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CHAPTER 1

INTRODUCTION

Ultrasound is a commonly used imaging tool in today's
medicine and can be found in most medical specialties. Moreover,
at least 50% of all fetuses are exposed to one ultrasound scan
[1]. Yet, how do we know that diagnostic ultrasound exposure is
safe and does not have long term biological effects? Is there a
limit to the exposure time or strength? An understanding of the
output of diagnostic ultrasound is needed before biological
effects and safety can be evaluated. But, how is the output
energy measured? What is the method of expressing the energy?
What does it mean??

Many people are concerned about the safety of ultrasound and
if there are possibly harmful effects under different conditions.
At the California Primate Research Center, University of
California, Davis, Dr. Alice Tarantal is researching in the field
of ultrasonic bioceffect and'tarantology. Her studies focus on
prenatal exposure to ultrasound in nonhuman primates,
specifically, Macaque monkeys. The fetuses are exposed for
extended periods of time during specified days of the fetal
development and are monitored prenatally and postnatally. These

studies 1) evaluate the safety of diagnostic ultrasound (scan
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mode) and pulsed Doppler exposure in an in vivo system similar to
humans and 2) compare changes in animals exposed prenatally to
diagnostic ultrasound and pulsed Doppler. To pursue the
mechanisms fbr and enhance the understanding of her results, the
output of her clinical device needs to be calibrated prior to each
experiment. This would allow any possible biological effects to
be linked to a quantifiable measure of ultrasound. In other
words, if there are biological effects from diagnostic ultrasound,
at what level of ultrasonic output are these biological effects
occurring. In order to calibrate her diagnostic equipment
frequently, an exposimetry system was commissioned to be designed
and built specifically to meet her needs.

This thesis.is the description of the exposimetry system that
was built for the California Primate Research Center. Chapter 2
defines the acoustical terms and presents the measurement theory
that 1s implemented in the system. Chapter 3 describes the
hardware'components. Chapter 4 describes the software developed
to run the hardware and make the intensity calculations.
Chapter 5 introduces possible improvements on the system due to
the uncertainties of the system described. Chapter 6 concludes

and summarizes the exposimetry system which was delivered.



CHAPTER 2
MEASUREMENT THEORY

Ultrasound is similar to the sound in the audible frequency
range except that it is at a higher frequency so that humans
cannot hear it. This sound is projected into the body where it
bounces off at different interfaces. These ultrasonic echoes are
then used to create an image of- the body:; this is called
diagnostic ultrasound.

There are different modes in which ultrasound can operate,
continuous wave (CW) mode and pulsed mode. When a transducer is
driven electrically, it creates a mechanical motion back and
forth, thus vibrating and creating a wave. If this wave is
continuous without any interruptions, the transducer is said to be
operating in continuous wave mode. Figure 1 is representative of
a continuous wave. The frequency of this wave is the number of
cycles per second, and Athe period is the reciprocal of the
frequency.

When the transducer is driven in bursts of identical pulses,
it is operating in pulsed mode. Each pulse is only a few cycles
long. In diagnostic ultrasound, these pulses tend to have
different amplitudes for each half cycle. A variation of the

pulsed mode is a Doppler pulse where the half cycles of the pulse
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5
have similar amplitudes and are a few cycles longer than in
diagnostic ultrasound. Figure 2 shows the differences between the
two pulses. As in continuous mode, the transducer frequency is
the frequency at which that the transducer is driven and the
frequency within the pulse. 1In pulse mode, additional parameters
are used to define the signal. The pulse duration (pd) is the
time from the beginning of the pulse to the end of the pulse. The
pulse repetition frequency (prf) is the number of pulses in one
second. The pulse repetition period (prp) is the time between
consecutive pulses, as measured at the same point in the pulse,
and is also the reciprocal of the pulse repetition frequency. To
represent the fraction of time at which the sound is actually on
during one complete cycle, the duty cycle is the ratio of the
pulse duration to the pulse repetition period.

Both continuous mode and pulsed mode can have focused and
unfocused sound beans. As represented in Figure 3a), the
unfocused sound beam has a uniform energy output at different
distances from the transducer, given no attenuation by the medium.
The focused sound beam, see Figure 3b), concentrates the energy at
a specified distance from the transducer.

Although total power is an important acoustical parameter,
more often the specifications of acoustical output of diagnostic
ultrasound are in terms of intensity parameters derived from
acoustical pressure measured by a miniature hydrophone. Intensity,
or sometimes called power density, is the spatial concentration of
power. However, measuring the intensity can be complicated.

There are two components of intensity, spatial pattern and
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8
temporal pattern. Each point in both time and space has an
instantaneous intensity. For continuous wave ultrasonic signals,
only the spatial component is of concern because there is a
constant energy output. The spatial peak (SP) intensity is the
highest value of intensity in the sound beam, usually along the
axis of the beam: and for focused beams, the spatial peak is in
the focal zone. More frequently, the spatial average (SA)
intensity is measured by dividing the total power output by a
specified area of the beam. However, the area of the beam is
arbitrary and depends on the specific definition used. For an
unfocused beam, the area of the transducer face is often used but
not necessarily. For both focused and unfocused beams, the beam
width can be taken -3 dB, -6 dB, -10 dB or -20 dB down from the
axial spatial peak intensity. This 1is the ambiguity of the
spatial average intensity measurement.

Defining the intensity for a pulsed ultrasound signal is more
involved than for a continuous mode signal because the pulsed
signal varies both spatially and temporally. The spatial peak and
spatial average are defined the same for pulsed mode as for
continuous mode. The temporal pattern is also separated as
temporal peak and temporal average. By choosing different
combinations of these patterns, the intensities are defined as
follows: 1) the spatial-averége, temporal-average intensity (Ig,;,)
is the average power divided by the specified beam area (spatial
average for continuous mode); 2) the spatial-average, temporal-
peak intensity (I,,) is the spatial average value of the intensity

during a pulse; 3) the spatial-peak, pulse-average intensity
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(Igp,) 1s the intensity at the spatial peak in the sound beam over
the pulse duration; 4) the spatial-peak, temporal-average
intensity (Ig;,) is the intensity at the spatial peak over the
pulse repetition period; 5)the spatial-peak, temporal-peak
intensity (Ig,,) 1is the largest instantaneous intenéity value
during the pulse at the spatial peak.

How do you calculate these intensities? First, a pressure
signal is captured from the transducer. For this purpose, a
hydrophone receives the ultrasonic signal. However, the actual
signal received is a voltage signal which is proportional to the
preSsure. According to AIUM standards [2], the center frequency

(£f,) is defined as

f, = ——= (1)

where £, and f, are the frequencies at which the transmitted
acoustic pressure spectrum is 71% (-3 dB) of its maximum value.
To determine the center frequency, the hydrophone/amplifier system
must be located at the point of the spatial peak. The
hydrophone's output voltage shall be used to generate a frequency
spectrum display. Either of two methods can be used for
generating this frequency spectrum:

a) an automatic spectrum analyzer with an operating
range encompassing the frequency envelope of the
detected signal.

b) A computational system capable of performing Fourier

transforms and either displaying the spectrum or
calculating the desired values.
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Determining the center frequency is important because hydrophone
sensitivities are based on the center frequency.

The sensitivity of the hydrophone is often given as the end-
of-cable open-circuit sensitivity (M), which ‘is the sensitivity
_ of the hydrophone at the end of the cable when it is not connected
to any devices, i.e., no electrical load. When the hydrophone is
connected to an electrical load, such as an amplifier, the
sensitivity changes to what is called the end-of-cable loaded
sensitivity (M)). Consider the hydrophone as a two-terminal
network with a complex impedance Z, such that when loaded, the
hydrophone sees an impedance 2 The end-ocf-cable 1loaded
senSitivity, M,, is related to the end-of-cable open-circuit

sensitivity, M., in the following method [3].

Re(Z,)? + Im(Z,)? l/2(2)

[Re(Z;) + Re(2)]1% + [Im(Z,) + Im(2)]2

ML Mc

where Re and Im are the real and imaginary parts of the relevant
complex impedance, respectively. If the electrical load can be
assumed to be a parallel combination of a resistance R, and
capacitance C_, then Re(Z,) and Im(Z ) are given by

Ry

Re(Z,) = (3)
£ 1 + w2CER?:

and
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-0 CR;

252 (4)
1 + w3CiR;

Im(z;) =

where o is the angular frequency. If both the hydrophone and the
load can be assumed to be capacitative, then Equation (4) can be

fﬁrther reduced to

ML = MC {—é——c—;——'} (5)

where C 1is the end-of-cable capacitance of the hydrophone,
including any integral cable and connector, and can be

approximated by

-1
s 6
¢ wIm(Zz) (&)

The voltage (v) signal can now be converted to a pressure (p)

signal, according to

p = (Pa) (7)

v
M, (Z.)

where M (f,) is the end-of-cable loaded sensitivity. The peak
compressional pressure, P., is the temporal peak compressional
pressure amplitude, and the peak rarefactional pressure, pP., is
the temporal peak rarefactional pressure amplitude at a specified

spatial point; these are also calculated as in Equation (7).
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Once the signal 1is representative of the pressure, the

instantaneous intensities are calculated,

Linstant = ?L_O%(_)—E (W/cm?) , (8)

where p is the pressure, p is the density of water, and c is the
speed of sound in water. The pulse intensity integral (PII) is

then calculated as [2]

sz(t) de
10%c M: (f,)

PIT = (J/ cm?) (9)

where v is voltage, p is the density of water, c is the speed of
sound in water, and M (f,) is the end-of-cable loaded sensitivity.
If the signal is stored digitally, the integral is treated as a
summation of the instantaneocus intensities multiplied by the

sampling period (At).

(J/ cm?) (10)

The pulse intensity integral is used to calculate the pulse
duration (pd) and is a good starting point for calculating

intensities. The pulse duration is

pd = (1.25) © (sec) (11)
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where 7 is the time between the 10% and 90% values of the pulse
intensity integral.

In this system, the spatial averagé parameters are not
calculated because of the difficulty in determining the cross-
sectional area of the beam width. The spatial peak parameter is
determined by moving the hydrophone along the x-, y-, and z-axes
until the largest pressure pulse is received. Once the spatial
peak 1is determined from the field, the following intensities
calculated are spatial peak values. From the pulse intensity
integral and the pulse duration, the spatial-peak, pulse average

intensity, Ig,,, is calculated as follows

Tsppa = P11 (W/cm?) . (12)

pd

From the Ig,,, the spatial peak temporal average intensity, Ig,,,

is calculated as follows

Topra = (Igpps) (duty cycle) (W/ cm?) (13)

where the duty cycle is the ratio of the pulse duration over the
pulse repetition period. Equivalently, the spatial-peak, temporal
average intensity can be calculated using the pulse intensity

integral directly:

Tepra = (PIT(max)) (prf) (W/cm?) . (14)
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The last intensity calculated with this system is the spatial-
peak, temporal peak intensity, Ig;,,. The temporal peak intensity
is simply the éreateét instantaneous intensity value in the pulse.
The spatial-peak, temporal-peak intensity is the highest inﬁensity

of these three intensities.
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CHAPTER 3

HARDWARE

This chapter describes the hardware used in the exposimetry
system. A 386sx pc compatible computer interfaces with three
computer boards. A digitizing board captures the acoustic signal
received by the hydrophone; an inport/outport board interfaces
with a programmable attenuator which changes the'hydrophone signal
to fit the dynamic range of the digitizing board: a custom-
designed and custom-built board calculates the pulse repetition
period from the trigger signal of an inductor coil. A block
diagram of these interfaces is shown in Figure 4. The exposimetry
system also includes a custom-built water tank. Figure 5 shows
the general setup of the system including the diagnostic
ultrasound unit. The hardware specifications meet the criteria

set by the AIUM standards [2].

