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ABSTRACT

A number of investigators have observed localized heating by
ultrasound near impedance discontinuities within tissues. It has
been suggested that mode conversion to shear waves at impedance
discontinuities and subsequent absorption of these waves in a very
small distance were the explanations for this heating. A
mathematical model for mode conversion at a plane interface
between two viscoelastic media is preseﬁted. Longitudinal and
shear properties are used to calculate the amount of mode
conversion that occurs at muscle-bone and muscle-air interfaces.
Shear waves in bone are found to be an important source of
heating, but shear waves in the muscle provide a negligible effect

on heating at the interface.
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1. INTRODUCTION

As acoustic waves propagate through biological or other real
media, they lose energy; the organized acoustic energy of the wave
is transformed into heat. During ultrasonic imaging, heating is
an unwanted side effect, but in physical therapy and in tumor
hyperthermia, the production of heat is the desired result.
Therefore an understanding of heating patterns produced by
ultrasound fields can be useful in almost all applications, from
forming safety standards for the power output of transducers in
imaging systems to designing transducers for the production of
specific heating profiles for therapy.

Many investigators have reported evidence for localized
heating at tissue interfaces which have been irradiated by
ultrasoundl-5. Studies of ultrasound irradiation of livers have
shown localized damage at the surface of the organ where the
ultrasound beam exits that tissue2=4. Linke et al.® noted that
changing the backing material of an irradiated organ from
moistened gauze (which has acoustic properties similar to air
because of the many small air spaces in it) to a water bath or a
water bag (which have.similar acoustic properties to soft
biological tissues) eliminated the effect of excessive tissue
destruction at the interface. Ultrasound transducers used for
imaging and therapy produce longitudinal waves, but when these
waves impinge obliquely on interfaces between media with different

acoustic impedances, shear, or transverse, waves are transmltted



The possible role of

and reflected as well as longitudinal waves.

this mode conversion as a source of interfacial heating has been

discussed® 8.
Stiff materials such as bone are more capable of supporting

shear waves than softer materials such as muscle because ‘they have

much larger shear stiffneés. Therefore, an understanding of the
effect of mode conversion is important for situations in which
bone is irradiated. Pain associaﬁed with excess bone heating is a
limiting factor in the hyperthermic treatment of some tumors®.
Bone heating may be of particular concern for fetal exposures,
since it is not possible to use ultrasonic imaging on fetuses

without irradiating fetal bone tissue. Also, an understanding of
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absorbed power distribution within bone is fundamental to the

determination of the mechanisms involved in accelerated healing of

bone by ultrasound.

- Chan et al.l0 indicated that shear waves generated in the bone
- when a longitudinal wave impinges on a muscle-bone interface must

be considered in an analysis of heating by ultrasound. In his
analysis, Chan considered shear waves in the soft tissues to be
negligible. Filipczynskill has examined the role of shear waves at
a tissue-air boundary and concluded that their contribution to

heating is negligible in this special case. Frizzell and

Carstensenl? examined the more general case by allowing the

possibility of shear waves in media on both sides of an interface.

They studied mode conversion in the cases of longitudinal waves in
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muscle incident on four different materials: air, water,

cholesteryl linoleate, and bone.

Calculations in this study are based on measurements of the
shear properties of soft body tissues at low megahertz
frequencies!3. The results of these measurements have since been
confirmed and extended by Madsen and coworkersl4. Utilizing these
measurements, mode conversion and heating at muscle interfaces
with air and bone have been computed for oblique incidence on a
plane interface. The power deposition is calculated as a function
of distance from the interface in each of these cases.

Theoretical results confirm that shear waves contribute
significantly to heating in hard tissues such as bone but shear

waves in muscle provide a negligible contribution to heating at

the interfaces examined.



B E B B BT BB E E E R EEEEREEE

2. THEORY

A longitudinal plane wave of infinite lateral extent is
assumed to be obliquely incident on an infinite plane interface
between two semi-infinite media. By choosing a coordinate system
(Fig. 1) so that the propagation vectors for the waves lie in the
X1, X2 plane, the analysis is greatly simplified by eliminating x3
dependence in all expressions with no loss in generality. The two

media are characterized by their complex longitudinal and shear

propagation constants Kp, Ki' and Kg, Ks' and their densities p,

p', respectively, where

W

K =72 - i (1)

® is the angular frequency, ¢ is the real phase speed of the wave,
and o its absorption coefficient. These constants can also be
defined in terms of the complex bulk, B, and complex shear, M,

moduli of elasticity.

pw?
Ky = A [ (2a)
(B + 3 H)
w2
Ks = \| (2b)
i .

These complex moduli may be expressed as

Il

B By + JjWB»2 (3a)

Il

H o= H1 + jOu (3b)
where B; and M3, real numbers, are the bulk and shear stiffness,
respectively, and Bz and Mp, also real numbers, are the bulk and

shear viscosity, respectively.
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Figure 1. Reflected and transmitted longitudinal and shear waves
for oblique incidence of a longitudinal wave on an
interface between two semi-infinite media.

In general, a particle displacement vector £ may be defined
as the gradient of a scalar plus the curl of a vector,

E=Vo+ V x A, (4)
where the scalar potential ¢, which is associated with a
longitudinal wave, and the vector potential A, which is associlated
with a shear wave, are solutions of the wave equation for the

medium. In the chosen coordinate system, only the component of A
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along the x3 axis will be nonzero. It will be represented by the
scalar a. Using the terminology of Cooperl5 for the potential
coefficients, that is, the coefficients of the exponentials, the
potentials are

the incident longitudinal,

L
or = Ei exp[-JKy (x15inb - x2co0s0) ] exp[jot]
1 .
= % @1 expliot], (5a)
the reflected longitudinal,
LrLr , , :
Or = Ky exp[-JKr (x1sinBr + xpcosbr) ] expljot]
1 .
= X ®g expliot], (5b)
the transmitted longitudinal,
LiL
o' = ;é;z exp[~JKy' (x18inB' - xpcos6')] expl[jot]
1 .
= Kg,' Q' expljot], (5¢)
the reflected shear,
LiSgr . . .
= Ks exp[-JKs(xi1siny + xpcosy)] exp[jwt]
1 .
= ¥g 2 expljot], (5d)
and the transmitted shear,
L1S ) \
at = ﬁ;f?exp[—st(x131nw“ - xXpcosy')] expljot]
1 .
= ———Ks' A' exp[jot], - (5e)

where the angles are defined in Fig. 1 and the potential
coefficients Lgr, Ly, Sr, and St are, in general, complex. From the
potentials the components of the stress tensor (1ij) can be derived
using Eq. (4) and the relationships between the potentials, the
particle displacement, strain, and stress described in the

following expressions.
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o0 da .

