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ACOUSTIC COHERENCE IMAGING THROUGH THE ATMOSPHERE

Jonathan William Benson, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 2000
George W. Swenson, Jr., Advisor

The imaging of acoustic “scenes” through the atmosphere is a subject with little treatment in
the literature. This thesis strives to set the state of the art in this field by presenting imaging
methods and their performance in the turbulent atmosphere. Both narrowband interferometry
and wideband techniques that can be solved using tomographic methods are presented. An
extensive series of field experiments was conducted in which multiple sensor arrays of
microphones recorded the signals received from loudspeaker sources outdoors under varying
atmospheric conditions. Besides providing data for characterizing the imaging performance
under different conditions, the field data also allowed for measurements to be made that
characterize the atmosphere itself. Methods for enhancing image quality are discussed. It is
shown that the popular self-calibration family of reconstruction methods from the radio
astronomy community are not applicable to the acoustic imaging case. A new method, based
on estimating the intensity distribution jointly with atmospheric distortion model parameters
using multiple short integration period measurements, is derived. The performance of this

method is encouraging.
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1. INTRODUCTION

1.1 Problem Statement

The use of multiple sensor arrays to extract information about propagated waves in a
medium has been widely studied for a variety of media and wave types. The fields of sonar
image processing, radar, and radio astronomy have been studied for decades. The work
described and proposed in this paper will strive to set the state of the art in the formation of
images of acoustic wave fields in the atmosphere through the use of multiple sensor
interferometric processes.

The problem to be explored in this thesis is that of producing an image of an acoustic
scene using signals received from an array of microphones. This image would take the form
of a map of the intensity as a function of angle of arrival, or more interestingly, a map of the
power spectrum versus angle. For this thesis, a one-dimensional array will be assumed with
imaging occurring in the horizontal plane near the ground. It will also be assumed that the
acoustic sources being imaged are spatially incoherent and exist in the far field of the

measurement array.

1.2 Previous Work on Acoustic Imaging in the Atmosphere

Acoustic imaging through the atmosphere has not been investigated in depth in the
past, and only a handful of papers exist that describe this type of image formation. One of
the first publications dealing with acoustic imaging in the atmosphere is by Billingsley and
Kinns. They developed a rudimentary beamforming system for sound source localization on

jet engines [1]. The images were produced via a simple delay-and-sum beamforming



technique using 14 microphones. A short time later, a group of French engineers published
work that related ideas used in the radio astronomy community to the problem of acoustic
imaging through the atmosphere [2]. Chiollaz et al. [3] and Escudié et al. [4] developed an
acoustic imaging system based on the use of the two-dimensional Fourier transform of the
space-time correlation functions of the elements of the array [2]-[4]. This method is
equivalent in many ways to traditional interferometric techniques and is essentially the same
as the wideband imaging technique described later in this thesis. They also introduce
methods for dealing with moving objects. Much of the previous work in acoustic imaging
through the atmosphere has been motivated by the measurement of the noise generated by
moving vehicles, such as trains. Boone and Berkhout developed a similar system for the
measurement of industrial noise [5]. Van Der Toorn et al. used this measurement system,
which was named the SYNTACAN (SYNThetic Acoustic Antenna), to measure the spatial
noise distributions of a high-speed train [6]. None of the work above included a thorough
investigation of effects of the atmosphere on their measurements. This thesis will include a
detailed discussion of the effects of the atmosphere on imaging performance. Also, some

methods for removing these effects will be presented and investigated.

1.3 Organization

This thesis will strive to describe the state of the art in the formation of images of
acoustic sources through the atmosphere by using multiple sensor interferometric processes.
In Chapter 2, the theory for traditional narrowband interferometric imaging as well as
wideband imaging will be presented. Next, in Chapter 3, field experiments conducted to
support the imaging work are discussed. Also discussed are several measurement results that
attempt to paint a picture of the atmosphere through which we are trying to produce images.
In Chapter 4, performance characteristics for the narrowband imaging case, such as the
variance associated with coherence measurements, will be discussed for situations both
including and excluding the effects of the atmosphere. In addition, examples of the
wideband imaging technique will be presented. In Chapter 5, methods for enhancing the

performance of a narrowband imaging system under the influence of the atmosphere are



discussed. These methods include some used in the radio astronomy community and also
another based on the joint estimation of an intensity image along with atmospheric model
parameters. Chapter 6 contains a summary and the overall conclusions of the work

completed in this thesis.