3.1 Computer

The system computer had to be self-contained, moveable and
capable of making calculations in real time. The desire for the
system to be used for subsequent years meant that the system had
to be expandable and capable of handling upgrades. A CompuAdd

316s computer was selected for this systen.
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The 316s computer features a 386sx microprocessor running at

16 MHz. It also includes a 387sx math coprocessor to enhance the
speed of floating-point operations and provides 32 bit precision.
The 316s has 2 Mbytes of 0 waitvstate page-mbde memory and a 40
Mbyte hard drive for running and storing programs and data. This
particular model includes one parallel port and two serial ports.
Also, three full-size 16-bit and 2 half-size 8-bit expansion slots
are in a low profile casing. In addition, two diskette drives
were installed, a 5.25" 1.2 Mbyte and a 3.5" 1.44 Mbyte. This
system includes a CompuAdd VGA monitor and graphic adapter and a»
24-pin Panasonic kx-pl124 dot matrix printer. More information on

the CompuAdd 316s computer can be found in the references [4].

3.2 Marconi PVDF Hydrophone

Typically, for diagnostic equipment a polymer polyvinylidene
diflouride miniature hydrophone is selected. In most systems and
this one, the membrane coplanar shielded type with an active
element of diameter 0.5 mm is used. The advantage of the
hydrophone chosen is the flat frequency response in the low mega
Hertz range which extends to 40 MHz [5]. Also, the membrane
hydrophone minimizes field deformations, caused by its insertion
[(6].

Originally, a Sonic Technology 0.4 mm coplanar PVDF membrane
hydrophone was purchased for this system. However, due to the
poor signal to noise ratio, the Sonic Technology hydrophcone could

not be used. A Marconi 0.5 mm bilaminar PVDF membrane hydrophone
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was available. The calibration by National Physical Laboratory of
the Marconi hydrophone is shown in Table 1.

Table 1: Calibration listing of the Marconi 0.5 mm
bilaminar PVDF membrane hydrophone

(Serial No. IPO41)
Water Temperature: 20.7 * 0.5 °C

Frequency End-of~-cable open-circuit Impedance

sensitivity Re(2) Im(z)

MHz uv/Pa Q Q
1 0.060 140 -1910
2 0.060 80 -1000
3 0.062 60 -680
4 0.063 44 -520
5 0.066 34 -419
6 0.067 29 -351
7 0.068 26 -302
8 0.071 23 -264
9 0.073 21 -235
10 0.077 19 =211
11 0.079 18 -191
12 0.084 17 -174
13 0.087 16 -161
14 0.092 16 -148
15 0.098 14 -137

Table 1 lists the calibration as the end-of-cable open-circuit,

M, . The end-of-cable loaded sensitivity, M is determined as

LI
described by Equation (5) in Chapter 2 -- Measurement Theory.

This calculation is done in software.

3.3 WAAG II Digitizing Board

The analog signal had to be acquired in accordance withithe
Nyquist criterion, that is, two times the highest frequency
possibly output from the clinical system. At the time, a Waveform
Acquisition and Arbitrary Generator board (WAAG II) made by
Markenrich Corporation was available. The hardware of the WAAG II

includes data acquisition and storage, time base, trigger circuit,
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signal conditioning and generator output [7]. Through hardware
- and software, the WAAG II is used in single-channel 40 MHz mode
and internally triggered to acquire and display a waveform. The
WAAG II's memory is 32 Kkbyte, high speed (45 ns), static RaAM
(random access memory). Sampling at 40 MHz with a minimum signal
frequency of 0.5 MHz, only 1 kbyte of RAM is needed to store the
waveform. This provides resolution of 8 bits. The trigger source
is selected by a slide switch located on the board. It has four
registers: two 16-bit address registers, one 16-bit control
register, and one 8-bit status register. The full scale input
signal is hardware selected to be +0.635 to -0.640 V. More

information is provided in [7].

3.4 Amplifier-Attenuator-Amplifier Series

The hydrophone signal is in the range of 30 to 50 mV when in
the spatial peak of the sound beam. When the hydrophone is moved
out of the spatial peak, the signal is much smaller. Thus, the
signal needs to be amplified to make it robust within the
limitations of the WAAG II board. A combination of amplifier-
attenuator-amplifier is used to fit the hydrophone signal to the
dynamic range of the WAAGII board. The combined amplification of
the amplifiers, when the attenuator is set to zero, needed to have
a gain of 40 dB, such that a 10 mV signal would be amplified to
1 V. Since the amplifiers have set gains, a variable attenuator
allowed the amplification to be changed. The attenuator needed to
attenuate from 0 dB to 40 dB, at least to the amplified amount in

order to keep the WAAG II from saturation. The attenuator also
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needed to be computer controlled to automate the amplification of
the signal. All three components require flat frequency responses
in the range of 0.5 MHz to 10 MHz.

A 17 dB Marconi Hydrophone Amplifier [8] amplifies the signal
directly from the hydrophone cable because a Marconikhydrophone is
used. This particular hydrophone was calibrated by National

Physical Laboratory as listed in Table 2.

Table 2: Calibration listing of the Marconi Hydrophone
Amplifier. Serial Number Y-33-9724 IP134.
RMS input voltage to device was 100 mvV.

Frequency Gain
MHz dB

16.7
16.8
l16.8
l16.8
16.8
16.7
16.7
i6.6
16.5
16.5
16.4
16.3
16.2

e & 5 e o e e o s+ o s e
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The Marconi Hydrophone Amplifier also changes the phase of the
signal by 180°.

The signal is attenuated by the Wavetek P1506 attenuator [9]
(impedance of 50 Q) after being amplified by the Marconi
Hydrophone Amplifier. This attenuator attenuates from 0 to 63 dB
in 1 dB increments (+ 0.1%) with a switching speed of 6 msec. The
frequency range is from dc to 1500 MHz. The attenuator is TTL

controlled and interfaces with the PI024 inport/outport computer
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board. The PIO24 is a basic inport/outport board with a 24 pin
"D" connector. Though the attenuator only uses 15 pins, the PIO24
provided extra connections that may be needed in the future.

Directly connected to the other side of the attenuator is a
MiniCircuits ZFLS00LN broadband linear power amplifier with a
frequency range of 0.1 to 500 MHz. The MiniCircuits amplifier is
measured to be 26 4B gain. More detailed specifications are in
the references [10]. Both amplifiers are powered by a * 15 V

power supply.

3.5 Custom-built Pulse Repetition Period Board

After installing the WAAG II board and running simple
signals, it became apparent that the pulse repetition period (prp)
could not be calculated with the WAAG II. Given the slowest pulse
repetition frequency (prf) of 0.5 kHz and sampling at 40 MHz,
32 kbyte of memory could not store two pulses. Without storing at
least two pulses the pulse repetition period could not be
calculated. Thus, a separate computer board was designed and
built to calculate the pulse repetition frequency. The method
using an inductor coil next to the transducer head seemed easiest
to implement to provide an appropriate trigger. When the
transducer pulses, the change in electromagnetic field creates a

current in the coil as described the Biot-Sarvat Law,

47 J spiral R? ’
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where B is the magnetic flux density, R is the distance from the
current element to the point of change in magnetic flux density,
i, is the unit vector along the line joining the current element
and the point in the flux density, I is the current, dl is the
element length and u, is the permeability of free space. By
empirical means, an inductor coil of fifteen turns in a flat
spiral provided a strong signal, approximately 1 V. Figure 6
illustrates Equation (15). This coil is embedded in black epoxy
to provide protection from handling.

The coil is taped to the side of the transducer and is
connected to the Vector Electronic 4617 Plugbord by a coaxial
cable and BNC connector. This analog signal is amplified and
triggers a one-shot CMOS chip. This combination has changed the
analog signal to a digital pulse. The digital pulse, designed to
be 10 usec, latches the value of a continuously running 1 MHz
clock and stores the wvalue in memory. Another analog signal
creates another digital pulse and latches the new value of the
clock. Refer to Appendix A for the circuit diagram. The
difference between these two values is the pulSe repetition

period. The calculation of the prp is done in software.

3.6 Water Tank

Finally, the system is only complete with a water tank, which
was custom designed for this system and is shown in Figure 7. It
is constructed of 0.75" Plexiglas for stability and with
dimensions: 1length - 35.5 cm; width - 27.1 cm, and depth - 25.9

cm. There is a front opening in which a plastic membrane is held
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in place by a 3" diameter aluminium anodized ring. This membrane
can be secured from the inside or the outside of the tank,
depending on the needs of the user. The transducer is coupled to
the outside of the tank through this membrane with ultrasonic gel.
It is held in place with adjustable clamps, which are desigﬁed to
accommodate various configurations of commercial transducers. The
tank is also equipped with vertical and lateral coarse movements,
on which a Daedal XYZ high precision positional apparatus is
attached. The Daedal XYZ system travels in all axial directions
of 25 mm and a repeatability of 0.000050" for fine positioning of

the Marconi hydrophone, which is mounted in the system.

Figure 7 - Water tank on which Daedal XYZ positioning
system is mounted. Amplifier series left
of tank.
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CHAPTER 4
SOFTWARE

This chapter describes the software that controls the three
main hardware components, the WAAG II board, the PIO24 I/O board
to the programmable attenuator, and the custom-built pulse
repetition period board. Figure 4 is a block diagram of the
necessary interfaces. Once, a hydrophone signal is digitized, the
software performs all of the calculations to determine the
intensities. These calculations include determining the center
frequency, calculating the hydrophone sensitivity, converting the
hydrophone voltage signal to the corresponding pressure signal,
and calculating the different intensities. All calculations are

based on the AIUM standards [2].

4.1 Controlling Hardware

The computing language "C" was chosen for writing all the
software because it has the capabilities of a high level language
and the necessary hardware interaction. A Microsoft C Optimizing
compiler [11] was used because it produces efficient machine code
for the CompuAdd 316s and compatible machines. Markenrich Corp.
provided the "bare bones" C program to run the WAAG II board to

acquire a signal [7]. However, the Markenrich Corp. software for
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plotting the waveform was inadequate. A program to arm and
acquire a signal and to display the signal to the screen was
developed for another project [12]. This seed program became the
body of the current main program (see Appendix B). As the project
developed, needed subroutines were written and called from the
main program. This maintained a working basis upon which to rely.
The following sections describe the programs and subroutines
created to control the hardware. The actual C coding is listed in

the Appendices.

4.1.1 Controlling the WAAG II board

As mentioned, Markenrich Corp. provided the essential coding
for the WAAG II board [7]. The WAAG II port locations are defined
in the beginning of the main program. The default memory
locations are used because they do not interfere with other boards
or software used in this computer system. To acgquire a signal,
the main program calls subroutine "sample" (see Appendix C).