& = ox1 T Oxaz (6a)
090 _ da

&2 = oxs  0X1 (6b)

E3 = 0 (6¢)
1 (08 | 984

Sij = 2 (ax:'] * 0Xi A7)

T35 = ABij(s11 + S22 + S33) + 2ZHSij (8a)

(8b)

2
A=B -3 H
where sjj are the componehts of the strain tensor, 1ij are the

components of the stress tensor, and Sij is zero for i # j and one

for 1 = J.

Boundary conditions are applied to determine the angles and
potential coefficients. So that there is no separation at the
interface, the normal (x2) component of the particle displacement
must be continuous across the boundary. The tangential (x1)
component of the particle displacement must be continuous across
the boundary so that there is no slippage. Finally, using the
divergence theorem, boundary conditions on the stress are
determined which require that force is continuous across the
boundary so that the interface does not undergo infinite

accelerationl2. These boundary conditions are expressed by the

following four equations for the geometry described here.

E2 = & (9a)
&1 = &' (9b)
T21 = T22' (9¢c)
T2 = 1227 ~(9d)



Application of the boundary conditions yields the Snell's law

relationé that can be used to determine the complex angles of

reflection and refraction,
Kysinbg = K1,sin® (10a)
Kgsiny = K1sin@ (10b)
Ky'sinf' = Ky,sin® (10c)
Ks'siny' = Kpsin® (10d)
(note that Bg = 6). Using Egq. (10), the boundary conditions

simplify to the following relations which determine the

coefficients of the potentials Lr, Lt/ SR/ and St.

— S
sinB cosy -sin®’ cosy' Ly |
cosf -siny cosB' siny'
Sr
p® pw . plo P’ .
Ky, cos2y Ks sin2y Ky cos2y' Kg' sin2y! Lo
pOKy, pw proKy . po :
| Ks2 sin20 Ks cos2y Ke'2 sin26 Ke' cos2y' [—ST—
-sinb j
cosH
= | pw ) o (11)
Kg C°S \
WK
LPKS?-L sin26

Here, the coefficient Lr has been chosen such that the
magnitude of the incident intensity is unity. As noted by Chan et

al.10, the total ultrasonic intensity is




I = % Re[u « I*] (12)

where

9§
u = 3% (13)

is the particle velocity, T is the second-order stress tensor
whose components are defined in Eq. (8a), and * denotes éhe
complex conjugate. The rather lengthy expressions for the
intensities in terms of the potential coefficients are provided in
Appendix A. Finally, the power loss, Or power deposition, per
unit volume is

py, = -V ¢ I. ' (14)

Equations (12) and (14) contain terms that can be associated
with purely longitudinal waves (terms involving products of scalar
potentials) and purely shear waves (terms involving products of
vector potentials), but, in addition, several "Cross terms"
involve products of the vector and scalar potentials, or products
of the incident and reflected scalar potentials (see Appendix A).
In lossless media the cross terms cancel each other, and the two
types of waves are resolved into shear and longitudinal
contributions to the intensity and to the power deposition.
However, in the general case in which both media are lossy (have
nonzero absorption coefficients), the cross terms do not cancel
and must be included to maintain energy conservation at the
interface and to obtain the correct form for the power deposition.

Equation (14) gives the power deposition per unit volume in

the general case. It would be interesting to know what fractions
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of this power deposition and resultant heating should be

attributed to ljongitudinal and to shear waves. 1In the past, two

been taken toO answer this question. In

similar approaches have

each, the intensities were divided into longitudinal and shear

components and separately inserted into Eq. (14). Since the

intensities contain Cross terms, the assignment of the energy

associated with these terms presented a problem. Chan et al.lo

assigned the energy in these Cross terms in proportion to the

amplitudes of the vector and scalar potentials and used the

results €O calculate power deposition. Frizzell and Carstensen12

assigned the Cross terms to the longitudinal and shear intensities

in proportion to the squares of the amplitudes, OZI: in other

words, in proportion to the purely longitudinal and the purely

shear terms of the intensity. AS will be seen, these arbitrary

simplifications of the problem result in loss of information about

the power deposition and demonstrate, in part, that the heating

rate involves interactions of shear and longitudinal particle

velocities and stresses.

10
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3. COMPARISONS TO OTHER WORK

Several tests of the theory were performed. First, it was
determined that the sum of the normal components of the
transmitted and reflected intensities equaled the normal component
of the incident intensity. Thus, conservation of energy at the
boundary is satisfied. Second, for the lossless case, numerical
results for the normal components of intensities, that is, the
transmitted and reflected power coefficients, obtained using this
theory agreed with those of Ewing et al.l6,

Nyborgl8 developed relations for the power deposition in two
different media, one exhibiting no shear viscosity and one with no
bulk viscosity. In each case two longitudinal plane waves
propagated at right angles to each other. This is equivalent to
the situation in this study for the incident medium when the angle
of incidence is 45° Lgr =1, Sg =DLpr = Sp =0, and p = 0 or By =
0, respectively. Unlike Nyborg's analysis, in this case the wave
amplitude decays with distance. However, a meaningful comparison
was possible by considering small valuesvof the absorption
coefficient and small distances from the interface. Also, Nyborg
assumed unit pressure amplitude instead of unit intensity
magnitude. A direct comparison was still possible by using the
values of density and longitudinal speed (because only
longitudinal waves are propagating) to determine the corresponding

intensity from

11
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The plots in Fig. 2 show that numerical results from each
theory are indistinguishable. The numerical values of the media

parameters used in these calculations may be found in Table 1.

