r=1.000

2.01 # Rivara &
1.87 # Sanna
1.95 & (1962)*1

r=1.000

var=0.17279

r=1.000

P,=0.004

P.=0.002

Pp=0.50

P,.=0,004

Pp=0.025

P,=0.000
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Eye, vitreous humor

bovine
< 10 days 5 27.0 1495
stored @ 0-5°C 27.4 1493 (0.5%)
27.8 1514 (0.4%)
29,6 1535 (2%)
= 1054,.62036 + 16.26582*T
(103.25042) (3.69178)
=-1237.58313 + 177.99014*T -~ 2.84840*T2
(6734.42334) (475.06668) ({8.36675)
porcine
fresh, 4 23 1468.95
within 2.5 hrs. 37 1494.29 #
= 1427.31982 + 1.81001*T
(G.00000) (0.00000)
porcine’
8 hrs. 4 4 1463.88 (2.27)
p. m. 15 1487.94 (2.56)
25 1506.12 (3.10)
37 1541.53 (2.94)
= 1453.05286 + 2.31183*T
(3.926925) (0.16792) 9
= 1458.17346 + 1.54331*T + 0.01869*T
(5.14824) (0.59917) (0.01415)
Fat
bovine
fresh 1-7 20 1581 (1%)
37 1430

= 1758.64709 - 8,.88235*T

(0.00000) (0.00000)

159

-5.00 # Begui (1954)
52.5 #
11.7 #

r=0,952
var=53.83549

r=0.957
var=96.48791 Py>0.50

P,=0.048

1.81 Jansson &
Sundmark
(1961) *1

r=1.000

var=0,00000

2.19 # Rivara &
1.82 # Sanna
2.95 # (1962)*1

r=0,995
var=16.77001

r=0.998
var=12.21825 PF=0.50

P,=0.005

-10.1 Bamber & Hill
-7.4 (1979) .
r=1.000

var=0.,00000



Fat, breast

Fat, breast

human
excised

= 1538.19543 - 2.43426*T

(20.82912)

= 1506.05652 - 0.38977*T

(123.71671)

Fat, orbital

= 1723.17651 - 7.05882*T

(0.00000)

Fat, peritoneal

= 1716.88586 — 6.73433*T

(32.55093)

NR 22.5
25.8
27.8
30.2
32.2
35.1
38.0
40.1
42.5

(0.62538)
(7.76950)

6-14 20

37

(0.00000)

(0.87396)

1480.7 (2.5)
1466.9 (9.9)
1472.1 (9.8)
1477.4  (9.9)
1478.1 (11.4)
1436.3 (15.6)
1435.6 (18.4)
1438.7 (18.1)
1441.8 (17.5)
- 0.03127*T2
(0.11840)

1582 (20.4)
1462 (23.7)
1680 * (1%)
1575 *

1490 *

1390 *

1345 *

= 1810.73828 - 13.89282*T + 0,10160*T2

(10.87792)

Fat, stomach
canine
fresh

= 1544.44446 - 2,55556*T

(0.00000)

(0.72854)

5 35
44

(0.00000)

(0.01012)

1455 *
1432 *

-4,18 # Rajagopalan
2.60 # et al,
2.21 # (1979).
0.35 #
~14.4 #
~-0.24 #
1.48 #
1.29 %
r=0.827 Pr=o,oos
var=143.45807
r=0,829

var=165.4440 PF>0,50

-7.06 # Buschmann

et al.
(1970) *1

r=1.000
var=0,00000

-10.5 # Bamber & Hill
-8.50 # (1979)*2

~-7.14 #
r=0.976 Pr=0'005
var=1189.10583
r=1,000

var=34,70859 PF=°-01

~2.56 # Nasoni et al.
(1979).

r=1,000
var=0.00000
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Fat, stomach

canine
fresh 5 37
40
43

= 1517.93384 - 2.86668*T
(0.77152) (0.01925)
= 1535.65137 - 3.75589*T

(0.00000) (0.00000)

refrig. 5 37

5 hrs. 40
43

= 1529.16687 - 3.15000*T

(6.55584) (0.,16359)
= 1679.71777 - 10.70588*T + 0.09445*T2
(0.00000) (0.00000)
Heart
canine
fresh 5 35
43
= 1548.25000 + 1.25000%*T
(0.00000) (0.00000)
Kidney
human
excised NR 17.0
22,0
23,5
26.2
30.2
33.2
35.2
37.2
39.0
40.8

= 1476.08374 + 2,24569*T
(4.76592) (0.15197)
= 1436.70422 + 5,12553*T
(13.97224) (0.99656)

canine
in vivo 5 38.5

1411.9
1403.2 #
1394.7 #

+ 0,01112*72
(0.00000)

1412.9
1402.6 #
1394.0 #

(0.00000)
1592 *
1602 *
1508.5 (4.3)
1523.8 (4.6)
1536.1 (2.1)
1536.3 (5.2)
1545.2  (2.7)
1551.4 (1.4)
1555.8 (1.8)
1560.2 (1.8)
1562.6 (1.2)
1564.3 (0.9)
- 0.04907%72

(0.01688)

1566.6
1580.7
1569.9

1568.6

-2.89 Bowen et al.
_2.86

r=1,000 P, =0.004
var=0.00667

r=1.000
var=0,00000

"'3.43 "
_2'86
-2'91

r=0,999 Pr=o,o33
var=0,48171

r=1.000
var=0,00000

1.25 # Nasoni et al.
(1979).

r=1.000
var=0.00000

3.06
8.20
0.07
2.23
2.07
2.20
2.20
1.33
0.94

it 3k 3 e otk bk db S 3k

r=0.982 Pr=o,ooo
var=13.27208

r=0,992
var=6,.87112 Pr=0,025

1.27 Nasoni et al.
1.18 (1979).

1.17

1.14

16l



Kidney

canine

(2.70010) (0.06738)
= 1462.06042 + 4,36198*T
(0.00000) (0.00000)

37
40
43
= 1522.20032 + 1.19999*7
(2.31410) (0.05774)
= 1469.05835 + 3.86709*T
(0.00000) (0.00000)
37
40
43
= 1526.79956 + 1.20001*T
(2.31363) (0.05773)
= 1473.66833 + 3.86657*7T
(0.00000) (0.00000)
canine
fresh 5 38.5
5-30 min.
35
44
= 1533.22217 + 1.22222%*7
(0.00000) (0.00000)
Liver
human
po M. 1—7 20
37

fresh

1524.06665 + 1.25000*T

1556.94116 + 1.35294*T

(0.00000)

5 37
40
43

(0.00000)

1570.2
1574.3 #
1577.7 #

- 0.03890*T72
(0.00000)

1566.5
1570.4 %
1573.7 #

- 0.03334*72
(0.00000)

1571.1
1575.0 #
1578.3 %

- 0.03333*72
(0.00000)

1588.4
1579.6
1580.2
1584.5

1576 *
1587 *

1584
1607

(1%)

1.35
1.16
0.98

r=0.999
var=0,08171

r=1.000
var=0.00000

1.29 "
1.11
0.93

r=0,999
var=0,06002

r=1.000
var=0.00000

1.29 "
1.11
0.94

r=0.999
var=0.06000

r=1.000
var=0,00000

1.30
1.30
1.28
1.05

1.22 # *

r=1.000
var=0.00000

1.86
0'96

r=1.000
var=0.,00000

Bowen et al.
(1979).

P.=0.034

P,=0.031

Nasoni et al.
(1979).

Bamber & Hill
(1979).
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Liver
human
p. m. 10 5
12
21
30
37
43
47
= 1547.75684 + 1.51642*T
(5.56956) (0.17692)
= 1532.47546 + 3.22491*T
(3.74734) (0.34138)
human
excised NR 17.0
22.0
23.5
26.2
30.2
33.2
35.2
37.2
39.0
40.8
= 1526.71228 + 1.38934*T
(2.94912) (0.09404)
= 1500.59631 + 3.29922%*T
(7.83169) (0.55859)
bovine
fresh 1-7 20
37
= 1549,11768 + 1.29412%T
(0.00000) (0.00000)
20
37
= 1612.88232 + 0.70588*T

(0.00000)

(0.00000)

1550 *  (1%)
1562 *

1588 *

1600 *

1608 *

1610 *

1612 *

- 0.03261*T2

(0.00637)
1547.0 (2.5)
1555.5 (1.8)
1563.1 (3.0)
1564.6 (2.8)
1571.1 (2.5)
1573.5 (1.8)
1575.3 (2.5)
1578.1 (2.9)
1580.0 (2.2)
1581.7 (1.5)
- 0.03254*T2
(0.00946)

1575 (1%)
1597

1627

1639

1.71
2.89
1.33
1.14
0.33
0.50

r=0.

# Bamber & Hill
$# (1979)*2

b 3k ok e

968  P,.=0,000

var=47.,10454

r=0.
var=7,

1.70
5.07
0.56
1.63
0.80
0.90
1.40
1.06
0.94

r=0.
var=5.
r=0,
var=2,

1.83
0.56

r=1,
var=0,

1.01
0.31

r=1l.
var=0,

996
79571 Pg=0.01

# Rajagopalan
(1979).

B U I R R

982 P =0.000
08193
993

15877 Pp=0,025

Bamber & Hill
(1979).

000
00000

000
00000
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Liver
bovine
fresh 10 8
<30 min, 21
37
42
55
= 1612,34912 + 0.51690*T
(9.64091) (0.26410)
= 1590.85632 + 2.450095*T
(5.65571) (0.41858)
9
20
30
43
65
= 1516.76331 + 2.46218*T
(13.99537) (0.36245)
= 1544.70532 + 0.39705%T
(20.38579) (1.29215)
canine
fresh 5 38.5
5~-30 minutes
35
43
= 1559.62500 + 1.12500*T
(0.00000) (0.00000)
fresh 5 37
40
43
= 1560.33264 + 0.85002*7T
(1.92811) (0.04811)
= 1516,.05493 + 3,07224*T
(0.00000) (0,00000)
37
40
43
= 1556.03381 + 1.04999%*T
(1.92764) (0.04810)
= 1511.76685 + 3.27167*T
(0.00000) (0.00000)

1610 * (1%)
1625 *
1640 *
l641 *
*

1630

- 0.03119*%72
(0.00658)

1545
1570
1590
1600
1690

* F % ¥ *

+ 0.02752*72
(0.01678)

1598.3
1604.3
1603.3

1599 *
1608 *

1591.7
1594.5 #
1596.8 #

- 0.02778%*T12
(0.00000)

1594.8
1598.2 #
1601.1 #

- 0.02777*T2
(0.00000)
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1.15 # Bamber & Hill
0.94 # (1979)*2
0.20 #

r=0,.749
var=94.10490

r=0.982
var=11.54875 Pp=0.05

P,=0.145

2,27 # "
2.00 #
0.77 #
4.09 #

r=0.969
var=246.60487

r=0,987
var=157.7544 Pp=0.25

P,.=0,007

1.26
1.15
1.06

Nasoni et al,
(1979).

1.13 # °

r=1.000
var=0.00000

Bowen et al.
(1979).

0.93
0.78
0.62

r=0.998
var=0.04167

r=1.000
var=0.00000

P,=0.036

1.13 "
0.96
0.80

r=0.999
var=0.04165

r=1.000
var=0.00000

P,=0.029



Liver

= 1492.99805 + 4,.85010*T

1572.70020 + 0.85000*T

(3.47068)
(0.00000)

porcine

(19.18531) (0.92632)
= 1518.47864 - 3.88037*T
(34.40061) (4.05404)
Milk
bovine
whole, NR 10
8% non-fat 20
solids, 30

homogenate

1450.55554 + 5.05083*T

37

40

43
(0.08660)

(0.00000)

4

27.2
28.8
30.0

4% butter fat 40

1475.00000 + 1.64000*T

50

1604,
1607.0 #
1609.1 #

0

- 0.05000*T2
(0.00000)

1490
1503
1522
1528
1530
1535
1538
1542
1547
1552
1560
1620
1660

(.2%)

+ 0.24429+T2
(0.10875)

1488
1509
1528
1543
1553

# % b % %

1462.00000 + 2.75429*T - 0.01857*T2
(0.00181)

(4.24735) (0.12806)
(1.45012) (0.11051)
skimmed, NR 10
8% non-fat 20
solids 30
40
50

1473.00000 + 1.92000*T

(10.36147)

(0.31241)

1483
1516
1540
1554
1560

* o F ¥ %

1441.00000 + 4.66286*T - 0,04571*T2
(0.00090)

(0.72506)

(0.05525)

165

0.99 "
0.72
0.46

r=0.995 Pr=0°°55
var=0.13501

r=1,000
var=0.00000

4,33 # Danckwerts
5.43 # (1974)*1

1.71
2.00
3.33
3.75
1.48
2.78
2.00
5.71
37.5
33.3

b b ok Sk Sk koo S ok b

r=0.854 Pr=0.000
var=613.35309

r=0.906
var=448,4181 PF=0'05

2,10 # Fitzgerald
1.90 # et al.
1.50 # (1961)*2
1.00 #

r=0.,991 Pr=0'0°1
var=16.40000

r=1.000
var=0,45714 Pp=0.01

3.30 # "
2.40 #
1.40 #
0.60 #

r=0,963 Pr=o,009
var=97.60000

r=1,000
var=0.,11429 Pp=0,001



Muscle, breast

Muscle, breast
human
excised NR 22,5
25.8
27.8
30.2
32.2
35.1
38.0
40.1
42.5

= 1507.52527 + 1.70147*T
(3.82308) (0.11479)
= 1471.42529 + 3,99794*T
(17.23627) (1.08245)

Muscle. external to eye

human
< 2 days 6-14 20
p. m. 37

= 1589.64709 + 1.11765*T
(0.00000) (0.00000)

Muscle, psoas
human
excised NR 17.0
22,0
23.5
26.2
30.2
33.2
35.2
37.2
39.0
40.8

= 1467.26563 + 2.92259*T
(37.86994) (1.20759)

1543.1 (5.2)
1551.4 (6.2)
1554.2 (6.5)
1562.4 (7.1)
1565.5 (6.4)
1566.9 (4.5)
1570.7 (6.9)
1574.6 (6.7)
1579.5 (5.4)
- 0.03513%T2
(0.01650)

1612 (12.5)
1631 (15.3)
1542.5 (3.0)
1459.5 (3.0)
1554,8 (1.1)
1560.2 (1.7)
1566.4 (2.2)
1571.6 (1.8)
1573.5 (1.8)
1575.6 (1.1)
1577.6 (2.1)
1580.3 (1.8)

= 1462.79175 + 3.24977*T - 0.00557*T2
(0.19923)

(164.94563) (11.76465)

2.52 # Rajagopalan
1.40 # et al.