2. IMAGE FORMATION THEORY

In this chapter, the theory behind the formation of acoustic images in both the
narrowband and wideband cases is presented. First is a derivation of the Van Cittert-Zernike
theorem, the fundamental theorem of interferometric imaging. Then, a description of
wideband imaging theory, including the case where the source distribution is assumed white,

is presented.

2.1 Narrowband Interferometric Imaging

The radio astronomy community has been making images of celestial objects for
decades using interferometry based on the Van Cittert-Zernike theorem. In this section, the
theorem will be derived for the case of acoustic imaging. Also, discussions on array design,

image deconvolution, and multifrequency synthesis will be presented.

2.1.1 Derivation of the Van Cittert-Zernike theorem

In this section, the widely used relationship known as the Van Cittert-Zernike
theorem will be derived in the context of acoustic imaging. This theorem states that a
coherence measurement on a given baseline in an array gives a sample of the Fourier
transform of the intensity distribution of the source. This is true provided that the received
signals are narrowband, that the source distribution is spatially incoherent, and that the
source is stationary and is located in the far-field of the receiving array. The derivation here
generally follows that given by Swenson and Mathur [7] and Thompson et al. [8].

The physical situation at hand is shown in Fig. 2.1. Let us assume that there is a

source function S(£,) that represents the acoustic radiation of the source as a function of



angle and time, where¢ is the sine of the angle @ which is measured with respect to the
normal to the array baseline. The acoustic waves then travel to the array sensors located at

positions x, and x,, . The signal received at the sensor located at position x,is y,(¢) and is

given by
¥, ()= TS(é,t—fg—é)dé @2.1)

where c is the speed of sound. The source function is assumed to be zero outside the visible

range

S(.1)=0, |£|>1. (2.2)

s¢y ||

\N\) \ > ¢=sin(f)

X X,

n

2 4

¥a(t) ¥ul®

A

filter filter
H() H(f)

v,(t) Val®)
correlator

!

output, r,_,

Fig. 2.1: Diagram of the physical setup involved in the derivation of the Van Cittert-Zernike
theorem.



Since S(«f, t) is assumed to be a stationary random process and therefore extends from

infinite past to infinite future, it does not satisfy the condition for the existence of the Fourier
transform. We can still use Fourier analysis if we consider the truncated function below.

s;@,r)s{

SE.1) <t

2.3
0 |>T @3)

In terms of this truncated function, we define the complex analytic signal
S (§.6)=57(&.0)+ js; (£.1) 2.4
where the real and imaginary parts form a Hilbert transform pair. The real part represents the

actual acoustic signal received. Even as the real part is truncated, the imaginary part is not

necessarily so. We can now write the Fourier transform relationships

S (E0)= [Sp G ar
= (2.5)

5, (6.0= [$,(& £ .

A deeper treatment of the analytic signal concept can be found in [9].
Of great importance is the cross correlation between the source signals from two

different directions at two different times, which is usually defined as

To(e)=lim [ $(&,0)8" (& 1+ )t 2.6)

We now find it more convenient to use our truncated function to avoid Fourier transform
existence problems. This leads to the definition of the mutual coherence function of the

source

(6.8 7)=limok [ S, (600876, 0 — o) = E[s(&,1)5" (&1~ 7)) @.7)

where E denotes the expected value operator. The mutual coherence function is a function
of the time difference 7 because of our stationarity assumption. With this definition let us
continue and begin to analyze the situation shown in Fig. 2.1.