Table 1. Numerical values used in the comparison to Nyborgl8,
Frequency is 2 MHz. Incident intensity is 1 W/cm?2.

zero _shear viscosity zero bulk viscosity
(Fig. 2a) (Fig. 2b)

B (g/s?) 2.608681x1010 + §8.993428x107 2.608681x1010 + 30

L (g/s2) 3.989381x105+ 30 3.989381x105+ §2.9877995x106
Ky, (cm~1) 81.59986 - 30.1406545 81.60022 - 36.230474x1073
Ks (cm~1) 2.086669x10% + 50 5.711987x103 - 35.000000x103

With bulk viscosity only, Nyborg calculated power deposition

, . 4 TcY 2 1
with maximum value " " and zeros at " (n + E)"’ (n =0, 1, 2,
PoC @

.), corresponding to

P, max = —8 Im{Kg} (16a)
for unit incident intensity and
2 1
Xy = EETRZT (n + E)’ (16b)

respectively. With shear viscosity only, Nyborg calculated power

L ) ) 3a neV2 1 )
deposition with maximum value "—" at " (n + 5)" which
PoC W
corresponds to
P1,max = -6 Im{Ky} (1éc)

and

12
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V2 1
X = RG{KL} (n + ‘2') (16d)
. o nc .
in this work and minimum value "—" at " n" which corresponds
oC
to
Pr,min = —2 Im{Kp} (1l6e)
and
w2
X2 = EETR;T (16£)
here.

Power Deposition ( W/em 3)

0.0 : :
0.02 0.04 0.06 0.08 0.10
X 5 (cm)

Figure 2a. Power deposition versus distance from the interface in
the incident medium for zero shear viscosity using Eq.

(14) ; same as Nyborg'sl8 plot.

13
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Figure 2b. Power deposition versus distance from the interface in

the incident medium for zero bulk viscosity using Eq.
(14) ; same as Nyborg'sl® plot.

These tests show that the theory presented in this paper

provides solutions that agree with results previously reported for

less general theories.

14




4. POWER DEPOSITION CALCULATION

The power deposition, Pz, was computed near muscle-bone and
muscle-air interfaces directly withouﬁ separating the intensity
into shear and longitudinél components. Results obtained by this
direct calculation were then compared to those obtained with the
methods of Chan et al.l0 and Frizzell and Carstensenl? for
separation of energy into shear and longitudinal components at the
interface. Cross-term intensities were attributed to shear and
longitudinal waves based on the ratios of the magnitudes (Eq.
(17)), after Chan et al.lo, and on the ratios of the squares of
magnitudes (Eq. (18)), after Frizzell and Carstensen?, of the

respective potential coefficients.

|Lr|
Irefl.—long. = Ipure—refl.—long. + ILr] + |Sgrl Iunprimed cross term
(17a)
= ’ | Sy
Irefl.-shear = Ipure—refl.—shear + |Lg!| + [SglI Iunprimed cross term
(17b)
I = |Lrl
trans.-long. ~ Ipure—trans.—long. + |Lpl + |Sepl Iprimed cross term
(17¢)
- | St
Itrans.-shear = Ipure—trans.-‘shear + Ll + |Stgl Iprimed cross term
(17d)
I _ |Lrl?
refl.~-long. < Ipure-refl.-long. + ILRIZ + |SR12 Iunprimed cross
term (18a)
Ak

Irefl.-shear = Ipure-refl.-shear + ILRIZ + |5R12 Tunprimed cross

term - (18b)

15



I : -1 + |Lgl? Torimed
trtans .—long. pure-trans.-long. I Lep | 2 4+ ' St | 2 +primed Cross
term (18c)
I - 7 + |Spl? Torimed
trans.-shear pure-trans.-shear | L 2 4 | Srl 2 +primed cross
term (18d)

The energies on the right-hand sides of Egs. (17) and (18) are
defined as follows, and are calculated at the origin of the
coordinate system. Also, see Appendix A.

Iinc. = pure incident term (®:Pr* term) (19a)

Ipure-refl.-long. = Pure reflected longitudinal term (PrPr*

term) {19b)
Ipure-refl.-shear = pure reflected shear term (AA* term)
(19¢)

Ipure-trans.-long. = Pure transmitted longitudinal term (®'P'*

term) (19d)

Ipure-trans.-shear = pure transmitted shear term (A'A'* term)

TR R EEEERERNE

(1%e)
Iunprimed cross terms = Sum of cross terms in the incident
(unprimed) medium (19f)

Iprimed cross temms = sum of cross terms in the transmitted

(primed) medium ' (19qg)

The power depositions as a function of distance from the
interface were then calculated by applying the appropriate
absorption coefficient to both shear and longitudinal waves and
using ray tracing to determine the contribution from each wave at

a particular distance. When only one kind of wave is propagating

16
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in the +d direction in an unbounded medium, the intensity can be

described by
I1(d) = I, e-2ad (20a)

and the power deposition by

Py (d) = 20I, e~204d, (20b)
where I, is the intensity at d = 0 and & is the absorption
coefficient. 1In this simplified calculation, the power deposition
due to each kind of wave is calculated as if that wave were the
only one propagating, using the intensities computed in Eg. (17)

or Eq. (18) at the origin of the coordinate system for each value

of I, and the appropriate absorption coefficient for «. The value
of d depends on the distance from the interface (x2) and on the
real angles of incidence, reflection, and refraction (68, vy, 687,
v') (see Fig. 1). These are not the real parts of the complex
angles found in Eq. (10), but must be calculated from ratios of
the x; and x; components of the intensities in Eq. (19). The
distance d is calculated as follows. Because the incident wave is
assumed to have infinite beamwidth, the values of x1 and x3 are
taken to be zero without loss of generality. However, the rays
contributing to the power deposition at each point along the x1 =
x3 = 0 line are reflected from or transmitted through points on the
interface (the x» = 0 plane) other than the origin of the
coordinate system, where the energies in Egq. (19) were calculated.
Figures 3a and 3b each show two rays representing the incident
wave. One reaches the interface at the origin, and the other,

which is reflected in Fig. 3a and transmitted in Fig. 3b, reaches

17
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the interface at a point at which the value of x1 is less than

zero. The incident rays impinging on those reflection and

transmission points are less attenuated than the incident ray

whose intensity was calculated in Eq. (19a), since the latter

traveled a distance d; farther and was more attenuated.

d; = -x1 sinf (21)

X3

Figure 3a. Geometry for estimating power deposition. Bold lines
with arrows at one end are rays representing incident
and reflected waves. Thin lines with arrows at both
ends indicate distances. Dashed lines represent phase

fronts.