"Sample" arms the WAAG II board and waits for a trigger. It
then stores 1 kbyte of points in the WAAG memory. For this system
to display the beginning of the waveform, it is necessary to
display the presampled data, the data sampled before the trigger.
However, not knowing when the board would be armed relative to the
signal, the amount of presampled data changed for each pass of the
acquiring loop in the program. To synchronize the presampled data
with the trigger and guarantee the amount of presampled data
stored, the board is imﬁediately armed again after one signal has

been acquired. This ensures that a sufficient number of
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presampled data points and that the entire signal after the
trigger are stored. The second signal is the signal displayed on

the screen and stored.

4.1.2 Controlling the programmable attenuator

An amplifier-attenuator-~amplifier series is connected between
the hydrophone and WAAG II board. This combination allows the
signal to fit the dynamic range of the board and a wider range of
the sound beam to be detected and displayed. The two amplifiers
have set amplifications as described in Chapter 3 -- Hardware.
Because the attenuator is programmable, the exact amplification is
known so as to meet the needs of the acoustic signal. The
subroutine "attenuation" (see Appendix D) controls the setting of
the attenuator through the PI024 board. The port locations used
by the PI024 computer board are set at the beginning of the main
program. To minimize the setting tinme, three major
increment/decrement steps are used, 10, 5, and 1 dB. Knowing that
every sampled signal would not have exactly the same amplitude, a
window of 0.5 to 0.6 V was selected as the acceptable signal
amplitude to keep the attenuator from constantly resetting. The
attenuator is limited from 0 to 63 dB. However, is it possible to
write larger numbers or negative numbers to the attenuator with
the attenuator only registering the last 6 bits. This created a
slight problem in decrementing and incrementing where it is
crucial to keep track of the attenuation value. Conditions to
check for exceeding 63 dB (signal too large) and underwriting 0 dB

(signal too small) were made and corrected back to either 63 or 0
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dB. This made writing the code more difficult because all possible
cases of error had to be confronted. If not, it would be possible
to lose the exact attenuation value or hang the program.

Once the initial "attenuation" subroutine was implemented,
another problem arose. The attenuator is set at 60 dB at the
beginning of the main program to prevent a possibly large signal
from damaging the WAAG II board. In order to change the setting
on the attenuator, a sampled signal must be stored by the WAAG II
and checked for its maximum amplitude. However, more frequently,
the signal is too small so that Gsample" never receives a trigger;
"sample" waits for a trigger indefinitely and, thus, hangs the
computer. A new subroutine "atten_sample" (see Appendix E) was
created to be called exclusively when setting the attenuator.
"Atten_sample" essentially is the same as "sample." However,
"atten_sample" limits the waiting time for a trigger to 2 seconds.
If the trigger is not set within 2 seconds, the attenuator is
decremented 10 dB. If the attenuator is decremented below 0 dB,
the attenuator is reset to 0 dB, and a message is written to the
screen along with an audible beep while waiting fér a signal. The
other feature in "atten-sample" is that the user can quit the
program by typing "qg."

After the triggering problem was solved, "attenuation" still
required fine tuning. Appropriate voltage windows were made for
the decrementing and incrementing schemes. For 10 dB, the window
is 0.2 V to 0.6 V. This provided a window slightly smaller than
10 dB. The software checks that the attenuator is not setting the

voltages constantly outside the window. The window for the 5 dB
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incrementing is 0.4 V to 0.6 V. Again, this window is slightly
smaller than 5 dB, but after 13 passes automatically continues to
1 dB increments. For 1 dB increments, 0.5 to 0.6 V is the window.
This window is larger than a 1 dB voltage change so that a signal
slightlj larger (smaller) than the window will be decremented
(incremented) into the window. These decrementing and

incrementing schemes made setting the attenuator more efficient.

4.1.3 Controlling the custom-built pulse repetition period board

The third piece of hardware which is computer controlled is
the custom-designed board used to calculate the pulse repetition
period. As described in Chapter 3 -- Hardware, the board has a
continuously running clock which 1is 1latched each time the
transducer pulses. Subroutine "read_usec" (see Appendix F) reads
the memory location in which the clock's latched value is stored
and puts these values in an array of 300 elements. This scheme is
computer dependent; the rate at which the memory is read and
stored 1is dependent on the computer's access time and bus.
However, by storing 300 elements, a 0.5 kHz pulse repetition
frequency can still be measured. Subroutine '"dprp" (see
Appendix F) calls "read_usec" and returns the pulse repetition
period value by searching the array for the first change in clock
values and subtracting the values. The uncertainty of the
measurement is just under * 10% at 30 kHz and decreases as the

pulse repetition frequency decreases.
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4.2 Calculations

Once the signal is within the limits of the WAAG II board,
calculations are made. The WAAG II digitizes a signal and stores
it in WAAG II memory. This signal is then written to the computer
_memory and stored as an array of relative voltage amplitudes. The
relative voltages stored are of the signal that the WAAG II sees.
However, this signal has been amplified. Because the
amplifier/attenuator'combination.was used, the exact amplification
is known, and the relative voltages directly from the WAAG II
board are converted to their respective unamplified hydrophone
voltages. With the wunamplified hydrophone signal, all
calculations are made following AIUM standards [2].

First, the center frequency is calculated by performing a
Fourier transform of the voltage signal in subroutine "dtft" (see
Appendix G). The actual Fourier transform of the signal is
performed by a professional subroutine "realft"™ as written in
Numerical Recipes in C [13]. From the largest magnitude peak of
the signal in the frequency domain, the two 3 dB points are
determined as descriﬁed in Chapter 2 -- Measurement Theory. Given
the bandwidth, the center frequency is determined as described by
Equation (1). Other coding in "dtft" is for plotting the
frequency response.

The center frequency is used to determine the end-of-cable
loaded sensitivity of the hydrophone (M) (see Appendix H). The
Marconi hydrophone is calibrated by the ©National Physical
Laboratory with the calibration 1listing given in Table 1 in

Chapter 3 -- Hardware. This listing only reports the end-of-cable
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open-circuit sensitivity and the real and imaginary parts of the
hydrophone impedance. The end-of-cable loaded sensitivity is
determined as described by Equations (5) and (6). Because the
calibration is only for integer frequencies, linear regressions
are performed between each integer frequency. Therefore, if the
center frequency is not exactly an integer value, the calibration
constants can be calculated, and thus, the end-ocf-cable loaded
sensitivity can be calculated too.

Given the end-of-cable sensitivity of the hydrophone, the
digitized wvoltage signal is changed to a digitized pressure
signal, according to Equation (7). This calculation is done in
subroutine '"press" (see Appendix I). In order to plot the
pressure signal, another array stores the corrésponding time
value. Each data point is acquired at 40 MHz such that the time
interval is 25 nsec. Other coding in "press" is for plotting the
pressure pulse.

Finally, with the pressure signal, the intensity values are
calculated in subroutine "int_time_ave" (see Appendix J). The
instantaneous intensities are calculated, using Equation (8). The
largest instantaneous intensity value in the pulse is called the
temporal peak intensity, I,,. The pulse intensity integral, PII,
is calculated, as described by Equation (10), so that the pulse
duration and other intensity values can be calculated. The
maximum pulse intensity integral is stored, and pulse average

intensity, I calculated (see Equation (12)). From here, the

PA?

duty cycle is calculated as the ratio of the pulse duration to the

pulse repetition period, which is determined in subroutine "dprp"
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(see Appendix F). The temporal average intensity, I;,, is computed
as in Equation (13). The spatial peak values of these three
intensity ﬁalues is when the Daedal system (see Hardware Chapter)
positions the hydrophone in the spatial peak of the sound beam.
Then these values become the spatial peak temporal peak (Tsprp) +

spatial peak pulse average (Ig,), and spatial peak temporal

average (I..,) intensities.

SPTA
The last subroutine is "done" (see Appendix K). All values
need to recalculate intensity values are saved. Other important
values saved are the peak compressional pressure, p., and the peak
rarefactional pressure, p.. "Done" simply displays all the
important values to the screen and stores them in a file.

Other subroutines listed in Appendix L are to aid in these
calculations. For example, "findmax" is a simple subroutine that
searches the y array for the maximuﬁ value. Because searching the
y array is done more than once, it is useful to write a separate

subroutine. These subroutines include "load_trigger",

"absolute_max", "findmax", and "findmin".
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CHAPTER 5

UNCERTAINTY AND IMPROVEMENTS

This chapter presents the uncertainty of measurements by the
exposimetry system that was developed. Included in this chapter
are the accuracy and precision of the equipment. A Drief
discussion of possible improvements are concluded from these

uncertainties.

5.1 Uncertainties

In the exposimetry system, each component contributes to the
accuracy and precision of the measurement. Different components
of the hardware have criteria to be met which decrease the amount

of error in the measurement.

5.1.1 Computer

The CompuAdd 316s computer has 32-bit precision and runs at
16 MHz [4]. All calculations are performed by the computer; its
precision influences the uncertainty of the measurement minimally

because the uncertainty of other instruments is much greater.

5.1.2 WAAG II board
The WAAG II digitizes at 40 MHz with 8-bit precision [7].

The input voltage is set for +0.635 V to -0.640 V, but is measured
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to be +0.638 V to -0.648 V. This input voltage is represented as
a character from 0 to 255 where 0.0 V is measured to be character
129. Thus, each bit represents a range of 0.00502353 V such that
the uncertainty is + 0.002511765 V. For a voltage signal near
0.0 V, the percentage of error is great; for a voltage near
0.6 V, the percentage of error is much less. The error is
minimized when determining the pulse intensity integral because
the values near 0.0 V contribute least to the integral. The error
of measurement is also minimized in this system because the
hydrophone signal is amplified such that the peaks are within 0.5
V to 0.6 V. For the worse case, where the peak is at 0.5 V, the
uncertainty is * 0.5%. This 1is consistent with the accuracy

reported by Markenrich [7].

5.1.3 Hydrophone
The National Physical Laboratory reports the temperature
dependency of the hydrophone sensitivity as in Table 3 [3].

Table 3: Temperature Dependance of Hydrophone
Sensitivity From 15 °C to 25 °C.

2 MHz 10 MHz
(% per °C) (% per °C)
0.1 0.4

The calibration uncertainties are also reported as dependent on

frequency range for a 95% confidence level as shown in Table 4

[3].
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Table 4: Overall Hydrophone Uncertainties at
95% Confidence Level

1 to 4 MHz + 6%
5 to 8 MHz + 7%
9 to 12 MHz + 8%
13 to 15 MHz + 9%

5.1.4 Amplifier-attenuator-amplifier series

The amplifiers and attenuator were each measured separately
and together. GEC - Marconi Research Center reports that the
hydrophone amplifier's gain linearity changes less than 0.1 4B for
RMS input levels of 20 mV to 500 mV for 1, 5, 10, and 20 MHz [8].
Appendix M includes a copy of the gain vs. frequency response for
the particular hydrophone amplifier used. The accuracy of the
amplifier is listed in Table 5.