With reference to Fig. 2.1, we assume that the acoustic signals are received by omni-

directional microphones located at positions x, and x, . These signals, y,(t) and y, (t) are

then filtered with a filter having frequency response H ( f). The outputs of the filters, v, (t)



and v, (t), are then correlated, resulting in the output r(z). The signals y,(z) and y,,(t) can

be written as

Vo, (1) = TST( =2 &) 2.8)

—00

= TST(f,t—"T'"f)dé (2.9)

where from now on the truncated functions are assumed used. We can then also write the

Fourier transforms of these signals as

3, ()= [S,(&, f)e ™ ag (2.10)

;'g"'——-S

9, ()= [8,(E. F)e T #ae. 2.11)

1!
g';"--—-S

The Fourier transforms of the signals v, (¢) and v, () can then be written as

5, ()= [ NE()az @12)

)= TS (& PH(f)e ™ ag (2.13)

where the convolution property of the Fourier transform was used [10]. We can then

transform back into the time domain to obtain

73‘ & NH(FE T dg ar (2.14)

v () Sp (& FH(f T ag ar. (2.15)

H
8'—-8

Following Fig. 2.1, the signals v (¢) and v, (¢) are then correlated. Defining the cross

correlation as
r(e)=lim [ v, (W, (~7)de = El,, (), (1—7)] (2.16)
)

the output of the correlator 7(z) can be written as



( ﬁmle J'dtjdfl J‘dfz J-dfl jdéz 51’f1) (fz’fz) 2.17)

00 —00

x H ( f1 ) Vil ( f2 ) e—ﬂafl%"’&l eﬂnszéz o/ 2t e—j27y°2(t—'r).

Note that the result of the t-integral is 8(f, — £, ). This allows us to evaluate one of the f-

integrals, leading to the new expression

defd§1 J‘dé:z [ 519 ) 52: ]}H )‘2 —127rfx’"§1 2nfiag, ey (2.18)

At this point we need to enforce our assumptions about the source function. We can write

ESE £)5° & =T, 1o &) 2.19)

where f‘(ﬁ, f) is the temporal Fourier transform of the source autocorrelation function. The

Dirac delta function follows from our requirement that the acoustic radiation is spatially

incoherent. Using Eq. (2.19) in Eq. (2.18), we obtain

o)= [ JAER(E pYa(r e e 220

Let us now assume that the filter is narrowband, centered at some frequency f, with

bandwidth Af . Then, we can rewrite Eq. (2.20) as

PRIV .
)= [ar [agtE. pYa(f e e eimr, (2.21)

Fomtf e

If we make that assumption that Af is very small and that f‘(f, f) does not change
significantly over the range, then we obtain

xﬂ.)

I T

where we have evaluated the correlation at zero-lag, where f“(f, fo) is proportional to the
intensity of the source, and where }7(u, fo) is the spatial frequency spectrum of the mutual

coherence function of the source. We define the spatial frequency # to be



u= (xn —x"')f — Dmn 5 (2_23)

where D, is taken to be the distance between sensors m and n. Equation (2.22) is known as

the Van Cittert-Zernike theorem. This relationship shows that the output of the correlator
shown in Fig. 2.1 is a measurement of a sample of the spatial frequency spectrum of the
mutual coherence function of the source. We can collect several samples of this function by
correlating the signals of receivers that are separated by various distances D. These
measurements are commonly referred to as the complex visibilities of the source. The source

intensity distribution can be found via the inverse Fourier transform relation

P& £)=[ 71, ) du. (2.24)

—co

This is the basis for the interferometric image formation technique. Chapter 4 includes a
discussion of performance issues related to this type of imaging, including the effect of finite

bandwidth and the variance associated the correlation estimates.