3.42 # (1979).
1.55 #

0.48 #

1.31 #

1.86 #

2,04 #

r=0.984 Pr=o,ooo
var=4,.,83293

r=0,991
var=3.21130 Pp=0.10

1.12 # Buschmann

et al.
(1970) *1

r=1.000
var=0.00000

-16.6 # Rajagopalan
63.5 # et al.

2,00 # (1979).
1.55 #

1.73 #

0.95 #

1.05 #

1.11 #

1.50 #

r=0.650 Pr=o,o4z
var=837.98065

r=0.650
var=957.5851 Pp>0.50
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Muscle., skeletal

Muscle, skeletal

canine
fresh
5-30 min.

= 1571.00000
(0.00000)

canine
fresh

= 1547.26636
(2.31410)

= 1494.,12439
(0.00000)

= 1565.16699
(2.31316)

= 1512.04663
(0.00000)

= 1550.06714
(2.69963)

= 1488.07178
(0.00000)

= 1555.29980
(1.92858)

= 1511.01123
(0.00000)

38.5

35
41

+ 1.00000*T
(0.00000)

5

37
40
43

+ 1.13334*T
(0.05774)
+ 3.80044*T
(0.00000)

37
40
43

+ 1.03333*T
(0.05772)
+ 3.69934*T
(0.00000)

37
40
43

+ 1.04999*T
(0.06736)
+ 4,16142*T
(0.00000)

37
40
43

+ 0.98334*T
(0.04812)
+ 3.20610*T
(0.00000)

1608.7
1629.3

le06 *
1612 *

1589.1
1592.8 #
1595.9 #

- 0.03334*T2
(0.00000)

1603.3
1606.7 #
1609.5 #

- 0.03333*T2
(0.00000)

1588.8
1592.3 #
1595.1 #

- 0.03889*T2
(0.00000)

1591.6
1594.8 #
1597.5 #

- 0.02778*T2
(0.00000)

0.88
0.56

1.00 # "

r=1.000
var=0.00000

1.23
1.03
0.82

r=0.999
var=0.06002

r=1.000
var=0,00000

1.13 "
0.92
0.71

r=0,998
var=0,.05997

r=1.000
var=0.00000

1.16 "
0.95
0.78

r=0.998
var=0.08168

r=1.000
var=0,00000

1.08 "
0.87
0.65

r=0.999
vars0.04169

r=1.000
var=0.,00000

Nasoni et al.
{(1979).

Bowen et al.
(1979).

P =0,032

P,=0.036

P,=0,041

P,=0,031



Nervous Tissue,

Nervous Tissue,

brain

brain

fetal r

5 0

spontaneouslabor 8
gest.: 17 weeks 16

1434,.22632
(0.59251)

1434.51428
(0.79797)

fetal,
17 weeks

1436.62964
(1.29698)

1435.11414
(1.10648)

fetal [
18 weeks

1434.67737
(3.46470)

1430.465009
(2.72681)

fetal,
19 weeks

1439.53430
(4.56546)

1433.43005
(2.58960)

+ 2.32732*T
(0.02580)
+ 2.26807*T
(0.10070)

0
8
16
24
30
37

+ 2.39323*T
(0.05647)
+ 2.70518*T
(0.13963)

0
8
16
24
30
37

+ 2.34727*T
(0.15085)
+ 3.21431*T
(0.34411)

0
8
16
24
30
37

+ 2.28517*T
(0.19878)
+ 3.54163*T
(0.32680)

1435
1452
1471
1490
1505
1520

+ 0.00161*T2
(0.00262)

1435
1457
1475
1495
1510
1523

- 0.00846*T2
(0.00364)

1430
1455
1478
1490
1508
1517

- 0.02352%p2
(0.00896)

1433
1459
1485
1496
1508
1519

- 0.03408%T2
(0.00851)

2.13 # Wladimiroff
2.38 # et al.

2.38 # (1975)*1
2,50 #

2.14 #

r=1.000 Pr=o,ooo
var=0.63946

r=1,.000
var=0.75779 Pp>0,50

2.75 # "
2.25 #
2,50 #
2.50 #
1.86 #

r=0.999 P =0.000
var=3.06401

r=1.000
var=1.45700 Pp=0.25

3.13 # "
2.88 #
1.50 #
3.00 &
1.29 #

r=0.992 Przo,ooo
var=21.86539

r=0.998
var=8,.84874 Pp=0,10

3.25 ¢ 7
3.25
1.38
2.00
1.57

= b i

r=0.985 P =0.000
var=37.96592

r=0.998
var=7.98067 Pp=0,05
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Nervous Tissue, brain

fetal, 0
24 weeks 8

16

24

30

37
1440.59412 + 2.,28205%*T
(1.72042) (0.07491)
1438.44116 + 2,72519*T
(1.25829) (0.15879)
fetal, 0
28 weeks 8

16

24

30

37

1441.98877 + 2,37450*T

(3.39697) (0.14790)
1438,.30627 + 3.13247*T
(3.24187) (0.40911)
fetal, 0
28 weeks 8

16

24

30

37

1444,28796 + 2.35889*T

(2.43151) (0.10587)
1441.05432 + 3,02447%T
(1.41814) (0.17896)
fetal. 0
29 weeks 8

16

24

30

37

1443,22986 + 2.39670*T

(3.09124)

(0.13459)

1439.54016 + 3.15618*T

(2.53179)

(0.31950)

1438
1460
1480
1495
1510
1523

- 0.01202*T2
(0.00414)

1437
1463
1487
1498
1512
1528

- 0.02056%*T2
(0.01066)

1440
1466
1485
1502
1515
1529

- 0.01805*T2
(0.00466)

1438
1466
1486
1500
1516
1529

- 0.02060*72
(0.00832)

r=0.
var=5.
r=0.
var=l,

3.25
3.00
1.38
2.33
2.29

r=0.

169

998 P, =0.000
39133

999

88424 Pp=0.10

# w
#
#
#
#

992 P =0.000

var=21.01882

r=0,

997

var=12.50731 PF=°-25

3.25
2.38
2.13
2.17
2,00

r=0.

# n

= A e Sk

996 Pr=o,ooo

var=10.76904

r=0.
var=2,

3.50
2.50
1.75
2.67
1.86

r=0.

999
39336 Pp=0.05

# W

L R

994 Pr=o_ooo

var=17.40572

r=0.
var=7.

998
62833 PF=°-10



Nervous Tissue, brain
fetal, 0 1459 2.75 # "
38 weeks 8 1481 2.25 #
16 1499 1.88 #
24 1514 3.00 #
30 1532 1.14 #
37 1540 ’
= 1461.70081 + 2,21561*T r=0.996 Pr=o,ooo
(2.40568) (0.10474) var=10.54146
= 1459,23206 + 2.72377*T - 0.01378*T2 r=0.998
(2.43924) (0.30782) (0.00802) var=7.08076 Pp=0.25
fetal, 0 1449 3.75 &# *
40 weeks 8 1479 3.13 #
16 1504 2,13 #
24 1521 1.83 #
30 1532 1.14 %
37 1540
= 1457.,07288 + 2,45707*T r=0.982 Pr=o,ooo
(5.47128) (0.23822) var=54,52602
= 1449,12500 + 4.09301*T - 0.04437*T2 r=1.000
(0.59024) (0.07449) (0.00194) var=0,41461 PF=0-001
fetal, 0 1457 2.88 & "
40 weeks 8 1480 3.00 #
16 1504 2.50 %
24 1524 1.00 #
30 1530 1.43 #
37 1540
= 1462.16394 + 2,27840*T r=0,985 P .=0,000
(4.52261) (0.19691) var=37.25672
= 1455.91675 + 3.56428*T - 0.03488*T2 r=0,999
(2.05286) (0.25906) (0.00675) var=5.01526 Pp=0.025
fetal, 5 0 1424 2.38 # *
induced labor 8 1443 3.75 #
gest.: 17 weeks 16 1473 2.50 #
24 1493 2.50 %
30 1508 1.43 %
37 1518
= 1425,58289 + 2,65655*T r=0.993 Pr=o,ooo
(3.64236) (0.15859) var=24,16522
= 1421,55920 + 3.48475*T -~ 0.02247*T2 r=0.997
(3.39213) (0.42807) (0.01115) var=13.69357 Pp=0,25
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Nervous Tissue.,

fetal,
17 weeks

= 1439.94189
(4.56689)

= 1433.68958
(2.23000)

fetal,
17 weeks

= 1434.78052
(3.68009)

= 1431.39368
(4.07529)

fetal,
18 weeks

= 1446.78235
(5.36979)

= 1439.56897
(2.96823)

fetal,
18 weeks

= 1446.73547
(4.87736)

= 1447.88098
(6.87641)

brain

+ 2.63781*T
(0.19884)
+ 3.92477*T
(0.28142)

0
8
16
24
30
37

+ 2.81145*T
(0.16023)
+ 3.50858*T
(0.51429)

+ 2.44614*T
(0.23380)
+ 3.93091*T
(0.37458)

0
8
16
24
30
37

+ 2.10945*T
(0.21236)
+ 1.87366*T
(0.86777)

1435
1460
1489
1507
1522
1530

- 0.03491%72
(0.00733)

1433
1457
1479
1506
1525
1532

- 0.01891*12
(0.01340)

1441
1467
1489
1514
1523
1528

- 0.04027*72
(0.00976)

1443
1472
1481
1489
1509
1529

+ 0.00640*72
(0.02260)

3.13
3.63
2.25
2.50
1.14

St o Ha ok 4

r=0,989
var=37.,98985

r=0.999
var=5.91811

3.00 # 7
2.75
3.38
3.17
1.00

e b otk g

r=0.994
var=24,.66852

r=0,996
var=19.76467
3.25 # "
2.75
3.13
1.50
0.71

2h s 3k Sk

r=0.982
var=52,52194

r=0,997
var=10.48495
3.63 # *
1.13
1.00 ¢#
3.33 #
2.86 #

e

r=0.980
var=43.33062

r=0,981
var=56.27245

P,=0.000

Pp=0,025

P,=0.000

P,=0.000

Pp=0.05

P,.=0,001
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Nervous Tissue,

fetal,
18 weeks

1453.52563
(3.99259)

1447.84155
(1.21022)

fetal,
19 weeks

1449.29578
(4.71524)

1443.44714
(3.53280)

fetal,
20 weeks

1444.62451
(4.97174)

1437.48621
(1.20260)

fetal 7
21 weeks

1440.05896
(1.48794)

1438.77100
(1.70968)

brain

0
8
16
24
30
37

+ 2.31171*T
(0.17384)
+ 3.48167*T
(0.15272)

+ 2.31500*T
(0.20530)
+ 3.51886*T
(0.44583)

0
8
16
24
30
37

+ 2.48916*T
(0.21647)
+ 3.95847*T
(0.15176)

0
8
16
24
30
37

+ 2.57953*T
(0.06478)
+ 2.84464*T
(0.21575)

1447
1475
1496
1512
1523
1534

- 0.03174*T2
(0.00398)

1441
1475
1489
1508
1519
1530

- 0.03265%72
(0.01161)

1437
1467
1492
1508
1520
1530

- 0.03985%72
(0.00395)

1440
1459
1482
1504
1519
1533

- 0.00719%72
(0.00562)

3.50
2.63
2.00
1.83
1.57

r=0,
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Sk o ok ok o

989 P _=0,000

var=29,.03582

r=1l.
var=l.

4.25
1.75
2.38
1.83
1.57

r=0.

000
74301 Pp=0.005

# n

He

#
#
#

985 P,=0.000

var=40.49800

. r=0-
var=14,85291 PF=°-10

3.75
3.13
2.00
2.00
1.43

r=0.

996

#ﬂ

e et S

985  P_.=0.000

var=45.02385

r=1,
var=l.

2.38
2.88
2.75
2.50
2.00

r=0.
var=4.,
r=0.
var=3.