Table 5: Uncertainty of Gain Measurements in + dB

(and in +* %) as a Function of Frequency
and Input Level

Input (mV) 1l MHZ 5 MHz 10 MHz
10 0.22 (2.6) 0.66 (7.9) 1.43 (18.0)
100 0.13 (1.5) 0.37 (4.4) 0.67 (8.0)

Wavetek reports that the programmable attenuator has an
incremental accuracy of + 0.5 dB or 2 % [9]. It is measured to
attenuate for the amount set. MiniCircuits states that the gain
linearity is * 0.3 dB from 0.1 MHz to 500 MHz [10]. It was
measured to have a gain of 26 dB for a 50 mV input (zero to peak)
at. 5 MHz. Using an HP Network Analyzer, HP3577B, the two
amplifiers with the attenuator set at 0 dB are measured to be 44

dB over the range of 0.5 MHz to 10 MHz (see Appendix M).
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5.1.5 Custom-built pulse repetition period board
The custom-built pulse repetition period board is measured to
have an uncertainty of + 10 %. For an input signal at 30 kHz, the
board would calculate it to be in the range of 33 kHz to 27 kHz.
When the input signal is at 1 kHz, the result would be in the
range of 1.1 kHz to 0.9 kHz. The error is seemingly less at

smaller frequencies, but the percentage of error is the same.

5.2 Improvements
This section includes both hardware and software

improvements.

5.2.1 Custom-built pulse repetition period board

To improve the uncertainty of the custom-built pulse
repetition period board, a faster clock could be substituted for
the currently used clock which is running at 1 MHz.

As mentioned in Chapter 4 -~ Software, the pulse repetition
period calculation is computer-dependent. The dependency is based
on the amount of time the computer uses to read a memory location
and to write the value to an element in an array, which is
determined by the bus speed. The solution to the problem is to
make the pulse repetition period calculation completely in
hardware. A simple subtraction circuit on the computer board
could make the calculation after the two clock values are latched.
This would eliminate the need for speed in reading the memory and

writing the value.
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5.2.2 Software

Currently, the acoustic signal is being digitized at 40 MHz
by the WAAG II board. According to the Nyquist criterion, the
WAAG II can at most digitize a 20 MHz signal for reconstruction.
However, acoustic signals are nonlinear as shown in Figure 8 by
the different shapes of the half cycles. Though the center
frequency may only be 7.5 MHz, the nonlinearities of the wave and
the media produce higher frequency harmonics. These higher
frequencies may exceed the Nyquist criterion, and thus, the
acoustic signal may not be fully reproduced. This meané that a
signal at 3.5 MHz will be represented by 11 points per cycle; a
signal at 5 MHz has 8 points per cycle; and, a signal at 7.5 MHz
will only have 5 points per cycle. At lower frequencies, the
signal is represented by more points, and a larger number of the
higher harmonics (up to 20 MH2) are represented. As the frequency
increases, the number of points representing the signal decreases,
and the higher harmonics are more likely to exceed 20 MHz. The
fewer the points in the signal, the more difficult it is to
determine the peaks of the signal as seen in Figure 8.

There are a number of solutions to this problem, but not all
are applicable. The easiest and most reliable solution is to
digitize the signal at a faster rate. Only by this method can all
of the acoustic signal be reconstructed. However, this is not
feasible with our system because the WAAG II is already set to
digitize as fast as it can. Otherwise, a faster digitizing board

has to be purchased.
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Another, solution would be to have a mask so that the
digitized signal would have another signal in which to compare.
The peaks could then be determined from a correlation between the
two signals. A large number of wave shapes, e.g., 10000
waveforms, would have to be sampled and averaged to create the
mask. This mask would be stored and compared as each new echo was
measured. This method presupposes the wave shape andiassumes that
the echo never changes. It also is dependent on the speed of the
computer to sample and average the waveforms; but this only has
to be done once.

A final solution presented.here is to extrapolate the peaks.
Because the compressional half cycles and the rarefactional half
cycles are shaped differently, the extrapolations are different.
The compressional half cycles are more spiked in shape than the
rarefactional half cycles. The peak compressional pressure can be
extrapolated by first finding the largest positive voltage point
digitized (as compressional peaks are positive when measured with
the Marconi hydrophone). A line with the two points before the
point is determined; a line with the two points after the point
is determined. The intersection of these two lines is the
extrapolated peak compressional pressure. Because  the
rarefactional peaks are more rounded, a parabolic curve fit can be
used to fit the 3 most negative points. The peak of the parabola
is the extrapolated peak rarefactional pressure. Both methods can
be used for the appropriate half cycles such that the entire
waveform is reconstructed. However, reconstructing the entire

waveform may not be necessary.
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5.3 Summary
The computer performs all of the calculations with 32-bit
precision so that its uncertainty is minimal. The hydrophone
sensitivity uncertainty in the worst case is * 7 %. For the
frequency range in which the system is to be used, the uncertainty
of the amplifier-attenuator-amplifier series is * 1 %. Both the
center frequency and the bandwidth calculation are determined by
the uncertainty of the WAAG II and the amplifiers; thus, they
each have an uncertainty of * 1.1 %. The peak compressional
pressure and peak rarefactional pressure are influenced by the
hydrophone, the amplifiers and the WAAG II; therefore, the
pressure value uncertainty is = 7.1 %. Because the instantaneous
intensity values are proportional to the square of the pressure
values, the uncertainties are calculated to be + 9.3 %. The pulse
repetition period and the pulse repetition frequency have an
uncertainty of + 10 %¥. The pulse duration is calculated from the
pulse intensity integral (uncertainty is * 9.3 %) with an
uncertainty of # 13.2 %. The duty factor has an uncertainty of
t 16.1 % because of the pulse duration and the pulse repetition
period. The uncertainties of the pulse average intensity (Ip) »
the time average intensity (I;,), and the time peak intensity (Ip)

are + 16.1 %, £ 19%, and * 9.3%, respectively.
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CHAPTER 6
CONCLUSIONS

An exposimetry system was proposed to quantify the intensity
output of the clinical ultrasonic device used at the California
Primate Research Center. After studying the environment in which
the system was to be used, a semi~automated exposimetry system was
designed. The system was to be self-contained and maneuverable
around the animal room. The system employs a CompuAdd 31lé6s
computer with the WAAG II, the PIO24, and the custom-built pulse
repetition period boards installed. An amplified signal from‘the
Marconi bilaminar hydrophone is digitized at 40 MHz by the WAAG
II. The hydrophone is mounted in a manual XYZ positioning device
which is part of a water tank. The clinical device is coupled to
the membrane side of the water tank with ultrasonic gel. Figure 9
is a photograph of the system.

All calculations are made automatically by the computer after
the hydrophone is in the desired position. These calculations
include the following: center frequency, bandwidth, hydrophone
loaded sensitivity, peak compressional pressure, peak
rarefactional pressure, pulse repetition period, pulse repetition
frequency, pulse duration, duty factor, pulse intensity integral,

pulse average intensity (I,), temporal average intensity (I,;,), and
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temporal peak intensity (I,;). If desired, these values can be
stored in a file for later reference. Graphs of the frequency

response and pressure signal and the calculated values can be

printed.

Figure 9 - Picture of system. Computer in cart to

the right. Water tank with hydrophone to
the left.
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APPENDIX B

EXPOSIMETRY SYSTEM MAIN PROGRAM

/**********************************************************************ii******/

/* Program calibrat.c reads an analog signal input to the WAAG 11 board. The*/
/* WAAG 11 hoard digitizes the signal at 40 MHz. It waits for an internal */
/* trigger and then will store the next 1024 points (1 kbyte of memory). */
/* This memory can store up to 32 kbytes. When a signal triggers the board, */
/* the program calls the attenuator subroutine, which sets the attenuator */
/* such that the signal is in the dynamic range of the board. Each time the */
/* signal is in the dynamic range the board, it is plotted to the screen. */
/* The user then has 3 options: 1) continue to calculations, 2) shift */
/* the signal, and 3) change the trigger level. Shifting the signal and */
/* changing the trigger level keeps the program in the "“while" loop which */

/* looks for a signal. Continuing to the calculations breaks out of the */
/* “while" loop and continues through the program. The signal is stored as */
/* arrays, x and y. Then, the signal is changed to its actual voltage */

/* values. This program then calls the subroutine "dtft" to calculate the */
/* center frequency. Then the subroutine “marc" is called to determine the */
/* sensitivity of the hydrophone given the center frequency. The signal is */
/* then changed to the proportional pressure signal when *pressure is */
/* called. A separate program to calculate the pulse repetition period is */
/* called. From the pressure signal, the intensities are calculated with */
/* "int_time_ave". Finally, all calculated values are printed to the screen */

%*

/* and stored in a file when "done" is called.
/******************************************************************************/

#include <graphms.h>
#include <graph.h>
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include "nr.h%
#include "nrutil.h®
#include <math.h>
#include <process.h>
#include <conio.h>
#include <string.h>
#include <time.h>

i e WAAG2 locations --~=-<--=c--cccccmcoaaaaconaonnnn */
#define WAAG 0xD00Q0000 /* WAAG memory */

#define PORTO 0x178 /* default setting x/

#define PORT1 0x179 /* all switches are off */

#define PORT2 Ox17A
#define PORT3 0x178

#define LENGTH 1024 /* Echo Length */

#define COUNT -1279 /* Value to load WAAG counter is -(LENGTH + OxFF ) */
#define CONTROL OxAOGC /* Set acquisition at 40 Mhz */
kR R LR R R R T PDMA 16 addresses ---+-=-=-==s<-cseccccrccnoaccna. */
#define POMA_A 0x300 /* address of port a */

#define PDMA_B 0x301 /* address of bort b */

#define PDMA_DMA 0x302 /* DMA control register */

#define PDMA_INT 0x303 /* Interrupt control register */

#define STP _settextposition /* moves curser to a position on the screen */

48



#define CLS wmx1g[2Jn /* clear screen */
#define P1 3.141592654
#define SOS 1481 /* speed of sound in water */
#define CEL 4.8 /* etect. load cap. for Marconi amplifier = 4.8 pF +/- 10%4 */
#define RHO 998 /* density of water */
#define 2o 1.48e6 /* char.impedance in water (Pa*sec/m) */
FILE *fptr, /* pointer to file */
*output; /* pointer to output file */
VAR LR R R L ports for the programmable attenuator =-<---<scecccvecoccos */
int port_a = 0x308, /* address of port a */
port_b = 0x309, /* address of port b . */
port_c = 0x30A /* address -of port ¢ */
VALELEEEL R variables for reading and storing the signal from the waag -------- */
unsigned char far *waag /* pointer to WAAG memory */
H
int trigger, /* the trigger address on the waag */
shift = 0, /* a value added to the address to reading the board */
atten, /* attenuation value of the attenuator */
control = 0xA00c /* control parameters for WAAG board -- set acquisition at 40 MHz */
char
trigger_level = 0x80, /* trigger level */
txt {801, /* dummy for printing text to screen */
filename([12] /* dummy for printing a file name */
;
float x{10241, /* current values of x axis values corresponding to y array */
y{10251, /* current values of y axis values (signal), i.e. amplitude */
freq_axis[1024], /* values of the frequency axis of original signal */
echo (10241, /* original voltage signal from the WAAG [I */
intenwm[1024], /* signal converted to intensity values */
cent_freq, /* center frequency */
bandwidth, /* bandwidth of signal */
mt, /* end-of-cable sensitivity for the Marconi 0.5 mm bilaminar */
pd, /* pulse duration */
dutyeyc, /* duty cycle */
pc, /* peak compressional pressure */
pr, /* peak rarefractional pressure */
piimax, /* maximum value from the pulse intensity integral */
ita, /* intensity -- temporal average */
ipa, /* intensity -- pulse average */
itp /* intensity -- temporal peak */
double real(512], /* real values of dtft of y array */
img{5121, /* imaginary values of dtft of y array */
temp, /* dummy variable */
prp /* pulse repetition period */
[E-eccemeccmci e oassaacuooen. subroutinegs -<=e--secscscceconcccccocccnonns */
void absolute_max(), /* sub to calculate absolute value maximum value in y array */
defe(), /* sub to calculate center frequency and bandwidth */
press(), /* sub to calculate pressure values in y array */
caldata(), /* sub to determine end-of-cable sensitivity -- ml */
int_time_ave(), /* sub to calculate intensity values in y array */
done() /* sub to print data on screen and in file */