2.1.2 Array design and image deconvolution

Given that the intensity distribution P(£) has Fourier transform P(x) and that the

spatial frequency sampling function S has unity value at every measured spatial frequency
and is zero elsewhere, the measured visibilities for the monochromatic case can be expressed

as

Viu)= S(u)Piu ). (2.25)
The resulting brightness map is given by the Fourier transform of Eq. (2.25) and can be

expressed as

M (£)=P(&)*S(u)=P(£)*B,(¢) (2.26)
Equation (2.26) illustrates that the brightness map obtained is the convolution of the actual
brightness with the beam B,. This beam is termed the “dirty” beam and the resultant map M

is called the “dirty” map. Generally, the term beam is synonymous with the response of the

imaging system to a point source located at 0°. We desire to find the actual brightness P({f )



so a method of deconvolving P(&) and B,(¢) is needed. In general, one might deconvolve

two such functions by moving to the Fourier domain and dividing V(u) by S(u) to find P(u)
and thus P(¢). However, S(x) most always has regions where the function is equal to zero,

where no visibility measurements are made. Thus, dividing the Fourier transforms of the
functions is not possible. Another method of deconvolution is needed. In the radio
astronomy community, the most widely used algorithm for image deconvolution of this type
is the method CLEAN.

The method CLEAN was developed by Hogbom in 1974 and has since spawned
many variants [11]. The basic idea of this nonlinear algorithm is to iteratively find point
source components in the “dirty” map and then convolve these with a “clean” beam to
produce a “clean” map. Even though the method is based on a collection of point sources, it

does, in general, work on extended sources. The method can be summarized as follows:

1. Locate the maximum in the “dirty” map and determine its amplitude A.

2. Convolve the “dirty” beam with a point source at the location found in (1) of
amplitude YA, where 7 is known as the loop gain.

3. Subtract the result of (2) from the “dirty” map.

4. Repeat steps (1)-(3) until the residual (what is left of the “dirty” map after a number
of subtractions as in (3)) is sufficiently small.

5. Convolve the collection of point sources found with a “clean” beam which is
normally chosen to be Gaussian. This gives a smooth “clean” map.

6. Add the residual to the “clean” map.

CLEAN performs an interpolation-like function on the visibility data, attempting to fill in
those areas in the spatial frequency domain that are unmeasured. As CLEAN is a nonlinear
method, a complete mathematical analysis is not an easy task. However, Schwarz has given
some important conclusions [12], [13]. Schwarz shows that if the following three conditions

hold, then CLEAN will converge to a solution:

1. The “dirty” beam must be symmetric.

2. The Fourier transform of the “dirty” beam must be nonnegative.

3. There must be no spatial frequencies present in the “dirty” map which are not also
present in the “dirty” beam.

If these conditions hold, which they almost always do in practice, and if the number of

CLEAN components does not exceed the number of independent spatial frequencies

10



measured, then CLEAN converges to the solution that is the least squares fit of the Fourier
transforms of the delta-function components to the measured visibilities. The method
CLEAN is widely used and is also a component in many other image formation methods,
such as self-calibration which is discussed in Chapter 5.

The choice of array will determine the spatial frequency sampling function S(u), and

therefore affects the quality of the image. One would like to have an array that uniformly
covers a given range of spatial frequencies. One can consult [8] for a discussion of array
design. In general, most interferometric imaging systems use a minimally redundant array
that covers all multiples of a unit spacing up to the maximum extent of the array. The
minimal redundancy requirement is more important for radio astronomy, where it allows for
uniform coverage with the least number of elements, where each element can be of enormous
cost. For our acoustic imaging case, we are usually content with an array that provides
uniform coverage. Redundancies can be of use for certain aspects of image recovery. The
resolution obtainable with a given array is proportional to the aperture size. The minimum
baseline in the array gives the maximum view angle that can be achieved. The designs of

the arrays used in this work can be found in Chapter 3.
2.1.3 Multifrequency synthesis imaging

Multifrequency synthesis is an extension to the monochromatic aperture synthesis
theory outlined in the previous section. It was developed relatively recently in the radio
astronomy field by Conway, Cornwell, and Wilkinson [14]. Gaps in the spatial frequency
coverage of an interferometric array introduce artifacts into the resultant image. The multi-
frequency method serves to fill in these gaps and improve image quality. Though developed
with the aim to improve the image quality possible with sparse interferometric arrays, this
method does also show promise in when applied to the acoustic imaging problem.