000
72114 Pp=0.005

# L

e o e

999 Pr=o_ooo
03270

999

47857 Pp=0.50



Nervous Tissue, brain
fetal, 5 0
induced labor, 8
gest.: 21 weeks 16

24
30
37
= 1443,27930 + 2.58543*T
(2.96832) (0.12924)
= 1439,.54871 + 3.35331*T
(2.14441) (0.27062)
fetal, 5 0
induced labor, 8
- gest.: 16 weeks 16
24
30
37
= 1430.33911 + 2.38231*T
(3.41357) (0.14863)
= 1425,.,82727 + 3.31100*T
(2.05063) (0.25878)
fetal, 0
18 weeks 8
16
24
30
37
= 1444.51257 + 2.05152%*7T
(4.10791) (0.17886)
= 1438.78076 + 3.23132*T
(1.68713) (0.21291)
canine
fresh 5 35
44
= 1545.55554 + 0.55556*T
(0.00000) (0.00000)
canine
fresh, 5 37
white matter 40
43

= 1539.16650 + 0.65000*T
(0.38553) (0.00962)
= 1530.31311 + 1.09434*T
(0.00000) (0.00000)

1441
1462
1489
1508
1523
1534

- 0.02083*T2
(0.00705)

1427
1448
1474
1490
1504
1513

- 0.02519*T2
(0.00674)

1440
1460
1483
1499
1507
1514

- 0.03200*T2
(0.00555)

1565 *
1570 *

1563.2
1565.2 #
1567.1 #

- 0.00555%12
(0.00000)

- 2.50

2.63
3.38
2.38

st e Sk k= Gk

1.57

r=0.995
var=16.04900

r=0.999
var=5.47255

2.63 # "
3.25 #
2.00 #
2.33 &
1.29 #

P,=0.000

PF=0.10

r=0,992
var=21.22480

r=0.999
var=5,00435

# L

P,=0,000

Pp=0.05

2.50
2.88
2.00 #
1.33 #
1.00 #

£

r=0,985
var=30.73747

r=0,999
var=3.38744

P,=0.000

0.56 # Nasoni et ale.
(1979).

r=1.000
var=0,00000

0.67 Bowen et al.

0.62 (1979).

0.26 262

r=1.000 P, =0.009
var=0.00167

r=1.000

var=0,00000
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Nervous Tissue., brain
feline
fresh 4.2 25 1558 *
30 1562 *
37 1575 *
40 1560 *
47 1580 *
51 1571 *
= 1543,85913 + 0,62107*T
(13,02776) (0.33083)
= 1519,74707 + 1.96334*%T - 0.01763%72
(68.96774) (3.76931) (0.04927)
fresh 4.2 38 1568 *
42 1564 *
47 1573 *
52 1578 *
57 1578 *
62 1564 *
67 1565 *

= 1571.70996 - 0.03279*T
(14.11063) (0.26597)

= 1430.65601 + 5.54592*%T - 0.05323*T2

(65.45407) (2.56208) (0.02437)
Nervous Tissue, optic nerve
human
< 2 days 6-14 20 1644 (25.4)
pP. M. 37 1615 (3.1)
= 1678,11768 - 1.70588*T
(0.00000) (0.00000)
Nervous Tissue, spinal cord
human
excised NR 17.0 1509.0 (4.5)
22.0 1523.0 (4.6)
23.5 1523.0 (5.3)
26.2 1526.0 (3.0)
30.2 1532.6 (3.2)
33.2 1538.0 (2.6)
35.2 1538.0 (3.5)
37.2 1542.4 (3.3)
39.0 1543.8 (3.0)
40,8 1456.5 (2.0)

= 1528.19653 - 0.16321*T
(35.71491) (1.13887)

= 1292.51050 + 17.07262*T - 0.29366%*T2

(125.52821) - (8.95323)

(0.15162)

174

0.80 # Robinson &
1.86 # Lele

~-5.00 # (1972)*1
2.86 #

r=0.684
var=53.33926

r=0,700
var=68.20718 PF>0.50

# [+

P,.=0.134

-1.00
1.80
1.00
0.00

-2.80
0.20

Ak s ot Ak ok

r=0,055
var=47.45571

r=0.738
var=27.05433 Pp=0,10

-1.71 # Buschmann

et al.
(1970) *1

r=1.000
var=0,00000

2.80 # Rajagopalan
0.00 # et al.

1.11 # (1979).
1.65 #

1.80 #

0.00 #

2.20 #

0.78 #
-48.5 #

r=0.051
var=745.32202

r=0,592
var=554,5982 Pp=0.10

P,=0.890



human

excised

1502.27417
(7.99560)
= 1494.45959
(34.69392)

canine

fresh

1557.63354
(2.69869)

1495.65979
(0.00000)

distilled

NR

+ 1.
(0'
+ 2,
(2.

5

+ 1.
(0.
+ 4,
(0.

17.0
22.0
23.5
26.2
30.2
33.2
35.2
37.2
39.0
40.8

67978*T
25496)
25127*T
47452)

37
40
43

18333*T
06734)
29368*T
00000)

23.41
23.79
24.20
24,63
25.02
25.41
25.83
28.00
29.00
29,93
30.06
31.00
34.99
40.00
45.00

= 1444.66577 + 2.09981*T

(1.79421)

(0.

05985)

1408.70215 + 4.36714*T

(0.42018)

(0.

02619)

1528.0
1538.8
1544.3
1549.1
1556.4
1561.9
1546.0
1567.1
1569.3
1573.0

(1.8)
(1.8)
(1.8)
(1.6)
(2.0)
(1.7)
(2.1)
(2.3)
(2.6)
(2.1)

- 0.00974%72
(0.04191)

1601.3
1605.2 #
1608.4 #

- 0.03888*T2
(0.00000)

1492.27
1493.33
1494.48
1495.58
1496.65
1497.70
1498.77
1504.29
1506.72
1509.01
1509.34
1511.33
1519.81
1528.83
1536.36

(1)

- 0.03403%72
(0.00039)

2.16
3.67
1.78
1.83
1.83
-7.95
10.6
1.22
2.06

r=0.

# Rajagopalan

# et al.

# (1979).

EE R

919

var=37.35487

r=0.
var=42.36454 PF>0'50

1.31
1.07
0.84

r=0.
var=0.
r=1,
var=0,

2.79
2.81
2,56
2.74
2.69
2,55
2.54
2.43
2,46
2.54
2.12
2.13
1.80

920

Bowen et al.
(1979).

998
08163
000
00000

# McSkimin
# (1965).

= b Sk 3 dh Sb d 3k Sk s

P,=0,000

P,=0.036

)
w
-
3t

r=0.995

var=1.99646

r=1.000

var=0,00343

Pp=0.001
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APPENDIX B
ULTRASOUND ATTENUATION COEFFICIENT

Ultrasound attenuation coefficient as a function of temperature
for biological material. NR indicates data not reported. Values
marked with an (*) were interpolated from ‘'graphes. Values marked
with a (#) were estimated by the author (see text for details).
Following each block of data are linear and quadratic (if 3 or
more data points are available) least squares fits, as well as
log-linear and log-quadratic fits. The correlation coefficient
(r=...), the estimated variance of the data with respect to the
fit (var=...), the probability that random data could have
produced such a linear fit (P.=...), and the probability that
noise could have accounted for the change in X“ between the linear
and the quadratic fits (Pp=...) are provided. See Chapter 5 for a
more detailed explanation of these statistical parameters. The
standard deviations of the coefficients of the fits are included
in parentheses under the coefficients. References marked m*l or
m*2 were measurements made by m, but the data were taken from Goss
et al. (1978) or Goss et al. (1980), respectively.



177

Tissue/Material
species atten thermal
state/age freq temp coef (dev) coef ref
MEz ©°C dB/cm dB/cm/°C
*10~3
Blood
human
NR, 1 10 0.012 * 0.00 # Carstensen
average of 20 0.012 * -0.20 # et al.
red cells, 30 0.01 * -0.10 # (1953).
HGB, albumin 40 0.009 * # /gm protein
/100 cc
= 0,01350 - 0.00011*T r=0.947 P, =0.053
(0.00072) (0.00003) var=0.00000

= 0.01225 + 0.00002*T + 0.00000*T2 r=0.966
(0.00187) (0.00017) (0.00000) var=0.00000 Py>0.50

In=-4,27901 - 0.01045*T r=0.948 Pr=0'°52
(0.06784) (0.00248) var=0.00307
1n=-4,41071 + 0.00272*T - 0,00026*T2 r=0.972
(0.16140) (0.01472) (0.00029) var=0.00336 Pp>0.50

2 10 0.025 * -0.20 & "
20 0.023 * -0,20 #
30 0.021 * -0.20 #
40 0.019 *
= 0.02700 - 0.00020*T . r=1,000 Pr=o,ooo
(0.00000) (0.00000) var=0,00000

= 0.02700 ~ 0.00020*T + 0.00000*T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.,00000 Pp>0.50

In=-3,59335 -~ 0.00914*T r=0.999 Pr=0.001
(0.00724) (0.00026) var=0.00003
1n=-3.61423 - 0.00706*T - 0,00004*T2 r=1.000
(0.00095) (0.00009) (0.00000) var=0,00000 Pp=0,05

3 10 0.036 * -0.20 & "
20 0.034 * -0.20 #
30 0.032 * -0.20 #
40 0.03 *
= 0.03800 - 0.00020*T r=1.000 P, =0,000
(0.00000) (0.00000) var=0.00000

= 0.03800 - 0.00020*T + 0.00000*T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0,00000 Pp=0.10

In=-3.26165 - 0.00608*T r=1.000 P .=0.000
(0.00320) (0.00012) var=0.00001 )
1n=-3,27088 - 0.00515%*T - 0.00002*T2 r=1.000
(0.00028) (0.00003) (0.00000) var=0.00000 Pr=0,025



Blood
human
NR, 1 10 0.013 *
plasma 20 0.012 *
30 0.01 *
40 0.009 *
= 0.01450 -~ 0.00014*T
(0.00039) (0.00001)
= 0.01450 - 0.00014*T + 0.00000%T2
(0.00124) (0.00011) (0.00000)
1n=-4.19896 — 0.01285*T
(0.03640) (0.00133) )
1n=-4.23061 - 0.60969*T - 0.00006*T
(0.11158) (0.01018)  (0.00020)
2 10 0.028 *

20 0.025 *
30 0.022 *
40 0.019 *

= 0.03100 - 0.00030*T

(0.00000) (0.00000) 9
= 0.03100 - 0.00030*T + 0.00000*T
(0.00000) (0.00000) (0.00000)

1n=-3,.43833 - 0.01291*T
(0.01443) (0.00053) 9
1n=-3.47993 - 0.00875*T ~ 0.00008*T

(0.00266) (0.00024)  (0.00000)
3 10 0.046 *
20 0.038 *
30 0.034 *
40 0.03 *
= 0.05000 - 0.00052%7
(0.00190) (0.00007)
= 0,05500 - 0.00102*T + 0.00001*T2
(0.00249) (0.00023)  (0.00000)

1n=-2.96092 - 0.01394*T
(0.03382) (0.00123)

1n=-2.87855 - 0.02217*T + 0.00016*T2
(0.05837) (0.00532)  (0.00010)

-0.10 # Carstensen

-0.20 # et 2al.

-0.10 #

r=0.990
var=0.00000

r=0.990
var=0.00000

r=0,989
var=0.00088

r=0.990
var=0.00161

-0.30 #

r=1,.000
var=0.00000

r=1.000
var=0.00000

r=0.998
var=0.00014

r=1.000
var=0.00000

r=0.983
var=0.00000

r=0.997
var=0.00000

r=0.992
var=0.00076

r=0.998
var=0,00044

(1953) .
P,.=0.010

P,=0.011

P,.=0.000

P,=0.002

P,.=0,017

P_=0.008

Pp=0.50
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Blood

canine
fresh,
citrated

0.58 30
40

= 0.17000 - 0.00200*T

(0.00000)

(0.00000)

1n=-1.60526 - 0.02007*T

(0.00000)

(0.00000)

0.97 30
40

= 0.18000 - 0.00050%*T

(0.00000)

(0.00000)

In=-1.70949 - 0.00308*T

(0.00000)

(0.00000)

1.8 30
40

= 0.33000 - 0.00100*T

(0.00000)

(0.00000)

In=-1.10227 - 0.00339*T

(0.00000)

(0.00000)

3.0 30
40

= 0.66000 — 0.00200*T

(0.00000)

(0.00000)

1n=-0.40912 - 0.00339*T

(0.00000)

(0.00000)

4.8 30
40

= 1.30000 - 0.00500*T

(0.00000)

(0.,00000)

In= 0.27312 - 0.00445*T

(0.00000)

(0.00000)

0.165
0.16

0.29

0.6

r=1.000
var=0.00000

r=1.000
var=0.00000

r=1,000
var=0,00000

r=1.000
var=0.00000

r=1.000
var=0.00000

r=1.000
var=0.00000

r=1.,000
var=0,.00000

r=1,000
var=0,00000

-5.00 #
r=1.000
var=0,00000

r=1.000
var=0,00000

Yosioka

et al.
(1969) *1
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Blood
NR
plasma 1.2 20 0.08 -0.50 # Schwan &
40 0.07 Carstensen
(1952) *1
= 0,09000 - 0.00050*T r=1,000
(0.00000) (0.00000) var=0.00000
1n=-2.39220 -~ 0,00668*T r=1.000
(0.00000) (0.00000) var=0.00000
2.4 20 0016 _1050 # "
40 0.13
= 0,19000 - 0,00150*T r=1.000
(0.00000) (0.00000) var=0.00000
In=-1.62494 - 0.01038*T r=1,000
(0.00000) (0.00000) var=0.00000
Bone
equine
NR 1.43 10 28.5 * 150.0 # Kishimoto
20 30 * 100.0 # (1958)*1
30 31 * 200.0 #
40 33 * 200.0 #
50 35 *
=26,70000 + 0.16000*T r=0.992 Pr=0.001
(0.38297) (0.01155) var=0.13333 .

