DEVELOPMENT OF A CONTINUOUS PHASE SHIFTER FOR A MICROWAVE PHASED ARRAY HYPERTHERMIA SYSTEM

BY

RONALD DEAN BOESCH

B.S., University of Illinois, 1985

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 1987

Urbana, Illinois

DEDICATION

I dedicate this work to Margaret Garcia, my confidante, fiancee, and partner in life.

TABLE OF CONTENTS

CHAPTER																								PAGE
1	INTR	ODUC	CTI	NC.		•	•	•	•	•	•	•	•	•			•	•	•	•			•	1
2	THEO	RY.	•		•	•		•	•	•	•	•		•	•	•	•	٠	•	•	•	•	•	ϵ
3	DESI	GN.	•		•	٠	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	20
4	METH	OD.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	25
5	RESU	LTS	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•		•	•	29
6	DISC	ussı	ON		•	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	•	•	•	32
7	CONC	LUS]	ONS	5 A	ND	RE	ECC	MMC	IEN	IDZ	AT]	101	1S	•	•	•	•	•	•		•	•	•	38
TABLES.		• •	•		•	•	•	•	•		•				•	•	•		•	•			•	40
FIGURES			•		•	•		•	•	•	•	•	•		•				•				•	48
APPENDIX	X A	DET	ERN	ΊΙΝ	AT:	ION	r c	F	RE	LZ	\T]	VE	E	PRI	EME	[T]	riv	ווי	ľΥ					92
APPENDIX	В	LIS	IIT:	1G	OF	CA	VI	ΥT	•	•	•	•	•		•	•					•	•	•	94
APPENDIX	С	LIS	TIN	1G	OF	ME	L_	SH	FT	R	•		•		•	•	٠	•	•	•		•	•	96
APPENDIX	D	LIS														1T	PF	800	R.F	MS	3			
		1.	TE	ERM	4	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	102
		2.	TEF	MS	3 V	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	111
REFERENC	ES.				٠		•				•	_			_	_		_	_	_				120

ACKNOWLEDGEMENTS

I am deeply grateful to Dr. Richard Magin and Dr. Steven Franke for their encouragement and helpful insight throughout this project. I extend thanks to Labthermics Technologies, through which this project was possible. In particular, I thank Dr. E. C. Burdette and Dr. R. L. Johnston for their support. I also extend appreciation to the personnel at the Bioacoustics Research Laboratory who have made my daily life here enjoyable. This includes Bill McNeill, Joe Cobb, Wanda Elliott, Nancy Dimond, Bob Cicone, Harold Underwood, Ken Olcheltree, Tom Cavicchi, Scott Smith, Jim Novak, George Bark, Chong Lee, Mike Niesman, and Jian Zhang, and others I may have forgotten to mention. Finally, I thank my parents, Ron and Judy Boesch, for getting me to this stage in my life.

CHAPTER 1

INTRODUCTION

Hyperthermia, the elevation of tissue temperature above 37^OC, has long been recognized as a cancer treatment. Early translations of Ramajama (200 B.C.), Hippocrates (400 B.C.), and Galen (200 A.D.) record the use of red hot irons in the treatment of nonulcerating cancer. During the Renaissance, spontaneous tumor regression was noted to accompany illnesses involving infectious fevers. More recently, interest has focused on mechanisms of the healing effect and its ramifications for treat-Cancerous tissue is more thermosensitive than normal [Giovanella, 1983]. However, the tumor response to heat alone does not justify hyperthermia as a solitary treatment. Hyperthermia, in conjunction with traditional therapies, results in a higher tumor response than when the individual therapies given alone [Watmough, 1986]. This result justifies the use of thermoradiotherapy and thermochemotherapy.

There are a number of methods used for producing hyperthermia. The whole body temperature may be elevated through systemic hyperthermia, or only the tumor region may be heated, through local hyperthermia. For systemic hyperthermia therapy, patients have been covered with molten wax or fitted with water circulating suits [Hahn, 1982]. For sytemic hyperthermia the temperature must be less than 40.8°C. In local hyperthermia, the tumor may be selectively heated to a higher temperature than that used in systemic hyperthermia. The therapeutic local hyperthermia tem-

perature range is $42 - 45^{\circ}\text{C}$ for treatment times of 30 to 180 minutes. The tumor region may be heated in two ways, interstitially or noninvasively.

With the interstitial method, an antenna is inserted into the tumor region. The electromagnetic energy emitted by the antenna is absorbed by the tissue, providing very localized tumor heating. This method is useful with radiotherapy because the antenna can also be used as a container for x-ray emitting radioisotopes.

With the noninvasive method, an applicator on the outside of the body directs energy inward. To reduce excessive surface heating, an array of radiators is used as opposed to a single element. The array distributes the same power as a single element over a larger area reducing the local surface power density. Figure 1 (Figures and Tables appear at the end of the text) demonstrates this situation. The radiated energy may be electromagnetic (EM) or ultrasonic. Each modality has advantages and limitations which determine what types of tumor sites can be successfully treated.

A microwave system for depositing 915 MHz electromagnetic radiation in a tumor was outlined by Benson [1985] using an array configuration described by Gee et al. [1984]. This array has the capability to focus EM energy to a localized region that can be electronically scanned. A modified system based on Benson's design was shown in Fig. 2. A single source is divided equally into the individual channels for each radiator. The signal goes through a phase shifter and amplifier to control the phase and

amplitude of the energy. Dual directional couplers allow energy sampling so the phase and amplitude of each element are available for feedback control. The control signals are adjusted so that the relative phase from an element to a receiver at the tumor site is the same for elements. This insures constructive interference and, therefore, focus of energy at the tumor site.

Control of the focus is then critically dependent on the phase control of each channel that is provided by electronic phase shifters. The electronic phase shifting can be accomplished using the variable transmission properties of ferrites or the variable reactances of diodes. Generally, ferrites are not useful for frequencies below 3 GHz, whereas diode phase shifters are useful up to 20 GHz [Whicker, 1974].

Diode phase shifters can be digital or analog. Figure 3 shows the varieties of digital phase shifters [Garver, 1976]. The switched path type phase shifter (Fig. 3A) switches between varying lengths of transmission paths using PIN diodes. The transmission type phase shifter (Fig. 3B) changes phase by switching between loadings on the transmission line. The reflection type phase shifter (Fig. 3C) switches the effective length of a short circuited transmission line. Each of the digital phase shifters shown in Fig. 3 results in a single phase shift bit. Many bits are required to achieve phase resolution. For example, 4 bits are required for 22.5 degree resolution. The resolution of a phase shifter, however, could be increased with fewer components using an analog phase shifter.

Analog phase shifters have been developed based on several

different concepts. Representative examples are shown in Fig. 4. The vector device (Fig. 4A) generates variable amplitude complex vectors that, when combined, generate variable phase vectors [Kumar, 1981]. The frequency locked device (Fig. 4B) is based on the phase change that occurs when one oscillator of a locked pair frequency shifted [Rubin, 1972]. The dual gate FET device (Fig. 4C) relies on the variable transmission phase through an amplifier when one gate is variably resonant [Tsironis, 1980]. A reflective type analog phase shifter, the simplest analog shifter, is realized in the hybrid coupler phase shifter (Fig. 4D). The hybrid coupler phase shifter uses the variable resonant loads on a quadrature hybrid coupler to control phase [White, 1974]. The variable resonant load uses the changing capacitance of a reverse bias varactor diode to change phase. The input power to these devices is limited (100 mW [Garver, 1976], 1 W [White, 1982]) to prevent nonlinear operation due to excursion from the varactor bias point. These devices also have insertion loss which varies with phase that must be minimized an [Garver, 1969; Henoch, 1971].

Given the extensive literature on phase shifting devices, one could use many of these designs for changing phase in a microwave hyperthermia system. However, commercially available phase shifters are very expensive and are usually designed for a specific purpose. They are relatively broadband and low power with a linear phase-voltage relationship. The hyperthermia system does not require a wide bandwidth of operation or the linear phase-voltage response. It is reasonable to expect that a simple,

inexpensive phase shifter could be designed for this purpose. Design constraints for a phase shifter for use in a 915 MHz hyperthermia system are shown in Table 1. For the amplifiers investigated, an input of 250 mW should be sufficient to achieve 50 W output power. Hence, the phase shifter should handle 250 $\ensuremath{\text{mW}}$ input power. A minimal number of components should be used, one phase shifter is needed for each channel. The 915 MHz phase shifter should have a \pm 10 MHz bandwidth to allow for the oscillator drift. The amplitude variation with bias should be minimized to uncouple the amplitude and phase controls. The amount of phase variation necessary from a phase shifter is dependent upon the geometry of the antenna array applicator and its relation to the desired heating region. The array applicator considered is a seven element hexagonal array with antenna feeds spaced eighttenths a wavelength apart [Benson, 1985]. The intent is to heat at a maximum depth on the order of one wavelength. The applicator and heating region are shown in Fig. 5. From the figure, the maximum path length difference for centered heating 100 degrees between waves from the center element and any other ele-The figure shows the geometry for constructive interferment. during off center heating. The path length difference in this case is 180 degrees. Given these two cases, a phase shifter degree phase variation is necessary. The goal of this research was to design a simple, inexpensive, narrowband, degree continuous phase shifter with minimum amplitude variation that is able to operate in a phased array hyperthermia system where it would receive 250 mW of input power.

CHAPTER 2

THEORY

The theory of operation of the reflective type phase shifter shown in Fig. 4D will be considered. This type can incorporate a circulator or a 3 dB hybrid coupler. After studying the operation of each device, emphasis will center upon the 3 dB hybrid coupler, a reciprocal device, because it is smaller than the ferrite needed for a circulator, less expensive than the ferrite, and requires no matching network. The hybrid coupler load will then be considered. Analysis will begin on the varactor and then on its series or parallel combination with an inductor in an attempt to achieve greater phase variation. The analysis will conclude with an accurate representation of the phase shifter, including the parasitic loss of the load.

To begin, a simple phase shifter involves a load attached to one port of a circulator. The circulator is a three port device providing one-way sequential power transmission between ports, as shown in Fig. 6A. The energy entering one port exits from the adjacent counterclockwise port. The scattering matrix of this device [Gandhi, 1981] is

$$[S] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 (2.1)

From the scattering matrix, an input, A, (inputs, denoted A, and outputs, denoted B, of scattering matrices have the dimension of square root of power) at port 1 appears as an output of port 3.

If a load is attached to port 3, the output of port 3 is reflected. Port 3 now has an input of $Re^{j\theta}A$ where R is the magnitude and θ is the phase of the complex reflection coefficient, Γ , of the load. The input to port 3, $Re^{j\theta}A$, is transmitted without reflection to a properly terminated port 2. The result then, is to have the input signal at port 1,A, transmitted to port 2 with an amplitude and phase determined by the reflection coefficient of a load attached to port 3. If the reflection coefficient has a variable phase, then S_{21} is variable in phase and the phase shifter is realized.

The phase shifter using a circulator is not a reciprocal device. That is, the phase shifting property for s_{21} does not hold for s_{12} . An input at port 2 will appear as an output at port 1 with no phase changes due to the load on port 3. A phase shifter using a 3 dB quadrature hybrid coupler is a reciprocal device, as will be shown.

A 3 dB quadrature hybrid coupler is a four port device as shown in Fig. 5b. The scattering matrix for this device is [Helszajn, 1978]

$$[S] = \frac{1}{\sqrt{2}} \begin{vmatrix} 0 & 0 & 1 & j \\ 0 & 0 & j & 1 \\ 1 & j & 0 & 0 \\ j & 1 & 0 & 0 \end{vmatrix} . \tag{2.2}$$

Essentially, the input power to either port 1 or 2 is split equally between ports 3 and 4 with a quadrature phase relationship. The same happens to power directed to either port 3 or 4. For phase shifting, a signal, A, is applied to port 1; port 2 is

terminated in 50 ohms, and ports 3 and 4 are terminated with loads giving reflection coefficients Γ_3 and Γ_4 , respectively. For these conditions, the input signal matrix is

$$\begin{vmatrix}
A_1 \\
\Gamma_3 A_1 / \sqrt{2} \\
j\Gamma_4 A_1 / \sqrt{2}
\end{vmatrix} .$$
(2.3)

Using the input matrix, the output, B, of port 2 is

$$B_2 = \frac{[j\Gamma_3 A_1 + j\Gamma_4 A_1]}{2} . (2.4)$$

Using the scattered wave, the output power is obtained as

$$P_{\text{out}} = \frac{B_2 B_2^*}{2}$$

$$= \frac{[\Gamma_3 \Gamma_3^* + \Gamma_4 \Gamma_4^* + \Gamma_3 \Gamma_4^* + \Gamma_4 \Gamma_3^*] A_1^2}{8} . \qquad (2.5)$$

Assuming $\Gamma_3 = \Gamma_4 = \text{Re}^{j\theta}$ then

$$P_{out} = \frac{R^2 A_1^2}{2}$$
 (2.6)

With these same assumptions, the outgoing wave is, using (2.4),

$$B_2 = jRA_1 e^{j\theta} . (2.7)$$

The output relations (2.6) and (2.7) show two facts. One, for identical loads on ports 3 and 4 with R = 1, all the power is transmitted from port 1 to 2. Two, the phase relation of the transmitted wave is dependent upon the phase of the reflection coefficients of ports 3 and 4. Hence, changing the phase of the reflection coefficient changes the transmission phase through the coupler, and a phase shifter is realized.

Reciprocal operation is verified by injecting a signal into port 2 and calculating the output signal of port 1. The input matrix is

$$\begin{vmatrix}
0 \\
A_2 \\
j\Gamma_3 A_2/\sqrt{2}
\end{vmatrix}$$

$$\Gamma_4 A_2/\sqrt{2}$$

$$(2.8)$$

Using this input matrix, the output, B, of port 1 is

$$B_1 = \frac{(j\Gamma_3 A_2 + j\Gamma_4 A_2)}{2} . (2.9)$$

As above, assuming identical loads of the form

$$\Gamma_3 = \Gamma_4 = \text{Re}^{j\theta} \tag{2.10}$$

the transmitted signal is

$$jRA_2 e^{j\theta}$$
 (2.11)

with output power

$$P_{\text{out}} = \frac{B_1 B_1^*}{2} = \frac{R^2 A_2^2}{2}$$
 (2.12)

Comparing, the transmission from port 1 to 2 is the same as that from port 2 to 1. This phase shifter behaves reciprocally as anticipated, and our design will focus on this hybrid coupler type.

The above case assumed both loads were identical. In general, the magnitude and phase of the loads may differ. The resulting expressions are then very complicated. A more manageable case is considered, that with loads of identical magnitude and different phase.

The reflection coefficients are then

The output signal at port 2 due to an input signal in port 1 is

$$B_{2} = \frac{[jRe^{j\theta_{3}}A_{1} + jRe^{j\theta_{4}}A_{1}]}{2}$$

$$= j\frac{RA_{1}}{2} [e^{j\theta_{3}} + e^{j\theta_{4}}]$$

$$= j\frac{RA_{1}}{2} [\cos\theta_{3} + j\sin\theta_{4} + \cos\theta_{4} + j\sin\theta_{4}]$$

$$= j\frac{RA_{1}}{2} [2\cos(\frac{\theta_{3} + \theta_{4}}{2}) \cos(\frac{\theta_{3} - \theta_{4}}{2}) + 2j\sin(\frac{\theta_{3} + \theta_{4}}{2}) \cos(\frac{\theta_{3} - \theta_{4}}{2})]$$

$$= jRA_{1} \cos(\frac{\theta_{3} - \theta_{4}}{2}) e^{j(\frac{\theta_{3} + \theta_{4}}{2})} . \qquad (2.14)$$

The power in this signal is given by

$$P_{out} = \frac{B_2 B_2 *}{2} = \frac{R^2 A_1^2}{2} \cos^2(\frac{\theta_3 - \theta_4}{2})$$
 (2.15)

So, for loads differing only in phase, the transmission phase is the average phase of the reflection coefficients and the power amplitude is governed by a cosine function operating on the phase difference. If a 1 dB loss is acceptable, the phase of the loads may differ by as much as 54 degrees. If this is a constant phase difference, the loss is constant. However, variable loss may occur if the phase difference varies. As above, a 54 degree phase difference variation results in a 1 dB amplitude variation. Variable loss variation may also occur if the equal magnitude of the reflection coefficients vary. Replacing R with R + R in Eq. (2.15) shows that a 1 dB loss variation can occur if both magnitudes vary together by 10% (assuming R = 1). Also note that transmission loss occurs when the magnitude of the reflection coefficient is not unity due to power absorption in the load.

Since phase differences result in the total power not being transmitted, it is instructive to consider the power reflected back to the input port. The reflected signal at port 1 is

$$B_{1} = \frac{\left[\operatorname{Re}^{j\theta_{3}}A_{1} + jxj\operatorname{Re}^{j\theta_{4}}A_{1}\right]}{2}$$

$$= \frac{A_{1}R}{2} \left[\operatorname{e}^{j\theta_{3}} - \operatorname{e}^{j\theta_{4}}\right]$$

$$= \frac{A_{1}R}{2} \left[\cos\theta_{3} + j\sin\theta_{3} - \cos\theta_{4} - j\sin\theta_{4}\right]$$

$$= \frac{A_{1}R}{2} \left[-2\sin\left(\frac{\theta_{3}+\theta_{4}}{2}\right)\sin\left(\frac{\theta_{3}-\theta_{4}}{2}\right) + 2j\sin\left(\frac{\theta_{3}-\theta_{4}}{2}\right)\cos\left(\frac{\theta_{3}+\theta_{4}}{2}\right)\right]$$

$$= jA_{1}R \left[\sin\left(\frac{\theta_{3}-\theta_{4}}{2}\right)\left[j\sin\left(\frac{\theta_{3}+\theta_{4}}{2}\right) + \cos\left(\frac{\theta_{3}+\theta_{4}}{2}\right)\right]\right]$$

$$= jA_{1}R \sin\left(\frac{\theta_{3}-\theta_{4}}{2}\right) e^{j\left(\frac{\theta_{3}+\theta_{4}}{2}\right)} . \tag{2.16}$$

The power in this signal is given by

$$P_{out} = \frac{B_1 B_{1*}}{2} = \frac{A^2 R^2}{2} \sin^2(\frac{\theta_3 - \theta_4}{2})$$
 (2.17)

Several important points are apparent in this result. If the reflection coefficients of the loads are identical in phase and amplitude, no power is reflected to the input port. For loads differing only in the phase of their reflection coefficients, the power returned to the input is related by the sine operating on the phase difference. The 54 degree phase difference examined above results in a reflected power of -7 dB. Nonidentical loads should not be sought since they only have detrimental effects on the returned and transmitted powers.