As defined in Eqg. (2.23), the spatial frequency variable u is proportional to the
product of the frequency and the sensor separation. This relationship gives us a logical
connection, or space-frequency equivalency, that one can use to increase the density of

samples in the spatial frequency regime with a given array. This space-frequency

11



equivalency was discussed by Swenson and Mathur [15], and is the basis of multifrequency
synthesis. By measurement of the visibilities associated with a given array of sensors at a
series of several frequencies, one can sample a greater portion of the spatial frequency
spectrum. When using multiple frequencies, one must be concerned about how the source
emissions change with frequency. For most astronomical sources, Conway and Saul show
that if frequencies are chosen within a +12.5% range (with respect to the central analysis
frequency) spectral errors are generally below the thermal noise [16]. The errors associated
with spectral variation can be analyzed as follows [16], [17]. Let the intensity distribution as

a function of direction and frequency be given by P(f, f ) The combination of visibilities

measured at each frequency can be written as
u)=3 8@, £,)G(f.)" Plu, ) (2.27)

where the overline indicates the spatial Fourier transform, S is the sampling function of the
visibility measurements (unity at spatial frequencies where a measurement is made), and G is

an optional scaling factor that is a function of frequency. The intensity can be expressed as a

Taylor series expansion with respect to the frequency dependent function F ( fl=f /f,
which gives
JP J°P(E,
PE.£)=PE.£ )+ £,2FEL) PG 1)

AN &) (2.28)
J f“fo[f" )+2fo d“z f=fp(fo ] o

where Af = f — f . If this expression is inserted into Eq. (2.13) and if we neglect G for
f =f-1, p q

now, we obtain the new expression for the combined visibilities:

)= PRI Sl 1) £, 77CT) z[i—f}(u,m
r=f ! o

- 2.29
,PE.S) @29

fo P

Taking the Fourier transform of Eq. (2.14) we obtain the resultant composite intensity map

-+

=

2[%J2S(u,fi)+...

f=r i

12



oP
fo'a“J:*

where the derivatives are still evaluated at f, and the generalized beams B, are given by

2
B+1f29P g 4. (2330)

M, =P*B,+
0 OafZ

comp

B,(6)= S £ )LT. (231)
We can now discuss the spectral errors that result from the second and third terms of Eq.
(2.30). The spectral beams given in Eq. (2.31) are shown in Fig. 2.2 for an example case
with 18 frequencies located in the interval £12.5% around a center frequency of 325 Hz.
Note the relative amplitudes and the fact that the B, beam (and all odd beams) has no central
peak. As long as the first-order derivative in Eq. (2.30) remains relatively small, the first-
order spectral errors will be small, as the peaks of B, are 1/100 the peak in B, . If the

intensity is dominated by a single bright component, then one can effectively remove the
spectral errors by using the appropriate G( f ) function in Eq. (2.27) to make dP/df equal to
zero. However, if there are multiple components with nearly equal brightness, this scheme
will not work, and the first-order spectral errors will affect the image at a level of about 1%
of the peak brightness. Second-order effects can also be effectively eliminated for the case of
a dominant component with use of the G function. For those cases where there is no
dominant component, the second-order effect can mainly be thought of as adding a small bias
to the brightness due to the small central peak (1/160) and low sidelobe levels (1/2500) of
B,.

13
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Fig. 2.2: The spectral beams By (a), B; (b), and B, (c) for the case of 18 frequencies in 325
Hz +12.5%.

2.2 Wideband (2-D) Imaging
2.2.1 Tomographic solution method for wideband imaging

This section concentrates on the theory involved in computing images of the power
spectrum versus angle. As will be discussed, this two-dimensional image can be computed
from wideband correlation data through a mathematically tomographic relationship. Early
work on this type of imaging was done by Biraud et al. [2], Chiollaz et al. [3], and Escudié
[4], as mentioned in Chapter 1.