=27.70000 + 0.07429*T + 0,00143*T2 r=0,998
(0.51270) (0.03907) (0.00064) var=0.05714 Pp=0.25

In= 3.29553 + 0.00506*T r=0.995 P.=0.000
(0.00978) (0.,00029) 2 var=0.00009

In= 3.317%4 + 0.00314*T + 0.00003*T r=0.998
(0.01642) (0.00125) (0.00002) var=0.00006 Py=0.50



Bone

2.86 5
10
20
30
40
50

=40.05315 + 0.19923*T

(0.07007)

(0.00231)

41 *
42 *
44,2 *
46 *
48 *
50 *

=39.97109 + 0.20852*T - 0,00017*T2

(0.11514)

(0.01047)

In= 3.69503 + 0.00440*T

(0.00296)

(0.00019)

1n= 3.68852 + 0.00513*T - 0,00001*T2

(0.00268)

(0.00010)
(0.00024)
4.5 1o
20
30
40
50
60

=71.04000 + 0.16886*T

(0.50515)

(0.01297)

(0.00000)
72 *
75 *
76.5 *

78 *
79.2 *
81 *

=69.84000 + 0.25886*T — 0.00129*T2

(0.77327)

(0.05059)

ln= 4.26525 + 0.00221*T

(0.00731)

(0.00019)

(0.00071)

1n= 4.24694 + 0,00358%T - 0,00002*T2

(0.01048)

(0.00069)

(0.00001)

200.0
220.0
180.0
200.0
200.0

a4k sk 3k 3k

r=1.000
var=0.00811

r=1.000
var=0,00847

r=0.999
var=0.00001

r=1.000
var=0.00000

300.0 #
150.0 %
150.0 #

120.0 #

180.0 #

r=0.,988
var=0.29443

r=0.994
var=0.18686

r=0,986
var=0.00006

r=0.994
var=0,00003

P,=0.000

P,=0,000

P,=0,000

Pp=0.25
P.=0.000

181



Fat
N
Fat
porcine

fresh, 2 4
stored @ 5°c, 20
backfat 37
49

= 9.80965 - 0.16581*T

(0.61252)

= 9.87931 - 0.17489*T + 0.00017*T2
(0.00210)

(1.21149)

(0.01893)
(0.11406)

In= 2.45225 - 0,03522*T

(0.15875)

ln= 2.29695 - 0.01496*T - 0.00038%T2

(0.22415)

(0.00491)
(0.02110)

4 4
20
37
49

=22.55095 - 0.41003*T

(1.57879)

=23.20702 - 0.49564*T + 0.00162*T2
(0.00519)

(2.99027)

(0.04880)
(0.28154)

In= 3.33244 - 0.04190*T

(0.18755)

in= 3.16446 - 0.01999*T - 0,00042*T2
(0.00049)

(0.28494)

(0.00580)
(0.02683)

6 37
49

=16.20833 - 0.20833*T

(0.00000)

(0.00000)

In= 3.21401 - 0.02903*T

(0.00000)

(0.00000)

8 37
49

=23.29167 - 0.29167*T

(0.00000)

(0.00000)

In= 3.53862 - 0.02738*T

(0.00000)

(0.00000)

NWJWw
e o o o

OO0

8.5
6.0

12.5

* ¥ * *

(0.00039)
20.8 =
15.3 =*
5.5 *
3.5 *

*
*

(1.5)

-125.0 # Gammell

-235.3 # et al,

-83.33 #

r=0.987
var=0.41624

r=0.987
var=0.82692

r=0,.981
var=0.02796

r=0.990
var=0.02831

-343.8 #
-576.5 #
-166.7 #

r=0,986
var=2.76530

r=0.987
var=5.03785

r=0.981
var=0.03902

r=0.989
var=0.04574

-208.3 #

r=1.000
var=0.00000

r=1.000
var=0,00000

-291.7 #
r=1.000
var=0,00000

r=1.000
var=0.00000

(1979) *2
P,=0.013

P,=0.019

P,.=0.014

P .=0.019
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Fat

9.9 37
49

=29,83333 - 0.33333*T

(0.00000)

ln=
(0.00000)

(0.00000)

3.66236 - 0.02163*T

(0.00000)

Fat, peritoneal

- — —— — - —— ]~ -

——

bovine
fresh, 1 10
peritoneal 20
30
37
60

= 5.,14883 - 0.05506*T

(1.39172)

(0.03899)

17.5
13.5

WM B
e o o o© o

o+OoOOO

*
*
*
*
*

= 9.10395 - 0.34709*T + 0.00409*T2

(0.63217)

(0.04107)

In= 1.56873 - 0.01358*T

(0.41362)

(0.01159)

(0.00056)

in= 2.71185 - 0.09798*T + 0.00118%*T2

(0.29366)

(0.01908)

2 20
30
37
60

= 5.,73239 - 0.04442*T

(2.62299)

(0.06626)

(0.00026)
6.6 *
3.2 *
2.6 *
4.0 ®

=17.22541 - 0.69414*T + 0.00790%*T2

(1.79860)

(0.09784)

ln= 1.64436 - 0.00806*T

(0.61908)

(0.01564)

(0.00118)

1n= 4.38265 - 0.16286*T + 0.00188%T2

(0.16079)

(0.00875)

(0.00011)

-333.3 #
r=1,000
var=0.00000

r=1.000
var=0.00000

(10%) -200.0

#
-200.0 #
14.29 #
39.13 #

r=0.632
var=2.18839

r=0.989
var=0,11903

r=0.560
var=0.19330

r=0.969
var=0.02568

-85.71 #
60.87 #

r=0.428
var=3.80494

r=0.991
var=0.16546

r=0,.343
var=0.21196

r=0.999
var=0.00132

Bamber & Hill
(1979) *2
Pr=0-253

Pp=0.025
P.=0.326

P,=0.572

P,=0.657
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Fat, peritoneal

3 20 9
30 4
37 3
60 6

* % ¥ F

= 7.49821 - 0.04145*T
(4.34883) (0.10985)

=26.74143 - 1.12930*T + 0.01323*T2
(0.97586) (0.05309) (0.00064)

In= 1.86991 - 0.00444*T
(0.76075) (0.01922)

ln= 5.22963 - 0.19437*T + 0,00231+*T2
(0.27873) (0.01516) (0.00018)

4 30 7.2 *
37 4.2 *
60 7.3 *

= 4,70670 + 0.03606*T
(4.70127) (0.10629)

=40,90124 - 1.68673*T + 0.01878*72
(0.00000) (0.00000)  (0.00000)

1n= 1.53106 + 0.00633%T
(0.84314) (0.01906)

1n= 8.02232 - 0.30264*T + 0.00337*T2
(0.00000) (0.00000) (0.00000)

5 30 10.0 =
37 6.0 *
60 8.2 *

= 8.96604 - 0.02124*T
(5.56688) (0.12586)

=51,82484 - 2,06124*T + 0,02224*T2
(0.00000) (0.00000)  (G.00000)

1n= 2.13332 - 0.00159*T
(0.72233) (0.01633)

in= 7.69443 - 0,26628*T + 0,00289*T2
(0.00000) (0.00000)  (0.00000)

-490,0 #
147.8 #

r=0.258

var=10.45924

r=0,999
var=0.04871

r=0.161
var=0.32007

r=0.997
var=0.00397

-428.6 #
134.8 #

r=0.321
var=5.56596

r=1.000
var=0.00000

r=0.315
var=0.17902

r=1.000
var=0.00000

95.65 #

r=0.166
var=7.80430

r=1,000
var=0.00000

r=0,097
var=0.13139

r=1.000
var=0.00000

P,=0.742

Pp=0.05

P .=0.839

Pp=0.10

P,=0.792

P,.=0.796

P, =0.894

P,=0.938
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Fat, peritoneal

6 30
37
60

=12.29263 - 0.06597*T
(7.28256) (0.16465)

=68.36024 - 2.73468*T + 0.02909*T
(0.00000)

(0.00000) (0.00000)

In= 2,45592 - 0.00550*T
(0.78242) (0.01769)

ln= 8.47971 - 0.29222*T + 0.00313*T2
(06.00000)

(0.00000) (0.00000)
7 30
37
60

=17.36773 - 0.14648*T
(10.08155) (0.22793)

=94.98447 - 3.84089*T + 0.04027*T2
(0.00000)

(0.00000) (0.00000)

ln= 2.84147 - 0.01119*T
(0.88870) (0.02009)

l1n= 9.68345 - 0.33685*T + 0.00355*T2

s e e s St Bt Bt e W s e e B B G e S e e e ol o Yt Do Gy W TS S P Y W P B WS A o S Pt e W T ke B e B G e i S i Gl Vo e W i o W O S By

(0.00000) (0.00000) (0.00000)
Heart
canine cm"l
fresh, 2 19.5 ¢.10
15 min., 35 0.09
left ventrical
= 0,11258 - 0,00065*T
(0.00000) (0.00000)
In=-2,17003 - 0,00680%*T
(0.00000) (0.00000)
4 19.5 0.19
35 0.17

= 0,21516 - 0.00129*T
(0.00000) (0.00000)

In=-1.52080 - 0.00718*T
(0.00000) (0.00000)

16.0
8.0
9.5

-785.7 # "
86.96 #

r=0.372

Pr=°'757
var=13.35606

2 r=1.000

var=0,00000

r=0.297
var=0.15417

r=1.000
var=0.00000

P,=0.808

-1143. # "
65.22 #

r=0,541
var=25.59557

r=1,000
var=0.00000

r=0.487
var=0.19889

r=1.000
var=0.00000

P =0.677

(0.02) -0.65 # O'Donnell

(0.02) et al,
(1977) .

r=1.,000
var=0,00000

r=1.,000
var=0,00000

(0.03) -1.29 & "
(0.02)

r=1.000
var=0.00000

r=1,000
var=0,00000
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Heart

6 19.5

35

= 0.39032 - 0.00258*T
(0.00000) (0.00000)

In=-0.92135 - 0.00808*T
(0.00000) (0.00000)

8 19.5

35

= 0.54290 - 0.00323*T
(0.00000) (0.00000)

1In=-0.59558 - 0.00710*T
(0.00000) (0.00000)

10 19.5

35

= 0.76323 - 0.00581*T
(0.00000) (0.00000)

1n=-0,24329 - 0.00962*T
(0.00000) (0.00000)

fresh, 2 19,5

2 hrs. 35
left ventrical

= 0.11258 - 0.00065*T
(0.00000) (0.00000)

ln=-2.,17003 - 0.00680*T
(0.00000) (0.00000)

4 19.5

35

= 0.21258 - 0.00065*T
(0.00000) (0.00000)

In=-1.54491 - 0.00331*T
(0.00000) (0.00000)

0.34
0.30

0.65
0.56

0.10
0.09

0.20

(0.02) ~-2.58 #
(0.03)

r=1.000
var=0,00000

r=1.000
var=0,00000

(0.03) -3.23 #
(0.03)

r=1.000
var=0.00000

r=1.000
var=0.00000

(0.03) -5.81 #
(0.03)

r=1.000
var=0.,00000

r=1.000
var=0.00000

{(0.02) -0.65 #
(0.02)
r=1,000
var=0.00000

r=1.000
var=0.00000

(0.02) -0.65 #
(0.03) '

r=1.000
var=0.00000

r=1.000
var=0,00000
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Heart

6 19.5

35

= 0.38516 - 0.00129*T
(0.00000) (0.00000)

1n=-0.94974 - 0.00369*T
(0.00000) (0.00000)

8 19.5

35

= 0.53774 - 0.00194*T
(0.00000) (0.00000)

In=-0.61530 - 0.00399*T
(0.00000) (0.00000)

10 19.5

35

= 0.81323 - 0.00581*T
(0.00000) (0.00000)

1n=-0.18354 - 0.00888*T
(0.00000) (0.00000)

fresh, 2 19.5

4 hrs.' 35
left ventrical

= 0.08742 + 0.00065*T
(0.00000) (0.00000)

In=-2,.,42249 + 0.00615*T
(0.00000) (0.00000)

4 19.5

35

= 0.,17484 + 0.00129*T
(0.00000) (0.00000)

ln=-1.72934 + 0.00615*T
(0.00000) (0.00000)

0.50

0.70
0.61

(0.02) -1.29 #
(0.03)

r=1.000
var=0.00000

r=1.000
var=0,00000

(0.03) -1.94 %
(0.03)

r=1.000
var=0.00000

r=1.000
var=0.00000

(0.03) -5.81 #
(0.04) ‘

r=1.000
var=0.00000

r=1.000
var=0.00000

(0.02) 0.65 #
(0.02)

r=1.000
var=0.00000

r=1.000
var=0,00000

(0.02) 1.29 %
(0.03)

r=1,000
var=0,.00000

r=1.000
var=0.00000

"
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Heart

6 19.5
35
= 0.32484 + 0.00129*T
(0.00000) (0.00000)
1n=-1.,11973 + 0.00359*T
(0.00000) (0.00000)
8 19.5
35
= 0,45226 + 0.00194*T
(0.00000) (0.00000)
1n=-0.78811 + 0.00383*T
(0.00000) (0.00000)
10 19.5
35
= 0,75290 - 0.00323*7
(0.00000) (0.00000)
ln=~0.,27643 - 0.00485*T
(0.00000) (0.00000)
fresh, 2 20.5
left ventrical 25
30
37