I’

int sample(), /* sub to arm WAAG and wait for trigger after attenuator is set */



attenuation(), /* sub to set programmable attenuator */

atten_sample() /* sub to arm WAAG and wait for trigger while setting attenuator */
H
float findmax(), /* sub to calculate maximum value in y array */
findminC), /* sub to calculate minimum value in y array */
marc() /* sub to calculate end-of-cable sensitivity */
; .
double dprp(); /* sub to calculate pulse repetition period */
/* MAIN PROGRAM */
main()
<
unsigned char far
*index /* waag + ¢ + trigger */
H
char
dummy, /* dunmy variable */
key, /* character when keyboard is hit */
txt {501, /* string of character to be printed to screen */
blank {50} /* string of blanks to be printed to screen to Verase" text */
H
int
c, /* dunmy counter */
i,
counter,
cont = 1
void
load_trigger_offset() /* loads trigger level */
H
int
g_driver, /* Turbo-C graphics initialization */
g_mode, /* variables *y
g_error
_setvideomode(_VRES16COLCR); /* set video mode to graphics */

_clearscreen( _GCLEARSCREEN );

atten = 60; /* set attenuator to 60 dB */
outp(port_a, atten);

waag = (char far *) WAAG;

_setcolor(9);
_moveto(0,99);
_lineto(600,99);
_moveto(0, 100+256);
_lineto(600,100+256);

STP(1,24); /* print title on screen */
sprintf(txt," 40 Mhz RF Acquisition \n* );
printf("%s", txt);

STP(4,5); /* print menu. */
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strepy(txt, "OPTIONS:");
printf("4s", txt);

STP(5,3);
strepy(txt, "[cl continue to do calculations®);
printf(uis", txt);

STP(6,5);
strepy(txt, “{sl shift echo (+ or -)¥);
printf("%s®, txt);

STP(5,50);
strepy(txt, "{t] set trigger level");
printf("%s", txt);

STP(6,50);
strepy(txt, *lql quit®);
printf("%s", txt);

STP(24,5); /* print attenuation value in lower left */
strepy(txt,"Attenuation is set at ¥);
printf{"%s®*, txt);

STP(24,50); /* print relative voltage values in lower right */
strepy(txt, “"Maximum voltage is");

printf("%s", txt);

STP(25,50);

strepy(txt, "Minimum voltage is®);
printf("%s*, txt);

load_trigger_offset (trigger_level); /* set trigger level at 0x80 */

while( cont ) /* plot until button pushed then acquire data */

¢

attenuation(); /* set programmable attenuator */
trigger = sample(); /* data acquisition */

trigger <<= 1i; /* address = trigger*2 */

STPC1, 1);

_setcolor(13); /* plot RF echo */

c=0;

index = (char far *)(waag + c + trigger + shift);
_moveto( ¢, (int)*( index ) + 100 );

for (c=1; c<600; c++)
<
index = (char far *)(waag + c + trigger + shift);
_lineto( ¢, (int)*( index ) + 100 );
}

STP(24,28); /% print attenuation value */
printf(“%2d dB8%*, atten);

STP(24,69); /¥ print relative voltages */
printf("%f*, findmax(&counter,1024));

STP(25,69);
printf(v%fv, findmin(&counter,1024));

_setcolor(0); /* erase echo */
=0;

index = (char far *)(waag + ¢ + trigger + shift);

_moveto( ¢, (int)*( index ) + 100 );

for (c=1; c<600; c++)



<

index = (char far *)(waag + ¢ + trigger + shift);

3

lineto( ¢, (int)*( index ) + 100 );

if¢ kbhit() ) /* options menu if keyboard is hit */
e

key

sWi

¥

= getch();

tch (key)
<

case 't':
$TP(24,5);
strepy(txt,"Enter trigger level (0-255): “);
printf("¥%s"*, txt);
scanf("%d", &dummy );
trigger_level = (char)dummy;
load_trigger_offset( trigger_level );
STP(25,5);
sprintf(txt,"Trigger level is now --> %d", (int)trigger_level )
printf("%s", txt);
$TP(24,5);
strepy(blank, " ");
printf("*%s*, blank);
STP(25,5);
printf("%s", blank);
STP(24,5);
strepy(txt,%Attenuation is set at ");
printf("%s%, txt);
break;

case 's':
STP(25,5);
strepy(txt,"Enter shift (+ or -): ");
printf("%s", txt);
scanf(“%d", &shift );
STP(25,5);
strepy(blank,® "y:
printf("%s", blank);
break;

case 'c':
cont = 0;
printf(CLS);
_setvideomode(_TEXTC80);
break;

case 'q':
_setvideomode(_TEXTC80);
exit(0);

[Foomeoomeoccccoenenn other keys: beep ---------------e--- *f
default:
printf("%c",7);

} /% switch statement */
/* if statement */f

)} /* main while loop */

trigger
trigger

for (c=
{

= sample(); /* data acquisition */
<<= 1; /* address = trigger*2 */
0; ¢<1024; c++) /* store original signal */
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echo[cl = (float)( (int)*(waag + ¢ + trigger + shift) - 129 ) * 0.00502353;
i

xf{el = ¢
3}
for (c=0; c<1024; c++) /* change relative voltage value to real voltage value */
<
echolc] /= (float)pow( 10.0,(double)(44-atten)/20.0 );
yfc+1]l = echolcl; /* array shift for realft() in dtft() */
b
deft(); /* calculate center fregquency and bandwidth */
ml = marc(&cent_freq); /* calculate end-of-cable sensitivity */
press(mi); /* calculate pressure signal */
counter = 0;
pc = findmin(&counter,b 1024); /* minimum value of y is peak compressional pressure */
counter = 0;
pr = findmax(&counter,1024); /* maximum value of y is peak rarefractional pressure */
prp = dprp(); /* calculate pulse repetition period */
int_time_ave(); /* calculate intensities */
done(); /* print values to screen and store in file */

_setvideomode(_TEXTC80); /* set video to color text mode */



APPENDIX C

SAMPLE SUBROUTINE

/**************************************************i***************************/

/* Subroutine “sample" initializes and arms the waag board to store a */
/* signal. Once armed the while loop continues to wait for a signal until */
/* the trigger bit is set. Because the board may be initialized at any */
/* time during or between signals, it is necessary to ensure the entire */

/¥ signal is stored. So, the waag board is then immediately initialized and %/

/* armed again to wait for another signal.

This synchronizes th

e acquiring */

/* of the new signal with the past signal, ensure that there is enough */

/* presampled data and that the entire signal is stored.
e e e T e e e e e e e v e e s e s e e Y e e e Je de e vk e Je e v e vl e vk e e e e o e v e v e e e e v ke 3 e e e 3k vl Sk e A e 9 de e v ol e e e e e e e e e e de e o
/ /

int sample()
<

int
busy = 1, /*
count
char
key
i
outpw(PORT2,0xA06f); /*
outpw(PORTC, Oxffff); *
outpw(PORTO,Oxffff);
outpw(PORTO,COUNT); /*
outpw(PORTO,COUNT);
outpw(PORT2,CONTROL & Oxbffc); 1*
while (busy) /*
L4

if(inp(PORT2) & 01) busy = 0; /*
>

/* look for trigger again --
/* this synchronizes the presample data

outpw(PORTZ,0xA06F); *
outpw(PORTO,Oxffff); /*
outpw(PORTO,Oxffff);
outpw(PORTO,COUNT); /*
outpw(PORTO,COUNT);
outpw(PORT2,CONTROL & Oxbffc); /*
busy = 1;
while (busy) /*
{
if(inp(PORT2) & 01) busy = 0; /*
3
outpw(PORT2,0xA06F) ¢ r/*
return{inpw(PORT0)); r*

while loop flag

initialize */
clear counter */

load count */

start the counter */

wait for sampling to

sampling is done */

with the arming of th

initialize */
clear counter */

load count */

start the counter */

wait for sampling to
sampling is done */

enabled WAAGII ram */
read trigger address

*/

be completed */

*/
e board */

be completed */

*/
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APPENDIX D

ATTENUATION SUBROUTINE

,******************************************************************************/
/* Subroutine "attenuation® sets the WaveTek P1506 programmable attenuator. */

/* In the main program, the attenuator is initially set at 60 dB8. The */
/* attenuator is set each time the signal is plotted to the screen (each */
/* pass of the main while loop). The attenuator is set so the signal is */
/* in the dynamic range of the board, between 0.5 V and 0.6 V. There are */
/* 3 major sections of this program, decrementing and incrementing by */
/% 10, 5 and 1 d8. Different windows of voltage are used to determine */
/* which decrementing and incrementing values should be used and to make */
/* the setting of the attenuator more efficient. */

/******************************************************************************/

int attenuation()
<

int int_control = 0x308;

int not_dynamic_range,
counter,
c

1

double abs_max, /* absolute maximum -- largest positive peak */
abs_min, /* absolute minimum -- largest negative peak */
min,
max,
limit_indicator,
check

’

outp ( int_control, Oxff );

not_dynamic_range = 1; /* not within the dynamic range */
counter = 0;

trigger = atten_sample(); /* get signal */

trigger <<= 1;

STP(24,28);

printf(“%2d dB¥, atten);

for (c=0; ¢<1024; c++) /* store signal in y array */
ylel = (float)((int)*(waag + ¢ + trigger + shift) -129) * 0.00502353;

/************************** 10 dB Increments ****************t*****************/

while ( not_dynamic_range ) /* while the attenuator is not set */

STP(24,28);

printf("%2d", atten);

counter++;

absotute_max(&min, &max, 1024);

abs_min = fabs(min); /* take absolute value of the minimum value */

abs_max = fabs(max); = /* take absolute value of the maximum value */
limit_indicator = (floatimax(abs_min, abs_max); /* find larger peak
check = fabs(limit_indicator - 0.6); /* how far away is the value from 0.6 V

if¢ (check > 0.4) && (atten > 0) & (counter != 8) )