Several characteristics are desired for the loads on ports 3 and 4. First, a load with a reflection coefficient of unity magnitude is desired. For nonunity loads, power is absorbed by the load and less is transmitted. Still, none is reflected back to the input if the phases are equal. Any reactive load satisfies the unity magnitude criterion. Second, the load should have an electronically variable phase to provide electronic phase shifting. A varactor diode can be used to provide this behavior because its junction capacitance depends on its reverse bias voltage. The characteristics of a varactor diode will now be examined, and then its use as a variable load will be considered.

A model for a packaged varactor is shown in Fig. 7. The junction capacitance, C_j , varies, as stated above, with reverse bias. The capacitance voltage relation [Helszajn, 1978] is

$$C_{j}(v) = C_{\min}(\frac{\phi + V_{b}}{\phi + v})^{\gamma} , \qquad (2.18)$$

where ϕ is the contact potential, $V_{\rm b}$ is the reverse breakdown voltage, $C_{\rm min}$ is the junction capacitance at the breakdown voltage, and γ is a function of the impurity profile with value 1/2 for abrupt junctions. A measure of the capacitance variability is the capacitor tuning ratio which is generally the capacitance at 0 volts divided by the capacitance at the breakdown voltage. Also varying with reverse bias is $R_{\rm j}$, the junction resistance. The relation for the reciprocal of the resistance, G, [Shurmer, 1971] is

$$G(v) = e/KT I_0 e^{ev/KT} , \qquad (2.19)$$

where v is the reverse bias, I_{O} is the reverse leakage current, and KT/e is the contact potential. The other quantities in the model, C_{p} and L_{p} , are due to packaging and are constant with respect to bias voltage.

The varying parameters of the model, C_j and R_j , give rise to a quality factor for the junction which varies with bias voltage. Since quality factor is defined as the ratio of the average energy stored per cycle to the average energy dissipated per cycle, the variable relation is

$$Q_{S} = \frac{G(V)}{\omega C(V)} \qquad (2.20)$$

This quality factor has two implications. First, the reflection coefficient of the varactor cannot have a magnitude of unity because of the presence of a dissipative element. However, the higher the quality factor, the closer to unity is the reflection coefficient magnitude. Second, since $Q_{\rm S}$ varies with bias voltage, the reflection coefficient magnitude varies with bias voltage.

After focusing on the characteristics of a varactor diode, we will consider the varactor as a variable load. For a simplified initial analysis, the varactor will be modeled solely by its junction capacitance. The reflection coefficient is then

$$\Gamma = \frac{1/j\omega C(v) - Z_{O}}{1/j\omega C(v) + Z_{O}}$$

$$= \frac{(1 - jZ_{O}\omega C(v))^{2}}{1 + (Z_{O}\omega C(v))^{2}} \qquad (2.21)$$

The expression for the magnitude is one as expected due to the exclusion of dissipative elements in the simplified model. The phase of the reflection coefficient is given as

$$ang(\Gamma) = 2tan^{-1}(-Z_0\omega C(v)) \qquad (2.22)$$

The argument of the inverse tangent function is always negative. For a very small capacitance, the angle can approach 0 degrees. For a very large capacitance, the angle can approach -180 degrees. Hence, the phase can only be varied to a maximum of 180 degrees. This maximum is only achieved when the capacitance variation is very large. Thus, the goal of 180 degree phase variation cannot be realistically achieved by this simple load.

Sufficient phase variation may be simply achieved with the addition of an inductor. The addition of the inductor allows for positive phase angles because an inductor has positive reactance. Conversely, the varactor only allowed negative phase angles because a capacitor has negative reactance. An inductor and varactor together create a greater potential for phase variation. The inductor and varactor may be combined in series or parallel. Both cases will be considered. First consider the series combi-

nation of reactive elements. The voltage reflection coefficient is

$$\Gamma = \frac{j\omega L + 1/j\omega C(v) - Zo}{j\omega L + 1/j\omega C(v) + Z_o}$$

$$= \frac{-(-Z_o + j(\omega L - 1/\omega C(v)))^2}{(\omega L - 1/\omega C(v))^2 + Z_o^2} . \qquad (2.23)$$

The angle of the reflection coefficient is then

ang(
$$\Gamma$$
) = 2tan⁻¹($\frac{\omega L - 1/\omega C(v)}{-Z_O}$) -180 . (2.24)

This function provides the greater phase variability around series resonance ($\omega = 1/L:C(v)$). With properly chosen reactance values operating around series resonance, a 180 degree phase shift is accessible.

Now consider the parallel combination of an inductor and varactor. Assuming the ideal model for the varactor, solely the junction capacitance, the impedance of the parallel combination is

$$Z_{L} = \frac{j\omega L/j\omega C(v)}{j\omega L + 1/j\omega C(v)}$$

$$= \frac{j\omega L}{1 - \omega^{2}LC(v)} . \qquad (2.25)$$

Using this impedance, the reflection coefficient is

$$\Gamma = \frac{j(\omega L/(1 - \omega^2 LC)) - Z_0}{j(\omega L/(1 - \omega^2 LC)) + Z_0}$$
 (2.26)

The magnitude of this is one by inspection as expected because there are no dissipative elements. The phase of the reflection coefficient is

ang(
$$\Gamma$$
) = 2tan⁻¹($\frac{\omega L}{Z_O(\omega^2 LC - 1)}$) - 180 . (2.27)

At parallel resonance, the denominator of the argument of the inverse tangent function is zero, giving a total angle of 0 degrees. The largest impedance variation is available around this parallel resonance. The greatest phase variation is also obtainable at that operating point. The maximum variation in phase is, then, obtainable around resonance, be it parallel or series resonance.

The parallel and series resonant loads presented thus far model the varactor by solely its junction capacitance. More realistically, these loads should incorporate a resistance to account for the finite quality factors of the reactive elements. The resonant loads will now be reconsidered with the addition of the resistive element.

First consider the series load with a series resistance accounting for the finite quality factor. The reflection coefficient is then

$$\Gamma = \frac{j\omega L + 1/j\omega C(v) + R - Z_{o}}{j\omega L + 1/j\omega C(v) + R + Z_{o}}$$
 (2.28)

Certainly, the magnitude of the reflection coefficient is not one. At series resonance the magnitude is

$$|\Gamma| = \frac{|R - Z_0|}{|R + Z_0|} \tag{2.29}$$

In regions where the reflection coefficient is dominated by reactance, the magnitude approaches one. Hence, the reflection coefficient has variable amplitude. For small R and high series Q, the intrinsic transmission line impedance, Z_{Q} , dominates and the phase response is similar to Eq. (2.24).

Now consider the parallel load with a parallel resistance accounting for the finite quality factor. The resulting impedance is

$$Z_{L} = \frac{jR\omega L/(1 - \omega^{2}LC)}{j\omega L/(1 - \omega^{2}LC) + R}$$
 (2.30)

At parallel resonance, only R is apparent and the reflection coefficient is

$$\Gamma = \frac{R - Z_0}{R + Z_0} \qquad (2.31)$$

For high parallel Q, R is large compared to the intrinsic transmission line impedance and the reflection coefficient magnitude

approaches one. Certainly, as the load is changed, the magnitude of Γ is changed.

The magnitude of Γ changed with varactor bias voltage in both the series and parallel resonant loads. This occurred only when a constant resistance was used in the model, accounting for the finite Q. Actually, the resistance is not constant (Eq. (2.19)) and the packaged varactor is more complicated than just the model of the junction resistance and capacitance. To most closely predict the behavior of these loads over bias voltage, the more complete model of Fig. 7 will be used in the computer simulation.

CHAPTER 3

DESIGN

Consider now the design of the phase shifter circuit. The implementation involves examination of the circuit technology used, consideration of the resonant load, and physical construction of the phase shifter.

The technology chosen for circuit construction is microstrip circuitry because of the ease of fabrication and the availability of design equations. The essential features will be summarized here [Edwards, 1984]. The geometry of microstrip is shown in Fig. 8. The figure shows the field lines dividing between the substrate and free space. The transmission line would be expected to have an effective permittivity, $\epsilon_{\rm ff}$, that is a weighted function of the permittivities of the substrate and free space. This function depends on the geometry (i.e., width and height) of the transmission line as does the characteristic transmission line impedance, $Z_{\rm O}$. The relations are given below in the form most useful for design, those assuming that the substrate permittivity and desired characteristic impedance are known. They are

$$\frac{W}{h} = (\frac{e^{H'}}{8} - \frac{1}{4e^{H'}})$$
 if $Z_0 > \{44 - 2\epsilon_r \text{ ohms}\}$ (3.1)

and

$$\epsilon_{\text{eff}} = \frac{\epsilon_{r}+1}{2} \left\{ 1 - \frac{1}{2H}, \frac{\epsilon_{r-1}}{\epsilon_{r}+1}, \frac{\pi}{2}, \frac{1}{\epsilon_{r}}, \frac{4}{\pi}, \frac{-2}{\pi}, \frac{W}{h} \right\} \qquad \text{if } -<1.3 \quad (3.2)$$

where, for both expressions,

$$H' = \frac{Z_0 \sqrt{2(\epsilon_r + 1)}}{119.9} + \frac{1}{2} \frac{\epsilon_r - 1}{(\epsilon_r + 1)} \frac{\pi}{2} \frac{1}{\epsilon_r} \frac{4}{119.9} . \quad (3.3)$$

Given these relations, microstrip transmission lines of desired impedance may be laid down with their electrical lengths known.

The microstrip transmission lines are used to realize series or parallel inductances as distributed microstrip elements. The inductances are realized as cascaded steps in microstripline or parallel shotted stubs, respectively [Vendelin, 1982]. As a further consideration, the inductance value may have to be altered for tuning the load to achieve the desired performance. The parallel inductance value is easier to vary then the series inductance value because it involves moving a short (which may also be a distributed entity as will be shown later) as opposed to cutting microstripline to alter the cascaded steps required for series inductance. For this reason, the parallel resonant load was chosen for implementation.

The component values for the parallel resonant load must be determined. The optimum inductor varactor combination can be picked with respect to several criteria. Phase linearity with respect to voltage is an important criterion for phase modulators. It is not a constraint for a phased array phase shifter. Broadband response is another criterion generally sought in phase shifters. However, this is not a constraint for the hyperthermia system with a single frequency source. On the other hand, constant insertion loss with respect to voltage is an important criterion relevant to the hyperthermia system.

The driving force, then, in choosing the resonant load is to obtain 180 degrees of continuous phase variation with a minimal amount of amplitude variation. The resonant load has two degrees of freedom, the inductance and variable capacitance. With these, the two constraints of phase and loss may be achieved. The optimized with an interactive program to insure a full understanding of load trends. The program is given a value for the $\,\,_4$ volt varactor capacitance. It finds the value of inductance that will achieve 180 degrees of phase variation. The maximum loss variation is then recorded. Varactor 4 volt capacitance sizes are available in the same steps as resistors (any varactor capacitance quoted here refers to 4 volt value unless otherwise The available varactor values are tried until the mininoted). loss variation is found which allows 180 degrees of phase variation. Once the optimum load is found, attention turns to circuit realization.

The realization of the phase shifter is shown in Fig. 9. The functions of the elements are described as follows. The 3 dB hybrid coupler is shown with four transmission lines to its ports. The input and output ports have blocking capacitors, (Republic Electronics Corporation), to block DC voltages. (Manufacturerers' addresses are provided in Appendix E.) The reflection ports are loaded identically. The first element from the hybrid coupler port is the varactor, Alpha Industries. This varactor is mounted in a pill type package, which is inserted through the substrate as one side and must be connected to the ground plane. It operates from 0 - 30 volts. The distributed

inductor is realized by the next length of transmission line which is shorted with a variable capacitor (Johanson Mfg. Corp.), through to the ground plane. The next section is a shorted quarter wavelength transmission line which allows the varactor bias voltage to be applied without loading the circuit.

The decoupling is realized because the impedance of a shorted quarter wave line is

$$Z = jZ_0 \tan(\frac{2\pi \lambda}{\lambda}) = jZ_0 \tan \pi/2 = jZ_0^{\infty} = \text{open circuit .(3.4)}$$

The shorting is done using a chip capacitor (Republic Electronics Corporation). The bias voltage is applied using a BNC connector, whereas the microwave signal is available through SMA connectors.

Further consideration reveals how the distributed resonant inductance value is varied. The distributed variable inductance is realized by a variable capacitance as shown by the Smith chart of Fig. 10. The total length of the transmission line is fixed. Point A, the capacitor position and point C, the distributed inductance position, are fixed on the circuit but not on the Smith chart. Point B, the ideal short position, is fixed on the Smith chart. The Smith chart position of the capacitor, A, depends on the capacitance value and can move with changing capa-Since the arc length from A to C on the Smith chart is fixed, moving A moves C. With C moving, and B the ideal position fixed on the Smith chart, the distance from B to C, $1_{\rm BC}$, This length gives the value of the distributed is variable. inductance through the relation

$$j\omega L = jZ_0 \tan Bl_{BC}$$
 (3.5)

Thus, the inductance value is controlled by the capacitance value.

CHAPTER 4

METHODS

The methods outlined here involve the testing of a quadrature hybrid coupler and the testing of the phase shifter. The hybrid coupler testing was used to verify its action as part of a phase shifter with a simple load, an open circuit. The phase shifter testing had three purposes. The first was to verify the accuracy of the theoretical model used to describe the phase If accurate, the model can be used to select the optishifter. mum values of inductor and varactor. The second function was to show that the optimum load does indeed provide the lowest loss variation for 180 degrees of phase shift. To do this, loads had to be built with higher and lower varactor values that would not The third function of the testing was to perform as well. observe the power limits and frequency limits of the optimum device.

The first test was designed to verify the theory of the 3 dB quadrature hybrid coupler as an element in a phase shifter. Line stretchers provided variable open circuits as loads for the coupler. The test set up is shown in Fig. 11. The procedure was to put a 3 dB quadrature hybrid in a test jig to which the line stretchers could be attached. Using the HP 8505 Network Analyzer, the transmission phase of S_{21} and S_{12} through the hybrid was measured as the sliding line stretcher on ports 3 and 4 were moved.

The next test was to measure the phase shifter. However, the key parameters needed to analyze phase shifter operation could be obtained by carefully studying the reflection properties of the load. This equivalence results because for identical loads, the transmission through the phase shifter is directly dependent on the reflection coefficients of the loads. Hence, studying the behavior of the phase shifting load yields much the same information as studying the transmission through the phase shifter. In addition, building a load is less work than building a whole phase shifter. (It is solely one reflecting branch of the shifter shown in Fig. 9.) Therefore, loads were used for testing where possible.

The test set up for a load is shown in Fig. 12. The bias for the varactor was supplied by the HP 6215A Power Supply. The bias was monitored by a Data Supply 2480R Digital Multimeter. As the reflection coefficient of the phase shifting load was desired, S_{11} was measured using the HP 8507 Network Analyzer. The tuning capacitor (distributed inductance) was varied until the phase difference from 0 to 30 volts was 180 degrees. Then the magnitude and phase of S_{11} were recorded at increments of reverse bias from 0 to 30 volts. The data was entered into the HP 9817 Computer where it could be stored, plotted, and analyzed.

After measuring loads in this way to verify its operation the procedure was automated for measurement of either the load or the phase shifter as shown in Fig. 13. The HP 9817 computer controlled the equipment. The TERM3V and TERM4 programs were written to tune and measure the phase shifting load and phase

shifter, respectively. A listing of these programs is included in Appendix D. The varactor bias was supplied and monitored by the Tektronix PS 5010 Power Supply and DM 5010 Multimeter, respectively. The programs used error correcting routines to measure the device S-parameters with the HP 8507 Network Analyzer. The programs read the data from the voltmeter and network analyzer so they could be stored, plotted, and analyzed.

The automated measurements were used to collect most of the required data. The testing requirements fulfilled by these measurements were the verification of the phase shifter model, verification that the optimum load had been found, and determination of the device frequency response. However, these automated measurements could not investigate the power limits of the device, as the HP 8507 has an input power limit of 1 mW.

The test set up for the higher power measurements is shown in Fig. 14. The MCL RF Power Generator Model 15222 with Model 6050 RF plug in was used as a power source. A 10 dB coupler was used as a pad to allow higher power source operation where it was more stable. The energy into and out of the phase shifter was sampled by 30 dB couplers. The sampled energy was routed to two measuring devices. The HP 438A Power Meter with HP 8481A Power Sensors were used to measure the absolute input power or the input-output power ratio. This gave the transmission loss. The HP 8405A Vector Voltmeter was used to monitor output transmission phase with respect to the input phase. The varactor bias voltage is applied with the HP 6215H Power Supply and monitored with the Fluke 8600A Digital Multimeter. An 11.3 kohm resistor was placed

in series with the varactor bias so the varactor through current could be monitored with an HP 3466A Digital Multimeter. The current was monitored to prevent burning out the varactor diodes. This high power measurement measured phase shifter performance at 250 mW, the desired operating power, and measured how much power the phase shifter could tolerate. With this measurement, the testing was complete.