= 0.08588 + 0.00059*T

(0.00789)

= 0.14523 - 0,00371*T + 0.00007*T2
(0.00002)

(0.01911)

(0.00027)
(0.00137)

In=-2,43716 + 0.00563*T

(0.07518)

1n=-1,87150 - 0.03539*T + 0.00071*T2
(0.00022)

(0.18210)

(0.00261)
(0.01305)

0.35
0.37

0.10
0.10
0.10
0.11

(0.02)
(0.03)

(0.03)
(0.03)

(0.02)

1.29 #

r=1.000
var=0,00000

r=1.000
var=0.00000

1.94 #%
r=1,000
var=0,00000

r=1.000
var=0,00000

(0.03) -3.23 #
(0.04)

r=1.000
var=0,00000

r=1.000
var=0,00000

0.00 #

(0.02)
(0.02)
(0.02)

r=
var=
r=
var=

r=
var=

r=
var=

0.00 %
1.43 #

0.836
0.00001
0.986
0.00000

0.836
0.00102
0.986
0.00019

P,.=0.164

PF=0.25
P =0.164

PF=0.25
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Heart

4 20.5 0.19 (0.02) 0.00 # "
25 0.19 (0.02) -4.00 #
30 0.17 (0.02) 2.86 #
37 0.19 (0.02)
r=0,177

= 0.19202 - 0.00025*T

(0.02831)

(0.00098)

= 0.35128 ~ 0.01180*T + 0.00020*T2

(0.15928)

(0.01141) (0.00020)

In=-1.64948 - 0.00139*T

(0.15746)
(0.88582)

var=0,00015

r=0.723

var=0.00014

r=0.177

(0.00547) 2 var=0.00449

1n=-0.76381 - 0.06562*T + 0,00111*T r=0.723
(0.06347) (0.00109) var=0.00442

6 20.5 0.34 (0.03) -2,22 & *
25 0.33 (0.03) -4.00 #
30 0.31 (0.03) 0.00 #
37 0.31 (0.03)
r=0,915

= 0,37704 - 0.00194*T

(0.01743)

(0.00061)

= 0.48739 ~ 0.00994*T + 0.00014*T2

(0.08353)

(0.00598) (0.00010)

1n=-0.96397 - 0.00599*T

(0.05391)
(0.26640)

var=0.00006

r=0.970

var=0,00004

r=0,915

(0.00187) var=0.00053

in=-0.62885 - 0.03030*T + 0.00042*T2 r=0.968
(0.01809) (0.00033) var=0.00040

8 20.5 0.48 (0.03) -6.67 # "
25 0.45 (0.03) -4.00 #
30 0.43 (0.03) -2.86 #
37 0.41 (0.03)
r=0,980

= 0.55884 - 0.00414*T

(0.01704)

(0.00059) '

= 0.69006 - 0.01365%*T + 0.00016*T2

(0.02977)

(0.00213) (0.00004)

1n=-0.55418 - 0.00935*T

(0.03372)

(0.00117)

1n=-0.29425 - 0.02820*T + 0.00033*T2

(0.05808)

(0.00416) (0.00007)

var=0.00005

r=0.999

var=0,00000

r=0.985

var=0,00021

r=0.999

var=0.00002

P,=0.823

PF=0.50
P =0.823

P,=0.085

P =0.085

Pp=0.50

P,=0.020

Pp=0.25
P .=0.015
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Heart

10 20.5 0.64
25 0.61
30 0.58
37 0.56

= 0.73397 - 0.00485*T
(0.01957) (0.00068)

= 0.88547 - 0.01584*T + 0,00019*%T2
(0.00004)

(0.03077) (0.00220)

In=-0.28789 - 0.00812*T
(0.02991) (0.00104)

1n=-0.05883 - 0.02473*T + 0.00029*72

e B G e S s U B S ot Y T AR W Tt T WD ik WD s T W S W00 o Bt . e e St O G e S e Tt e S S i Sk i S S S i S W S G A s Tt G o o (e S W
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(0.05801) (0.00416) (0.00007)
canine cm 1/MHz
fresh, 2-10 19.5 0,072
15 min., 35 0.061
left ventrical
= 0.08584 - 0.00071*T
(0.00000) (0.00000)
ln=-2,42251 - 0.01070%*T
(0.00000) (0.00000)
fresh, 2-10 19.5 0.075
2 hrs.., 35 0.068
left ventrical
= 0.08381 - 0.00045*7T
(0.00000) (0.00000)
In=~2.46700 -~ 0,00632*T
(0.00000) (0.00000)
fresh, 2-10 19.5 0.075
4 hrs., 35 0.071

left ventrical

= 0.08003 - 0.00026*T
(0.00000) (0.00000)

ln=-2,52132 - 0.00354*T
(0.00000) (0,00000)

(0.03)
(0.03)
(0.03)
(0.03)

-6.67 #
-6.00 #

r=0,981
var=0.00007

r=0.999
var=0.00001

r=0.984
var=0.00016

r=0.999
var=0.00002

r=1.000
var=0,00000

r=1.000
var=0,00000

r=1.000
var=0,00000

r=1.000
var=0.00000

r=1.000
var=0,00000

r=1.000
var=0,00000

n

(0.002)-0.71 # O'Donnell

(0.003) et al.

(1977)*1

(0.002)-0.45 # "
(0.003)

(0.002)~-0.26 # "
(0.003)
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Heart
fresh, 2-10 10.5 0.071
left ventrical 25 0.068
30 0.064
37 0.058

= 0.07723 - 0.00047*T
(0.00348) (0.00013)

= 0.06763 + 0.00056*T — 0.00002*T2
(0.00000)

(0.00157) (0.00015)

In=-2.54732 - 0.00722*T
(0.05774) (0.00211)

1n=-2.70770 + 0.00989*T — 0,00037*T2
(0.00004)

(0.01887) (0.00182)
Kidney
porcine
fresh, 2 4
<1 hr. p.m. 20
stored @ 5°C 37

= 0.82117 + 0.02191*T
(06.97220) (0.03986)

= 1.83512 -~ 0.15053*T + 0.00419*T2
(0.00000)

(0.00000) (0.00000)

In=-0.19247 + 0.01377*T
(0.99351) (0.04073)

in= 0.84371 - 0.16246*T + 0.00428*T2

(0.00000) (0.00000)
4 4
20
37

= 2.81353 + 0.01573*T
(0.80413) (0.03297)

= 3.65218 - 0.12691*T + 0.00346%T2
(0.00000)

(0.00000) (0.00000)

In= 1.03585 + 0.00459*T
(0.27070) (0.01110)

in= 1.31817 - 0.04342*T + 0.00117*T2
(0.00000)

(0.00000) (0.00000)

(0.002)-0.21 #
(0.002)-0.80 #
(0.002)-0.86 #
(0.002)

r=0.934
var=0.00001
r=0.999

r=0.924
var=0.00168

r=0.999
var=0,00004

-50.0 #
88.2 #
#

* (1.5)
*

r=0.,482
var=0.86521

r=1.000
var=0.00000

r=0,320
var=0.90357
r=1.000

(0.00000) var=0.00000
3.2 * -4308 #
2.5 * 70.6 %
3.7

r=0,431
var=0.59193
r=1.000

var=0,00000

r=0.382
var=0,06708

r=1.000
var=0.00000

var=0.00000

P,=0.066

P,=0.076

Gammell
et al.
(1979) *2

P,=0.680

P,.=0.792

P,=0.717

P,=0.750
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Kidney
6 4 5.5 *
20 4.0 *
37 5.0
= 5.12576 ~ 0.01438*T
(1.07304) (0.04399) 2
= 6.,24488 - 0.20471*T + 0.00462*T
(0.00000) (0.00000) (0.00000)
In= 1.62217 - 0.00272*T
(0.23229) (0.00952)
in= 1.86443 - 0,04392*T + 0.00100%T2
(0.00000) (0.00000) (0.00000)
8 4 8.5 *
20 6.0 *
37 6.9
= 8,09774 - 0.04743*T
(1.47123) (0.06031) 2
= 9,63213 - 0.30839*T + 0,00634*T
(0.00000) (0.00000) (0.00000)
In= 2.07987 - 0.00617*T
(0.21092) (0.00865) 9
In= 2,29985 - 0.04358*T + 0.00091*T
(0.00000) (0.00000) (0.00000)
9.9 4 12.6 *

20 7.8 *
37 9.0 *

=11.98017 - 0.10722*T
(2.60632) (0.10685)

=14.69840 - 0.56952*T + 0,01123*T2
(0.00000) (0.00000) (0.00000)

2.46507 -~ 0.01000*T

(0.27000) (0.01107)

ln= 2.74666 - 0,05789*T + 0.00116%*T2
(0.00000) (0.00000) (0.00000)

In=

-93.8 # "
58.8 #

r=0.311
var=1.05401

r=1.000
var=0,00000

r=0.275
var=0,04940

r=1.000
var=0.00000

-15603 # "
52.9 #

r=0.618
var=1.98140

r=1.000
var=0.00000

r=0,581
var=0.04072

r=1.000
var=0.00000

-300.0 # "
70.6 #

r=0.708
var=6.21826

r=1.000
var=0.00000

r=0.670
var=0.06673

r=1.000
var=0.00000

P,=0.,799

P,=0.823

P =0.576

P,=0.499

P,=0,532
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Liver
human
p. M. 1 5 1.2 *
11 1.5 *
22 1.6 *
30 l.6 *
42 1.6 *

= 1.,30114 + 0.00904*T
(0.11050) (0.00430) 9
= 1.08617 + 0.03638*T - 0.00059*T
(0.11500) (0.01194) (0.00025)

ln= 0.25859 + 0.00641*T
(0.08118) (0.00316)

1n= 0.10332 + 0.02616*T — 0.00042%T2
(0.08830) (0.00917) (0.00019)

2 5 2.1 *
11 2.1 *
22 1.8 *
30 1.8 *
42 1.7 *

= 2.16178 - 0.01190*T
(0.06389) (0.00249)

= 2.24165 - 0.02206*T + 0.00022*T2
(0.10770) (0.01119) (0.00023)

ln= 0.77544 - 0.00625*T
(0.03200) (0.00125) 2
in= 0.81293 - 0.01102*T + 0.00010%*T
(0.05534) (0.00575) (0.00012)

3 5 3.0 *
11 2.7 *
22 2.5 %
30 2.4 *
42 2,2 *

= 3.00050 - 0.02002*T
(0.07367) (0.00287)

= 3,12521 - 0.03589*T + 0.00034*T2
(0.09912) (0.01029) (0.00022)

In= 1.10632 - 0.00781*T
(0.02333) (0.00091)

1n= 1.14216 - 0.01237*T + 0.00010%T2
(0.03469) (0.00360) (0.00008)

(10%) 50.0 # Bamber & Hill

9.09 # (1979)*2
0.00 #
0.00 #

r=0.771 P,=0.127
var=0.01620

r=0.945
var=0.00645 PF=0,25

r=0,760 Pr=0-135
var=0,00874
r=0.937
var=0.00381 Pp=0.25
0.00 "
~-27.3
0.00
-8.33

L

r=0,.940 Pr=°°°17
var=0,.00542

r=0.959
var=0.00566 Pp=0.50

r=0.945 P,=0.015
var=0.00136

r=0.960
var=0,00149 Pp=0.50

- =50.0 # "
-18.2 #
-12.5 #
-16.7 #

r=0.971 P.=0.006
var=0.,00720

r=0.987
var=0.00480 Pp=0,50

r=0.980 Pr=0,oo3
var=0.00072

r=0,989
var=0.,00059 Pp=0.50



Liver

4 5 3.8 %
11 3.3 *
22 2.8 *
30 2.5 %
42 2.4 %
= 3.78815 - 0.03764*T
(0.18318) (0.00714)
= 4.19770 - 0.08974*T + 0.00112*72
(0.06424) (0.00667)  (0.00014)

In= 1.34666 - 0.01257*T
(0.05143) (0.00200) 9
iIn= 1.46119 - 0.02714*T + 0.00031*T

(0.02025) (0.00210) (0.00004)
5 5 4.3 *
11 3.8 *
22 3.2 *
30 3.0 *
42 2.8 *
= 4.29849 - 0.03993*T
(0.18376) (0.00716)
= 4.70858 - 0.09210*T + 0,00112*T2
(0.06822) (0.00709) (0.00015)

in= 1.47124 - 0.01156*T
(0.04372) (0.00170)
1n= 1.56948 - 0.02405*T + 0.00027*T2

(0.01265) (0.00131) (0.00003)
6 5 5.7 *
11 4,7 *
22 3.8 *
30 3.5 *
42 3.2 *
= 5.60471 - 0.06476*T
(0.34822) (0.01357) 2
= 6.,35978 - 0.16081*T + 0.00206*T
(0.20836) (0.02164) (0.00045)
In= 1.74323 - 0.01525*T
(0.06381) (0.00249)

ln= 1.88416 - 0.03317*T + 0.00038%*T2
(0.02985) (0.00310) (0.00006)