The derivation of the imaging relation follows in a similar fashion to that in Section
2.1.1. The source function is once again assumed to follow the analytic signal formulation
discussed earlier. However, the truncated function notation will be dropped in this case. The

physical situation at hand is the same as that shown in Fig. 2.1, except that the narrowband

14



filter is absent in this case. We start by expressing the signals received at sensors located at
positions x, and x, as

oo

y(0)= [SE.r-2ghe (2.32)

—o0

Yult)= ]:S(é,t—i:—é}if. (2.33)

Let us now examine the cross correlation of these signals, defined to be

1o (7)= Ey,, ()7~ 7)) (2.34)
where once again we enforce the stationarity condition. Plugging Egs. (2.32)-(2.33) into Eq.
(2.34) we obtain

rl0)= [ [a2Els(E 1 -22 )5 (e -28,-0), (2.35)

As before, we need to specify a form for the mutual coherence function of the source. In this

case we make the following assumption:

E[S (51 4 )S* (52 15 )J = F(‘fl L= )5(51 - 52 ) (2.36)

where stationarity and spatial incoherency have been enforced. Applying this assumption to

the correlation expression in Eq. (2.35), we obtain the relation

o (T)= Tr(é,ﬁ;—*ﬂlfw}zg. (2.37)

Equation (2.37) gives us the relationship between the wideband cross correlation of a pair of
sensor signals and the mutual coherence function of the source. If one examines the form of
Eq. (2.37), one sees that it closely resembles the relationship seen for a standard parallel
beam tomographic imaging problem. The measured cross correlations are composed of line-
integrals through the unknown mutual coherence function of the source. Figure 2.3
illustrates this relationship. The process of inverting this relationship has been well studied
and there several different algorithms available to solve the problem. A good overview of
tomographic imaging and the basic solution methods can be found in Haykin [18]. The
projection slice theorem gives us one way to solve the problem. This theorem states that the

one-dimensional Fourier transform of a projection taken at a given angle through the
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unknown object or function is equal to a slice of the two-dimensional Fourier transform of
the function at that same angle. By measuring the cross correlations of all sensor pairs in the
array we are measuring the projections at different angles. Because the angle at which the
projection is made is a function of the distance between sensor pairs, we see that we have a
limited number and range of angles. This fact will limit the quality of the images we can
recover. Once all the projections are measured, their Fourier transforms are computed and
then arranged in the two-dimensional Fourier plane. Because the data are arranged in polar
fashion in the Fourier plane, the data must be interpolated to lie on a Cartesian grid before the
inverse Fourier transform can be applied to recover the unknown function. Results of this
imaging process will be discussed in Chapter 4. Another common method of solving for the
unknown object or function in tomographic imaging is the family of algebraic reconstruction
techniques (ART). With ART, the unknown function is pixelated into a grid. Then, large
linear equations are constructed by summing the pixel contributions for each point in the
measured projections. This set of equations is usually very large and can only be solved
using iterative methods [19], [20]. Results from this type of solution will also be shown in

Chapter 4.

<

slope=D,_./c

v

Fig. 2.3: Diagram illustrating the tomographic relationship between the mutual coherence
function of the source and the array cross correlation measurements.
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2.2.2 White noise imaging

Another wideband case to consider is the case where one assumes that the source
radiation is everywhere white. We then would be solving for the intensity as a function of
angle, similar to the narrowband case. Starting at Eq. (2.35), this time we make the

following white-noise assumption on the nature of the source
E[S(él o4 )S* (52 o1 )} = P(é: )5(51 - gz )5(t1 - tz) (2-38)

where P(f) is the source intensity. Using this relation in Eq. (2.35), we obtain the simple

relationship
Fon(7)= P(-25). (2.39)

Equation (2.39) tells us that to construct an image of the intensity of the source, we need only
to arrange the cross correlation measurements. It is likely that for some positions in the
intensity map, there will be more than one available coherence measurement. Therefore, we
need to find the best way of combining these multiple measurements into a final image. To
do this we can use linear estimation theory [21]. For each & =-7c/D, where there are more
than two measurements of r, (), we arrange those measurements into a column vector g .
We can then construct the statement