< /* if the signal is 0.4 V or smatler plus
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if(limit_indicator <= 0.2) /* the attenuator is not set at 0 dB and this
< /* is not the 8th pass, then....
outp(port_a, atten -= 10); )
trigger = atten_sample(); /* if the signal is 0.2 V or smaller, decrease
trigger <<= 1; /* the attenuation by 10 dB
for (c=0; c<1024; c++)
yicl = (float)((int)*(waag + ¢ + trigger + shift) -129) * 0.00502353;
}
else if (limit_indicator > 0.6) /* if the signal is larger than 0.6 V, then...
if (atten >= 54) /* if the attenuator is set at 54 dB or larger
not_dynamic_range = 0; /* then the dynamic range is set and jump out
else /* of while loop. Else, increase attenuation
< /* by 10 dB.
outp(port_a, atten += 10);
trigger = atten_sample();
trigger <<= 1;
for (c=0; c<1024; c++)
ylcl = (float)((int)*(waag + ¢ + trigger + shift) -129) * 0.00502353;
3}
else if (atten <= Q) /* if the attenuator is less than or equal to
{ /* 0 dB, then set the attenuator to 0 dB
atten = 0;
outp(port_a, atten);
if (counter == 8) /* if the counter is 8, then jump out of
{ /* vhile loop
printf("\nERROR!! signal too smatl");
not_dynamic_range = 0;
>
3
else
not_dynamic_range = 0; /* check < 0.4 */
} /* vhile loop */
not_dynamic_range = 1; /* reinitialize flag and counter */
counter = 0;
/***************************** 5 dB Increﬂ'lents ********************************/
while (not_dynamic_range)
8
STP(24,28);
printf("%2d dB", atten);
counter++;
absolute_max(&min, &max, 1024);
abs_min = fabs(min); /* take absolute value of the minimum value */
abs_max = fabs(max); /* take absolute value of the maximum value ¥/
limit_indicator = (float)max(abs_min, abs_max); /* find larger peak */
check = fabs(limit_indicator - 0.6); /* windowing */
if( (check > 0.2) && (atten > 0) && (counter 1= 13) )
< /* if window is greater than 0.2 V, and
if(limit_indicator <= 0.4) /* attenuation is greater than 0 dB, and it has
¢ /* not passed through 13 times, then....
outp(port_a, atten -= 5);
trigger = atten_sample(); /* if signal is smaller than 0.4 V, then
trigger <<= fi; /* decrease attenuation by 5 dB
for (c=0; c<1024; c++)
ylel = (float)((int)*(waag + ¢ + trigger + shift) -129) * 0.00502353;
>
else if (limit_indicator > 0.6) /* if signal is larger than 0.6 V and
if (atten >= 59) /* attenuator is 59 dB or larger, then jump out
not_dynamic_range = 0; /* of while loop
else /* otherwise, attenuator is less than 59 dB so
¢ /* add 5 d8

outp (port_a, atten += 5);
trigger = atten_sample();
trigger <<= 1;
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for (c=0; c<1024; c++)

ylel = (float)((int)*(waag + ¢ + trigger + shift) -129) * 0.00502353;

3
3
else if (atten <= Q)

atten = Q;

outp(port_a, atten);

if (counter == 13)
<
not_dynamic_range = 0;
printf (“\nERROR!!
b

}
else
not_dynamic_range = 0;
}

not_dynamic_range = 1;
counter = 0;

/* so attenuation is less than or equal to 0 dB */
/* set attenuation to 0 dB */

/* check for number of passes; if 13, then */
/* jump out of while lLoop */

Cannot change by 5 dB");

/* check < 0.2 */
/* while loop */

/* reinitialize flag and counter */

/***************************** 1 dB increments ********************************/

while (not_dynamic_range)

<

$TP(24,28);

printf("%2d dB", atten);
counter++;

absolute_max(&min, &max, 1024);
abs_min = fabs(min);

abs_max = fabs(max);
limit_indicator = (float)max(abs_min, abs_max);
check = fabs(limit_indicator - 0.6);

/* get min and max values */

/* windowing */

if ¢ (limit_indicator > 0.5) && (limit_indicator < 0.6) ) /* if signal is between 0.5 and 0.6 V,

*/
not_dynamic_range = 0; /* then stop while loop on next pass
*/
if( (check > 0.01) && (atten >= 0) && (counter != 65) )
< /* if signal is not within 0.01 of 0.6 Vv */
if(limit_indicator < 0.5) /* and attenuation is larger than 0 dB */
< /* and 65 passes have not occurred, then..*/
outp(port_a, atten -= 1); /* if signal is lower than 0.5 Vv, then *f
trigger = atten_sample(); /* decrease attenuation by 1 dB */

trigger <<= 1;

for (c=0; c<1024; c++)
ylcl = (float)((int)¥*(waag + c + trigger + shift) -129) * 0.00502353;
3

else if (limit_indicator > 0.6) /* if signal is greater than 0.6 V and if */
if (atten >= 63) /* attenuator is already 63 dB, then set */
< /* attenuator to 63 dB, print message to */
atten = 63; /* screen, and exit main program */

outp(port_a, atten);

printf (“\nERROR!! Signal too large");

exit(0);
>
else /* otherwise increase attenuator by 1 dB */
{
outp (port_a, atten += 1);
trigger = atten_sample();
trigger <<= 1;
for (c=0; ¢<1024; c++)
ylel = (float)((int)*(waag + c + trigger + shift) -129) * 0.00502353;
3
3
else if ( (atten <= 0) && (not_dynamic_range == 1) )
( /* if attenuator is already 0 dB or less and not */

atten = 0; /* in dynamic range, then set attenuator to 0 dB*/
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outp({port_a, atten); /* if 65 passes, then print message to screen */
if (counter == &5) /* exit main program */

printf("\nERROR!! Signal too small");

exit(0);
b
3 .
else if (atten >= 63) /* if attenuation is larger than 63 d8, then */
/* set attenuation to 63 dB. and exit main program */
atten = 63;
outp(port_a, atten);
printf("\nERROR!{ Signal too big");
exit(0);
3
else
not_dynamic_range = 0; /* check < 0.01 */
3 /* vhile loop */

return(0);



APPENDIX E

ATTEN_SAMPLE SUBROUTINE

/*************i****************************************************************/

/* Subroutine "atten_sample" is essentially the same as subroutine “sample.™ */
/* 1t is called from subroutine "attenuation" and is only used while setting */
/* the programmable attenuator. This keeps the program from hanging in an */
/* infinite while loop (i.e. if subroutine “sample was called in Appendix C).*/
/* It initializes and arms the waag board and waits 2 seconds for a signal. */
/* 1f there is no signal and 2 seconds have passed, the attenuator is */
/* decreased by 10 dB. If the attenuator is already 0 dB, a message that */
/* the signal is too small is printed to the screen. The subroutine will *y
/* continue to wait for a signal (again 2 seconds) and printing the message */
/* until a large enough signal is found or when the *g" key is hit. Only */
/* when "g" is hit will the program stop waiting for a signal and exit the */

/* main program. All other keys will only cause the computer to beep. */
/******************************************************************************l

int atten_sample()

<

int

busy = 1, /* while loop flag */

not_data_acquired = 1, /* while loop flag */

count
time_t start_time, /* time markers */

current_time
long elapsed_time = 0
H
char
key,
blank {30]
while (not_data_acquired)
<

outpw(PORT2,0xA06f); /* initialize */
outpw(PORTO,Oxffff); /* clear counter */
outpw(PORTO,0xffff);
outpw(PORTO,COUNT); /* load count */
outpw(PORTO,COUNT);
outpw(PORT2,CONTROL & Oxbffc); /* start the counter */

time(&start_time);
elapsed_time = 0;

busy = 1;
while (elapsed_time < 2) /* wait for sampling to be completed */
{

time(&current_time);
elapsed_time = current_time - start_time; /* calculate elapsed time */
if(inp(PORT2) & 01)

{

busy = 0; “/* signal exists: sampling is done */
elapsed time = 5;
b
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if ( (busy == 1) && (atten > 0) ) /* if there is no signal and the programmable */
{ /* attenuator is set about 0 dB, decrease the */
atten -= 10; /* attenuator by 10 dB */
outp(port_a, atten);
STP(24,28);
printf(u%2d dB", atten);

}
else if ( (busy == 1) && (atten <= 0) ) /* if there is no signal and the programmable */
< /* attenuator is less than or equal to 0 dB, */
atten = 0; /* set attenuator to 0 dB and print message */
outp(port_a, atten);

STP(12,35);

strepy(txt, “Signal too small%);
printf{"%s", txt);

STP(13,35);

strepy(txt, “Waiting for larger signal®);
printf("%s?, txt);

if ¢ kbhit() ) /* if “g* is hit on keyboard, exit program */
{ /* otherwise, beep */
key = getch();
if (key == 'gq")
¢

_setvideomode(_TEXTC80);
exit(0);
}
else
printf("%c*,7);

b
else printf("%c", 7);

STP(12,35); /* erase text that has been written */
strepy(blank,™ ":
printf("%s", blank);
STP(13,35);
printf(“%s", blank);
not_data_acquired = 1; /* no data acquired */
)
else
not_data_acquired = 0; /* busy = 0 so proceed to acquire echo */
3
outpw(PORT2, 0xA06); /* enabled WAAGII ram */
return({inpw(PORTO0)); /* read trigger address */
3

3



APPENDIX F

PULSE REPETITION PERIOD SUBROUTINES

#include <MATH.H>
#include <TIME.H>
#include <CONIO.H>

#define RD_USEC 0x302 /* memory location of clock's latched value  */

/*****************************************t************************************/

/¥ Subroutine "“dprp¥ returns the pulse repetition period value. It works in */
/* conjunction with a signal from an inductor coil going to a home designed  */

/* board. -"Dprp" calls subroutine "read_usec*, which actually stores the */
/* clock values from the board to an array. The array is scanned for the */
/* first change in values. The first value is subtracted from the second */
/* value. This value is multiplied by 1 microsecond because the clock runs */
/* at 1 MHz. This, then, is the pulse repetition period. */

/*******i********i*************************************************************/

double dprp()
<

int read_usec(), /* subroutine to read clock values */
count1, /* first clock value */
count2, /* second clock value */
change, /* flag marking clock values changed */
c /* counter */

unsigned int usec_array[300]1; /* array storing clock values */

double period, /* pulse repetition period */
frequency /* pulse repetition frequency */
for (c=0; c<300; c++) /* clear array */

usec_arraylc] = 0;

read_usec(usec_array);

for (c=0; c<300; c++) /* search for first change in values */
{
if (¢ == 0)
<
counti = abs(usec_array(cl); /* first value */
change = 0;
3}
if ( (count? f= abs(usec_arraylcl)) && (change == 0) )
{
count2 = abs(usec_array[cl); /* second value */
change = 1;
3
b

period = (double)abs(count2-count1) * 1.0e-6;
frequency = 1.0/period;

return{period);



/******************************************************************************/

/* Subroutine “read_usec" stores values from RD_USEC into an array. */
/* Returns 0 is no signal; 1 if signal present. */
/* */
/* RD_USEC - address of millisecond latch. Whenever a signal pulse */
1* arrives, the value of a free-running 1 MHz counter is */
/* latched into this latch, and the New Data latch is set. */
/* Software then reads RD_USEC. Consecutive values from */
/* RD_USEC will give the period in microseconds of the */
/* incoming transducer pulses, from which the pulse repetition */
/* period can be calculated. */