-83.3
-45.5
-37.5
-8.33

= b 3k 4k

r=0.950
var=0.04451

r=00999
var=0.00201

r=0,964
var=0.00351

r=0.999
var=0.00020

-83.3 #
-54.5 #
-25.0 #
-16.7 #

r=0.955
var=0.04480

r=0.,999
var=0.00227

r=0.969
var=0.00254

r=0.999
var=0.00008

-166.7 #
-8l.8 #
-37.5 #
~-25.0 #

r=0,940
var=0.16087

r=0.995
var=0.,02119

r=0.962
var=0.00540

r=0,998
var=0.00044

P,.=0.013

Pp=0,025
P.=0,008

Pp=0.025

P,=0.011

P,=0.007

P,=0,017

P.=0.009

Pp=0,05
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Liver

7 5 7.2 *
11 6.0 *
22 4.9 *
30 4.5 *
42 4.2 *

= 7.,08174 - 0.07826*T
(0.43089) (0.01679) 2
= 8.02809 -~ 0.19864*T + 0.00258*T
(0.22045) (0.02290) (0.00048)

lIn= 1.97436 — 0.01434*T
(0.06369) (0.00248)

ln= 2.11685 — 0.03247*T + 0,00039*72
(0.02190) (0.00227) (0.00005)

""200.
-100.
—50.
-250

3= dh bk 3k

0
0
0
0

r=0.937
var=0.24632

r=0.996
var=0.02372

r=0.958
var=0.00538

r=0,999
var=0.00023

human
autopsy, 2 4 4.2 *# (1.5) -100.0 #
refrig 60 hrs., 20 2.6 * -35.3 #
micronodular 37 2.0 * #
cirrhosis
= 4,28225 ~ 0.06634*T r=0.963
(0.45507) (0.01866) var=0.18957
= 4,75686 ~ 0.14706*T + 0.00196*T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
In= 1.48358 - 0.02241*T r=0.,983
{0.10226) (0.00419) var=0.00957
ln= 1.59023 - 0.04055*T + 0.00044*'1‘2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
4 4 8.0 * ~125.0 #
20 6.0 * -88.2 #
37 4.5 *
= 8.,31946 - 0.10588*T r=0.995
(0.25856) (0.01060) var=0.06120
= 8.58913 - 0.15174*T + 0.00111*T2 r=1.000
(0.00000) (0.00000) (0,00000) var=0.00000
In= 2.14617 - 0.01743*T r=1,.000
(0.00744) (0.00030) var=0.00005
ln= 2.15393 - 0.01875*T + 0.00003*T2 r=1.000

(0.00000) (0.00000) (0.00000)

var=0.,00000

P.=0.019

P,.=0.010

Pp=0.025

Gammell

et al.
(1979) *2

P .=0.175

P.=0.118

P,=0.063

P,=0.011
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Liver

6 4
20 9.5 *
37 8.0 *

=13.23409 - 0.15086*T
(0.91790) (0.03763) 2
=14.19140 - 0.31367*T + 0.00395*T
(0.00000) (0.00000) (0.00000)

1n= 2.59674 - 0.0l466*T
(0.06678) (0.00274) )
1n= 2.66638 — 0.02651*T + 0.,00029%T
(0.00000) (0.00000)  (0.00000)
' 8 4 18.6 *

20 13.6 *
37 11.5 =

=18.92203 - 0.21420*T

(1.32902) (0.05448)
=20.30811 - 0.44993*T + 0,00573*T2
(0.00000) (0.00000) (0.00000)

In= 2.95379 - 0.01452*T
(0.06823) (0.00280)

1n= 3.02495 - 0.02662*T + 0.00029*T2
(0.00000) (0.00000) (0.00000)

9.9 4 24.0 *
20 17.9 =
37 15.5 =+

=24,34608 - 0.25636*T
(1.68842) (0.06922)

=26.10700 - 0.55585*T + 0,00727*T2
(0.00000) (0.00000)  (0.00000)

3.20295 - 0.01320%T
(0.06934) (0.00284)

1n= 3.27527 - 0.02550*T + 0.00030%T2
(0.00000) (0.00000) (0.00000)

in=

-21808 # "

r=0.970
var=0.77127

r=1.000
var=0.00000

r=0,983
var=0.00408

r=1.000
var=0.00000

-312.5 & "
-123.5 #

r=0.969
var=1.61687

r=1.000
var=0,00000

r=0.982
var=0.00426

r=1.000
var=0.00000

-381.3 # "
-141.2 #

r=0.965
var=2.60960

r=1.000
var=0.00000

r=0.,978
var=0.00440

r=1.000
var=0.00000

P,=0.156

P,=0,117

P,=0,121

P,.=0,168

P =0.135
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Liver

bovine
fresh,
<30 min.

1 8

= 1,56717 + 0.02760*T

(0.37847)

= 1.96648 ~ 0.00702*T + 0.00053*T2
(0.00073)

(0.68809)

(0.00993)
(0.04896)

In= 0.52487 + 0.01083*T

(0.14439)

In= 0.67503 - 0.00219*T + 0,00020%*T2

(0.26349)

(0.00379)
(0.01875)
2 8

= 2,27401 + 0.02385*T

(0.55490)

= 3.07755 - 0.04582*T + 0.00107*T2
(0.00094)

(0.88394)

(0.01456)
(0.06289)

in= 0.85431 + 0.00743*T

(0.18550)

in= 1.12930 ~ 0.01641*T + 0.00037*T2

(0.29089)

(0.00487)
(0.02070)
3 8

= 4,01718 + 0.00245*T

(0.72224)

= 5,31822 - 0.11035*T + 0.00173*T2
(0.00098)

(0.92535)

(0.01895)
(0.06584)

In= 1.37645 + 0.00071*T

(0.18261)

in= 1.70456 - 0.02774*T + 0.00044*T2
(0.00025)

(0.23489)

(0.00479)
(0.01671)

* % ¥ * *

(0.00028)
2.9 *
2.4 *
2.5 *
3.8 *
3.8 *

(0.00031)
4.7 *
3.5 *
3.3 *
4.5 *
4.5 *

(10%)

6.25 #

0.00 # Bamber & Hill

(1979) *2

137.5 # sample #1

0.00 %

r=0,849
var=0.15293

r=0,882
var=0,18164

r=0.855
var=0,02226

r=0.886
var=0.02663

-38.5 #
6.25 #
162.5 #
0.00 #

r=0.687
var=0.32873

r=0.824
var=0.29976

r=0.661
var=0.03674

r=0.817
var=0,03246

-92.3 #
-12.5 #
150.0 #

0.00 #

r=0.074
var=0.55690

r=0.780
var=0.,32851

r=0.085
var=0.03560

r=0.779
var=0,02117

P,=0.069

Pp>0.50

P,=0.065

P>0.50

P,=0.200

P, =0,225

P=0,50

P,=0,905

Pp=0.25

P,=0,891
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Liver

4 8 4.7 *
21 3.5 *
37 3.2 *
45 4.9 *
58 5.0 *

= 3.82279 + 0.01294*T

(0.89970)
(1.18093)

in= 1.33419 + 0.00291*T

(0.22411)
(0.29549)

(0.02361) 2
= 5,41725 - 0.12530*T + 0.00212*T
(0.08403) (0.00126)
(0.00588) 2
In= 1.73011 - 0.03142*T + 0,00053*T
(0.02102) (0.00031)
5 8 5.8 *
21 4.2 *
37 3.6 *
45 5.3 *
58 5.9 *

= 4,73638 + 0.00662*T

(1.12647)

(0.02956)

= 7.03996 - 0.19310*T + 0.00306*T2

(1.07479)

(0.07647) (0.00114)

In= 1.53951 + 0.00130*T

(0.24041)

(0.00631)

1n= 2.01967 - 0.04033*T + 0.00064*T2

(0.24763)

(0.01762) (0.00026)
6 8
21 5
37 4

45
58 6

= 5,79133 - 0.00034*T

(1.26285)

(0.03313)

= 8.41674 - 0.22795*T + 0.00349*T2

(1.13022)

(0.08042) (0.00120)

In= 1.73787 + 0.00000%*T

(0.23097)

(0.00606)

1n= 2.20575 - 0.04056*T + 0.00062*T2

(0.22764)

(0.01620) (0.00024)

-92.3
-18.8
212.5

7.69

#k 4 3= d3k

r=0.302
var=0,86417

r=0.790
var=0.53503

P,=0,622

r=0.274
var=0.05362

r=0,784
var=0.03350

P,=0,655

Pp=0,25

-123.1 # "
-37.5 #
212.5 #

46.2 #

r=0.128
var=1.35471

r=0.886
var=0.44318

P,=0.837

PF=0.25

r=0.,118
var=0.06171

r=0.866
var=0,02353

P,=0.850

Pp=0.25

-138.5 ¢ "
-56.3 #
225.0 #

53.8 #

r=0.006
var=1.70261

r=0.899
var=0.49007

r=0.000
var=0.05695

r=0.876
var=0.01988

P .=0,993

P,=1.000
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Liver
7 8 8.7 * ~-184.6 # "
37 5.3 * 212.5 #
45 7.0 * 66.7 #
' 57 7.8 *
= 7.50639 - 0.01448*T r=0,214 Pr=o,73o
(1.44571) (0.03824) var=2,19767

=10.66266 — 0.29263*T + 0,00433*T2 r=0.937
(1.06674) (0.07739) (0.00118) var=0.42381 Py=0.10

lIn= 1.99360 - 0.00176*T r=0.179 P .=0.774
(0.21226) (0.00561) var=0.04738

In= 2.44878 - 0.04188*T + 0.00062*T2 r=0.920
(0.17431) (0.01265) (0.00019) var=0,01132 Pp=0.10

1 9 1.7 * 0.00 # " sample #2
20 1.7 * 0.00 #
30 1.7 * 7.69 #
43 1.8 * 9.09 #
65 2.0 *
= 1.59425 + 0,00556*T r=0.924 P, =0.025
(0.05130) (0.00133) var=0.00331

= 1.72580 - 0.00416*T + 0.,00013*72 r=0.996
(0.02650) (0.00168) (0.00002) var=0.00027 Pp=0.05

In= 0.47343 + 0.00303*T r=0.927 P .=0.023
(0.02730) (0.00071) var=0.00094

ln= 0.54273 - 0.00209%T + 0.00007*T2 r=0.,995
(0.01643) (0.00104) (0.00001) var=0.00010 Pp=0.05

2 9 2.2 * -18.2 # ©
20 2.0 * -10.0 #
30 1.9 * -7.69 #
43 1.8 * 22,7 #
65 2.3
= 1.98627 + 0.00161*T r=0.168 P .=0.787
(0.21036) (0.00545) var=0.05571

= 2.52830 - 0.03845*T + 0.00053*T2 r=0.978
(0.09923) (0.00629) (0.00008) var=0.00374 Pp=0.025

in= 0.68652 + 0.00067*T r=0,143 P .=0.819
(0.10327) (0.00267) var=0.01343

ln= 0.95154 - 0.01892*T + 0.00026*T2 r=0.974
(0.05276) (0.00334) (0.00004) var=0.00106 Pg=0.05



Liver

3 -9
20
30
43
65

= 2,29616 + 0.00371*T

(0.49945)

= 3.60924 - 0.09334*T + 0.00129*T
(0.00007)

(0.08268)

(0.01293)
(0.00524)

in= 0,.82368 + 0.00132*T

(0.20330)

1n= 1.35895 — 0.03825*T + 0.00053*%T2

(0.02275)

(0.00526)
(0.00144)

4 9
20
30
43
65

= 2.63056 + 0.01046*T

(0.46095)

= 3,77672 - 0.07425*T + 0.00113*T
(0.00028)

(0.34160)

(0.01194)
(0.02165)

In= 0.97263 + 0.00324*T

(0.15194)

1n= 1.34479 - 0.02426*T + 0.00037*T2

(0.12532)

(0.00393)
(0.00794)
5 9

= 2.97846 + 0.01082*T

(0.65330)

= 4.69654 ~ 0.11615*T + 0.00169*T2
(0.00008)

(0.10184)

(0.01692)
(0.00646)

In= 1.09812 + 0.00276*T

(0.19161)

ln= 1.60245 - 0.03451*T + 0.00050*T2
(0.00002)

(0.02441)

(0.00496)
(0.00155)

whrPppph

CoOoOONMNVY

* % % ¥ %

(0.00002)
3.3 *
2.5 *
2.7 *
2.7 *
3.7 *

(0.00010)
3.8 *
3.0 *
2.8 *
2.8 *
4.3 *

-63.6
-20.0
0.00
45.5

b 3k sk

r=0.163
var=0.31406

r=0,997
var=0.00259

r=0.143
var=0.05203

r=0.,999
var=0,00020

-72.7 #
20.0 #
0.00 #
45.5 %

r=0.451
var=0,26751

r=0.955
var=0.04430

r=0.430
var=0,02906

r=0.943
var=0.00596

-72.7 #
-20.0 %
0.00 #
68.2 #

r=0.347
var=0.53735

r=0.,998
var=0.00394

r=0.306
var=0.04623

r=0.999
var=0.00023

P,=0.793

Pp=0.005
P .=0.819

Pp=0.005

P,.=0,445

P =0,470

P,.=0.568

Pp=0.005
P.=0,617

Pp=0,005
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Liver
6 9 4.7 * -109.1 # "
20 3.5 * -50.0 #
30 3.0 * 7.69 #
43 3.1 * 104.5 #
65 5.4 *
= 3,43078 + 0.01525%*T r=0.312 Pr=0.610
(1.03622) (0.02684) var=1.35189