CHAPTER 5

RESULTS

Using the methods described in Chapter 4, a series of experiments was performed to test the operation of the quadrature hybrid phase shifters. These experiments measured the hybrid coupler to verify its operation as a phase shifter element. also carefully analyzed loads and phase shifters of varying varactor values to verify the theoretical model and to optimum load with regard to loss variation. The results from the procedure to verify operation of the 3 dB hybrid coupler in Table 2. The transmission phase through the device was changed when the lengths of the line stretchers were varied. 1.3 cm change in length gave a 19 degree change in the electrical The transmission phase through the device was the average of that due to each reflecting port. be results are summarized in measurements 1, 2, and 3 in the table. Measurement 1 was obtained with both line stretchers at the minimum length (transmission phase 164 degrees) while measurement was made with both line stretchers at the maximum length (transmission phase 145 degrees). For measurement 3 one line stretcher was the minimum length while the other was at the maximum The record transmission phase was 154 degrees, which length. the average of the two previous results. Measurements 3 and 4 show that the device is reciprocal. Interchanging the loads the reflection ports in these measurements did not change the transmission phase. These results verify the operation of a 3 dB

hybrid coupler in a phase shifter when the loads on ports 3 and 4 have reflection coefficients differing only in phase.

Next, the interactive program MDLSHFTR (see Appendix C) was used to choose the optimum inductor varactor load combination. By considering a range of varactor values, the optimum value was found to be 3.9 pF. The phase and amplitude responses of the 3.9 pF simulation as a function of varactor bias voltage are shown in Figs. 15 and 16, respectively.

With the predicted optimum load known, microstrip loads were constructed using varactors with values in a range above and below the optimum. Figures 17 - 24 show the phase and amplitude responses of phase shifting loads with varactor values of 10 pF, 5.6 pF, 3.9 pF, and 3.3 pF. The phase and amplitude variations of these loads are summarized in Table 3, where the 3.9 pF load is indeed shown to be optimum.

In order to compare the predictions, the model used in the simulation with the experimental measurements, the results are plotted on the same axes in Figs. 25 -32. Since the relative changes in phase and amplitude are the important criteria, the average phase and amplitude were subtracted to enhance direct comparison. This action is justified because the hybrid coupler and circuitry have an arbitrary but constant phase and loss that are not incorporated into the model. In addition, the entire circuit has a composite quality factor that is dependent upon construction. Therefore, the estimated quality factor of the transmission lines and components was adjusted slightly to achieve the best fit of the data and the simulations.

Two complete hybrid coupler phase shifters were built using 3.9 pF and 5.6 pF varactors. Their phase and amplitude responses are shown in Figs. 33 - 36. These responses are similar to those of the 3.9 pF and 5.6 pF loads. The 3.9 pF phase shifter was studied further because it was the predicted and found to be the optimum phase shifter. The additional parameters studied were return loss and the phase and amplitude variation as a function frequency and input power. The return loss of this phase shifter (> 18 dB) is shown in Fig. 37. Table 4 summarizes the phase and amplitude variation of the 3.9 pF phase shifter at frequencies within a 10% bandwidth of 915 MHz. As shown, phase and amplitude sensitivities near the operating frequency are 0.3 degree/MHz and 0.009 dB/MHz, respectively. Table 5 marizes the performance at power levels from 50 mW to 1 W.

CHAPTER 6

DISCUSSION

This discussion will provide a comparison of the theoretical model with the constructed loads and phase shifters. Furthermore, it will compare the continuous phase shifter developed in this thesis with other continuous phase shifters described in the literature.

First, a comparison of the results of loads and phase shiftinductor-varactor combination shows that each of the same provides the same response. The phase and amplitude responses of the 3.9 pF varactor from the phase shifting load in Figs. 21 and 22 and the phase shifter of Figs. 33 and 34 are replotted in Figs. 38 and 39 for direct comparison. The responses, though close, are not identical. owT factors may be responsible. First, the varactor manufacturer gives a \pm 10% tolerance on the 4 volt varactor capacitance. Thus, the varactor in the load and the phase shifter are possibly of different values. This changes the required inductance that obtains 180 degrees phase variation resulting in a different combination. Second, both devices were constructed by hand and their construction was not identical, which would give rise to slightly different composite quality factors, Q. Different quality factors will, as will be shown, result in altered response curves. Given these physical differences between two devices, the load and the phase shifter behave similarly and provide comparable phase shifting information.

The next comparison, between the load and the circuit simulation, shows the simulation is an accurate representation. simulation uses the model of the varactor shown earlier in Fig. 7 with a modification suggested by the manufacturer [Alpha tries, 1985]. The modification is an inductance placed in series with the composite structure of Fig. 7. With this model the simulation is plotted on the same axis as the simulation. measurements in Figs. 25 to 32. The model agrees quite closely with the measurements. Though not exactly alike, the character of the curves is extremely similar. In addition to similar curve character, the simulation and the measurements both indicate the same optimal inductor-varactor combination for 180 degrees phase variability. Both point to the combination involving a 3.9 pF varactor. From Table 4, it is evident that the 3.3 pF varactor could not achieve 180 degree phase variation, and the 5.6 pF varactor exhibited more loss variation than the 3.9 pF circuit. Thus, the simulation of the phase shifter appears to be valid for generating characteristic phase shifter responses and for finding the optimum varactor-inductor combination.

The optimum combination was further tested to investigate performance with respect to frequency and power level. At frequencies higher than 915 MHz the loss variation goes down as does the phase variation (< 180 degrees). At frequencies lower than 915 MHz the maximum phase variation increases (> 180 degrees) as does the loss variation. The result is that, at 915 MHz, just the necessary 180 degree phase variation is achieved with its associated loss variation.

An increase in power level results in both an increase in phase and loss variation. Since more phase variation is present than required, the increased loss variation is decreased by retuning the circuit to have just the required 180 degree phase shift. The tuning capacitor was screwed in fully, generating more inductance, to give 187 degree phase variation and 2.69 dB of loss variation at an input power level of 250 mW. This test not only indicates that higher power requirements require greater loss variation but that the circuit should be tuned at the anticipated operational power level.

The importance of having closely tracking loads in a phase shifter was discussed in Chapter 2. To investigate this, the hybrid coupler of the 5.6 pF phase shifter was replaced with transmission lines so each load could be individually observed. The phase and amplitude of their reflection coefficients are plotted on the same axes for direct comparison in Figs. 40 and 41. The phase variation is less than 180 degrees because the phase shifter was returned during a higher power measurement. As in the comparison of the 3.9 pF load and phase shifter, the responses are similar but not identical. This is due in part to the 10% varactor tolerance cited earlier and also to slight differences in construction. In practice then, identical loads will not be realized and additional transmission loss results.

Further investigation of the simulation indicates trends with respect to the phase desired and the quality factor achieved. Table 6 shows that as more phase variation is required, more loss variation will have to be accepted. A gen-

eral characteristic of this effect is that the optimum loss curve for any desired phase variation is a curve with the loss at 0 volts and 30 volts close in value. Simulations relating the change in loss variation with respect to Q are shown in Fig. 42. They indicate that not only does the absolute loss decreases with increasing Q, but the curve character also changes. Figure 43 shows that phase variation is not significantly affected by changes in Q.

With the phase shifter fairly well characterized by experiment and simulation, it would be instructive to compare this realization with others in the literature. One variety generates complex vectors whose amplitudes are varied before recombination to yield a constant magnitude vector of desired phase [Hwanq, Kumar, 1981; Johnson, 1981]. As a representative, the 1984: Kumar circuit (Fig. 4) can be seen to be a much more complicated Each of the FET amplifiers has independent control to circuit. generate the proper vector. Theoretically, the device no amplitude variation, but it exhibited dB amplitude variation due to power combiner characteristics.

Another variety of phase shifter is based on the change in phase shift that occurs when the resonant frequency of an oscillator is changed, but the frequency of oscillation is constrained by injection (frequency) locking the oscillator to a stable frequency source [Cohen, 1984; Rubin, 1972]. The control is applied through a varactor tuned Gunn oscillator. Once built, Cohen [1984] achieved 160 mW of power for 160 degree continuous active phase shifting. The necessity of building two oscillators

makes this circuit more complex than the hybrid coupler design studied here.

Yet another phase shifter realization uses dual gate metalsemiconductor junction field effect transistors (MESFETS) where
the signal is amplified through one gate while the transmission
phase is controlled by a resonant circuit on the second gate utilizing the variable gate capacitance [Tsironis, 1980; 1981; Pengelly, 1981]. The Tsironis circuit (Fig. 4) achieved 90 degree
phase variation with 1.8 dB amplitude variation. Amplitude variation was compensated for with an automatic gain control (AGC)
dual gate FET amplifier following the phase shifter. Pengelly
[1981] states that the magnitude of the phase shift depends
strongly on the input matching network and in any case is limited
in range.

The most widely reported realization is the reflection type phase shifter [Niehenke, 1985; Boire, 1985; Dawson, 1984; Hopfer, 1979; Modelski, 1979; Ulrikkson, 1979; Rippy, 1975; Henoch, 1971; Garver, 1969]. This type has many variations of varactor resonant loads and is, of course, the realization of this thesis. The literature devices operated at maximum power levels of 10 to 100 mW. Dawson [1984] noted phase shift variation with signal level. This gives additional support to the phase variation with power level shown in Table 5. All of the reported devices have exhibited the amplitude variation with bias. Garver [1969] and Henoch [1971] have addressed this problem. Garver [1969] uses a properly chosen resistance in parallel with his resonant circuit to equalize the loss variation. The

resistance depends on the highest and lowest values of the resonant load resistance. Garver [1969] achieved 0.56 dB variation at a 100 mW power level. Henoch [1971] uses a quarter wave transformer to equalize the loss variation. The transformer is designed for the most opposed resistance states of the resonant load. Henoch [1971] achieved 1.3 dB amplitude variation at an unspecified power level. These methods of loss equalization do so at the expense of higher absolute loss.

The reflective type phase shifter for the hyperthermia tem is different from the ones in the literature in several ways. The power levels of the previously reported devices are by concerns of linear operation [White, 1974] which is not a constraint for the hyperthermia system device. The method of miniloss variation is also different. mization of The amplitude variation for the hyperthermia phase shifter is minimized by proper resonant load choice. The devices in the literature are not afforded this flexibility because their resonant elements are picked with regard to linear phase-voltage constraints. The phase shifter constructed here is then a higher power, simple device that meets different needs than those of the continuous phase shifters in the literature.

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The goals of this project were to design and construct a simple phase shifter suitable for operation in a 915 MHz phased array microwave hyperthermia system. The suitability is determined with regard to phase, loss, frequency, and power variation. The necessary phase shift of 180 degrees was achieved with the minimum loss variation (0.51 dB). The device has the required ± 10 MHz bandwidth with no significant performance decrease. The loss variation increases with input power level and at the 250 mW level is 2.7 dB. Within the design constraints, then, a phase shifter has been developed which is suitable for operation in a phased array microwave hyperthermia system.

Avenues for further investigation may now be suggested. Certainly, the size of the phase shifter may be reduced by using a higher dielectric constant substrate. The fixed size of the discrete elements complicates this reduction. The blocking and quarter wave shorting capacitors could be turned on their sides to accommodate the thinner transmission lines. Smaller packages for the varactor and screw turn capacitor might be sought. However, the discontinuity of these elements with the transmission line can be tuned out with the screw turn capacitor. This element might be placed to the outside of the transmission line to avoid cutting it. In addition to size reduction, a metal should enclose the phase shifter to confine radiation. [1984] has outlined shielding provisions. The shielding lowers

both the characteristic impedance and the effective microstrip permittivity. Hence, the transmission lines would have to be narrowed and the distributed elements lengthened. decrease in loss variation, if necessary, might be achieved with the addition of elements suggested by Garver [1969] or Dawson et al. [1984] has suggested a method to reduce phase shift variation with power level at the expense of more varactors. Finally, if more phase shift were necessary because of a change in applicator configuration, several channels achieving 360 degree phase variation are available. The obvious configuration is two of the devices designed in this project. Another method would be to cascade an analog 180 degree phase shifter with a digital 180 degree phase shift [Boire, 1985]. final method would be to realize more complex loads on the 3 dB hybrid coupler as suggested by the loads of Henoch [1971] Garver [1969]. Except for size reduction and shielding, the above suggestions are only included in the event that future constraints might justify the added complexities of the circuits.

TABLES

TABLE 1

Continuous Phase Shifter Design Criteria

Input Power 250 mW 915 MHz 915 MHz Bandwidth \pm 10 MHz Phase Variation 180 degrees Amplitude Variation Minimize

TABLE 2

Scattering Parameters of Hybrid Coupler with Line Stretchers

as Variable Loads*

	ы	Line Stretcher	s_{11}	\$21	\$12	S ₂₂
Measurement	Degree Port	Degree Port	Magnitude (dB) Phase (degrees)	Magnitude (dB) Phase (degrees)	Magnitude (dB) Phase (degrees)	Magnitude (dB) Phase (degrees)
1	7.32	7.32	-11.7 ± 0.1 -164 ± 0.5	- 0.90 ± 0.05 + 164 ± 0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.6 ± 0.1 -110 ± 0.5
2	8.64	8.64	-11.3 ± 0.1 -179 ± 0.5	-1.10 ± 0.05 145 ± 0.5	$- 1.20 \pm 0.05$ 145 ± 0.5	-11.2 ± 0.1 -134 ± 0.5
m	8.64	7.32	- 13.3 ± 0.1 - 136 ± 0.5	$-1.\mu0 \pm 0.05$ 154 ± 0.5	$- 1.10 \pm 0.05$ 154 ± 0.5	- 17.2 <u>+</u> 0.1 - 162 **
4	7.32	8.64	$- 8.3 \pm 0.1$ 171 ± 0.5	$- 1.40 \pm 0.05$ 154 ± 0.5	$- 1.40 \pm 0.05$ 153 ± 0.5	- 8.1 ± 0.1 - 103 ± 0.5

* Measurement set up as shown in Fig. 11.

^{**} This phase measurement is sporadic because it was close to the 180 degree phase transition on the screen.

TABLE 3

Comparison of Theoretical and Measured Load

Characteristics for Various Varactors

Varactor in Load (pF)	Measured Phase Variation (Degrees)	Measured Loss Variation (dB)	Model Phase Variation (Degrees)	Model Loss Variation (dB)
10	182*	2.4	180.4	2.36
5.6	180.6	0.81	180.3	0.78
3.9	177.9	0.72	180.3	0.68
3.3	173.5	1.02	171.4	1.11

^{*} This was the manual measurement (Fig. 12) as opposed to the other done with the automated measurement (Fig. 13).

TABLE 4

Measurement of Phase Shifter (3.9 pF varactor) Operation

within a 10% Bandwidth

Frequency (MHz)	Phase Variation (Degrees)	Loss Variation (dB)
865	187.0	1.01
875	187.0	0.89
885	186.0	0.77
895	185.0	0.69
905	184.0	0.60
915	181.0	0.51
925	178.0	0.46
935	174.0	0.41
945	171.9	0.34
955	167.9	0.29
965	163.0	0.25

TABLE 5

Operating Characteristics of Phase Shifter with a 3.9 pF Varactor at Higher Power Levels

Actual Power* (mW)	Phase Variation (Degrees)	Transmission Power Variation (dB)
24	217	1.35
51	224	1.78
110	231	2.88
530	239	5.23
1050	241	5.83
After	retuning to minimize power va	ariation
530	190	3.44
270	187	2.69

^{*} Actual power calculated from measurement using 31.2 dB coupling factor.

TABLE 6

Model Predictions for Minimum Loss Variation*
in Hybrid Coupler Phase Shifter Design

Phase Variation (Degrees)	Loss Variation (dB)	Varactor Capacitance (4 volt, pF)
180	0.68	3.9
200	1.00	4.4
230	1.64	6.4
270	2.97	10.0
315	6.81	22.0

^{*} The minimum loss variation for a specified phase variation is found by inputting varactor values into the model until the minimum loss variation is achieved. This process could be automated using nonlinear optimization techniques.

TABLE 7

Cavity Resonance Measurements for Determination of Substrate Dielectric Constant

Substrate	Frequency Measured (MHz)	Cavity Mode		ectric Constant (Manufacturer specification)
Kepro FR-4	495	1,1	4.33	
_	696	2,1	4.35	
	857	1,2	4.35	
	937	3,1	4.39	
	988	2,2	4.35	
			44-01-4	
			4.354 ± 0.0196	4.8@ 1 MHz
3MCC250GX	421	1,1	2.53	
	605	2,1	2.52	
	724	1,2	2.51	
	825	3,1	2.52	
	851	2,2	2.52	
	1019	3,2	2.49	
	1048	1,3	2.52	
	1061	4,1	2.51	
			2.51 ± 0.058*	2.45 ±
				0.04@ 10 GHz

^{*}This measurement shows that the method gives a dielectric constant 0.8 - 4% too high.

FIGURES

A. Single Element

B. Array of Elements

Figure 1. Field concentration for single element and focused array of elements.

Block diagram of 915 MHz phased array hyperthermia system. Figure 2.

C. Reflection Phase Shifter B. Transmission Phase Shifter Switched Path Phase Shifter

Ą.

A. Vector Phase Shifter [Kumar, 1981]

B. Frequency Lock Phase Shifter [Cohen, 1984]

C. Dual Gate FET Phase Shifter [Tsironis, 1981]

D. Hybrid Coupler Phase Shifter

Figure 4. Four different types of analog phase shifter designs.

Maximum path length difference: .28 λ or ~ 100 degrees

CENTERED HEATING

Maximum path length difference: .51 λ or \sim 180 degrees

OFF CENTER HEATING

A. Circulator

Figure 7. Circuit model of packaged varactor diode.

h - Substrate Thickness w - Strip Conductor Width

A. Microstrip Transmission Line

B. Electric and Magnetic Field Lines Near Microstrip

Figure 8. General geometry of microstrip line.

- A. 33 pF D.C. Blocking Capacitor, Republic Electronics #013Q330GU
- B. 3 dB Quadrature Hybrid Coupler, Anaren #1A0264-3

曰

Ω

- . Varactor, Alpha Industries #DVH6732
 -). Distributed Inductance
- E. Screw Turn Shorting Capacitor, Johanson #SL27271
- F. Quarter Wavelength Decoupling Line G. 1000 pF Shorting Capacitor, Republic Electronics #013Q102GU
 - H. Varactor Voltage Bias Input

Schematic and circuit realization of hybrid coupler phase shifter. Figure 9.