The distance dz and the value of x; in Fig. 3a is given by EQg.
(22) for the case of the reflected longitudinal wave and by Eq.

(23) for the case of the reflected shear wave.

18



dy = xp sech (22a)

_ X1
tan 6 = X2 (22b)
d, = x2 sec Y (23a)
-X
tan ¥ = :Ef (23b)

Figure 3b. Geometry for estimating power deposition. Bold lines
with arrows at one end are rays representing incident
and transmitted waves. Thin lines with arrows at both
ends indicate distances. Dashed lines represent phase

fronts.

19




The distance d3 and the value of x1 in Fig. 3b are given by
. Eq. (24) for the case of the transmitted longitudinal wave and by

R Eq. (25) for the case of the transmitted shear wave.

dz = %2 secH’ (24a)

tan 67 = > (24b)
X2

(25a)

d3 = x2 secy’

£L (25b)

tan Yy = %o

-
Then the contributions from the wave components calculated
- with Eq. (20b) were summed to get the total power deposition as a
i function of distance from the interface.

power deposition in the unprimed medium =
- 20, (Iinc. (@x; = X2 = 0)expl201,%2 cosf] +

Irefl.-long. (@X1 = X2 = 0) exp [-20px2 cosf]) +

20sIrefl.-shear (X1 = X2 = 0)exp[2x2(0y sinftany -

og' secy)l (26a)

power deposition in the primed medium =

20, ' Tt rans.-long. (€X1 = Xz = 0)exp[2x2(0g sinftanf’ -

o' secf')] +

205 ' Itrans.-shear (@X1 = X2 = 0)exp[2x2 (ay sinfBtany’ -
(26Db)

ag' secy’)]
The results are plotted in Fig. 4 as a function of xp for an
incident intensity of 1 W/cm? and incident angles of 0°, 30°, and

60°. Table 2 lists the properties used.

20




' Table 2. Properties of tissues at 2 MHz used for mode conversion
computations.

Muscle Air Bone
cr (cm/s) 154,00017,18 34,40020 336,00017,18
a; (cm~1) 0.1517,18 | 0.820. 2.517,18
cs (cm/s) 2,20010 2,000%* 179,0001'7,18
as (cm™1) 5,00010 6,500% 4.017,18
Ky (cm-1) 81.6 - j0.15 365 - j0.8 37.4 - j2.5
Ks (cm™1) 5,710 - 35,000 6,280 - 36,500 70.2 - 4.0
p (g/cm3) 1.1 0.0012 1.7

The superscripted numbers refer to the reference used.
* The shear properties of air were calculated based on its shear

viscosity.

Results obtained using either method of separating
intensities do not show the spatially oscillating nature of the

power deposition that is exhibited by Pi, the directly calculated
power deposition. It is seen in Figs. 4a, 4c, and 4e that within
the muscle, results using Chan's method approximate the spatial
average of Pr. Results from Frizzell and Carstensen’s method were
higher than the spatial average.‘ However, Figs. 4d and 4f show
that within the bone the results from Chan's method for oblique
incidence are not a good approximation to Py, especially at large
angles of incidence. Results from Frizzell and Carstensen’s

method were a slightly better approximation.

21



Figure 4.
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Results from calculations of power deposition Py in
muscle (a) and in bone (b) at 0° angle of incidence
using Eq. (14) (- - -), and dividing cross-term
intensities as done by Chan et al.l0 ( ).
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Figure 4.
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Results from calculations of power deposition Py in
muscle (c) and in bone (d) at 30° angle of incidence
(- - =), and dividing cross-term

intensities as done by Chan et al.l0 (

using Eq. (14)
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Figure 4.

(e)
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Results from calculations of power deposition Py in

muscle (&) and in bone (f) at 60° angle of incidence
using Eq. (14) (- - -), and dividing cross—term
intensities as done by Chan et al.l0 ( ).

Since power deposition calculated using this method was not

in particularly good agreement with Py, it seems that these methods

of classifying the energies as shear or longitudinal are not very

useful.

In the next chapter a different method of studying the

effect of shear waves on power deposition will be described.
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5. ISOLATION OF SHEAR WAVE EFFECTS

Another way of studying the effect of shear waves on power
deposition is to compare the intensity and the power deposition in
media which are the same except for their ability to support shear
waves. Instead of solving a new set of equations where shear
waves are not allowed in one or both media, shear waves were
virtually eliminated by changing the shear absorption coefficient
to an arbitrarily large value.

og and/or ag' = 108 cm™? (27)

As shown by Eq. (2b), a medium with zero shear stiffness and zero
shear viscosity has an infinite value for Ks, that is, 0g = e and
cg = 0. However, shear waves are eliminated just by letting Og
approach an infinite value. As shown in Appendix B, all of the
terms in the expressions for power deposition (found in Appendix
A) which involve shear waves, that is, which involve vector
potentials, go to zero in the limit that the shear absorption

coefficient goes to infinity. A material in which shear waves

have been eliminated in this manner will be referred to as
"shearless."