/******************************************************************************/

int read_usec( usec_array )
unsigned int *usec_array;
<

int c;

unsigned int newdata;

for (c=0; c<300; c++)
usec_arrayf{cl = inpw( RD_USEC );
return(1);

>
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APPENDIX G

DTFT SUBROUTINE

/******************************************************************************/
/* Subroutine "dtft" ultimately calculates the center frequency and bandwidth.*/

/* 1t uses the subroutine "“realft" from Numerical Recipes in C to perform */
/* a discrete time Fourier transform on the y array. "Realft" stores the */
/* dtft in the y array, alternating real and imaginary components. The */
/* magnitude of the signal in frequency domain is then calculated and */

/* restored in the y array. The maximum is then determined and thus the 3 dB */
/* points are determined. The corresponding frequency to each element in the */

/* y array is calculated and stored in the array freq_ axis. From the low */
/* frequency 3 d8 point to the high frequency 3 dB point is the bandwidth. */
/* One-half of the bandwidth is the center frequency. */

/******************************************************************************/

void dtft()

€
int wavehex, /* a character type integer */
i, /* index */
Js /* index of returned realft array */
<,
nxdiv,
nydiv,
npts,
dex, /* max array numeral */
posdb, /* index for 3dB pt at high frequency */
mindb /* index for 3dB pt at low frequency */

-
7

char titlel30]1,
key

°
7

float maxy,

desired_freq,

f1, /* 3dB pt. at lower frequency */
f2, /* 3dB pt. at higher frequency ¥/
bw /* bandwidth */

°
¢

void realft();
float findmax();
strepy(title, "FREQUENCY RESPONSE®);

printf(CLS);
printf(®* Calculates the center frequency\n");

for (c=0; c<1024; c++)
freq_axis{c] = ( (float)c Y*( 1e-6/(1024*2.5e-8) );

realft(y,512,1); /* canned routine from "Numerical Recipes in C" to do dtft */
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j=1;
for(i=0;1<512;i++) /* insert real #'s real array */
<
real {i1=(double)y(jl;
j=j+2;
b
j=2;
for{i=0;1<512;i++) /* insert img #'s img array */

{
imglil=(double)y(jl;
j=i+e;

for(i=0;1<512;i++) /* calculate magnitude in frequency domain */
temp=img[il1*img{il+real [i1*real [i];

ylil=sgrt(temp);
b

/**********************'h* find max and 3db points *****************************/

dex = 0;
maxy = %indmax(&dex,512); /* find maximum in y array */

printf(*\n max-y[%dl= %f", dex,yldex]);
printf(" max-freq_axis(¥%dl= %f", dex, freq_axis(dexl);

i = dex;

while ('(y[i] > 0.707*maxy) && (i < 512) ) /* 3 dB point */
i+e;

posdb = i; /* index of high frequency 3 dB point */

printf(*\n plus 3db : y[%dl1=%f", posdb,ylposdbl);
printf(* freq_axis[%d}=4f *, posdb,freq_axis[posdbl);
f2=freq_axis{posdb];

i = dex;

while ¢ Cy[i] > 0.707*maxy) & (i > 0) ) /* 3 d8 point %/
i_-.

mindb = i;' /* index of low frequency 3 dB point */

printf(*\n neg 3db : y(%d]=%f", mindb,y{mindbl);
printf(" freq_axis{%d]=%f ", mindb,freq_axis[mindbl);

fi=freq_axis(mindb];
cent_freq = (f2+f1)/2; /* center frequency */
bandwidth = f2-f1; /* bandwidth */

printf(*\n\n Center Frequency = %f Mhz ", cent_freq);
printf(*\n Bandwidth = %f Mhz ¥, bandwidth);

printf(*\n\n Do you wish to plot the frequency response?? [n] #);
key = getch();
if (key == 'yt |l key == 'YV)

printf("\n\n Enter highest frequency to plot %);:
printf(¥\n (Range of O to 20 MHz) [returnl: ");
scanf("%f¥ &desired_freq);

npts = (int)(512.0*desired_freq/20.0);

/********************#*****‘ DTFT P'.Ott i ng part *******i************************/
[rrEEERkkhkkkkik®t From Scientific Endeavors Corp. "GraphiC 4. 1" *¥awwswsswiskss

bgnplot(1,'g’, *dtft.plt");

startplot(1);
font(3,"simplex.fnt", *\310', “triplex.fnt", '\3117,%complex. fnt", 1\312! 44 124);
page(9.0,6.855);

area2d(8.0,5.5);

grid(2);

upright(1);

nxdiv=11;

nydiv=11;



color(10); .
scales(nxdiv,nydiv, freq_axis,y,npts);
color(10);

xname("“Frequency (MHz)");
heading(title); .

yname("magn. of F(exp(jw))");
color(14); .
curve(freq_axis,y,npts,0);

endplot();

stopplot();
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APPENDIX H

HYDROPHONE SENSITIVITY SUBROUTINES

,******************************************************************************/

/* Subroutine “"marc® returns the end-of-cable loaded sensitivity value (mL). */
/* Because Marconi only lists its calibration in discrete integer frequencies,*/
/* a linear regression is performed for frequencies between 2 integer */
/* frequencies to determine appropriate end-of-cable loaded sensitivity */
/% values. Subroutine "caldata" is called to obtain all necessary variables */
/* to calculate the end-of-cable loaded sensitivity for integer frequencies. :/

/* 1f no value is determined, the regression is used.
/******************************************************************************/

float marc(center_frequency)

float *center_frequency;
<

float *fc;
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float
round_up, /* for preforming a linear regression */
slope_mc,
b_me,
slope_rez,
b_rez,
slope_imz,
b_imz,
fex (31,
mey (31,
rezy({31,
imzy (3],
freq,
freghz,
ml, /* End-of-cable loaded sensitivity of hydrophone */
me, /* end-of-cable open circuit-given (uv/Pa) */
rez, /* Re(2); real part impedance in ohms */
imz, /* Im(Z); imaginary part impedance in ohms */
cap /* C: end-of-cable capac. of the hydrophone - */
/* combined C of the cable and scope */f
#fc = *center_frequency;
freghz=*fc*1eé;
/* printf(*\n\n mod ans = %f ", fmod(*fc,1) ); */
/¥ if not a integer, do a regression *f
if (fmod((doubte)*fc,1.0) == 0.0 )
{ /* calibration variables determined for integer frequencies
*/

caldata(fc, &mc, &rez, &imz);
printf(*\n\n Direct from NPL Table" );
>

else /* otherwise frequency is no an integer, so do regression */
{
round_up=*fc; /* find the values for the nearest low integer frequency

freg=*fc;

*/



*/
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fex [01=(float)floor((double)*fc);
*fe=(float)floor((double)*fc);
caldata(fc,&mc,&rez,&imz);

mey [01=mc;

rezy(0l=rez;

imzy[0l=imz; .

fex[11=(float)ceil((double)round_up); /* find the values for the nearest high integer frequency

*fe=(float)ceil({double)round_up);
caldata(fc,&mc,&rez, &imz);

mey [1]1=mc;

rezy{1l=rez;

imzy{1l=imz;

stope_mc=(mey (01 -mcy [11)/(fex[01-Ffex(11); /* determine slope */
slope_rez=(rezy(0]-rezy{11)/(fcx{0]-fcx(11);
slope_imz=(imzy (01-imzy[11}/(fcx[01-fcx[11);

b_mc=( fcx {01 *mcy [1]-fex (11 *mey {01 )/ (fex (01 -fex{11);
b_rez=(fcx[01*rezy{1]-fex(11*rezy(01)/(fex(0]1-fex[11);
b_imz=(fcx[01*imzy [1]-fex[11*im2y[01)/(fex (01-fex(11);

=sope_mc*freq+b_me; /* do regression */
rez=slope_rez*freq+b_rez;
imz=slope_imz*freq+b_imz;

>
cap=(-1e12)/(2*PI*(freghz)*(imz)); /* capacitance */
mi=mc*(cap/(cap+CEL)); /* sensitivity */

return (ml);



/******************************************************************************/

/* Subroutine “caldata®is called from “marc®. It is a listing of the */
/* calibration variables determined by Marconi for the Marconi for the 0.5 mm */
/* bilaminar hydrophone (serial no. IP041) for integer frequencies */

/******************************************************************************l

void caldata(fc, mc, rez, imz)

/* all measurements taken in water at 20.7 +/- 0.5 degree C */

float *fc, /* center frequency */
*ne, /* end-of-cable open-circuit sensitivity (uv/Pa) */
*rez, /* impedance: real component (ohms) */
*imz /* impedance: imaginary component (ohms) */
H

{

if ( *fc >= 0.99 && *fc <= 1.01 )
{ *mc=0.060;
*rez=140.0;
*imz=-1910.0; b
else If ( *fc >= 1.99 && *fc <= 2.01 )
{ *mc=0.060;
*rez=80.0;
*imz=-1000.0; 3
else if (*fc >= 2.99 && *fc <= 3.01)
{ *mc=0.062;
*rez=60.0;
*imz=-680.0; 3
else if ( *fc >= 3.99 && *fc <= 4.01 )
{ *me=0.063;
*rez=44.0;

*imz=-520.0; )
else if ( *fc >= 4.99 && *fc <= 5.01 )
{ *mc=0.066;
*rez=34.0;
*imz=-419.0; 3

else if ( *fc >= 5.99 && *fc <= 6.01 )
{ *mec=0.067;
*rez=29.0;

*imz=-351.0; 3
else if ( *fc >= 6.99 && *fc <= 7.01 )
{ *mc=0.068;
*rez=26.0;
*imz=-302.0; 3

else if ( *fc >= 7.99 && *fc <= 8.01)
{ *me=0.071;

*rez=23.0;
*imz=-264.0; b
else if ( *fc >= 8.99 && *fc <= 9.01 )
{ *me=0.073;

*rez=21.0;
*imz=-235.0; }
*fc >= 9.99 && *fc <= 10.01 )
*me=0.077;
*rez=19.0;
*imz=-211.0; 2
else if ( *fc >= 10.99 && *fc <= 11.01 )
{ *me=0.079;
*rez=18.0;
*imz=-191.0; }
else if ( *fc >= 11.99 && *fc <= 12.01 )
{ *mc=0.08%;
*rez=17.0;
*imz=-174.0; 2}
else if ( *fc >= 12.99 && *fc <= 13.01 )
{ *mc=0.087;
*rez=16.0;
*imz=-161.0; 2}
*fc >= 13.99 && *fc <= 14.01)
*mc=0.092;
*rez=16.0;

else if

-~

else if

o~



*imz=-148.0;

else if ( *fc >= 14,99 && *fc <=
{ *mc=0.098;
*rez=14.0;

*imz=-137.0; 3

else
printf('\n passes through");

15.01 )
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APPENDIX I

PRESS SUBROUTINE

/******************************************************************************/

/* Subroutine “press" converts the voltage signal to the pressure signal. */
/* Given the end-of-cable sensitivity, calculated from subroutine “marc", */
/* pressure = [ (voltage)(1eb) 1/ mlL  {Pascall. */