Smith chart showing the translation of capacitance to distributed inductance. Figure 10.

Test setup for hybrid coupler with line stretchers. Figure 11.

Figure 12. Manual measurement of load.

Automated measurement for load or phase shifter. Figure 13.

Figure 14. High power measurement of phase shifter.

Figure 15. Phase response of 3.9 pF load model.

Figure 16. Amplitude response of 3.9 pF load model.

Figure 17. Measured amplitude response of 10 pF load.

Figure 18. Measured phase response of 10 pF load.

Measured amplitude response of 5.6 pF load. Figure 19.

Figure 20. Measured phase response of 5.6 pF load.

Figure 21. Measured amplitude response of 3.9 pF load.

Figure 22. Measured phase response of 3.9 pF load.

Measure amplitude response of 3.3 pF load. Figure 23.

Figure 24. Measured phase response of 3.3 pF load.

Comparison of simulation (Q = 21), A, and measurement, B, of phase response of 10 pF load. Figure 25.

Comparison of simulation (Q - 21), A, and measurement, B, of phase response of 10 pF load. Figure 26.

41), A, and measurement, B, of amplitude II of simulation (Q 5.6 pF load. Comparison response of Figure 27.

Comparison of simulation (Q = 41), A, and measurement, B, of phase response of 5.6 pF load. Figure 28.

of simulation 3.9 pF load. Comparison response of Figure 29.

Comparison of simulation (Q = 41), A, and measurement, B, of phase response of 3.9 pF load. Figure 30.

of simulation (Q 3.3 pF load. Comparison response of Figure 31.

Comparison of simulation (Q = 41), A, and measurement, B, of phase response of 3.3. pF load. Figure 32.

Amplitude response of 3.9 pF phase shifter. Figure 33.

Figure 34. Phase response of 3.9 pF phase shifter.

Amplitude response of 5.6 pF phase shifter. Figure 35.

Figure 36. Phase response of 5.6 pF phase shifter.

Figure 37. Return loss of 3.9 pF phase shifter.

shifter, Comparison of amplitude response of 3.9 pF load, A, and 3.9 pF phase B. Figure 38.

Comparison of phase response of 3.9 pF load, A, and 3.9 pF phase shifter, B. Figure 39.

0 degree port load, A, and 90 degree port Comparison of phase response of load, B, in 5.6 pF phase shifter. Figure 40.

port Comparison of amplitude response of 0 degree port load, A, and 90 degree load, B, in 5.6 pF phase shifter. Figure 41.

Comparison of amplitude response of 3.9 pF simulation for (A) Q=31, (B) Q=41, and (C) Q=51. Figure 42.

41, Comparison of phase response of 3.9 pF simulation for (A) Q=31, (B) Q= and (C) Q=51. Figure 43.

APPENDIX A

DETERMINATION OF RELATIVE PERMITTIVITY

The method of determining the relative permittivity is based on the relation between the resonant frequency of a cavity and its permittivity. The method is a modification of the method using one coupling hole [Edwards, 1984]. A double-sided copper clad substrate has copper tape soldered around the edges to totally enclose the substrate with metal. Two holes are drilled close to the edges of diametrically opposed corners. These holes are used for input and output couplings with male SMA connectors and are drilled close to the edges for light cavity coupling. The connector sheath is soldered to one side of the cavity with the center conductor soldered to the other. The transmission coefficient of the coupling holes is measured to find the transmission peaks where the cavity is resonant. These resonant frequencies are given by

$$f_{n,m} = \frac{c}{2\pi\sqrt{\epsilon_r}} \left[\left(\frac{n\pi}{a} \right)^2 + \left(\frac{m\pi}{b} \right)^2 \right]^{1/2}$$
 (A.1)

where c is the speed of light, ϵ_r is the relative permittivity, a is the cavity length, b is the cavity width and m and n are the mode numbers. Inverting this formula to find the relative perimttivity gives

$$\epsilon_{r} = \frac{c^{2}}{4f_{n,m}} \begin{bmatrix} n^{2} & m^{2} \\ a & b \end{bmatrix}$$
 (A.2)

The only ambiguity is to decide what mode a frequency represents. Estimates of the permittivity are used in a program matching frequencies with their mode (see Appendix B). Once the modes are known, formula (A.2) is used to determine the permittivity. Results of the method are shown in Table 7. A known and unknown dielectric are measured and, as can be seen, the method is fairly accurate, giving an estimate that is 1 - 4% too high.

APPENDIX B

LISTING OF CAVITY

```
10
       ! This program will calculate the resonant frequencies of a
       ! cavity given the dimensionx of the cavity. In addition it
20
       ! identifies each frequency with the particular mode it represents.
30
40
       ! Transcribed to HF from Cyber on July 1,1986
50
       ! Stored as CAVITY by Ron Boesch
60
       ! Frq is an array containing the mode frequencies
70
        Mu is the free space permeability
80
        Relperm is the relative permittivity
90
       ! Freperm is the free space permittivity
       ! L is the length of the cavity
100
110
       ! W is the width of the cavity
120
       ! Index is an array that helps get the frequencies in mode order
130
      OPTION BASE 1
140
      DIM Frq(7,7), Bfrq(49), Indx(49), Aindx(49), Bindx(49)
150
      Mu=FI*4.E-7
160
      Freperm=8.854E-12
      INPUT "WHAT IS THE RELATIVE PERMITIVITY?", Relperm INPUT "WHAT IS THE LENGTH (inches, longest dimension)?", L
170
180
       INPUT "WHAT IS THE LENGTH(inches, shortest dimension)?", W
190
      PRINTER IS 701
200
210
      PRINT "LENGTH(inches)",L
      PRINT "WIDTH(inches)",W
220
230
      PRINT "RELATIVE PERMITIVITY", Relperm
240
      PRINT
250
      L=L*(2.54/100)
260
      W=W*(2.54/100)
270
      Konst=1/(2*PI*(Mu*Relperm*Freperm)^.5)
280
      N=1
290
300
      !Calculating resonant frequencies of I,J modes
310
      · ***
      FOR I=1 TO 7
320
330
          FOR J=1 TO 7
340
             Frq(I,J)=Konst*((PI*(I-1)/L)^2+(PI*(J-1)/W)^2)^.5
350
             Bfrq(N) = Frq(I,J)
360
             Aindx(N) = I - 1
370
             Bindx(N)=J-1
380
             Indx(N)=N
390
             N=N+1
400
         NEXT J
410
      NEXT I
420
      PRINT "LENGTH
                         WIDTH
                                     FREQUENCY"
430
      PRINT "MODE
                         MODE "
440
      N=49
450
      1 * * *
460
      !Using a indexed sort to order modes by increasing frequency
470
480 While:
            IF N=O THEN GOTO Printer
490
      FOR I=1 TO N-1
500
          IF Bfrq(Indx(I))>Bfrq(Indx(I+1)) THEN
510
             Itemp=Indx(I+1)
520
             Indx(I+i)=Indx(I)
530
             Indx(I)=Itemp
540
         END IF
550
      NEXT I
560
      N=N-1
570
      GOTO While
580
      ! ***
590
      !Printing resonant frequencies omitting frequencies that
```

```
!correspond to 0 in either L or W as constant values are
600
      !not realistic
610
      ! ***
620
                FOR I=1 TO 49
630 Printer:
        'IF Aindx(Indx(I))=0 OR Bindx(Indx(I))=0 THEN GOTO 660
640
         PRINT Aindx(Indx(I)),Bindx(Indx(I)),Bfrq(Indx(I))
650
         NEXT I
660
      PRINTER IS CRT
670
      DISP "DONE"
680
      WAIT 3
690
700
      DISP "
      END
710
```

APPENDIX C

LISTING OF MDL SHFTR

```
! This program is used as an interactive optimizer to find the optimum
10
      ! varactor-inductance combination to get a minimum loss variation for a
20
30
        180 degree phase variation. The simulation uses a five element variation
        model with package capacitance (Cpack) of 18 pF, junction inductance
40
50
        (Lj) of .4 nH and package inductance (Lp) of .05 nH. The loss of the
60
        varactor is modeled by a Q that varies with bias (modeled by a quadratic
        fit of manufacturer's data). The 4 volt Q is also a function of the 4
70
        volt capacitance and is chosen according to manufacturer's specifica-
80
90
      ! tions (Alpha Industries). The program prompts for the total 4 volt
      ! capacitance (given by manufacturer) and different values are tried
100
110
      ! until the minimum loss variation is achieved. The inductance chosen
      ! to resonate is modeled with a constant Q which represents the Q of all
120
130
      ! the elements needed to realize the composite inductance (tuning cap,
140
        transmission line loss, etc.).
150
      ! STORED AS MDL_SHFTR
      !July 3,1986 by Ron Boesch
160
170
      OPTION BASE 1
180
      DIM X(200),Y(200)
190
      DIM X$[50],Y$[50],D$[50]
200
      PRINTER IS CRT
210 Begin:
220
      INPUT "What is the Capacitance at 4 V (including package capacitance)",C4
230
240
      Qpar=30.887
      Omega=2*PI*9.15E+8
250
260
      Cpack=1.8E-13
270
      Lp=5.E-11
280
      Lj=4.E-10
290
      Ca=((1/(Omega*C4)+Omega*Lp)*Omega)^{(-1)}
300
      Cb=Ca-Cpack
310
      Cj4=((1/(Omega*Cb)+Omega*Lj)*Omega)^(-1)
320
      CjO=Cj4*((1+(4/.8))^{.47})
      Q915=(50/915)*1600
330
      Qstart=Q915*(12/16)
340
350
      Q4=(13/12)*Qstart
              !FINDING APPROPRIATE Q FOR C4
360 Startc:
370
      IF C4<3.31E-11 THEN Q4=(14/12)*Qstart
      IF C4<2.21E-11 THEN Q4=(16/12)*Qstart
380
      IF C4<1.81E-11 THEN Q4=(18/12)*Qstart
390
400
      IF C4<1.51E-11 THEN Q4=(20/12)*Qstart
410
      IF C4<1.21E-11 THEN Q4=(22/12)*Qstart
      IF C4<1.01E-11 THEN Q4=(24/12)*Qstart
420
      IF C4<8.21E-12 THEN Q4=(26/12)*Qstart
430
440
      IF C4<6.81E-12 THEN Q4=(28/12)*Qstart
      IF C4<5.61E-12 THEN Q4=(30/12)*Qstart
450
460
      IF C4<4.71E-12 THEN Q4=(32/12)*Qstart
      IF C4<3.91E-12 THEN Q4=(34/12)*Qstart
470
      IF C4<3.31E-12 THEN Q4=(36/12)*Qstart
480
490
      IF C4<2.71E-12 THEN Q4=(38/12)*Qstart
500
      IF C4<2.21E-12 THEN Q4=(40/12)*Qstart
510
      L=1/(Omega^2*Cj0)
520
      CALL R_pmodel(Cj0,0,L,Cpack,Lp,Lj,Omega,Q4,Cmin,Rmin)
530
      CALL R_pmodel(Cj0,30,L,Cpack,Lp,Lj,Omega,Q4,Cmax,Rmax)
540
      Cmed=(Cmin+Cmax)/2
550
      L=1/(Omega^2*Cmed)
560
      Lres=L
570
      Lfract=.2*L
580
      L=L-Lfract
      PRINTER IS 701
590
```

```
PRINT "FINDING LARGER INDUCTANCE THAT PROVIDES 180 SHIFT"
600
610
      PRINTER IS CRT
620 Start:
            L=L+Lfract
      FOR I=0 TO 30 STEP 30
630
      CALL R_pmodel(Cj0,I,L,Cpack,Lp,Lj,Omega,Q4,Copt,Ropt)
640
      K1=1-((Omega^2)*L*Copt)
650
      K2=0mega*L*(Ropt^2)*K1
660
      K3=(Omega*L)^2+(Ropt*K1)^2
670
      K4=(Omega*L)^2*Ropt-Z*K3
680
      K5=(Omega*L)^2*Ropt+Z*K3
690
700
      Anglo=ATN(K2/K4)
      IF K2<0 AND K4<0 THEN Angio=Angio-PI
710
      IF K4<0 AND K2>0 THEN Anglo=Anglo-PI
720
730
      Ang2o=ATN(K2/K5)
      IF K2<0 AND K5<0 THEN Ang2o=Ang2o-PI
740
      IF K2>0 AND K5<0 THEN Ang2o=Ang2o-PI
750
760
      Ango=Ang1o-Ang2o
      Angdego=(Ango*360)/(2*PI)
770
      Angdego=Angdego MOD 360
780
      IF ABS(Angdego)>180 THEN Angdego=Angdego-360*SGN(Angdego)
790
800
      IF I=O THEN Anglow=Angdego
      IF I=30 THEN Angdif=Anglow-Angdego
810
820
      NEXT I
      PRINTER IS 701
830
      IF ABS(Angdif)<190 THEN PRINT Angdif
840
      IF ABS(Angdif)<200 THEN Lfract=.04*Lres
850
      IF ABS(Angdif)<185 THEN Lfract=.01*Lres
860
      IF ABS(Angdif)>180.5 THEN GOTO Start
870
      PRINT "Q IS ASSUMED QUADRATIC, CHOSEN FOR 4 VOLT CAPACITANCE"
880
      PRINT "PHASE SPAN=
                          ",Angdif
890
                           ",∟
      PRINT "INDUCTANCE=
900
                           ",Lj
      PRINT "PACKAGE L=
910
                           ",Cpack
      PRINT "PACKAGE C=
920
                           ",Q4
      PRINT "Q(4)=
930
      PRINT "CT(4)=
                           ",C4
940
950
      CALL R_pmodel(Cj0,4,L,Cpack,Lp,Lj,Omega,Q4,Cp,Rp)
960
      PRINT "C4(Resonant)=",Cp
                          ",Cmed
",Cmin
      PRINT "MEDIAN C=
970
      PRINT "CMAX(Res.)=
980
      PRINT "CMIN(Res.)
                           ",Cmax
990
      PRINT "C(0)/C(30) = ", Cmin/Cmax
1000
1010 PRINTER IS CRT
1020 Same: INPUT "Type 1 for MAG(dB) plot, 2 for PHASE plot",Flag2
1030 W=1
1040 Magdbmax=0
1050
      Magdbmin=-100
      IF Flag2=1 THEN Label$="Mag(dB)"
1060
      IF Flag2=2 THEN Label $= "Phase"
1070
1080
      X$="Varactor Bias (Volts)"
      IF Flag2=1 THEN Y$="Return Loss (dB)"
1090
      IF Flag2=2 THEN Y$="Phase (Degrees)"
1100
      FOR I=0 TO 30 STEP .5
1110
1120
      X(W) = I
1130 CALL R_pmodel(CjO,I,L,Cpack,Lp,Lj,Omega,Q4,Cp,Rp)
      K1=1-((Omega^2)*L*Cp)
1140
1150
      K2=Omega*L*(Rp^2)*K1
      K3 = (0mega*L)^2 + (Rp*K1)^2
1160
1170
      K4=(Omega*L)^2*Rp-Z*K3
1180 K5=(Omega*L)^2*Rp+Z*K3
1190 IF Flag2=2 THEN GOTO Angle_gen
```

```
Mag = (K2^2+K4^2)/(K2^2+K5^2)
1200
1210
      Magdb=10*LOG(Mag)
      IF Magdbmax > Magdb THEN Magdbmax = Magdb
1220
1230
      IF Magdbmin<Magdb THEN Magdbmin=Magdb
1240
      Y(W)=Maqdb
1250
      GOTO Loop
1260 Angle_gen:
                   !This section to generate phase
      Ang1=ATN(K2/K4)
1270
     IF K2<0 AND K4<0 THEN Ang1=Ang1-PI
1280
     IF K4<0 AND K2>0 THEN Ang1=Ang1-PI
1290
1300 Ang2=ATN(K2/K5)
1310
     IF K2<0 AND K5<0 THEN Ang2=Ang2-PI
1320
      IF K2>0 AND K5<0 THEN Ang2=Ang2-PI
1330
      Ang=Ang1-Ang2
1340
      Angdeg=(Ang*360)/(2*PI)
1350
      Angdeg=Angdeg MOD 360
      IF ABS(Angdeg)>180 THEN Angdeg=Angdeg-360*SGN(Angdeg)
1360
1370
     Y(W)=Angdeg
1380 Loop: !
1390 W=W+1
1400
     NEXT I
     PRINTER IS 701
1410
1420
      IF Flag2=1 THEN PRINT "Maximum return loss", Magdbmax
      IF Flag2=1 THEN PRINT "Minimum return loss", Magdbmin
1430
      IF Flag2=1 THEN PRINT "Return loss difference", Magdbmax-Magdbmin, " dB"
1440
1450
     PRINTER IS CRT
     Numb=W-1
1460
1470 !INPUT "What is the x-axis label(<50)?", X$
1480 !INPUT "What is the Y-AXIS label(<50)?",Y$
1490 INPUT "What is the gragh title (<50)?",D$
            INPUT "Enter 1 for screen plot, 2 for paper plot.", Flag
1500 Catch:
1510
     IF Flag=1 THEN GOTO Past
1520
      IF Flag=2 THEN GOTO Past
1530
     GOTO Catch
                                !If 1 or 2 not received, ask again
1540 Past:
           ! default line
1550 DISP "Hit continue(f2) when done with this graph"
1560
     WAIT 1
1570
     CALL Plotit(X(*),Y(*),Numb,X$,Y$,D$,Flag)
      INPUT "Would you like to make another plot of the same data(Y/N)", Ans$
1580
      IF Ans$="y" OR Ans$="Y" THEN GOTO Catch
1590
1600
      INPUT "Would you like to store this simulation to disk(Y/N)?", Ans$
      IF Ans = "N" OR Ans = "n" THEN GOTO Quest 2
1610
      Total=Numb
1620
1630
     Co1=2
1640
     INPUT "What is the FILNAME?",Flname$
     CREATE BDAT Flname$,2*Total+10,8
1650
1660 DISP "Saving simulation to disk."
1670
      ASSIGN @Path1 TO Flname$
1680
     OUTPUT @Path1,1;Total
1690
     OUTPUT @Path1,2;Col
1700
     W=1
1710
     FOR I=3 TO Col*Total+3 STEP Col
1720
         OUTPUT @Path1, I; X(W)
1730
         OUTPUT @Path1, I+1; Y(W)
1740
         ₩=W+1
1750
     NEXT I
1760
      ASSIGN @Path1 TO *
1770 Quest2: !
      INPUT "Would you like to make another plot with same parameters (Y/N)", Ans$
1780
     IF Ans$="y" OR Ans$="Y" THEN GOTO Same
```

```
1800
      INPUT "Would you like to recalculate with new capacitance (Y/N)". Ans$
      IF Ans≢="y" OR Ans≢="Y" THEN GOTO Begin
1820
      DISP "DONE"
      WAIT 1
1830
      DISP "
1840
1850
      END
1860
      SUB Cdiv(Pv1,Pv2,Pv3,Pv4,Pv5,Pv6)
1870
1880
      1890
                             PLOTTING SUBROUTINE
1900
      1910
      SUB\ Plotit(Valx(*),Valy(*),Numbf,Xtitl\$,Ytitl\$,Dev\$,Flag)\\
      C$=CHR$ (255) &"K"
1920
1930
     Vxmin=1.E+49
     Vymin=1.E+49
1940
1950
      Vymax = -1.E + 49
1960
     Vxmax=-1.E+49
1970
     FOR J=1 TO Numbf
1980
     IF Valx(J)<Vxmin THEN Vxmin=Valx(J)</pre>
                                             !Look into the file to
1990
     IF Valx(J)>Vxmax THEN Vxmax=Valx(J)
                                             !find the minimum and
2000
     IF Valy(J) < Vymin THEN Vymin=Valy(J)</pre>
                                             !maximum values to be
2010 IF Valy(J)>Vymax THEN Vymax=Valy(J)
                                             !plotted
     NEXT J
2020
2030
     X1=Vxmin
2040
     X2=Vxmax
2050
     Y1=Vymin
2060
     Y2=Vymax
     OUTPUT KBD;"1;"
2070
2080 Startx=X1
                                             !Set X graph limits to the
2090 Stopx=X2
                                             !min and max found
2100 Starty=Y1-{Y2-Y1}/10
                                             !Set Y graph limits to the min
2110 Stopy=Y2+(Y2-Y1)/10
                                             !and max plus .1*(the span)
2120
     Stepx=(Stopx-Startx)/10
2130
     Stepy=(Stopy-Starty)/8
2140
     ON KBD GOTO Exit
                                   ! Provide exit
     OUTPUT 2 USING "#,K";C$
2150
                                     Clear screen for graph
2160
     GINIT
                                   ! Initialize various graphics parameters.
2170
     IF Flag=1 THEN PLOTTER IS 3,"INTERNAL"
                                                 ! Use the internal screen
     IF Flag=2 THEN PLOTTER IS 705, "HPGL"
2180
2190
     GRAPHICS ON
                                   ! Turn on the graphics screen
2200
     LORG 6
                                     Reference point: center of top of label
2210
     X_gdu_max=100*MAX(1,RATIO)
                                   ! Determine how many GDUs wide the screen is
2220
     Y_gdu_max=100*MAX(1,1/RATIO)
                                   ! Determine how many GDUs high the screen is
2230
                                     Offset of X from starting point
     FOR I=-.3 TO .3 STEP .1
       MOVE X_gdu_max/2+I,Y_gdu_max! Move to about middle of top of screen
2240
       LABEL USING "#,K"; Dev$
2250
                                    ! Write title of plot
2260
     NEXT I
                                   ! Next position for title
2270
     DEG
                                   ! Angular mode is degrees (used in LDIR)
2280
     LDIR 90
                                   ! Specify vertical labels
2290
     CSIZE 3.5
                                   ! Specify smaller characters
2300
     MOVE 0, Y_gdu_max/2
                                   ! Move to center of left edge of screen
2310
     LABEL USING "#,K";Ytitl$
                                      ! Write Y-axis label
2320
     LORG 4
                                   ! Reference point: center of bottom of label
2330
     LDIR O
                                   ! Horizontal labels again
2340
     MOVE X_gdu_max/2,.07*Y_gdu_max! X: center of screen; Y: above key labels
     LABEL USING "#,K"; Xtitl$
                                   ! Write X-axis label
2350
2360
     VIEWPORT .1*X_gdu_max,.98*X_gdu_max,.15*Y_gdu_max,.9*Y_gdu_max
                                   ! Define subset of screen area
2370
     WINDOW 0,100,16,18
                                   ! Anisotropic scaling: left/right/bottom/top
2380
     AXES 1,.05,0,16,5,5,3
                                   ! Draw axes intersecting at lower left
```

```
2390 AXES 1,.05,100,18,5,5,3
                               ! Draw axes intersecting at upper right
     IF Flag=2 THEN 2420
2400
     LINE TYPE 3
2410
2420
     GRID 10,.25,0,16,1,1
                                 ! Draw grid with no minor ticks
2430 LINE TYPE 1
2440 CLIP OFF
                                 ! So labels can be outside VIEWPORT limits
2450 CSIZE 2.6,.6
                                 ! Smaller chars for axis labelling
                                 ! Ref. pt: Top center
2460 LORG 6
2470 FOR I=0 TO 100 STEP 10
                                 ! Every 10 units
2480
       MOVE I,15.99
                                 ! A smidgeon below X-axis | > Label X-axis
2490
       Fow=Stepx/10*I+Startx
       IF ABS(Fqw) >= 1000 THEN LABEL USING "#,5D.D"; Fqw ! Compact; no CR/LF
2500
       IF ABS(Fqw) >= 100 AND ABS(Fqw) < 1000 THEN LABEL USING "#,4D.D"; Fqw
2510
pact; no CR/LF | /
       IF ABS(Fqw) >= 10 AND ABS(Fqw) < 100 THEN LABEL USING "#,3D.2D";Fqw
act: no CR/LF
                 1 /
       IF ABS(Fqw)>1 AND ABS(Fqw)<10 THEN LABEL USING "#,2D.3D";Fqw
2540
       IF ABS(Fqw)<1 THEN LABEL USING "#,D.3D";Fqw
                                                          17
2550 NEXT I
                                 ! et sequens
2560
     LORG 8
                                 ! Ref. pt: Right center
     FOR I=16 TO 18 STEP .25
                                 ! Every quarter
                                                           1 \
2570
     Valu=Stepy/.25*(I-16)+Starty
2580
                                 ! Smidgeon left of Y-axis | > Label Y-axis
       MOVE -.5,I
2590
      IF ABS(Valu) >= 10 THEN LABEL USING "#,4D.D"; Valu ! DD.D; no CR/LF
2600
  1 /
      IF ABS(Valu)<10 AND ABS(Valu)>1 THEN LABEL USING "#,2D.2D"; Valu
2610
      IF ABS(Valu)<1 THEN LABEL USING "#,D.3D"; Valu
2620
2630 NEXT I
                                 ! et sequens
2640
     PENUP
                                 ! LABEL statement leaves the pen down
     PEN 2
2650
     LINE TYPE 1
2660
2670 FOR I=1 TO Numbf
                                 ! Points to be plotted...
2680 Fry=16+.25/Stepy*(Valy(I)-Starty)
2690 Frx=10/Stepx*(Valx(I)-Startx)
2700 PLOT Frx, Fry
2710
                                 ! Get a data point and plot it against X
                                 ! et cetera
2720 NEXT I
2730
     PEN 0
2740
     LINE TYPE 1
2750
     PAUSE
2760 OUTPUT KBD; "I;"
2770 Exit: GRAPHICS OFF
           OUTPUT 2 USING "#,K";C$
2780
2790 GINIT
2800 GCLEAR
                                 ! finish
2810
2820 SUBEND
2830
     /L-C-R\
2840
     ! MODEL FOR THE VARACTOR
                                               converted to -<
2850
                                      \--C--/
                                                              \-R-/
2860
2870
     2880 SUB R_pmodel(Cj0,Vb,Lres,Cpack,Lpak,Lj,Omega,Q4,Cp,Rp)
2890 !Lj=4.E-10
2900 !Lpak=5.E-11
2910 Qpar=43.887
                                         !Constant Q due to board and Scap
2920 Q=(.4+(.13*Vb)+(.002*(Vb^2)))*Q4
                                         !Quadratic Q vs. V dependence
2930 Cpv=(Cj0/((1+(Vb/.8))^.47))
                                         !Junction capacitance
2940 Zpv=(1/(Omega*Cpv))-(Omega*Lj)
                                       !Including effect of Lj
```