Power deposition was computed as a function of angle of
incidence immediately adjacent to the interface for muscle-bone
and muscle-air interfaces (incident wave in muscle) as shown in
Figs. 5 and 6, respectively. In each figure four cases are
plotted: a calculation using measured values for the shear

absorption coefficients and three calculations using the specified
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large value for as, Og', Or both to make the media each

individﬁally or both "shearless."

Power Deposition ( W/em3)

----- senesccansene
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...................

Il.llll.l.lllIIlllllll.lllllllllII““.l.......luu.i..i.....g... ..............

30 60 90
Angle of Incidence ( degrees )

Power deposition versus angle of incidence at xz = 107>
cm (in the "muscle") for a muscle-bone interface (X), a
muscle-"shearless" bone interface (O), a "shearless"
muscle-bone interface (Od), and a "shearless" muscle-

“shearless" bone interface (+).

Figure 5a.

Tt is clear from Fig. 5a that substituting "shearless" muscle

or "shearless" bone or making both media "shearless" immensely

reduces the power deposition in the muscle. Thus, shear waves do

contribute significantly to power deposition in soft tissue
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immediately adjacent to an interface with another medium which

supports shear waves.

151

Power Deposition ( Wiem?3)

- L
: 0 30 60 90
Angle of Incidence ( degrees )

- Figure 5b. Power deposition versus angle of incidence at xz = -10-°
cm (in the "bone") for a muscle-bone interface (X), a
muscle-"shearless" bone interface (O), a "shearless"
muscle-bone interface (0), and a "shearless™ muscle-
"shearless" bone interface (+).

In the bone, power deposition is significantly smaller for a
muscle-"shearless" bone interface than for a muscle-bone
interface, as expected, but the "shearless" muscle-bone case is

indistinguishable from the muscle-bone case (Fig. 5b). Thus,
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existence of shear waves in the muscle has no effect on power
deposiﬁion in the bone.

For comparison it is interesting to examine an interface
between muscle and air with the incidént wave in the muscle (Fig.
6). When the air is "shearless," the power deposition is not
appreciably smaller in the muscle than it is for a muscle-air
interface (Fig. 6a), but, as might be expected, is also noticeably
smaller in the air (Fig. 6b). For interfaces between "shearless"
muscle and air or "shearless" muscle and "shearless"™ air, the
power deposition is significantly smaller in both media. This
again shows that the cont;ibution of shear waves to power
deposition for oblique incidence in soft tissue, immediately
adjacent to the interface, is significant.

Note that the power deposition in the muscle immediately
adjacent to the interface is very low at all angles of incidence

and near zero at normal incidence because the air interface

approximates a free surface, where the acoustic pressure and the

power deposition would be zero.
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Figure 6a. Power deposition versus angle of incidence at

X2 = 1075 cm (in the "muscle") for a muscle-air

interface (X), a muscle-"shearless" air interface (O),
a "shearless" muscle-air interface (), and a

"shearless" muscle-"shearless" air interface (+).
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Figure 6b.
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Power deposition versus angle of incidence at

X2 = =-1073 cm (in the air) for a muscle-air interface
(X), a muscle-"shearless" air interface Oy, a
"shearless" muscle-air interface (), and a "shearless"
muscle-"shearless" air interface (+).

In Figure 7, the power depositions are plotted versus

distance from the interface at angles of incidence of 30° and 60°

for the four different types of muscle-bone interfaces. Figures

7a and 7b are both plots of power deposition within the muscle for

an incident angle of 30°.
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Figure 7a. Power deposition versus distance from the interface for
a muscle-bone interface (X), a muscle-"shearless" bone

interface (O), a "shearless" muscle-bone interface
(), and a "shearless" muscle-"shearless" bone

interface (+), at 6 = 30° in the "muscle."

Figure 7a shows that the contribution to Pp from the shear
wave has disappeared at approximately 5 um from thé interface.
Figure 7b shows the behavior of Py at distances greater than 5 Um
from the interface. It can be seen clearly in Fig. 7b that the
results for the muscle-bone and the "shearless" muscle-bone
interfaces are indistinguishable at distances greater than a few

micrometers from the interface.
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Figure 7b. Power deposition versus distance from the interface for
a muscle-bone interface (X), a muscle-"shearless" bone

interface (O), a "shearless" muscle-bone interface
(), and a "shearless" muscle-"shearless" bone

interface (+), at 06 = 30° in the "muscle."

A similar result was obtained for shear waves in muscle at a
muscle-air interface. Also, the results for the muscle-
"shearless"™ bone and the "shearless" muscle-"shearless" bone
interfaces are indistinguishable, as noted previously.

Figure 7c¢ shows the power deposition within bone for an angle
of incidence of 30°. Here it can also be seen that the results

for muscle-bone and “"shearless" muscle-bone are indistinguishable
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as are the results for muscle—“shearless“ pone and wghearless"

muscle—“shearless“ bone. Thus, the existence of shear waves in

the muscle has no effect on power deposition within the bone.
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Figure 7C. Power deposition versus distance from the interface for
a muscle-bone interface Xy, a muscle—"shearless" bone
interface )y, a wghearless” muscle-bone interface

Q) , and a “shearless" muscle—"shearless" bone

interface (¥) at 6 = 30° in the wpuscle."”
Figures 74, e and 7f show that results at an incident angle

of 60° are qualitatively similar to those for 30° angle of

incidence.
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Figure 7d.
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Power deposition versus distance from the interface for
a muscle-bone interface (X), a muscle-"shearless" bone
interface (O), a "shearless" muscle-bone interface
(Q), and a "shearless" muscle-"shearless" bone

interface (+), 6 = 60° in the "muscle."
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Figure 7e. Power deposition versus distance from the interface for
a muscle-bone interface (X), a muscle-"shearless" bone
interface (O), a "shearless" muscle-bone interface
(Q), and a "shearless" muscle-"shearless" bone

interface (+), at 6 = 60° in the "muscle."

35




IEEEER

Power Deposition ( W/em 3 )

Figure 7f.