= 6.16244 - 0.18664*T + 0,00269*T2 r=1.000
(0.02317) (0.00147) (0.00002) var=0,00020 Pp=0,001

in= 1.23893 + 0.00313*T r=0,260 Pr=°-573
(0.25935) (0.00672) var=0.08469

In= 1.,92245 ~ 0.04739*T + 0.00067*T2 r=1.000
(0.01427) (0.00090) (0.00001) var=0.00008 Pp=0,001

7 9 5.5 * -109.1 % "
20 4.3 * -30.0 ¢
30 4.0 * 7.69 #
43 4.1 * 118.2 #
65 6.7 *
= 4.10760 + 0.02432*T r=0.453 P .=0.443
(1.06666) (0.02762) var=1.43246

= 6.91489 - 0,18316*T + 0,00276*T2 r=0.999
(0.13819) (0.00876) (0.00011) var=0.00725 Pp=0.005

In= 1.43382 + 0.00415*T r=0.403 P, =0.502
(0.21057) (0.00545) var=0.05582

1n= 1.98846 - 0.03684*T + 0.00055%T2 r=0.999
(0.01947) (0.00123) (0.00002) var=0.00014 Pp=0.001

bovine
formalin 3 18 2.4 * (10 %) -40.0 # Bamber & Hill
fixed, 2 months 28 2.0 * 0.00 # (1979)*2
43 40 2,0 * 0.00 # sample #1
58 2.0 *
= 2,39189 - 0.,00811*T r=0,697 P.=0,303
(0.22950) (0.00589) var=0,03081

= 3,15494 - 0.05502*T + 0.00061*T2 r=0.935
(0.46418) (0.02709) (0.00035) var=0.01514 Pyp=0.50

ln= 0.87177 - 0.00370*T r=0.697 P =0.303
(0.10461) (0.00268) 9 var=0.00640

lIn= 1.21958 - 0.02508*T + 0.00028*T r=0.935
(0.21158) (0.01235) (0.00016) var=0.00314 Pp=0,50



Liver

4 18 3.4 *

28 2.9 *

40 2.7 *

58 2.5 *

= 3,62905 - 0,.02095*T

(0.22247) (0.00571) 2
= 4,41889 -~ 0.06951*T + 0.,00063*T

(0.33954) (0.01981) (0.00025)

In= 1.30954 - 0.00722*T
(0.06654) (0.00171) 9
in= 1.54592 - 0.02176*T + 0.00019*T

(0.10119) (0.00590) (0.00008)
5 18 4.3 *
28 3.6 *
40 3.3 *
58 3.0 *
= 4.64459 - 0.03041*T
(0.30531) (0.00784)
= 5.73397 - 0.09738*T + 0.00087*T2
(0.45129) (0.02633) (0.00034)
in= 1.56440 - 0.00851*T
(0.07140) (0.00183)
1n= 1.81924 - 0,02418*T + 0.00020*T2
(0.10540) (0.00615) (0.00008)
6 18 5.5 *
28 4.6 *
40 4.2 *
58 3.6 *
= 6.08851 - 0.04482*T
(0.32512) (0.00834)
= 7.16950 - 0.11128*T + 0.00086%*T2
(0.65759) (0.03837) (0.00049)
ln= 1.85048 - 0.01010*T

(0.05412) (0.00139) 9
in= 2.01950 - 0.02050*T + 0.00014*T
(0.12775) (0.00745) (0.00010)

-16.7 #

r=0,933
var=0.02895

r=0,991
var=0.00810

r=0,948
var=0.00259

r=0.993
var=0,00072

-25.0 #
-16.7 #

r=0.940
var=0.05453

r=0,992
var=0,01431

r=0,957
var=0.00298

r=0,994
var=0.00078

-90.0 #
-33.3 #

r=0.967
var=0.06184

r=0.992
var=0.03038

r=0,982
var=0,00171

r=0,994
var=0.00115

P,=0.067

P =0,052

PF=0‘25

P,=0.060

P =0.043

P,.=0.033

Pp=0.50
P =0.018

Pp=0.50
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Liver
7 18 7.0 *
28 5.9 *
40 5.1 *
58 4.8 *

= 7.61351 - 0.05315*T
(0.57823) (0.01484)

= 9.82582 - 0.18917*T + 0.00177*72

(0.07736) (0.00451)  (0.00006)
in= 2.06209 ~ 0.00923*T
(0.08831) (0.00227)
in= 2.39975 - 0.02999%T + 0,00027*T2
(0.01719) (0.00100)  (0.00001)
3 18 2.8 *
28 2.5 %
40 2.3 *
58 2.1 %
= 3,03311 - 0.01689*T
(0.10986) (0.00282)
= 3.44142 - 0.04200*T + 0.00033*72
(0.10745) (0.00627)  (0.00008)
l1n= 1.13191 - 0.00699*T
(0.03657) (0.00094)
in= 1.26805 — 0.01536*T + 0.00011*T2
(0.03476) (0.00203)  (0.00003)
4 18 3.5 *
28 3,2 %
40 2.8 *
58 2.6 *
= 3.84392 - 0.02275*T
(0.15469) (0.00397)
= 4,39618 - 0.05670*T + 0.00044*72
(0.22779) (0.01329)  (0.00017)
in= 1.37250 - 0.00756*T
(0.04504) (0.00116)
ln= 1.52546 -~ 0.01697*T + 0.00012%T2
(0.08480) (0.00495)  (0.00006)

-110.0 #

r=0,930
var=0.19559

r=1.000
var=0.00042

r=0,945
var=0.00456

r=1.000
var=0.00002

-30.0 # " sample #2

-11.1 #

r=0.973
var=0.00706

r=0.998
var=0,00081

r=0.982
var=0,00078

r=0.999
var=0.00008

-30.0 #
-33.3 #

r=0.971
var=0.01400

r=0.99%6
var=0.00365

r=0.977
var=0.00119

r=0.995
var=0.00051

P,=0,070

P,=0.055

P,=0,027

P =0.018

P,=0,029

P,=0,023

Pp=0.50
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Liver

5 18 4,5 *

28 3.8 *

40 3.3 *

58 3.0 *

= 4,95541 - 0.03626*T

(0.32343) (0.00830) 2
= 6,18874 - 0,11209*T + 0,.00099*T

(0.11604) (0.00677) (0.00009)

In= 1.63999 ~ 0.00992*T
(0.07246) (0.00186) 2
ln= 1.91733 -~ 0.02697*T + 0.00022*T

(0.00479) (0.00028) (0.00000)
6 18 5.6 *

28 4.8 *

40 4.0 *

58 3.8 *

= 6.15541 - 0.04459*T
(0.47507) (0.01219) 9
= 7.,94939 ~ 0.15489*T + 0.00143*T
(0.31805) (0.01856) (0.00024)

In= 1.85358 -~ 0.00973*T
(0.09389) (0.00241)
ln= 2.19990 - 0.03103*T + 0.00028%T2

(0.10247) (0.00598)  (0.00008)
7 18 7.0 *
28 6.0 *
40 5.0 *
58 4.4 *
= 7.91892 ~ 0.06441*T
(0.44865) (0.01152)
= 9.62253 - 0.16916*T + 0.00136%*T2
(0.23209) (0.01354)  (0.00017)
ln= 2.12586 - 0.01163*T

(0.06185) (0.00159) 2
In= 2.35433 - 0.02568*T + 0.00018*T
(0.06629) (0.00387) (0.00005)

-70.0 #

r=0,951
var=0,06119

r=1.000
var=0,00095

r=0.967
var=0.00307

r=1.000
var=0.00000

-80.0 #
-11.1 #

r=0.933
var=0,13203

r=0,998
var=0,00711

r=0.944
var=0,00516

r=0,996
var=0.00074

-100.0 #
-83.3 #
-33.3 #

r=0.,969
var=0.11775

r=1.000
var=0,.00378

r=0.982
var=0.00224

r=0.999
var=0.00031

P,.=0.049

P =0.033

Pp=0,025

P,.=0.067

P_=0.056

P,=0.030

PF=0.10
P.=0.018

Pp=0,25
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Liver
porcine
fresh 2 4 3,3 % (1.5)
<1 hr., 20 3.2 %
stored @ 5°C 37 4,0 % #
= 3.06322 + 0.02148*T r=0,813
(0.37492) (0.01537) . var=0.12867
= 3,45423 - 0.04502*T + 0,00162*T r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
1n= 1.12771 + 0.00591*T r=0.806
(0.10584) (0.00434) var=0,01025
ln= 1.23810 - 0.01287*T + 0.00046*T2 r=1.000
(0.00000) (0.00000) (6.00000) var=0,00000
20 6.5 * -29.4 %
37 6.0 %
= 7.30459 - 0.03629*T r=0.994
(0.10084) (0.00413) var=0.00931
= 7.40976 - 0.05418*T + 0.00043*T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
in= 1.99138 - 0.00552*T r=0.996
(0.01184) (0.00049) 5 var=0.00013
1n= 2.00373 - 0.00762*T + 0,00005*T r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
6 4 12,0 * -106.3 #
20 10,3 * -76.5 %
37 9,0 *
=12,27876 - 0.09076*T , r=0.996
(0.20944) (0.00859) var=0,04015
=12.49719 - 0.12791*T + 0.00090*T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
ln= 2,51519 - 0.00871*T r=0.999
(0.01133) (0.00046) var=0.00012
in= 2.52700 - 0.01072*T + 0.00005%*72 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000

-6.25 # Gammell
47.1 # et al,

(1979) *2

P,=0.395 °

P,=0.403

P =0.072

P =0.056

P,=0.060
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Liver
8 4 17.3 * -162.5 § "
37 12.0 *
=17,93195 ~ 0.16059*T r=1.000 Pr=0°004
(0.02586) (0.00106) var=0.00061

=17.95891 - 0.16517*T + 0.00011*72 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000

ln= 2.90006 - 0.01109*T r=0.999 P,.=0.029
(0.01237) (0.00051) 2 var=0.00014
ln= 2.88716 - 0.00890*T - 0.00005*T =1.000
(0.00000) (0.00000) (0.00000) var=0.00000
9.9 4 23.3 * -143.8 # "
20 21.0 * -294.1 #

37 l16.0 *

=24.61340 - 0.22197*T r=0.981 P .=0.123
(1.05752) (0.04335) var=1.02375

=23.51047 - 0.03439*T - 0.00456*T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000

ln= 3.22109 - 0.01144*T r=0.973 P .=0.150
(0.06682) (0.00274) var=0.00409

In= 3.15140 + 0.00041*T - 0.00029*%T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000
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Liver
porcine
homogenate 4.0 4,0 1.32 (5%) -33.3 # Danckwerts
5.2 1.28 -75.0 # (1974)*1
6.0 1.22 -20.0 #
7.0 1.20 -7.90 #
10.8 1.17 -28.1 #
14.0 1.08 30.0 #
15.0 1.11 -16.7 #
18.0 1.06 -50.0 #
18.8 1.02 -46.7 #
20.0 0.964 2.67 #
23.0 0.972 -18.9 #
24,8 0.938 3.75 #
28.0 0.95 -13.3 #
28.9 0.938 -47.3 #
30.0 0.886
= 1,32567 - 0.01490*T r=0.971 P.=0.000
(0.01918) (0.00101) var=0,00115

= 1.39529 - 0.02615*T + 0.00033*T72 r=0.984
(0.02723) (0.00376) (0.00011) var=0.00070 Pgp=0,01

In= 0.29622 - 0.01375*T r=0.976 Pr=o,ooo
(0.01600) (0.00084) var=0,00080

ln= 0.34213 - 0.02117*T + 0.00022*T2 r=0,.,983
(0.02584) (0.00357) (0.00010) var=0.00063 Pp=0.10

Nervous Tissue, brain

bovine
formalin 1 10 0.30 * 50.00 # Bamber & Hill
fixed, 18 0.70 * 21.05 4 (1979)*2
2 months, 37 1.1 * ~14.29 #
10 % 58 0.8 *

= 0.42248 + 0.00984*T r=0.637 P.=0.363
(0.30195) (0.00841) var=0,09722

=-0.33001 + 0.07308*T - 0.00092*T2 r=0.999
(0.03615) (0.00269) (0.00004) var=0.00034 Pg=0.05

In=-0.95995 + 0.01749*T r=0.675 Pr=°'325
(0.48533) (0.01352) var=0,25117
1n=-2.12043 + 0.11502*T - 0.00143*72 r=0.978
(0.39615) (0.02947)  (0.00042) var=0.04071 P=0.25