2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050	<pre>Cpvb=(1/(Zpv*Omega)) Ct=Cpvb+Cpack Zres=(1/(Ct*Omega))-(Omega*Lpak) Cres=(1/(Zres*Omega)) Rres=(Q*(Ct^2))/(Cpvb*Omega*(Cres^2)) Rinduct=Qpar*Omega*Lres Rp=(Rres*Rinduct)/(Rres+Rinduct) Cp=Cres . PRINTER IS CRT PRINT Vb,Cpv,Cpvb,Cp PRINTER IS 701</pre>	!New Cj with Lj accounted for !Add on parallel package cap. !Adding bonding Lp !Final resonant capacitance !Parallel resistance from AI Q !Resistance from distributed L !Combination of resistors !Resonant C is parallel resonant
3050 3060	PRINTER IS 701 SUBEND	

APPENDIX

LISTING OF AUTOMATED MEASUREMENT PROGRAMS 1. TERM 4

```
! This program is designed to automate the testing of the phase
10
        shifter. It is a modified version of a 3 term error model,
20
      ! TERM3, written to error correct for reflection measurements.
30
      ! Since transmission needs to be measured, TERM3 is modified
40
50
      ! to error correct the transmission terms. The transmission
      ! is corrected using half of an 8 term error model.(Hence it is a
      ! 4 term error model) The reflections are measured as S22 on the
70
      ! test set and the transmissions are measured as S12 on the test
80
90
      ! set.
100
        STORED AS TERM4
        Written May 14,1986 by Ronald D. Boesch
110
         **************************
120
130
140
      OPTION BASE 1
150
      DIM Dirm(221),Dirp(221),Openm(221),Openp(221),Esfm(221),Esfp(221)
160
      DIM Erfm(221), Erfp(221)
170
      DIM Dutm(221), Dutp(221), Shortm(221), Shortp(221)
180
      DIM Fq(221),S11g(100),S11p(100),S21g(100),S21p(100),Volt(100)
190
      DIM Tdutd(100), Tdutp(100), Rdutd(100), Rdutp(100)
200
      DIM Esfr(221), Esfi(221), Erfi(221), Erfr(221), Dirr(221), Diri(221)
210
      DIM Tmr (221), Tmi (221), Tmm (221), Tmp (221)
220
      DIM X$[50],Y$[50],D$[50]
230
240
      ABORT 7
      LOCAL 7
250
      REMOTE 7
260
270
      Source=719.4
280
      Processor=716
290
      Test_set=720
300
      Powersupply=722
310
      Voltmeter=708
      INPUT "Do you want to manually measure for 180 degree only (Y/N)?",Ans$
320
      IF Ans$="N" OR Ans$="n" THEN GOTO Auto
330
      DISP "Turn on powersupply, HP8505, and then hit CONT (f2)"
340
350
      PAUSE
      DISP "Hand calibrate 8505 them hit CONT (f2)"
360
      PRINTER IS CRT
370
380
390
400
      PRINT "******CALIBRATION SEQUENCE*******
      PRINT "Set start and stop frequencies, set marker at 915 MHz"
410
      PRINT "***Reflection, S22"
420
      PRINT "
                Connect Reverse Short"
430
                Channel 1: MKR, B/R, POLAR MAG, ZRO (hold until display zero)"
      PRINT "
440
      PRINT "
                Electrical Length: B,CLR if REL lighted"
450
                            LENGTH and VERNIER B for smallest cluster, ZRO."
      PRINT "
460
      PRINT "
                Channel 1: POLAR PHASE, ZRO (hold until display zero),"
470
                            REF, REF OFFSET so display reads +-180 degrees"
      PRINT "
480
      PRINT "
490
                            ZRO, MKR."
      PRINT "***Transmission, S12"
500
      PRINT "
510.
                Connect Through"
      PRINT "
                Channel 1: A/R, POLAR MAG, POLAR FULL 1, "
520
                            MKR, ZRO (hold until display zero),"
      PRINT "
530
                Electrical Length: A,CLR if REL lighted"
540
      PRINT "
                            LENGTH and VERNIER A for smallest cluster, ZRO."
550
      PRINT "
      PRINT "
                Channel 1: POLAR PHASE, ZRO (hold until display zero)"
560
      PRINT "
570
                            DLY.ZRO (hold until display zero)."
580
      PAUSE
      PRINT USING "25/"
590
```

```
OUTPUT Powersupply; "VPOS 0; IPOS .3; FSOUT ON"
A00
610
      OUTPUT Voltmeter; "DCV; MODE TRIG"
620
630
      !******"Manual" OPERATION FOR TUNING TO 180 DEGRESS OF SHIFT*********
640
650
              OUTPUT Powersupply: "VPOS O"
660 Manual:
670
      WAIT .2
680
      OUTPUT Voltmeter; "DT TRIG"
690
      ENTER Voltmeter; Vlt
      DISP "Record transmission phase at 0 V then CONT"
700
710
      PAUSE
      OUTPUT Powersupply: "VPOS 30"
720
      WAIT .2
730
740
      CUTPUT Voltmeter: "DT TRIG"
750 1
      ENTER Voltmeter; VIt
760
      DISP "Record transmission phase at 30 V then CONT"
770
      PAUSE
      INPUT "Is the manual measurement done (Y/N)?", Ans$
780
      IF Ans$="n" OR Ans$="N" THEN GOTO Manual
790
      OUTPUT Powersupply; "VPOS 0"
800
810
      WAIT .2
820
      OUTPUT Voltmeter; "DT TRIG"
830
      ENTER Voltmeter; VIt
840
850
      !*****AUTOMATED MEASUREMENT OF DEVICE AFTER TUNING*******
860
870
880 Auto:
            !Automated measurement section
      OUTPUT Test_set; "2"
890
      OUTPUT Source; "O6V99I1R3M3W4T1FB0E"
900
      OUTPUT Processor; "COB1C1D2C2D2E"
910
      IMAGE "FA", K"E"
920
930
      REEP
940
      INPUT "ENTER START FREQUENCY (in Mhz, G.E. 600 Mhz)", Fstart
950
      Fstart=Fstart*1.E+6
960
      BEEP
      INPUT "ENTER STOP FREQUENCY (in Mhz, L.E. 1200 Mhz)", Fstop
970
980
      Fstop=Fstop*1.E+6
990
1000
     INPUT "ENTER STEP FREQUENCY (in Mhz)", Fstep
1010 Fstep=Fstep*1.E+6
1020
     BEEP
1030
     Numb=INT((Fstop-Fstart)/Fstep)+1
      PRINT USING "25/"
1040
1050
      PRINT "
                  ****** CALIBRATION ******
      PRINT USING "10/"
1060
      OUTPUT Processor; "C1I5M2S2C2I5M3S2E"
1070
      IMAGE "FA",K,"E"
1080
1090
      BEEP
     DISP "CONNECT 50 OHM LOAD (PORT 2) THEN HIT CONTINUE."
1100
1110
     PAUSE
     CALL Collect(Dirm(*),Dirp(*),Fstart,Fstop,Fstep,Fq(*))
1120
      IF Dirm(1)>-32 THEN
1130
        DISP "Load reflected G.E. -32 dB, Program Stopped"
1140
1150
        Flgstp=1
      END IF
1160
1170
     IF Flastp-1 THEN STOP
1180 DISP "CONNECT SHORT (PORT 2) THEN HIT continue."
1190 PAUSE
```

```
CALL Collect(Shortm(*),Shortp(*),Fstart,Fstop,Fstep,Fq(*))
1200
      DISP "CONNECT OPEN (PORT 2) THEN HIT continue."
1210
1220
      PAUSE
      CALL Collect(Openm(*),Openp(*),Fstart,Fstop,Fstep,Fq(*))
1230
      OUTPUT Processor; "C114C2I4E"
1240
      DISP "CONNECT THROUGH THEN HIT continue."
1250
1260
      PAUSE
      CALL Collect(Tmm(*),Tmp(*),Fstart,Fstop,Fstep,Fq(*))
1270
      PRINT USING "20/"
1280
      DISP "Calculating intermediate calibration results"
1290
      FOR I=1 TO Numb
1300
                                    ! CONVERT dB READINGS TO MAGNITUDE
      CALL Db_mag(Dirm(I),Dirmt)
1310
      CALL Db_mag(Shortm(I),Shortmt)
1320
      CALL Db_mag(Openm(I),Openmt)
1330
      CALL Db_mag(Tmm(I),Tmmt)
1340
      CALL P_r(Dirmt,Dirp(I),Dirr(I),Diri(I)) !CONVERT POLAR MAGNITUDE AND PHASE
1350
      CALL P_r(Shortmt, Shortp(I), Shortr, Shorti) ! TO RECTANGULAR
1360
      CALL P_r(Openmt,Openp(I),Openr,Openi)
1370
     CALL P_r(Tmmt,Tmp(I),Tmr(I),Tmi(I))
1380
     Esfrnum=Openr+Shortr-2*Dirr(I) · ! CALCULATE THE ERROR TERMS
1390
                                       ! AND THE CORRECTED VALUES
      Esfinum=Openi+Shorti-2*Diri(I)
1400
                                    ! rnum= REAL PART OF NUMERATOR
     Esfrden=Openr-Shortr
1410
                                     ! iden= IMAGINARY PART OF DENOMINATOR, ETC.
      Esfiden=Openi-Shorti
1420
      CALL Cdiv(Esfrnum,Esfinum,Esfrden,Esfiden,Esfr(I),Esfi(I))
1430
1440 Erfmr=Dirr(I)-Shortr
1450 Erfmi=Diri(I)-Shorti
1460 Erfrnum=2*Openr-2*Dirr(I)
1470 Erfinum=2*Openi-2*Diri(I)
1480
     Erfrden=Openr-Shortr
1490
      Erfiden=Openi-Shorti
      CALL Cdiv(Erfrnum, Erfinum, Erfrden, Erfiden, Em, Ei)
1500
      CALL Cmult(Em,Ei,Erfmr,Erfmi,Erfr(I),Erfi(I))
1510
      NEXT I LEND OF ERROR TERM GATHERING AND COMPUTATION
1520
1530
1540
      !*****DEVICE TRANSMISSION AND REFLECTION MEASUREMENT*****
1550
1560
            INPUT "FREQUENCY OF DEVICE MEASUREMENT (MHZ)", Fmeas
1570 Fques:
1580 INPUT "What is the title if this is to be plotted(<50)",D$
      Fmeas=Fmeas*1.E+6
1590
1600
      Num=INT((Fstop-Fstart)/Fstep)+1
      Fmeasi=-1
1610
      FOR I=1 TO Num
1620
1630
        IF Fq(I)=Fmeas THEN Fmeasi=I
1640
      NEXT I
1650
      IF Fmeasi=-1 THEN
        DISP "Frequency out of range (or not integral multiple)"
1660
1670
        WAIT 1.5
1680
        GOTO Faues
1690
        DISP "
1700
      END IF
      CALL Measdut(Fmeas, Tdutd(*), Tdutp(*), Rdutd(*), Rdutp(*), Volt(*))
1710
1720
      K=Emeasi
      DISP "Performing error correction on measured data."
1730
1740
1750
      !******ERROR CORRECTION OF DEVICE MEASUREMENT**********
1760
1770
1780
      FOR I=1 TO 61
      CALL Db_mag(Rdutd(I),Rdutm)
1790
```

```
CALL P_r(Rdutm,Rdutp(I),Rdutr,Rduti)
1800
     Sarnum=Rdutr-Dirr(K)
1810
     Sainum=Rduti-Diri(K)
1820
     CALL Cmult(Sarnum,Sainum,Esfr(K),Esfi(K),Ctemr,Ctemi)
1830
     Sarden=Ctemr+Erfr(K)
1840
     Saiden=Ctemi+Erfi(K)
1850
     CALL Cdiv(Sarnum, Sainum, Sarden, Saiden, Sar, Sai)
1860
     CALL R_p(Sar,Sai,Sam,Sap)
1870
     CALL Mag_db(Sam,Sadb)
     Siig(I)=Sadb
1890
     S11p(I)=Sap
1900
     CALL Cmult(Esfr(K), Esfi(K), Sar, Sai, Ctmpr, Ctmpi)
1910
     Ctmpr=1-Ctmpr
1920
      CALL Db_mag(Tdutd(I),Tdutm)
1930
     CALL P_r (Tdutm, Tdutp(I), Tdutr, Tduti)
1940
     CALL Cmult(Tdutr, Tduti, Ctmpr, Ctmpi, Tnumr, Tnumi)
1950
     CALL Cdiv(Tnumr, Tnumi, Tmr(K), Tmi(K), Trnsr, Trnsi)
1960
     CALL R_p(Trnsr,Trnsi,Trnsm,Trnsp)
1970
     CALL Mag_db(Trnsm,Trnsdb)
1980
     S21g(I)=Trnsdb
1990
2000
     S21p(I)=Trnsp
     NEXT I
2010
2020
2030
      !**********PLOTTING OF MEASUREMENT*********
2040
2050
     X$="Varactor Bias (Volts)"
2060
      INPUT "Would you like to make a plot(Y/N)?",Ans$
2070
      IF Ans$="n" OR Ans$="N" THEN GOTO Save
2080
2090 Reques: INPUT "SCREENPLOT(1) or PAPERPLOT(2)",Flag
     IF Flag=1 THEN GOTO Pass
2100
     IF Flag=2 THEN GOTO Pass
2110
2120
     GOTO Reques
           INPUT "Transmission(1) or Reflection(2) plot",Flag3
2130 Pass:
     IF Flag3=1 THEN GOTO Transmit
2140
     INPUT "Mag(1) or Phase(2) plot",Flag4
2150
     IF Flag4=1 THEN GOTO Magplot1
     Y$="Reflected Phase (Degrees)"
2170
2180 CALL Plotit(Volt(*),S11p(*),61,X$,Y$,D$,Flag)
2190
     GOTO Ques
               Y$="Reflected Return (dB)"
2200 Magploti:
     CALL Plotit(Volt(*), S11g(*), 61, X$, Y$, D$, Flag)
2210
    GOTO Ques
2220
2230 Transmit:
               INPUT "Mag(1) or Phase(2) plot",Flag4
     IF Flag4=1 THEN GOTO Magplot2
     Y$="Transmission Phase (Degrees)"
2260 CALL Plotit(Volt(*), S21p(*), 61, X$, Y$, D$, Flag)
      GOTO Ques
2270
2280 Magplot2:
                Y$="Transmission Loss"
      CALL Plotit(Volt(*),S21g(*),61,X$,Y$,D$,Flag)
2290
           INPUT "Would you like to plot something else?(Y/N)",Ans$
2300 Ques:
      IF Ans$="Y" OR Ans$="y" THEN GOTO Reques
2310
2320
2330
      2340
2350
2360 Save: !Storage of data has yet to be done
      INPUT "Do you want a hard copy of the data(Y/N)?", Ans$
2370
      IF Ans#="n" OR Ans#="N" THEN GOTO Sav2
2380
      DISP "Make sure printer is on to get hard copy"
2390
```

```
2400 PRINTER IS 701
    PRINT D$
2410
    PRINT " "
2420
    PRINT " "
2430
2440 PRİNT "
                                                   Reflection"
               Voltage
                           Transmission
                                                   Magnitude
                                                               Phase
2450 PRINT "
                           Magnitude
                                       Phase
               Bias
2460
    FOR I=1 TO 61
    PRINT USING "6X,DDDD.DDD"; Volt(I), S21g(I), S21p(I), S11g(I), S11p(I)
2480
    NEXT I
    PRINTER IS CRT
2490
2500 Sav2: INPUT "Do you want to save data to disk(Y/N)?",Ans$
2510 IF Ans *= "N" OR Ans *= "n" THEN GOTO Terminate
2520
2530 Col =5
    INPUT "What is the name of the DATA FILE", Flname$