()
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Power deposition versus distance from the interface for
a muscle-bone interface (X), a muscle-"shearless" bone
interface (O), a “"shearless" muscle-bone interface
(), and a "shearless" muscle-"shearless" bone

interface (+), at 8 = 60° in the "bone."

The results discussed to this point show that shear waves in

muscle contribute significantly to power deposition only within a

few micrometers of the interface. It is desirable to determine

the contribution of these shear waves to the temperature rise near

the interface. A method of estimating their contribution is

described in the next chapter.

36



6. ESTIMATE OF SHEAR WAVE CONTRIBUTION TO TEMPERATURE RISE

In the previous chapter, calculations indicated that shear
waves were important to power deposition only very near to the
interface. The next step is to find the effect of shear ‘waves on
temperature rise, a measurable consequence of power deposition,
near the interface. To estimate shear wave contribution to
temperature rise at the interface, Pp was integrated from
X = -1 cm to x2 = 1 cm to determine the total energy deposited
within 1 cm of the interface per unit area of the interface. A
distance of 1 cm was chosen to be large enough to include all of
the contributions from shear waves in muscle and bone. Yet, 1 cm
is small enough that the energy deposited within that distance
will, by conduction, contribute to the temperature rise near the
interface after several minutes. The results for the integrated
power deposition for 1 cm of bone and 1 cm of muscle are plotted
separately as functions of angle of incidence in Figs. 8a and 8b
to provide more detail. It is clear from an examination of these
results that the existence of shear waves in the muscle makes a
negligible contribution to the total energy deposited within 1 cm
of the interface and therefore to the temperature rise near the

interface.
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- Figure 8a. Power deposition for a muscle-bone interface (X), a
muscle-"shearless" bone interface (O), a "shearless"
muscle-bone interface (), and a "shearless" muscle-

- "shearless" bone interface (+) at x1 = 0 numerically
integrated over x» from 10710 cm to 1 cm in the

A "muscle". Step size is 1072 cm, except for distances
gj from the interface between 10710 and 10-3 cm, where the
step size is 1072 cm.
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Power deposition for a muscle-bone interface (X), a
muscle-"shearless" bone interface (O), a "shearless"
muscle-bone interface (), and a "shearless" muscle-

"shearless" bone interface (+) at x3; = 0 numerically
integrated over x, from -10"10 cm to -1 cm in the
"bone". Step size is 1072 cm.

It is apparent from Fig. 8b that the intégrated power

incidence,

deposition in bone does not significantly increase with angle of

as might be erroneously concluded intuitively, based on

conversion of energy to more highly absorbed shear waves. In

fact, the integrated power deposition begins to decrease with

angles of incidence greater than approximately 35°, apparently due

to greater reflection of energy at the bone interface. Yet, shear
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waves in the bone do contribute significantly to heating because
the integrated power deposition for nshearless" bone begins to
decrease rapidly with angles of incidence greater than
approximately 15°. - |

Results at an interface between muscle and air also indicate
that shear waves in the muscle made a negligible contribution to
the integrated power deposition near the interface. This confirms
the result of Filipczynskill, who used a less general theory to
show that shear waves in the soft tissue at a gas interface
provide a negligible contribution to temperature rise compared to

longitudinal waves.

40



7. CONCLUSIONS AND SUGGESTICNS FOR FUTURE STUDY

The results of this study show that the assignment of energy
to shear and longitudinal waves as dohe by Chan et al.l0 and by
Frizzell and Carstensenl? yields an inaccurate representation of
power deposition. The details of the spatial resolution are lost,
and the magnitude is incorrect in many instances compared to the
true power deposition as determined by direct calculation without
consideration of whether the energy is in a shear or longitudinal
wave.

Shear waves in bone contribute significantly to heating, but
shear waves in soft body tissues such as muscle make a negligible
contribution to heating at tissue interfaces. This is a
quantitative validation of the assumption by Chan et al.l9, and
confirms the results of Filipczynskill for interfaces with gas,
that shear waves in soft tissues such as muscle can be ignored in
studies of interfacial heating.

The integrated power deposition, which is related to
temperature rise, in the bone does not_significantly increase with
angle of incidence, as might erroneously be concluded intuitively,
based on conversion of energy to more highly absorbed shear waves.
The integrated power deposition in the bone begins to decrease
with angles of incidence greater than approximately 35°,
apparently due to greater reflection of energy at the bone

interface.
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The results of this work should be verified and extended by

considering other geometries and by using the bioheat equation to
calculate the actual temperature rise at interfaces. An important
case to be studied is cylindrical geometry, which would be a
better model of a muscle-bone interface, particularly for fetal
ultrasound exposures, where the bone is not large compared to the
beamwidth. Such a study wou;d require the use of a cylindrical
coordinate system and Bessel functions. The results of Chapter 6
can be verified by using the bioheat equation to make a better
estimate of the temperature rise. Decisions involved in that
study include choosing boﬁndary conditions for the temperature

profile and considering the effect of blood perfusion.
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APPENDIX A: INTENSITY AND POWER DEPOSITION EXPRESSIONS

The following are the intensity equations developed in L. A.
Frizzeil‘s thesis, "Ultrasonic Heating of Tissues" from Eq. (12)12,
A prime (') symbol denotes the primed or transmitting medium. A
subscript 1 refers to the direction parallel to the interface; a

subscript 2 refers to the direction perpendicular to the
interface. The complex Lamé constant Ais defined in Eg. (Al).

A =B -2 (A1)

An asterisk (*) denotes complex conjugate. The potentials ®Pg, og,

A, ®', and A' and other symbols are defined in the body of the

paper.