Nervous Tissue, brain
2 10 2.3 *
18 1.8 *
37 1.7 %
58 1.4 *
= 2.28985 - 0.01593*T
(0.18263) (0.00509) .
= 2.52375 - 0.03559*T + 0.,00029*T
(0.44935) (0.03343)  (0.00048)
1n= 0.84689 — 0.00894*T
(0.08554) (0.00238) .
in= 0.92990 - 0.01592*T + 0.00010%*T
(0.22594) (0.01681)  (0.00024)
3 10 4.4 *
18 3.8 *
37 3.2 %
58 2.7 %
= 4,55783 - 0.03359%T
(0.18949) (0.00528)
= 4.96754 - 0.06802*T + 0.00050%T2
(0.27089) (0.02015)  (0.00029)
1n= 1.54362 - 0.00977*T
(0.03733) (0.00104)
in= 1.61997 - 0.01618*T + 0.00009*T2
(0.06128) (0.00456)  (0.00007)
4 10 6.8 *
18 5.7 *
37 4,9 %
58 4,2 %
(0.37933) (0.01056)
= 7.70491 - 0.11454*T + 0.00094*72
(0.63488) (0.04723)  (0.00068)

ln= 1.95960 — 0.00940%T
(0.05333) (0.00149)

1n= 2.06237 - 0.01804*T + 0.00013*T2
(0.09707) (0.00722) (06.00010)

-62.50 #
-14.29 #

r=0.911
var=0.03556

r=0.936
var=0.05238

r=0.936
var=0.00780

r=0.946
var=0.01324

-75.00 #
-31.58 #
-23.81 #

r=0,.976
var=0.03829

r=0.994
var=0.01904

r=0.989
var=0.00149

r=0.996
var=0.00097

-137.5 #
-42.11 #
-33.33 #

r=0,958
var=0.15344

r=0.986
var=0.10456

r=0.976
var=0.00303

r=0.990
var=0.00244

"

P,.=0.089

Pp>0.50
P.=0,064

P,=0.024

P =0,011

PF=0'50

P.=0.042

PF=0.50
P .=0,024
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Nervous Tissue, brain

5 10
18
37
58

= 9,29280 - 0.06399*T
(0.49269) (0.01372)

=10.52170 - 0.16727*T + 0.00151*T
(0.00000)

(0.00013) (0.00001)

ln= 2.24843 ~ 0.00883*T
(0.05831) (0.00162)

ln= 2.39317 - 0.02099*T + 0.00018*T
(0.00002)

(0.01656) (0.00123)
feline
in vivo 1.0 25
27
28
29

=-3.44000 + 0.16000*T
(0.00000) (0.00000)

1n=-4.63829 + 0.16705*T
(0.00000) (0.00000)

feline
P. M. 1.0 25
27
28
29

=-5.09000 + 0.22000*T
(0.00000) (0.00000)

In=-6.37731 + 0.23018*T
(0.00000) (0.00000)

e e o e
OO O

U1y 00O

0.85
0.97
0.88
1.04
0.81
.73

0.84
0.91
0.85
1.07
0.80
0.74

* ¥ * *

-125.0 # "
-23081 #

r=0.,957 Pr=o,o43
var=0.25884

r=1.000
var=0.00000 PF=0-001

r=0.968 Pr=°'°32
var=0.00363

r=1,000
var=0.00007 Pp=0,10

Hasegawa
et al.
(1966) *1
r=1.000
var=0,00000
r=1,000
var=0,00000
Hasegawa |
(1966) *1

r=1.000
var=0.00000

r=1.000
var=0.00000
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Nervous Tissue, spinal cord

Nervous Tissue, spinal cord
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mur ine cm~d
neonatal, 0.26 2 0.048 *
24 hrs., 10 0.0463 *
3rd lumbar 20 0.0446 *
vertebra 30 0.0419 *
40 0.0406 *
= 0.04836 ~ 0.00020*T
(0.00027) (0.00001)
= 0,04849 - 0.00022*T + O.OOOOO*T2
(0.00043) (0.00005) (0.00000)
In=-3.02672 - 0.00453*T

(0.00601) (0.00025) 9
1n=~3,.02608 - 0.00463*T + 0.00000*T

-0.21 #
-0.17 #

r=0.996
var=0.00000

r=0,996
var=0.00000

r=0,996
var=0,00006
r=0.996

Johnston

et al.
(1979).
absorption

P,.=0.000

P,.=0.000

Dunn & Brady
(1974a) *1
absorption

P,=0.124

Pp=0.10
P,=0.,098

(0.,01014) (0.00119) (0.00003) var=0,00008
mur ine
neonatal, 0.5 2 1.13 (10%) -32.5 #
24 hrs., 10 0.87 ~-17.0 #
3rd lumbar 20 0.7 -2,50 #
vertebra 40 0.65
= 1.04557 ~ 0,.01156%*T r=0.876
{0.10318) (0.00450) var=0.01636
= 1,19509 -~ 0.03689*T + 0.00058*T2 r=0.999
(0.02153) (0.00270) (0.00006) var=0.00035
ln= 0.,04464 - 0.01365*T r=0.902
(0.10626) (0.00463) var=0.01735
in= 0.,19944 -~ (0,03987*T + 0.00060*T2 r=1.000
(0.00039) (0.00005) (0.00000) var=0.00000

Pp=0.005
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Nervous Tissue, spinal cord

neonatal 0.7 2 0.77
10 0.91
30 1.01
40 0.91
45 0.91
= 0.83437 + 0.00266*T
(0.06521) (0.00214) 2
= 0,73964 + 0.01963*T - 0.00036*T
(0.03318) (0.00402) (0.00008)

1n=-0.18631 + 0,00313*T
(0.07305) (0.00240)

1n=-0.29221 + 0.02209*T — 0,00041*T2

211

{0.03792) (0.00459) (0.00010)
neonatal 1.0 40 0.100
45 0.109
= 0,02800 + 0.00180*T
(0.00000) (0.00000)
1n=-2.99201 + 0.01724*T
(0.00000) (0.00000)
murine em~t
neonatal, 1.0 2 0.02 *
24 hrs., 10 0.05 *
3rd lumbar 27 0.095 *
vertebra 40 0.115 *
45 0.12 *
= 0.02288 + 0.00230*T
(0.00678) (0.00023) 2
= 0.01228 + 0.00410*T ~ 0,00004*T
(0.00063) (0,00007) (0.00000)

1n=-3.65317 + 0.03807*T
(0.25223) (0.00845)

1n=-4.01821 + 0.09987*T — 0.00131%T2
(0.15829) (0.01839) (0.00038)

17.5 & "
5.00 #
-10.0 #
0.00 #
r=0.583 Pr=0°302
var=0,00644
r=0.967
var=0.00094 Pp=0,05
r=0.601 Pr=0'284
var=0.00809
r=0.967
var=0.00122 PF=0'1°
1.80 # "
r=1.000
var=0.00000
r=1.000
var=0.00000
3.75 # Johnston
2.65 # et al.
1.54 £ (1979).
1.00 # absorption
r=0.986 Pr=0'002
var=0.00007
r=1.000
var=0,00000 Pp=0,005
r=0.933 Pr=0'°20

var=0.09867

r=0.991

var=0,02140

D G G D G e e AR G S e e Y it G P Gl €2 GRS, D Ul ) T U s W RS Gl o o ke WSS S LS P Do P Ve S W Gy T G S P I Gl S W e S W (N6 e Gt A e Lk o o



Spleen
bovine
formalin 1 10 1.2 * (10%)
fixed, 2 months 18 1.4 * 26.3 #
4% 37 1.9 % -23.8 #
58 1.4 *
= 1.31227 + 0.00529*T r=0.379
(0.32769) (0.00913) , var=0.11450
= 0.52425 + 0,07152*T — 0.00097*T r=0.969
(0.24942) (0.01855)  (0.00027) var=0.01614
1n= 0.26004 + 0.00372*T r=0.413
(0.20807) (0.00579) var=0.04616
1n=-0.24762 + 0.04638*T ~ 0.00062*T2 r=0.982
(0.12395) (0.00922)  (0.00013) var=0.00399
2 10 2.9 * -50.0 #
18 2.5 * -5.26 &
37 2.4 % -19.0 #
58 2.0 *
= 2.95439 - 0,01640*T r=0.950
(0.13715) (0.00382) var=0.02006
= 3.03020 - 0.02277*T + 0.00009%T2 r=0.952
(0.38346) (0.02853)  (0.00041) var=0.03814
in= 1,09801 - 0.00685*T r=0.959
(0.05154) (0.00144) var=0.00283
ln= 1.10230 - 0.00721*T + 0.00001*T2 r=0,959
(0.14769) (0.01099)  (0.00016) var=0.00566
3 10 4.5 * -62.5 &
18 4,0 * -26.3 #
37 3.5 % -28.6 #
58 2.9 %
= 4.69744 - 0.03162*T r=0,988
(0.12373) (0.00345) var=0.01632
= 4.90011 - 0.04866*T + 0,00025%T2 r=0,993
(0.26756) (0.01980)  (0.00029) var=0.01857
1n= 1.57131 - 0.00876*T r=0,994
(0.02367) (0.00066) var=0.00060
ln= 1.59140 - 0.01045*T + 0,00002*T2 r=0,995
(0.06383) (0.00475)  (0.00007) var=0, 00106

25.0 # Bamber & Hill

(1979) *2

P,=0,621

Pp=0,25
P .=0.587

Pp=0,25

L1

P.=0.050

P =0,041

P,=0,012

P.=0.006
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Spleen
4 10 6.2 * -50.0 # "
18 5.8 * -47.4 #
58 4.0 *
= 6.63361 - 0.04581*T r=1,000 Pr=o,ooo
(0.03572) (0.00099) var=0.00136

= 6.72266 - 0.05329*T + 0.00011*T2 r=1.000
(0.00293) (0.00022) (0.00000) var=0.00000 Pp=0.025

In= 1.92049 -~ 0.00914*T r=1.000 Pr=o,ooo
(0.00645) (0.00018) 2 var=0.00004

In= 1.90440 - 0.00779*T - 0.,00002*T r=1.000
(0.00004) (0.00000) (0.00000) var=0.00000 Pp=0.005

5 10 8.1 * -50.0 # "
18 7.7 * -68.4 #
37 6.4 * -61.9 #
58 5.1 *
= 8.77714 - 0.06348*T r=0.999 P.=0.001
(0.05692) (0.00159) var=0.00346

= 8.75928 - 0.06198*T - 0.00002*T2 r=0.999
(0.16192) (0.01205) (0.00017) var=0.00680 Py>0.50

In= 2.20512 - 0.00977*T r=0.998 P =0.002
(0.01719) (0.00048) var=0.00032

In= 2.16554 — 0.00644*T — 0.00005*T2 r=1.000
(0.01897) (0.00141) (0.00002) var=0.00009 Pp=0,50

porcine
fresh, 2 4 2.0 * (1,5) -6.25 # Gammell
<1 hr., 20 1.9 * -52,9 # et al.
stored @ 5°C 37 1.0 * # (1979)*2
= 2,25428 ~ 0,03054*T r=0.915 P =0.264
(0.32838) (0.01346) var=0,09871

= 1.91181 + 0.02771*T - 0,00141%T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.,00000

ln= 0.87563 - 0.02118*T r=0.905 P .=0.280
(0.24299) (0.00996) var=0.,05405

ln= 0.62221 + 0,02192*T - 0,00105%T2 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000



Spleen

4 4 7.9 *

20 5.5 *

37 3.5 *

= 8.34113 - 0.13317*T

(0.22754) (0.00933) 2
= 8,57843 - 0.17353*T + 0.00098*T

(0.00000) (0.00000) (0.00000)

In= 2.17681 - 0.02469*T
(0.02782) (0.00114) 9
ln= 2.14780 - 0.01976*T - 0.00012*T
(0.00000) (0.00000) (0.00000)

6 4 14.0 *
20 8.9 *
37 6.0 *

=14.54743 - 0.24168*T
(1.04201) (0.04272)

=15.63418 - 0.42650%T + 0,00449%72
(0.00000) (0.00000) (0.00000)

2.72717 - 0.02565*T
(0.03600) (0.00148)
in= 2.76472 - 0.03204*T + 0.00016*T2

1n=

(0.00000) (0.00000) (0.00000)
8 4 21.5 *

20 13.9 =

37 8.0 *

=22.77173 - 0.40845*T
(0.89980) (0.03689) .
=23,71016 - 0.56805*T + 0.00388%T2
(0.00000) (0.00000) (0.00000)

3.20281 - 0.02998*T

(0.03683) (0.00151)

1n= 3.16440 - 0.02345*T - 0,00016%*T2
(0.00000) (0.00000) (0.00000)

in=

-150.0 # "
-117.6 #

r=0.998
var=0.04739

r=1.000
var=0.00000

r=0,999
var=0,00071

r=1.000
var=0,00000

-318.8 # "
-170.6 #

r=0,985
var=0,99394

r=1.000
var=0.,00000

r=0,998
var=0.00119

r=1.000
var=0.,00000

-475.0 # "
-347.1 #

r=0.996
var=0.74115

r=1.000
var=0,00000

r=0‘999
var=0,00124

r=1.000
var=0.00000

P =0,044

P,=0.029

Pr=0.lll

P,=0.037

P,=0.057

P =0,032
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Spleen
9.9 4 31.8 * -768.8 # "
20 19.5 * -464.7 #
37 11.6 *
=33.,38195 - 0.61059*T r=0.990 P .=0.091
(2.13832) (0.08766) var=4.18561

=35,61208 ~ 0.98987*T + 0.00921 *12 r=1.000
(0.00000) (0.00000) (0.00000) var=0.00000

1n= 3.58167 - 0.03056*T r=1.000 P .=0.000
(0.00009) (0.00000) var=0.00000

1n= 3.58176 - 0.03057*T + 0.00000%T2 r=1.000
(0.00000) (0.00000)  (0.00000) var=0.00000
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