2540
    CREATE BDAT Finame$,5*Total+10,8
2550
    DISP "Saving data to disk"
2560
2570
    ASSIGN @Path1 TO Flname$
    DUTPUT @Path1,1; Total
2580
    OUTPUT @Path1,2;Col
2590
2600 W=1
2610 FOR I=3 TO Col*Total+3 STEP Col
       OUTPUT @Path1, I; Volt(W)
2620
2630
       OUTPUT @Path1, I+1; S21g(W)
2640
       OUTPUT @Path1,I+2;S21p(W)
       OUTPUT @Path1,I+3;S11g(W)
2650
       OUTPUT @Path1, I+4; S11p(W)
2660
2670
       ₩=₩+1
2680 NEXT I
2690 ASSIGN @Path1 TO *
2700 Terminate:
    INPUT "would you like to make another measurement(Y/N)?", Ans$
2710
     IF Ans$="y" OR Ans$="Y" THEN GOTO Fques
2720
2730
     DISP "done"
    WAIT .5
DISP "
2740
2750
2760
    END
2770
2780
    2790
2800
2810
     2820
                     POLAR TO RECTANGULAR CONVERSION
2830
     2840
     SUB P_r(Pv1,Pv2,Pv3,Pv4)
2850
     DEG
2860
2870
     Pv3=Pv1*COS(Pv2)
     Pv4=Pv1*SIN(Pv2)
2880
2890
     SUBEND
2900
     ! ***********************
2910
2920
                     RECTANGULAR TO POLAR CONVERSION
      2930
2940
2950
     SUB R_p (Pv1,Pv2,Pv3,Pv4)
2960 DEG
2970 Pv3=SQR(Pv1*Pv1+Pv2*Pv2)
2980 Pv4=90*(SGN(Pv2)+(Pv2=0))
```

```
IF Pv1=0 THEN 3010
2990
     Pv4=ATN(Pv2/(Pv1+1.E-49))+Pv4*(1-SGN(Pv1))
3000
3010
     SUBEND
3020
3030
       **************
                           ***************
                           COMPLEX MULTIPLICATION
3040
       **<del>************************</del>
3050
3060
3070
     SUB Cmult(Pv1,Pv2,Pv3,Pv4,Pv5,Pv6)
3080 Cmult: !
       Pv5=Pv1*Pv3-Pv2*Pv4
3090
       Pv6=Pv1*Pv4+Pv2*Pv3
3100
3110
       SUBEND
3120
       ************
3130
                            COMPLEX DIVISION
3140
3150
3160
       SUB Cdiv(Pv1,Pv2,Pv3,Pv4,Pv5,Pv6)
3170
3180 Cdiv:
        Pv7=Pv3*Pv3+Pv4*Pv4
3190
        Pv5=(Pv1*Pv3+Pv2*Pv4)/(Pv7+1.E-49)
3200
3210
        Pv6=(Pv2*Pv3-Pv1*Pv4)/(Pv7+1.E-49)
        SUBEND
3220
3230
     · ********************************
3240
3250
                           PLOTTING SUBROUTINE
     3240
    SUB Plotit(Valx(*), Valy(*), Numbf, Xtitl$, Ytitl$, Dev$, Flag)
3270
     C$=CHR$ (255) &"K"
3280
3290
     V \times min=1.E+49
3300
     Vymin=1.E+49
3310
     Vymax = -1.E + 49
     Vxmax=-1.E+49
3320
3330
     FOR J=1 TO Numbf
     IF Valx(J)<Vxmin THEN Vxmin=Valx(J)
3340
3350
     IF Valx(J)>Vxmax THEN Vxmax=Valx(J)
     IF Valy(J) \le Vymin THEN Vymin=Valy(J)
3360
3370
     IF Valy(J)>Vymax THEN Vymax=Valy(J)
3380
     NEXT J
3390
     X1=Vxmin
3400
     X2=Vxmax
3410
     Y1=Vymin
     Y2=Vymax
3420
     OUTPUT KBD; "1; "
3430
3440
     Startx=X1
3450
     Stopx=X2
     Starty=Y1-(Y2-Y1)/10
3460
3470
     Stopy=Y2+(Y2-Y1)/10
3480
     Stepx=(Stopx-Startx)/10
3490
     Stepy=(Stopy-Starty)/8
                                 ! Provide exit
3500
     ON KBD GOTO Exit
     OUTPUT 2 USING "#,K";C$
                                 ! Clear screen for graph
3510
3520
     GINIT
                                 ! Initialize various graphics parameters.
     IF Flag=1 THEN PLOTTER IS 3,"INTERNAL"
                                               ! Use the internal screen
3530
     IF Flag=2 THEN PLOTTER IS 705, "HPGL"
3540
                                   Turn on the graphics screen
3550
     GRAPHICS ON
     LORG 6
                                   Reference point: center of top of label
3560
     X_gdu_max=100*MAX(1,RATIO)
                                   Determine how many GDUs wide the screen is
3570
                                 ! Determine how many GDUs high the screen is
3580
     Y_gdu_max=100*MAX(1,1/RATIO)
```

```
3590 FOR I=-.3 TO .3 STEP .1
                                    ! Offset of X from starting point
3600
       MOVE X_gdu_max/2+I,Y_gdu_max! Move to about middle of top of screen
        LABEL USING "#,K"; Dev#
                                     ! Write title of plot
3610
3620
      NEXT I
                                    ! Next position for title
3630
      DEG
                                    ! Angular mode is degrees (used in LDIR)
3640
      LDIR 90
                                    ! Specify vertical labels
      CSIZE 3.5
                                    ! Specify smaller characters
3650
     MOVE 0, Y_gdu_max/2
                                    ! Move to center of left edge of screen
3660
     LABEL USING "#,K";Ytitl$
                                      ! Write Y-axis label
3670
3480
     LORG 4
                                    ! Reference point: center of bottom of label
3690 LDIR 0
                                    ! Horizontal labels again
     MOVE X_gdu_max/2,.07*Y_gdu_max! X: center of screen; Y: above key labels
3700
     LABEL USING "#,K"; Xtitl$
                                    ! Write X-axis label
3710
     VIEWPORT .1*X_gdu_max,.98*X_gdu_max,.15*Y_gdu_max,.9*Y_gdu_max
3720
                                    ! Define subset of screen area
3730 WINDOW 0,100,16,18
                                    ! Anisotropic scaling: left/right/bottom/top
3740
     AXES 1,.05,0,16,5,5,3
                                    ! Draw axes intersecting at lower left
3750
     AXES 1,.05,100,18,5,5,3
                                    ! Draw axes intersecting at upper right
     IF Flag=2 THEN 3780
3760
3770
     LINE TYPE 3
3780
     GRID 10,.25,0,16,1,1
                                    ! Draw grid with no minor ticks
3790
     LINE TYPE 1
3800
     CLIP OFF
                                    ! So labels can be outside VIEWPORT limits
3810
     CSIZE 2.6,.6
                                    ! Smaller chars for axis labelling
3820 LORG 6
                                    ! Ref. pt: Top center
                                                              -1\
3830
     FOR I=0 TO 100 STEP 10
                                    : Every 10 units
                                    ! A smidgeon below X-axis | > Label X-axis
       MOVE I,15.99
3840
        Fow=Stepx/10*I+Startx
3850
        IF ABS(Fqw) >= 1000 THEN LABEL USING "#,5D.D"; Fqw
                                                          ! Compact: no CR/LF
    1 /
3870
       IF ABS(Fqw)>=100 AND ABS(Fqw)<1000 THEN LABEL USING "#,4D.D";Fqw
pact; no CR/LF
                  1/
       IF ABS(Fqw)>=10 AND ABS(Fqw)<100 THEN LABEL USING "#,3D.2D";Fqw
act: no CR/LF
        IF ABS(Fqw)>1 AND ABS(Fqw)<10 THEN LABEL USING "#,2D.3D";Fqw
3890
        IF ABS(Fqw)<1 THEN LABEL USING "#,D.3D";Fqw
3900
     NEXT I
3910
                                    ! et seguens
3920 LORG 8
                                    ! Ref. pt: Right center
                                                               11
                                                               1 \
3930 FOR I=16 TO 18 STEP .25
                                    ! Every quarter
     Valu=Stepy/.25*(I-16)+Starty
3940
       MOVE -.5,I
3950
                                    ! Smidgeon left of Y-axis | > Label Y-axis
       IF ABS(Valu) >= 10 THEN LABEL USING "#,4D.D"; Valu ! DD.D; no CR/LF
3960
  1 /
      IF ABS(Valu)<10 AND ABS(Valu)>1 THEN LABEL USING "#,2D.2D"; Valu
3970
      IF ABS(Valu)<1 THEN LABEL USING "#,D.3D"; Valu
3980
3990 NEXT I
                                    ! et sequens
4000
     PENUP
                                    ! LABEL statement leaves the pen down
4010 PEN 2
4020 LINE TYPE 1
4030 FOR I=1 TO Numbf
                                    ! Points to be plotted...
     Frv=16+.25/Stepv*(Valv(I)-Starty)
4040
     Frx=10/Stepx*(Valx(I)-Startx)
4050
4060 PLOT Frx, Fry
                                    ! Get a data point and plot it against X
4070
4080 NEXT I
                                    ! et cetera
4090 FEN 0
4100
    LINE TYPE 1
4110 PAUSE
4120 OUTPUT KBD; "1; "
4130 Exit: GRAPHICS OFF
```

```
4140
         OUTPUT 2 USING "#,K";C$
4150
     GINIT
4160
     GCLEAR
4170
                              ! finis
     SUBEND
4180
4190
4200
      ************
4210
                    DECIBEL TO MAGNITUDE CONVERSION
4220
      *****************
4230
4240
     SUB Db_mag(Valdb, Valmg)
4250
     Valmg=10^(Valdb/20)
4260
     SUBEND
4270
4280
      4290
                    MAGNITUDE TO DECIBEL CONVERSION
4300
      4310
4320
    SUB Mag_db(Valmg, Valdb)
4330
     Valdb=20*LGT(Valmg)
4340
     SUBEND
4350
4360
      *************************
4370
                   DATA GATHERING ROUTINE FOR STANDARDS
4380
      *********************
4390
4400
    SUB Collect(Mag(*), Phase(*), Fstart, Fstop, Fstep, Fq(*))
4410
    Processor=716
4420
    IMAGE "FA",K,"E"
4430
               ! ****** 719.4 CHANGED TO 719
    Source=719
4440
    Num=INT((Fstop-Fstart)/Fstep)+1
4450
    Freq=Fstart-Fstep
4460
    DUTPUT Source USING 4420; Freq ! RATHER THAN WAITING AN UNUSUAL
    ! AMOUNT OF TIME (SEE LINE 2552) FOR THE FIRST DATA POINT
4470
4480
    ! THE FREQUENCY SOURCE MAY BE STEPPED BEFORE ANY DATA IS TAKEN
4490
    WAIT .3
4500
    ENTER Processor; Garbage1, Garbage2
    WAIT .3
4510
    FOR I=1 TO Num
4520
4530
    Freq=Freq+Fstep
4540
    Fq(I)=Freq
4550
    OUTPUT Source USING 4420; Freq
                      ! READING ON THE FIRST MEASUREMENT THE FIRST TIME
4560
4570
                      ! THIS SUBPROGRAM IS CALLED - WAIT 7 IS SUFFICIENT
4580
                      ! SOMETIMES, WAIT 11 WAS USED AND FOUND TO BE OK
4590
                      ! ABOUT 50% OF THE TIME - WAIT 15 DIDN'T FAIL IN
4600
                      ! ANY OF MY TRIALS.
    WAIT .3
4610
4620 !IF I<>1 THEN GOTO Grab
4630 !WAIT 15
4640 Grab:
         ENTER Processor; Mag(I), Phase(I)
4650
    NEXT I
4660
    BEEP
4670
    SUBEND
4680
4690
      *****************
4700
                  Routine For Measuring Device at
                 Single Frequency From 0 to 30 Volts
4710
      **********
4720
4730
```

```
SUB Measdut(Freq, Transm(*), Transp(*), Reflm(*), Reflp(*), Volt(*))
4740
4750
     DISP "Turn on 8505, DVM, Powersupply then CONT"
4760
     PAUSE
4770 Processor=716
                        !Processor address
4780 Source=719
                        !Source address
     Powersupply=722
                        !Powersupply address
4790
4800
     Voltmeter=708
                        !Voltmeter address
4810
      Test_set̂∓720
                        !Test set address
      OUTPUT Powersupply; "VPOS 0; IPOS .3; FSOUT ON"
4820
      OUTPUT Voltmeter; "DCV ; MODE TRIG"
4830
     OUTPUT Test_set; "2"
4840
     OUTPUT Processor; "C1M2S5E"
4850
4860
     WAIT 2
4870 Key: IMAGE "FA",K,"E"
4880 Offset=.03*Freq
4890
     Freq=Freq-Offset
      DUTPUT Source USING Key; Freq
4900
4910
      WAIT .3
      DISP "CONNECT DEVICE THEN CONTINUE(f2)"
4920
4930
      PAUSE
4940
     Freq=Freq+Offset
     OUTPUT Source USING Key; Freq
4950
4960
     ENTER Processor; Garbage1, Garbage2
     DISP "Measuring test device transmission with swept voltage"
4970
4980
      FOR I=1 TO 61
4990
         V=(I-1)/2
5000
         OUTPUT Powersupply; "VPOS"; V
5010
         WAIT .25
         OUTPUT Voltmeter; "DT TRIG"
5020
         WAIT .25
5030
5040
         ENTER Voltmeter: Volt(I)
5050
         ENTER Processor; Transm(I), Transp(I)
5060
5070 OUTPUT Processor; "C115S2C2I5E"
                                          !Switch to reflection terms
5080
     ENTER Processor; Garbage1, Garbage2
      DISP "Measuring test device reflection with swept voltage"
5090
5100
      FOR I=1 TO 61
         V=(I-1)/2
5110
         OUTPUT Powersupply; "VPOS"; V
5120
5130
         WAIT .25
5140
         OUTPUT Voltmeter; "DT TRIG"
5150
         WAIT .25
5160
         ENTER Voltmeter; Volt(I)
         ENTER Processor; Reflm(I), Reflp(I)
5170
5180
      NEXT I
      OUTPUT Powersupply; "VPOS 0"
5190
                                          !Switch back to transmission terms
      OUTPUT Processor; "C1I4S5C2I4E"
5200
5210
      BEEP
5220
     SUBEND
```