@
I = 3 Re{ (A + 2U)Ky sinB (D1D1* + PrPr*)

+ (2}lKg sSiny cosy cos*y + UKg sin*y (sin2y - cos?y)) RAA*

+

(AKy, sin® + 2uKy sinB (sin20 - cos?0)) (P Pr* + Pr*PRr)

+ ((A + 2W) Ky sin2@ cos*y + AKp cos20 cos*y + 2pKp sinB cosB
sin*y) Prax

+ ((A + 20Ky sin2@ cos*y + AKy cos?B cos*y - 2pKp sinf cosH
sin*y) PgrA*

+ (2UKg siny cosy sin® + pKs cos® (sin2y - cos?y)) @r*A

+ (2UKg siny cosy sin® - pKs cos® (sin2y - cos?y)) dg*A }

®
Ip = 3 Re{ (A + 211)Ky cosB (Ppdr* - O1Pr*)

+ (2UKs siny sin*y cos*y - pKg cos*y (sin?y - cos?y)) AA*
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+ (MK cos® + 2UK; cos® (cos?0 - sin?8)) (PrPr* - Pr*®PR)

+ (~(A + 20K cos20 sin*y - AKp sin?0 sin*y - 2UKp sind cosO
cos*y) PrA*

+ (=(A + 21Ky cos28 sin*y - AKy sin20 sin*y + 2Ky sin® cosB
cos*y) DrA*

+ (2UKs siny cosy cosB - pKg sin® (sin?y - cos?y)) PDr*A

+ (-2UKg siny cosy cos® - pKg sinb (sin?y - cos?y)) dg*A }

I;' = %)“ Re{ (Ky' (A' + 21') sin*6' sin28' + A'Ky' sin*@' cos?8!
+ 2U'Ky' sinB' cosB' cos*@') QTP

+ (2U'Kg' siny' cosy' cos*y' - W'Kg' sin*y! cos?2y' + H'Kg'
sin*y' sin2y') A'A'*

+ (=(A' + 21")Ky' sin2@' cos*y' - A'Ky' cos?0' cos*y' + Z2U'Ky!
sinB' cosB' sin*y') P'AT*

+ (-2U'Kg' siny' cosy' sin*6' + W'Kg' cos*6' (sin2y!

- cos2y')) ®'*A'}

Q)
Io' =75 Re { (-2U'Ky' sinB' cosB' sin*6' - (A' + 2U')Kp' cos*6’
cos20' - A'Ky' cos*B' sin?0') Q'Prx

+ (L'Kg' cos*y' (sin2y' - cos?y') - 2U'Kg' siny' sin*y!
cosy') A'A'*

+ (2U'Ky' sinB' cosB' cos*y' - (A' + 2U')Kp! cos20' sin*y' -
A'Ky' sin2@' sin*y') Q'A'*

+ (-1'Kg' sin*®' (sin2y' - cos?y') - 2U'Kg' siny' cosy!

cos*0') @'*A'}
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The following are the equations for the power deposition

derived from the above intensity equations using Eq. (14).

@
P = 5 LIKul? Im{d + 2p} (10112 + [Drl2)

- |Kgl2 Im{p} |AlZ cosh(4 Im{y})]

- 20 Im{|} [Re{KpKs*(cosB cos*y - sinBsin*y) (cosB sin*y
+ sin@ cos*y) ®1A*}

+ Re (K Kg* (cos® cos*y + sin®sin*y) (cosB sin*y - sinB cos*y)
DrA*}]

+ OIKp|2 Im{A + 2(1 - 2sin26)2} Re{D1Pr*}

)
PL' =% [1KL' 12 Im{A' + 2u' cosh2(2 Im{y'})} [®'|2 - IKs' 12 Im{p'}

[A' |2 cosh(4 Im{y'})]
- 20 Im{pt'} Re{ (IKpl2 sin20 + K 'Kg'* cosB' cos*y') (sinB

cos*y' - cosB' sin*y') D'A'*}
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APPENDIX B: "SHEARLESS" MEDIA

For a "shearless" material, an arbitrarily large value for
shear absorption is chosen, because, as will be shown below, all
terms in the expression for power deposition (see Appendi'x A)
which involve reflected (transmitted) shear waves go to zero in

the limit that og (€g') goes to infinity. These limits are taken

at x1 = 0.

)]
"shear heating" in the unprimed medium (x2 > 0) = (‘2‘) K12 Im{p}

|IAl2 cosh(4 Im{y})
- 20 Im{pt} [Re{KyKg* (cos® cos*y - sinf sin*y) (cosB sin*y + sin@
cos*y) ®iA*} + Re{KpKg* (cosb cos*y + sin®sin*y) (cosb sin*y - sinf

cos*y) OrA*}]

()
"shear heating" in the primed medium (x2 < 0) = (E) |Ks'12 Im{p')

A" |2 cosh(4 Im{y'})
- 20 Im{p'} Re{(IKpl? sin20 + K 'Kg'* cos@' cos*y') (sinB' cos*y!

- cosB' sin*y') Q'A'*)

Each term in the above expressions is examined individually

below to determine the limit.

(ﬁb) sinf = (a)/cL - jaL) sinf =
(D/Cs - jas

V1 - sin?y = V1 - (0)2 = 1

limit s —>oo Sin\lf

[l

limit gs ->e COSY
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10D
\

Ky, ' w/cy,' - jo'
limit gst ->e Siny' = (—I“,) sinb = ( = j = ) sin6 =

Ks w/cg' - jog'
limit ggt -> COSY' = ‘\/1 - sin?y' = Vi - (0)2 =1
limit as ->0 Y = limit st =>oo \lf' = 0

2pw3cg3ag

limit ->00 IM{L}= =
2p'0)3Cs'3as'

((1)2 + CS|2aSt2)2

limit st ~> Im{u'}_—. = O

w? 2pw3cg3ag
limit >0 |Kgl? Im{p} |AI2Z = |=—5 + 0g?
s H cs? 5 ) (@2 + cs2052)2

[ @ (o
[Spl2|L1|2 exp[(ds + j(gg)) Xp cosy + (Os - j(-c—s-)) Xy cos*y] = 0

w2 2p'w3cs'3ag!
limit gst ->ee |Ks'12 Im{p'} |A"]2 = + ag'?