/******************************************************************************l

void press(mi)

float ml; /* end-of-cable sensitivity (uV/Pa) */
[
char key,
filename({30],
xbuff [20], /* X - axis labeling buffer */
ybuff {20} /* y - axis labeling buffer */
H
int i=0,
<,
counter,
npts; /* number of points for "findmax" */
float xtc, /* x-time calec. scaling factor */
ytc, /* y-time calc. scaling factor */
maximum, /* y max value */
minimum, /* y min value */
ymult, /* y scaling factor */
xmult, /* x secaling factor */
Xxzero, /* x min or zero start */
xiner, /* x increment */
Xste, /* change in x : for plotting */
Xmax, /* max X : for plotting */
yori, /* left hand y : for plotting */
yste, /* change iny : for plotting */
ymax; /¥ max y : for plotting */

strcpy(xbuff, "Time#);
strepy(ybuff,"Pressure (Pa)¥);

for(c=0; ¢<1024; c++) /* copy original voltage signal to y array

ylcl = echolcl;

/**************************** Y SCALING FOR PLOTTING *******************************/
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maximum = findmax(&counter,1024); /* find max and min for plotting purposes */

minimum = findmin(&counter,1024);

yori = ({minimum*1.0e6)/ml)+0.15*((minimum*1.0eb)/ml); /* minimum y value */

ymax = ((maximum*1.0e6)/ml)+0.15*((maximum*1.0eb)/ml); /* maximum y value */

yste = ((ymax - yori)/10.0); /* y step size to have 10 increments

*/

/******************************* fill arrays x & % ****************************/

xincr = 2.5e-8; /* each x value as determined by 40 MHz */



x[0] = 0.0; /* assume start time is zero */
y{01 = (yf{01*1.0eb)/ml;
for { i =1; i < 1024; i++ ) /* change voltage signal to a pressure signal */
/* need to multiply by 1e6 to change voltage to */
x{il = (x[i-1]+xincr); /* micro volts for ml (uv/Pa) */
y{il = (y[il*1.0e6)/mi;
}

/***************************** X SCALING FOR PLOTTING **********************_***/
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xmax. = ( 400*xincr ); /* x maximum is currently set to show only 400 points -- can be changed */

if ¢ xmax >= 1) /* xmax > 1 sec */
<
xtc=1;
strepy(xbuff,"Time (sec)®);
3}

if ( xmax < 1 & xmax >= 0.001 )
{
xte=1000;
strepy(xbuff,"Time (msec)®);
b
if ( xmax < 0,001 && xmax >= 0.000001 )
{
xtc=1000000;
strepy(xbuff,"Time (usec)");
3
else
xtc=1e9;
strepy(xbuff,*Time (nsec)");
}
for ( 1 =0; i < 1024; i++ ) /* change x values to read integer given known axis label

x[il *= xtc;

xmax *= xtc;
xste = (xmax - x{01)/10.0; /* x step size to give 10 divisions

printf("\n\n Do you wish to plot the pressure?? [nl ");
key = getch(); .
if (key == 'yt 1l key == 1¥1)

<

printf{*\n Please enter filename [8 letters]: ®);
scanf("%s*, filename);
strcat(filename, “.plt"); /* file is default with extension .plt */

/******************************* plott i ng pal‘t ********************************/

bgnplot(1,'g', filename);

startplot(1);
font(3,"simplex.fnt®, *\310% , "triplex. fnt", '\311¢ "complex. fnt#, 1\3127 4, 123,
page(9.0,6.855);

areald(8.0,5.5);

grid(2);

upright(1);

color(10);

numht(0.11);
graf(#%2.2f",x{0],xste, xmax, "%4.3f*, yori,yste,ymax);
color(10};

xname(xbuff);

heading(filename);

yname(ybuff);

color(14);

*/



curve(x,y,400,0);
endplot();
stopplot();

/* must change 400 to change number of points to plot */
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APPENDIX J

INT_TIME_AVE SUBROUTINE

/*****************************************************************************t/

/* Subroutine “int_time_ave" calculates instantaneous intensities, intensity
/* temporal peak, intensity pulse average and intensity time average. It

/* assumes. that the y array is the pressure signal. It changes it to the

/* intensity values using equation 1 = (p**2)/[ (Z0)(1e4) 1. The Itp is the
/* absolute maximum intensity value. Then the peak intensity integral is

/* caleulated, pii = (sum} (y[il*2.5e-8). The maximum value of the pii is

/* needed to calculate Ipa. The time between the 10% and 90% of the pii

/* is tau. The pulse duration is 1.25 * tau (AIUM standard). So,

/* lpa = piimax/pd. The dutycycle is the pulse duration divided by the pulse
/* repetition period. So, Ita = Ipa * dutycycle.

*/
*/
*/
*/
*/
*/
*/
*/

*/
*

/******************************************************************************l

void int_time_ave()

<

int dex,
index,
ninety,
ten,
c,
i=0;

float xiner

’

/************************** create intensity values ***************************/

xincr = 2.5e-8;

x(0] = 0.0;

intenwm{0] = ( (y[01*y{0]1)/Zo )/10000;
y{0]l = intenwm{0I;

for (i=1; i<1024; i++)
{
x{il = (x[i-11+xincr);
interwm{il = ¢ (y({il*y[i])/Zo )/10000;
y{il = intenum(i];
3}

/************************** intensity tempOral peak ***************************/

itp = findmax(&dex,1024);

/************************** pulse intensity integral **************************/

y[01=0;
for (i=1; i<1024; i++)
ylil = (y(i]l * 2.5e-8) + y[i-11; /* J/cm**2  */

/******************* 10% and 90% of pii and pulse duration ********************/

piimax = findmax(&dex,1024);
¢ = dex;

for(i=0; i<1024; i++)
if ¢ y[i]l >= (0.9*piimax) )
< ninety = i;
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break;
>

for(i=0; i<1024; i++)
if ¢ ylil »= (0.1*piimax) )
< ten=i;
break;
>
pd = (float)fabs( (double)x{ninetyl - (double)x{ten] ) * 1.25;
dutycycspd/(float)prp;

/**************** inteﬂsity pulse average and tempcf'al average ****************/

ipa=piimax/pd;
ita=ipa*dutycyc;
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APPENDIX K

DONE SUBROUTINE

/******************************i***********************************************/

/* Subroutine "done" prints to the screen all the necessary variables. It */

/* asks to save the values to a file. */
/******************************************************************************/

void done()
<

char key;
int c;
printf(CLS);

printf(™\n The following is the data just acquired: \n");
printf(*\n Center frequency %f MHz %, cent_freq);

printf("\n Bandwidth = %f MHz \n%, bandwidth);
printf("\n Sensitivity (ML) O.C. = Zf uv/Pa \n¥, ml);
printf("\n Peak compressional pressure (fc) = ¥%f kPa ", pc/1000);

printf("\n Peak rarefractional pressure (fc) = %f kPa \n", pr/1000);
printf("\n Pulse repetition period %f msec ", prp * 1000);

printf(*\n Pulse repetition frequency %f kHz ", 1/¢prp * 1000) );
printf(*\n Pulse duration %f usec ", pd * 1eb);

printf(*\n Dutycycie %f percent\n", dutycyc * 100);
printf(®\n Pulse Intensity Integral (PII) %f ud/cm**2 v piimax * 1eb);
printf("\n Intensity Pulse Average (lpa) #f W/em**2 #. ipa);
printf("\n Intensity Time Average (Ita) %f mWd/cm**2 v, jta * 1000);
printf(™\n Intensity Time Peak (Itp) %f  W/em**2 \n®, itp);

printf("\n\n Do you wish to save data?? "y;

key = getch();
if (key == 'y' !l key == 1Y)
{

printf("\n Please enter filename [8 letters(dot)3 letter extensionl: ");
printf(*\n ---> #);
scanf("%s", filename);

if( (output = fopen(filename, "w") ) == NULL)
<

printf(™\nHelp... can't open %st!\n", filename);
exit(0);
}

printf("™\n Storing data in %s\n®, filename);
fprintf(output, “#%s\n*, filename);

fprintf(output, “%f MHz \n*, cent_freq);
fprintf(output, “%f MHz \n*, bandwidth);
fprintf(output, "%f uv/Pa \n*, mi);
fprintf(output, “"%4f Pa \n*, pc);
fprintf(output, "%f Pa \n*, pr);
fprintf(output, “%e sec \n", prp);
fprintf(output, "%f kHz \n®, 1/(prp * 1000) );
fprintf(output, "%e sec \n", pd);
fprintf(output, "%e sec \n®, dutycyc);
fprintf(output, "%f J/cm**2 \n", piimax);
fprintf(output, "%4f W/cm**2 \n®, ipa);



fprintf(output, "i%f W/cm**2
fprintf(output, "%f W/cm**2

for(c=0; c<1024; c++)
fprintf(output, “%e

fclose(output);
puts("\n Done writing!\n");
3

else
puts{™\n No data saved!\n");

\n*, ita);
\n¥, itp);

%e

%#f\n", x(cl, echolcl, intenwmicl);
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APPENDIX L

REMAINING SUBROUTINES

/**********ii******************************************************************/
/* Subroutine "load_trigger® changes the trigger level to the "x* value. */
/* The values 0 to 256 represent 0.635 v to -0.640 v. The trigger is set */

*

/* when there is a change at the chosen value. )
/******************************************************************************/

void load_trigger_offset(x)
char x;
{
char far *waag;
waag = ( char far *) WAAG;

outpw(PORT2,0xc06f); /* enabled trigger offset */
*Waag = X;

outpw(PORT2, 0xA06f);

/******************************************************************************/

/* Subroutine “absolute_max" displays to the screen the maximum and minimum */
*

/* vatue in the y array.
/******************************************************************************/

void absolute_max(min, max, number_pts)

int number_pts;
double *min,
*max;

int i;

*max = -1000000.0;
*min = 1000000.0;

for (i=0; i<number_pts; i++)
{
if (*max < (double)y({il)
*max = (double)y(il;
else if (*min > (double)y[il)
*min = (double)y(il;
}

STP(24,69);
printf(“%f*, *max);
STP(25,69);
printf(“%f"*, *min);



/******************************************************************************/

/* Subroutine “"findmax" returns the maximum value in the y array. If */

/* necessary, the index for the minimum value in the array is also returned. */
/******************************************************************************/

float findmax(index,number_pts)

int *index,
number_pts
;

<

int i
H

float max

-

max = -1000000.0;

for (i=0; i<number_pts; i++)
if (max < y{il)

return(max);

/***********************************************************************i******/

/* Subroutine "“findmin" returns the minimum value .in the y array. If */

/* necessary, the index in the array for the minimum value is also returned. */
/******************************************************************************/

float findmin(index,number_pts)

int *index,
number_pts
H

<

int i;

float min;
min = 1000000.0;
for(i=0; i<number_pts; i++)
if (min > y[il)
{min = y{il;
}*index = min;

return{min);
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APPENDIX M

FREQUENCY RESPONSE OF MARCONI HYDROPHONE AMPLIFIER
AND MINICIRCUIT ZFL500LN POWER AMPLIFER
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