2. TERM 3V

```
10
      ! This program is designed to automate the testing of the phase
      ! shifter. It is a modified version of a 3 term error model,
20
30
      ! TERM3, written to error correct for reflection measurements.
      ! Since transmission needs to be measured, TERM3 is modified
40
50
      ! to error correct the transmission terms. The transmission
      ! is corrected using half of a 8 term error model. (Hence it is a
60
70
      ! 4 term.error model) The reflections are measured as $22 on the
80
      ! test set and the transmissions are measured as S12 on the test
90
100
      ! MODIFICATION: This program measures the phase shifting load.
110
      ! That is, only the reflection coefficient.
120
      ! STORED AS TERM3V
130
      ! Written July 11,1986 by Ronald D. Boesch
140
         *********************************
150
160
170
      OPTION BASE 1
180
      DIM Dirm(221),Dirp(221),Openm(221),Openp(221),Esfm(221),Esfp(221)
190
      DIM Erfm(221), Erfp(221)
200
      DIM Dutm(221),Dutp(221),Shortm(221),Shortp(221)
210
      DIM Fq(221),Si1g(100),S11p(100),Volt(100)
220
      DIM Rdutd(100), Rdutp(100)
230
      DIM Esfr(221), Esfi(221), Erfi(221), Erfr(221), Dirr(221), Diri(221)
240
      DIM X$[50],Y$[50],D$[50]
250
      ABORT 7
      LOCAL 7
260
270
      REMOTE 7
280
      Source=719.4
290
      Processor=716
300
      Test_set=720
310
      Powersupply=722
320
      Voltmeter=708
330
      INPUT "Do you want to manually measure for 180 degree only (Y/N)?",Ans$
340
      IF Ans≢="N" OR Ans≢="n" THEN GOTO Auto
350
      DISP "Turn on powersupply, HP8505, and then hit CONT (f2)"
360
      PAUSE
      DISP "Hand calibrate 8505 then hit CONT (f2)"
370
      PRINTER IS CRT
380
390
400
410
      PRINT "******CALIBRATION SEQUENCE********
      PRINT "Set start and stop frequencies, set marker at 915 MHz"
420
      PRINT "***Reflection, S22"
430
440
      PRINT "
                Connect Reverse Short"
      PRINT "
                Channel 1: MKR, B/R, POLAR MAG, ZRO (hold until display zero)"
450
      PRINT "
460
                Electrical Length: B,CLR if REL lighted"
      PRINT "
470
                            LENGTH and VERNIER B for smallest cluster, ZRO."
      PRINT "
                Channel 1: POLAR PHASE, ZRO (hold until display zero), "
480
      PRINT "
490
                            REF, REF OFFSET so display reads +-180 degrees"
500
      PRINT "
                            ZRO, MKR."
      PRINT "***Transmission, S12"
510
      PRINT "
520
                Connect Through"
      FRINT "
530
                Channel 1: A/R, POLAR MAG, POLAR FULL 1,"
      PRINT "
540
                            MKR, ZRO (hold until display zero),"
      PRINT "
550
                Electrical Length: A.CLR if REL lighted"
      PRINT "
560
                            LENGTH and VERNIER A for smallest cluster, ZRO."
      PRINT "
570
                Channel 1: POLAR PHASE, ZRO (hold until display zero)"
      PRINT "
580
                            DLY, ZRO (hold until display zero)."
590
      PAUSE
```

```
PRINT USING "25/"
600
      OUTPUT Powersupply: "VPOS 0; IPOS .3; FSOUT ON"
610
      OUTPUT Voltmeter: "DCV: MODE TRIG"
620
630
640
      !******Manual" OPERATION FOR TUNING TO 180 DEGRESS OF SHIFT*********
650
660
             OUTPUT Powersupply: "VPOS O"
670 Manual:
680
      WAIT .2
      OUTPUT Voltmeter; "DT TRIG"
690
      ENTER Voltmeter; V1t
700
      DISP "Record transmission phase at 0 V then CONT"
710
720
      PAUSE
730
      OUTPUT Powersupply; "VPOS 30"
740
      WAIT .2
      OUTPUT Voltmeter; "DT TRIG"
750
      ENTER Voltmeter; V1t
760
      DISP "Record transmission phase at 30 V then CONT"
770
780
      PAUSE
      INPUT "Is the manual measurement done (Y/N)?", Ans$
790
      IF Ans$="n" OR Ans$="N" THEN GOTO Manual
800
      OUTPUT Powersupply; "VPOS 0"
810
      WAIT .2
820
      OUTPUT Voltmeter; "DT TRIG"
830
840
      ENTER Voltmeter; Vlt
850
860
      ******AUTOMATED MEASUREMENT OF DEVICE AFTER TUNING*******
870
880
            !Automated measurement section
890 Auto:
      OUTPUT Test set: "2"
900
      OUTPUT Source; "O6V99I1R3M3W4T1FB0E"
910
      OUTPUT Processor; "COBICID2C2D2E"
920
      IMAGE "FA", K"E"
930
940
      REFP
      INPUT "ENTER START FREQUENCY (in Mhz, G.E. 600 Mhz)", Fstart
950
960
      Fstart=Fstart*1.E+6
970
      BEEP
      INPUT "ENTER STOP FREQUENCY(in Mhz, L.E. 1200 Mhz)", Fstop
980
990
      Fstop=Fstop*1.E+6
1000 BEEP
     INPUT "ENTER STEP FREQUENCY(in Mhz)",Fstep
1010
1020 Fstep=Fstep*1.E+6
1030
     BEEP
1040
      Numb=INT((Fstop-Fstart)/Fstep)+1
      PRINT USING "25/"
1050
      PRINT "
                  ***** CALIBRATION *******
1060
      PRINT USING "10/"
1070
      OUTPUT Processor; "C1I5M2S2C2I5M3S2E"
1080
     IMAGE "FA",K,"E"
1090
1100 BEEP
1110 DISP "CONNECT 50 OHM LOAD (PORT 2) THEN HIT CONTINUE."
1120
      PAUSE
1130
      CALL Collect(Dirm(*),Dirp(*),Fstart,Fstop,Fstep,Fq(*))
      IF Dirm(1)>-32 THEN
1140
        DISP "Load reflected G.E. -32 dB, Program Stopped"
1150
1160
        Flgstp=1
1170
      END IF
      IF Flgstp=1 THEN STOP
1180
      DISP "CONNECT SHORT (PORT 2) THEN HIT continue."
1190
```

```
PAUSE
1200
      CALL Collect(Shortm(*), Shortp(*), Fstart, Fstop, Fstep, Fq(*))
1210
      DISP "CONNECT OPEN (PORT 2) THEN HIT continue."
1220
1230
1240
      CALL Collect(Openm(*),Openp(*),Fstart,Fstop,Fstep,Fq(*))
      PRINT USING "20/"
1250
      DISP "Calculating intermediate calibration results"
1260
1270
      FOR I=1 TO Numb
1280
      CALL Db_mag(Dirm(I), Dirmt)
                                     ! CONVERT dB READINGS TO MAGNITUDE
1290
      CALL Db_mag(Shortm(I),Shortmt)
1300
      CALL Db_mag(Openm(I),Openmt)
1310
      CALL P_r(Dirmt,Dirp(I),Dirr(I),Diri(I)) !CONVERT FOLAR MAGNITUDE AND PHASE
      CALL P_r(Shortmt,Shortp(I),Shortr,Shorti) ! TO RECTANGULAR
1320
1330
      CALL P_r(Openmt,Openp(I),Openr,Openi)
      Esfrnum=Openr+Shortr-2*Dirr(I)
                                        ! CALCULATE THE ERROR TERMS
1340
1350
      Esfinum=Openi+Shorti-2*Diri(I)
                                        ! AND THE CORRECTED VALUES
                                     ! rnum= REAL PART OF NUMERATOR
1360 Esfrden=Openr-Shortr
1370 Esfiden=Openi-Shorti
                                     ! iden= IMAGINARY PART OF DENOMINATOR, ETC.
1380 CALL Cdiv(Esfrnum,Esfinum,Esfrden,Esfiden,Esfr(I),Esfi(I))
1390 Erfmr=Dirr(I)-Shortr
1400
      Erfmi=Diri(I)-Shorti
1410
      Erfrnum=2*Openr-2*Dirr(I)
1420
      Erfinum=2*Openi-2*Diri(I)
1430
      Erfrden=Openr-Shortr
      Erfiden=Openi-Shorti
1440
1450
     CALL Cdiv(Erfrnum, Erfinum, Erfrden, Erfiden, Em, Ei)
      CALL Cmult(Em,Ei,Erfmr,Erfmi,Erfr(I),Erfi(I))
      NEXT I !END OF ERROR TERM GATHERING AND COMPUTATION
1470
1480
1490
1500
      !*****DEVICE TRANSMISSION AND REFLECTION MEASUREMENT****
1510
             INPUT "FREQUENCY OF DEVICE MEASUREMENT(MHZ)", Fmeas
1520 Fques:
      INPUT "What is the title if this is to be plotted(<50)",D$
1530
1540
      Fmeas=Fmeas*1.E+6
      Num=INT((Fstop-Fstart)/Fstep)+1
1550
1560
      Fmeasi =-1
1570
      FOR I=1 TO Num
1580
        IF Fq(I)=Fmeas THEN Fmeasi=I
1590
      NEXT I
      IF Fmeasi =-1 THEN
1600
        DISP "Frequency out of range (or not integral multiple)"
1610
1620
        WAIT 1.5
        GOTO Fques
1630
        DISP "
1640
1650
      END IF
      CALL Measdut(Fmeas, Rdutd(*), Rdutp(*), Volt(*))
1660
1670
      K=Fmeasi
1680
      DISP "Performing error correction on measured data."
1690
1700
1710
      !********ERROR CORRECTION OF DEVICE MEASUREMENT***********
1720
1730
      FOR I=1 TO 61
1740
      CALL Db_mag(Rdutd(I),Rdutm)
1750
      CALL P r (Rdutm, Rdutp(I), Rdutr, Rduti)
      Sarnum=Rdutr-Dirr(K)
1760
      Sainum=Rduti-Diri(K)
1770
1780
      CALL Cmult(Sarnum, Sainum, Esfr(K), Esfi(K), Ctemr, Ctemi)
1790
     Sarden=Ctemr+Erfr(K)
```

```
1800
     Saiden=Ctemi+Erfi(K)
1810 CALL Cdiv(Sarnum, Sainum, Sarden, Saiden, Sar, Sai)
1820 CALL R p (Sar, Sai, Sam, Sap)
1830 CALL Mag_db(Sam,Sadb)
1840
     Slig(I)=Sadb
1850
     S11p(I)=Sap
1860
     NEXT I
1870
1880
1890
      !**********PLOTTING OF MEASUREMENT**********
1900
1910
     X="Varactor Bias (Volts)"
     INPUT "Would you like to make a plot(Y/N)?", Ans$
1920
     IF Ans$="n" OR Ans$="N" THEN GOTO Save
1930
1940 Reques: INPUT "SCREENPLOT(1) or PAPERPLOT(2)",Flag
     IF Flag=1 THEN GOTO Pass
     IF Flag=2 THEN GOTO Pass
1960
1970 GOTD Reques
1980 Pass: Flag3=2
    IF Flag3=1 THEN GOTO Transmit
     INPUT "Mag(1) or Phase(2) plot",Flag4
2010 IF Flag4=1 THEN GOTO Magplot1
    Y$="Reflected Phase (Degrees)"
2020
2030 CALL Plotit(Volt(*),S11p(*),61,X$,Y$,D$,Flag)
2040 GOTO Ques
2050 Magplot1: Y$="Reflected Return (dB)"
2060 CALL Plotit(Volt(*),S11g(*),61,X$,Y$,D$,Flag)
2070 GOTO Ques
              INPUT "Mag(1) or Phase(2) plot", Flag4
2080 Transmit:
2090 IF Flag4=1 THEN GOTO Magplot2
2100 Y$="Transmission Phase (Degrees)"
2110 !CALL Plotit(Volt(*),S21p(*),61,X$,Y$,D$,Flag)
2120 GOTO Ques
2130 Magplot2:
               Y$="Transmission Loss"
2140 !CALL Plotit(Volt(*), S21g(*), 61, X$, Y$, D$, Flag)
2150 Ques: INPUT "Would you like to plot something else?(Y/N)", Ans*
2160 IF Ans$="Y" OR Ans$="y" THEN GOTO Reques
2170
2180
     2190
2200
2210 Save: !Storage of data has yet to be done
2220 INPUT "Do you want a hard copy of the data(Y/N)?",Ans$
     IF Ans$="n" OR Ans$="N" THEN GOTO Sav2
2230
2240
     DISP "Make sure printer is on to get hard copy"
2250 PRINTER IS 701
2260 PRINT D$
2270 PRINT " "
2280 PRINT " "
2290 PRINT "
                                Reflection"
                  Voltage
2300 PRINT "
                                              Phase
                  Bias
                                Magnitude
2310
     FOR I=1 TO 61
     PRINT USING "6X,DDDD.DDD"; Volt(I), Siig(I), Siip(I)
2320
2330
     NEXT I
2340
     PRINTER IS CRT
2350 Sav2: INPUT "Do you want to save data to disk(Y/N)?", Ans$
     IF Ans$="N" OR Ans$="n" THEN GOTO Terminate
2360
2370
     Total=61
2380
     Col=3
    INPUT "What is the name of the DATA FILE", Finames
2390
```

```
2400 CREATE BDAT Finames, 3*Total+10,8
2410 DISP "Saving data to disk"
2420 ASSIGN @Path1 TO Flname$
    OUTPUT @Path1,1;Total
2430
2440
     OUTPUT @Path1,2;Col
2450
    W=1
2460 FOR I=3 TO Col*Total+3 STEP Col
2470
       OUTPUT @Path1, I; Volt (W)
       OUTFUT @Path1, I+1; S11g(W)
2480
2490
       OUTPUT @Path1, I+2; S11p(W)
2500
       W=W+1
2510 NEXT I
2520 ASSIGN @Path1 TO *
2530 Terminate: !
    INPUT "would you like to make another measurement(Y/N)?",Ans$
2540
    IF Ans$="y" OR Ans$="Y" THEN GOTO Fques
2550
2560 DISP "done"
    WAIT .5
2570
    DISP "
2580
2590
    END
. 2600
2610
2620
     !************************ SUBROUTINES *********************
2630
2640
2650
     2660
                   POLAR TO RECTANGULAR CONVERSION
2670
    SUB P r(P \lor 1, P \lor 2, P \lor 3, P \lor 4)
2680
2690
    DEG
2700
     Pv3=Pv1*COS(Pv2)
     Pv4=Pv1*SIN(Pv2)
2710
2720
     SUBEND
2730
2740
    2750
                    RECTANGULAR TO POLAR CONVERSION
2760
     2770
2780
    SUB R p(P \lor 1, P \lor 2, P \lor 3, P \lor 4)
2790
    DEG
    Pv3=SQR(Pv1*Pv1+Pv2*Pv2)
2800
    Pv4=90*(SGN(Pv2)+(Pv2=0))
2810
    IF Pv1=0 THEN 2840
2820
2830 P \lor 4 = ATN(P \lor 2/(P \lor 1 + 1.E - 49)) + P \lor 4 * (1 - SGN(P \lor 1))
2840 SUBEND
2850
2860
      *****************
                       COMPLEX MULTIPLICATION
2870
2880
     2890
2900
    SUB Cmult(Pv1,Pv2,Pv3,Pv4,Pv5,Pv6)
2910 Cmult: !
      Pv5=Pv1*Pv3-Pv2*Pv4
2920
2930
      Pv6=Pv1*Pv4+Pv2*Pv3
2940
      SUBEND
2950
2960
     2970
                       COMPLEX DIVISION
2980
     2990
```

```
SUB Cdiv(Pv1,Pv2,Pv3,Pv4,Pv5,Pv6)
3000
3010 Cdiv:
3020
        Pv7=Pv3*Pv3+Pv4*Pv4
        .Pv5=(Pv1*Pv3+Pv2*Pv4)/(Pv7+1.E-49)
3030
3040
         P = (P = (P = 2 + P = 3 - P = 1 + P = 4) / (P = 7 + 1 - E - 49)
3050
         SUBEND
3060
3070
      PLOTTING SUBROUTINE
3080
     3090
3100
     SUB Plotit(Valx(*), Valy(*), Numbf, Xtitl$, Ytitl$, Dev$, Flag)
     C$=CHR$ (255) &"K"
3110
3120
     Vxmin=1.E+49
3130
     Vymin=1.E+49
3140
     Vymax=-1.E+49
3150
     Vxmax = -1.E + 49
     FOR J=1 TO Numbf
3160
     IF Valx(J)<Vxmin THEN Vxmin=Valx(J)</pre>
3170
     IF Valx(J)>Vxmax THEN Vxmax=Valx(J)
3180
3190
     IF Valy(J) < Vymin THEN Vymin=Valy(J)</pre>
     IF Valy(J)>Vymax THEN Vymax=Valy(J)
3200
3210
     NEXT J
     X1=Vxmin
3220
3230
     X2=Vxmax
3240
     Y1=Vymin
3250
     Y2=Vymax
     OUTPUT KBD;"1;"
3260
3270
     Startx=X1
3280
     Stopx=X2
     Starty=Y1-(Y2-Y1)/10
3290
3300
     Stopy=Y2+(Y2-Y1)/10
3310
     Stepx=(Stopx-Startx)/10
     Stepy=(Stopy-Starty)/8
3320
     ON KBD GOTO Exit
3330
                                    ! Provide exit
3340
     OUTPUT 2 USING "#,K";C$
                                   ! Clear screen for graph
                                    ! Initialize various graphics parameters.
3350
     GINIT
     IF Flag=1 THEN PLOTTER IS 3,"INTERNAL"
                                                  ! Use the internal screen
3360
3370
     IF Flag=2 THEN PLOTTER IS 705, "HPGL"
     GRAPHICS ON
                                    ! Turn on the graphics screen
3380
                                     Reference point: center of top of label
3390
     LORG 6
                                     Determine how many GDUs wide the screen is
     X_gdu_max=100*MAX(1,RATID)
3400
3410
     Y_gdu_max=100*MAX(1,1/RATIO)
                                   ! Determine how many GDUs high the screen is
                                   ! Offset of X from starting point
3420
     FOR I=-.3 TO .3 STEP .1
3430
        MOVE X qdu max/2+I,Y qdu max! Move to about middle of top of screen
        LABEL USING "#,K"; Dev$
3440
                                    ! Write title of plot
3450
                                    ! Next position for title
     NEXT I
     DEG
                                     Angular mode is degrees (used in LDIR)
3460
3470
     LDIR 90
                                     Specify vertical labels
3480
     CSIZE 3.5
                                     Specify smaller characters
                                     Move to center of left edge of screen
3490
     MOVE 0, Y_gdu_max/2
     LABEL USING "#,K"; Ytitl$
3500
                                      ! Write Y-axis label
     LORG 4
                                    ! Reference point: center of bottom of label
3510
3520
     LDIR 0
                                     Horizontal labels again
     MOVE X_gdu_max/2,.07*Y_gdu_max! X: center of screen; Y: above key labels
3530
     LABEL USING "#,K"; Xtitl$
                                   ! Write X-axis label
3540
     VIEWPORT .1*X_gdu_max,.98*X_gdu_max,.15*Y_gdu_max,.9*Y_gdu_max
3550
                                     Define subset of screen area
3560
     WINDOW 0,100,16,18
                                    ! Anisotropic scaling: left/right/bottom/top
                                   ! Draw axes intersecting at lower left
3570
     AXES 1,.05,0,16,5,5,3
                                   ! Draw axes intersecting at upper right
     AXES 1,.05,100,18,5,5,3
3580
```

```
IF Flag=2 THEN 3610
3590
     LINE TYPE 3
3600
                                 ! Draw grid with no minor ticks
3610
     GRID 10,.25,0,16,1,1
     LINE TYPE 1
3620
                                 ! So labels can be outside VIEWPORT limits
    CLIP OFF
3630
                                 ! Smaller chars for axis labelling
    CSIZE 2.6,.6
3640
                                 ! Ref. pt: Top center
                                                         11
3650
    LORG 6
    FOR I=0 TO 100 STEP 10
                                 ! Every 10 units
3660
                                 ! A smidgeon below X-axis | > Label X-axis
3670
       MOVE I,15.99
       Fgw=Stepx/10*I+Startx
3680
       IF ABS(Fqw) >= 1000 THEN LABEL USING "#,5D.D"; Fqw
                                                     ! Compact; no CR/LF
3690
   1 /
       IF ABS(Fqw)>=100 AND ABS(Fqw)<1000 THEN LABEL USING "#,4D.D";Fqw
                                                                     ! Com
3700
pact; no CR/LF
                  1 /
       IF ABS(Fqw) >= 10 AND ABS(Fqw) < 100 THEN LABEL USING "#,3D.2D"; Fqw
                                                                    ! Comp
3710
act: no CR/LF
                  1 /
       IF ABS(Fqw)>1 AND ABS(Fqw)<10 THEN LABEL USING "#,2D.3D";Fqw
3720
       IF ABS(Fqw)<1 THEN LABEL USING "#,D.3D";Fqw
3730
                                                         17
3740
     NEXT I
                                 ! et sequens
                                                          11
                                 ! Ref. pt: Right center
     LORG 8
3750
                                 ! Every quarter
     FOR I=16 TO 18 STEP .25
3760
3770
     Valu=Stepy/.25*(I-16)+Starty
                                 ! Smidgeon left of Y-axis | > Label Y-axis
3780
      MOVE -.5,I
      IF ABS(Valu) >= 10 THEN LABEL USING "#,4D.D"; Valu ! DD.D; no CR/LF
3790
  1 /
      IF ABS(Valu)<10 AND ABS(Valu)>1 THEN LABEL USING "#,2D.2D"; Valu
3800
      IF ABS(Valu)<1 THEN LABEL USING "#,D.3D"; Valu
3810
3820
     NEXT I
                                 ! et sequens
                                                          1/
                                 ! LABEL statement leaves the pen down
     PENUP
3830
     PEN 2
3840
     LINE TYPE 1
3850
3860 FOR I=1 TO Numbf
                                 ! Points to be plotted...
3870 Fry=16+.25/Stepy*(Valy(I)-Starty)
3880
    Frx=10/Stepx*(Valx(I)-Startx)
3890
     PLOT Frx, Fry
                                 ! Get a data point and plot it against X
3900
3910
     NEXT I
                                 ! et cetera
3920
     PEN 0
     LINE TYPE 1
3930
3940
     PAUSE
3950
     OUTPUT KBD: "!:"
           GRAPHICS OFF
3960 Exit:
           OUTPUT 2 USING "#,K";C$
3970
     GINIT
3980
3990
     GCLEAR
4000
                                 ! finis
4010
     SUBEND
4020
       4030
                       DECIBEL TO MAGNITUDE CONVERSION
4040
4050
       4060
4070
     SUB Db_mag(Valdb, Valmg)
     Valmg=10^(Valdb/20)
4080
4090
     SUBEND
4100
       4110
                       MAGNITUDE TO DECIBEL CONVERSION
4120
       **<del>**********************</del>
4130
4140
```

```
SUB Mag_db(Valmg,Valdb)
4150
4160
     Valdb=20*LGT(Valmg)
4170
     SUBEND
4180
4190
       *************************
4200
                     DATA GATHERING ROUTINE FOR STANDARDS
       **********************
4210
4220
4230 SUB Collect(Mag(*), Phase(*), Fstart, Fstop, Fstep, Fg(*))
4240 Processor=716
     IMAGE "FA",K,"E"
4250
4260
     Source=719
                 ! ****** 719.4 CHANGED TO 719
4270
     Num=INT((Fstop-Fstart)/Fstep)+1
4280
     Freq=Fstart-Fstep
     OUTPUT Source USING 4250; Freq ! RATHER THAN WAITING AN UNUSUAL
4290
4300
     ! AMOUNT OF TIME (SEE LINE 2552) FOR THE FIRST DATA POINT
     ! THE FREQUENCY SOURCE MAY BE STEPPED BEFORE ANY DATA IS TAKEN
4310
4320
     WAIT .3
4330 ENTER Processor; Garbage1, Garbage2
4340
     WAIT .3
4350
     FOR I=1 TO Num
4360
     Freq=Freq+Fstep
4370
     Fq(I)=Freq
     DUTPUT Source USING 4250; Freq
4380
4390
                         ! READING ON THE FIRST MEASUREMENT THE FIRST TIME
                         ! THIS SUBPROGRAM IS CALLED - WAIT 7 IS SUFFICIENT
4400
                         ! SOMETIMES, WAIT 11 WAS USED AND FOUND TO BE OK
4410
4420
                         ! ABOUT 50% OF THE TIME - WAIT 15 DIDN'T FAIL IN .
4430
                         ! ANY OF MY TRIALS.
4440 WAIT .3
4450 !IF I<>1 THEN GOTO Grab
4460 !WAIT 15
4470 Grab:
          ENTER Processor; Mag(I), Phase(I)
4480 NEXT I
4490
     BEEP
4500
     SUBEND
4510
4520
       ************
4530
                     Routine For Measuring Device at
4540
                   Single Frequency From 0 to 30 Volts
4550
       *********************
4560
4570
     SUB Measdut(Freq,Reflm(*),Reflp(*),Volt(*))
4580 DISP "Turn on 8505, DVM, Powersupply then CONT"
4590 PAUSE
4600 Processor=716
                     !Processor address
4610
     Source=719
                     !Source address
4620
     Powersupply=722
                    !Powersupply address
4630
     Voltmeter=708
                     !Voltmeter address
4640
     Test set=720
                     !Test set address
4650
     OUTPUT Powersupply; "VPOS 0; IPOS .3; FSOUT ON"
     OUTPUT Voltmeter; "DCV ; MODE TRIG"
4660
     OUTPUT Test_set; "2"
4670
4680
     WAIT 2
4690 Key: IMAGE "FA",K,"E"
4700
     Offset=.03*Freq
4710
     Freq=Freq-Offset
4720
     OUTPUT Source USING Key; Freq
4730
     WAIT .3
4740 DISP "CONNECT DEVICE THEN CONTINUE(f2)"
```

```
4750 PAUSE
4760 Freq=Freq+Offset
4770 OUTPUT Source USING Key; Freq
4780 OUTPUT Processor; "C1I5S5C2I5E"
                                         !Switch to reflection terms
4790 ENTER Processor; Garbage1, Garbage2
4800 DISP "Measuring test device reflection with swept voltage"
4810
      FOR I=1 TO 61
         V=(I-1)/2
OUTPUT Powersupply; "VPOS"; V
4820
4830
         WAIT .25
4840
4850
         OUTPUT Voltmeter; "DT TRIG"
4860
         WAIT .25
4870
         ENTER Voltmeter; Volt(I)
4880
         ENTER Processor;Reflm(I),Reflp(I)
4890
     NEXT I
      OUTPUT Powersupply; "VPOS 0"
4900
4910
      BEEP
      SUBEND
4920
```