()] ()]
IS712]L112 expl(og' + j(g;.—))Xz cosy' + (og' - j('gS'T))XZ cos*y'] = 0

()] @
limit gs ->ee Kg*®PrA* = (EE + jas) Sr*|L1l2 expl ((as + j(&;)) cos*y

J O
- [aL + j(’é’;)) cosB)xz] =0
w

®
limit gs ->e Kg*@DpA* = (’é‘;’ + jas) LRSR*ILI|2 exp [ ((as + j(’c—s')) cos*\y

Ny
+ (aL + 3(‘6;)) cosB)x2] =0
w

: 10}
limit gs' ->e0 Kg'*P'A'* = (—Cs—' + jas') LpSr* Ly |2 exp[((—as' + J(’é‘s_.))

cos*y!' - (aL‘ + 3(‘0—?—,)) cosf')x2] = 0
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The_coefficients of the potentials (¥, Pr, A, ®', A') also

depend on the shear absorption coefficient. If the limits as Og

(og') goes to infinity of each component of the matrix in Eg. (11)

and of each component of the vector on the right-hand side of Eq.
(11) are taken before solving the system of equations, the values

of Sg and Lrg (St and Lg) will be finite, not infinite, so the

nshear heating" terms are zero as indicated above.

48



10.

REFERENCES
patzold J, Born H: Behandlung Biologische Gewebe mit
Gebundetten Ultraschall. Strahlentherape 76:486, 1945
Bell E: The Action of Ultrasound on the Mouse Liver. J Cell
Comp Physiol 50:83, 1957
Taylor KJW, Connolly CC: Differing Hepatic Lesions Caused by
the Same Dose of Ultrasound J Path 98:291, 1969
curtis JC: Action of Intense Ultrasound on the Intact Mouse
Liver. In: Kelly E (ed.): Ultrasonic Energy, Urbana,
University of I1linois Press, 1965, P 85
Linke CA, Carstensen EL, Frizzell LA, et al.: Localized
Tissue Destruction by High Intensity Focused Ultrasound. Arch
sSurg 107:887, 1973
carstensen EL: The Mechanism of the Absorption of Ultrasound
in Biological Materials. IRE Tran Med Elect ME-7:158, 1960
O'Brien, Jr., WD, Shore ML, Fred RK, et al.: On the
Assessment of Risk to Ultrasound. In: de Klerk J (ed): 1972
Ultrasonic Symp Proc (IEEE Cat# 72 CHO 708-8SU) 1972, PP 486-
490
Sarvazyan AP: Acoustic Properties of Tissues Relevant to
Therapeutic Applications. Br J Cancer 45 (Suppl. V) :52, 1982
Hynynen K: Hot Spots Created at Skin-Air Interfaces During
Ultrasound Hyperthermia. Int J Hyperthermia 6(6):1005, 1990
Chan AK, Sigelmann RA, Guy AW: calculations of Therapeutic
Heat Generated by Ultrasound in Fat-Muscle-Bone Layers. IEEE

Trans Biomed Eng BME-21 (9) :280, 1974

49



11. Filipczynski L: Absorption of Longitudinal and Shear Waves
and Generation of Heat in Soft Tissues. Ultrasound Med Biol
12:223, 1986

12. Frizzell LA, Carstensen EL: Ultrasonic Heating of Tissues.
Electrical Engineering Technical Report No. GM 09933-20,
University of Rochester, 1975 (same as Ph.D. Thesis
wyltrasonic Heating of Tissues™ by L. A. Frizzell).

13. Frizzell LA, Carstensen EL, Dyro JF: Shear Properties of
Mammalian Tissues at Low Megahertz Frequencies. J Acoust SocC
Am 60(12):1409, 1976 |

14. Madsen EL, Sathoff HJ, Zagzebski JA: Ultrasonic Shear Wave

Properties of Soft Tissues and Tissuelike Materials. J Acoust

T EREERRR

Soc Am 74(11):1346, 1983
15. Cooper, Jr. HF: Reflection and Transmission of Oblique Plane

Waves at a Plane Interface Between Viscoelastic Media. J

Acoust Soc Am 60:1064, 1967

16. Ewing WM, Jardetsky WS, Press F: Two Semi-Infinite Media in
Contact. In: Shrock RR (ed): Elastic Waves in Layered Media.
New York, McGraw—ﬁill, 1957, pp 83-89

17. Chan AK: Thermal Effects Due to the Propagation of Acoustic
Waves in Biological Tissues, Ph.D. Thesis. Seattle,
University of Washington, 1971

18. Nyborg WL: Sonically pProduced Heat in a Fluid with Bulk
Viscosity and Shear Viscosity. J Acoust Soc Am 80(10):1133,

1986

50




) — — -
K

] I l =l l ﬁ l‘;_i

19.

20.

21.

22.

23.

24.

25.

26.

Dyro JF: Ultrasonic Study of Material Related to
Atherosclerotic Plaque--Dynamic Viscoelastic Properties of
Cholesteric Esters, Ph.D. Thesis. Philadelphia, University of
Pennsylvania, 1972 |

Carslaw HS, Jaeger JC: Conduction of Heat in Solidé, 2nd ed.
Oxford, Clarendon, 1959, p 75

Goss SA, Johnston RL, Dunn F: Comprehensi&e Compilation of
Empirical Ultrasonic Properties of Mammalian Tissues. J
Acoust Soc Am 64(8):423, 1978

Goss SA, Johnston RA, Dunn F: Comprehensive Compilation of
Empirical Ultrasonic Properties of Mammalian Tissues: II. J
Acoust Soc Am 68(7):93, 1980

Del Grosso VA, Mader CW: Speed of Sound in Pure Water. J
Acoust Soc Am 52(11):1442, 1972

Beranek L: The Medium. In: Beranek L (ed): Acoustic
Measurements. New York, John Wiley & Sons, Inc., 1949, p 68
Dyro JF, Edmonds PD: Ultrasonic Absorption and Dispersion of
Cholesteryl Esters. Mol Cryst Lig Cryst 25:175, 1974

Dyro JF, Edmonds PD: Dynamic Viscoelastic Properties of

Cholesteric Liquid Crystals. Mol Cryst Lig Cryst 29:263, 1975

51