REFERENCES

- Alpha Industries Semiconductor Division Catalog, Woburn, MA, pp. 3-99, 1985.
- Benson, T. P., "The Design of a Microwave Phased Array Hyperthermia System," M.S. Thesis, University of Illinois, Urbana-Champaign, Urbana, IL, 1985.
- Boire, D. C., J. E. Degenford, M. Cohn, "A 4.5 to 18 GHz Phase Shifter," 1985 IEEE MTT-S Digest, pp. 601-604, 1985.
- Cohen, L. D., "Active Phase Shifters for the Millimeter and Microwave Bands," 1984 IEEE MTT-S International Microwave Symposium Digest, pp. 397-399, 1984.
- Dawson, D. E., A. C. Conti, S. H. Lee, G. F. Shade, L. E. Dickens, "An Analog X-Band Phase Shifter," IEEE 1984 Microwave and Millimeter-wave Monolithic Circuits Symposium Digest of Papers, pp. 6-10, 1984.
- Edwards, T. C., <u>Foundations of Microstrip Circuit Design</u>, (John Wiley and Sons, New York, 1984).
- Garver, R. V., <u>Microwave Diode Control Devices</u>, (Artech House, Inc., Dedham, MA, 1976).
- Garver, R. V., "360° Varactor Linear Phase Modulator," IEEE Trans. Microwave Theory Tech., vol. MTT-17, No. 3, pp. 137-147, March 1969.
- Gee, W., S. Lee, N. Bong, C. A. Cain, R. Mittra, R. L. Magin,
 "Focused Array Hyperthermia Applicator: Theory and Experiment," IEEE Trans. Biomed. Eng., vol. 1kBME-31, No. 1,
 January 1984.

- Ghandhi, O. P., <u>Microwave Engineering and Applications</u>, (Pergamon Press, Elmsford, NY, 1981).
- Giovanella, B. C., "Thermosensitivity of Neoplastic Cells in Vitro", <u>Hyperthermia in Cancer Therapy</u>, F. K. Storm, Editor, pp. 55-62, 1983.
- Hahn, G. M., <u>Hyperthermia and Cancer</u>, (Plenum Press, New York, NY, 1982).
- Helszajn, J., <u>Passive and Active Microwave Circuits</u>, (John Wiley and Sons, New York, 1978).
- Henoch, B. T., P. Tamm, "A 360° Reflection-Type Diode Phase Modulator," IEEE Trans. Microwave Theory Tech., vol. MTT-19, No. 1, pp. 103-105, January, 1971.
- Hopfer, S., "Analog Phase Shifter for 8 18 GHz," Microwave Journal, vol. 22, No. 3, pp. 48-50, March , 1979
- Hwang, Y. C., Y. K. Chen, R. J. Naster, "A Microwave Phase and Gain Controller with Segmented-Dual-Gate MESFETs in GaAs MMICs," IEEE 1984 Microwave and Millimeter-wave Monolithic Circuits Symposium Digest of Papers, pp. 1-5, 1984.
- Johnson, H. C., Y. Gazit, "A Ku-Band Continuously Variable Phase/
 Amplitude Control Module," RCA Review, vol. 42, No 4, pp.
 617-632, December, 1981.
- Kumar, M., Dual-Gate FET Phase Shifter," RCA Review, vol. 42, No.
 4, pp. 596-616, December, 1981.
- Modelski, J., "Computer Aided Design of the Microwave Broadband Linear Phase Modulator with Varactor Diode," 1979 IEEE MTT-S International Microwave Symposium Digest, pp. 353-355, 1979.

- Nichenke, E. C., V. V. DiMacro, A. Friedberg, "Linear Analog Hyperabrupt Varactor Diode Phase Shifters," 1985 IEEE MTT-S International Microwave Symposium Digest, pp. 657-660, 1985.
- Pengelly, R. S., C. W. Suckling, J. A. Turner, "Performance of Dual-Gate GaAs MESFETs as Phase Shifters," 1981 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 142-143, 1981.
- Rippy, R. R., "Wideband Phase Modulator Works Directly on Carriers," Microwaves, pp. 52-58, January, 1975.
- Rubin, D., "Wide-Band Phase Locking and Phase Shifting Using Feedback Control of Oscillators," IEEE Trans. Microwave Theory Tech., vol. 20, No. 4, pp. 286-289, April, 1972.
- Shurmer, H. V., <u>Microwave Semiconductor Devices</u>, (Pitman Publishing Corp., New York, 1971).
- Tsironis, C., P. Harrop, M. Bostelmann, "Active Phase Shifters at X-Band Using GaAs MESFET," IEEE International Solid-State Circuits Conference Digest, pp. 140-141, 1981.
- Tsironis, C., P. Harrop, "Shifter with Gain at 12 GHz," Electronics Letters, vol. 16, No. 14, pp. 553-554, 1980.
- Ulriksson, B., "Continuous Varactor-Diode Phase Shifter with Optimized Frequency Response," IEEE Trans. on Microwave Theory Tech., vol. MTT-27, No. 7, pp. 650-654, July, 1979.
- Vendelin, G. D., <u>Design of Amplifiers and Oscillators by the</u>

 <u>S-Parameter Method</u>, (John Wiley and Sons, New York, 1982).
- Watmough, D. J., W. M. Ross, editors, <u>Hyperthermia</u>, (Blackie and Son, London, 1986).

- Whicker, L. R., guest ed., Forward-Special Issue on Microwave Control Devices for Array Antenna Systems, IEEE Trans.

 Microwave Theory Tech., vol. 22, No. 6, pp. 589-590, June, 1974.
- White, J. F., <u>Microwave Semiconductor Engineering</u>, (Van Nostrand Reinhold Company, New York, 1982).
- White J. F., "Diode Phase Shifters for Array Antennas," IEEE Trans. Microwave Theory Tech., vol. 22, No. 6, pp. 658-674, June, 1974.