§ = Hx+ii (2.40)
where x is the actual value of the map, H is a column vector of all ones, and 1 is a noise

vector representing the difference between the actual map value and each measurement. We

assume that

El]=0 (2.41)
Elfin’]=R..
Using the Gauss-Markov theorem we find that the minimum-variance, unbiased, linear
estimate of xis
#=(H"R;H) 'H'R'S. (2.42)
The error in the estimate

€, =E|(x-2)] 2.43)
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can be found to be
¢, = [HR7H] H'RR, RH(H'R'H) . (2.44)
One might logically guess that simply averaging the measurements would be appropriate. In

that case ﬁn would be equal to the identity matrix. The general case would be ﬁn =R,.

Expressions for the error in each case are shown below.

—1
R,=R, = ¢ =(HRH) = (2 R;‘(i,j)J
iJ

R, -1 = ex=(HTH)“HTR,,H(HTH)“=mZRn(i, i)
L}

(2.45)

n

These two errors can, in general, be different, giving motivation for finding 2. In order to
compute the estimate, we need to compute R_. This can be done using the time series data

from each sensor. Let us assume that we form the correlation estimate

Tl’ szm ynp 71) (2.46)

p=l
where 7, is a discrete delay (based on the sampling rate used) and M is the total number of
samples in the estimate. Also, let y,(p) denote the p™ sample of the signal received at a

sensor located at position x,. The signals are assumed to be real in this case. If we then

collect all estimates for which 7/d is constant, we form the vector § , that has elements
#(z,.d,) 2 =const. (2.47)

The vector g, containing the true correlation values, can be formed in similar fashion. We

then can express the correlation estimate (measurement) as the sum of the actual correlation -

plus noise:

#r,d)=r(r,d)+n. (2.48)
This leads to the following expression for the covariance matrix of the noise:

R, = E[ga" |- ge”. (2.49)
The received signals are white Gaussian noise since they are composed of a sum of source

signals that are white. We then can write
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Ely,(p)y.(@)=6(p-g)N, (2.50)

where N, is the total source flux. Now let us look at the expression for one element of the

covariance matrix, given by

Elf(z,.d,, ) (z,.d,,)-r(z,.d,, )r(z,.d,,) 2.51)
where we have
L _ %
dmn dab . (2.52)

This can be expanded using the fourth-order moment theorem for Gaussian processes [22].

The result consists of two terms as shown below.

L33 E, () @)Ely, (0 -y, (a 1)
+-1:3' " Ely,(p)y,(a-7,)El,(p—7,)y.(g)]

The way in which the two terms in Eq. (2.53) are evaluated will be depend strongly on the

(2.53)

configuration of the array used. For each term one needs to consider several cases. These
cases are determined largely by whether or not a sensor appears more than once among the
four in the expression and, if so, which ones are equal. Using this approach, all elements of
R, can be computed from the sensor data. That estimate of R can then be used in Eq.
(2.42) to find the optimal data for the given place in the reconstructed intensity map. Results

of using this method are presented in Chapter 4.
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3. FIELD EXPERIMENTS

In this chapter, field experiments used to collect real acoustic imaging data will be
discussed. A series of completed experiments will be summarized. Measurements dealing
with properties of the atmosphere that were made using the collected data will also be
presented to provide a better understanding of the medium through which we are trying to

image.

3.1 Description of Experiments and Data

A series of 20 acoustic imaging data collection experiments were conducted. The
sites used were the Bondville and Monticello Road field sites, belonging to the Department
of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.
The majority of the experiments took place at the Monticello site, which is located among
cornfields in a rural area. The ground was flat and covered with grass of varying height. The
layout of the experiments at the Monticello site is shown in Fig. 3.1. The small building,
which was about 50 m behind the loudspeakers, should have no appreciable effect on the
data, due to the fact the loudspeakers were at least marginally directional in the frequency
range that was used. Large high-power loudspeakers broadcasting band-limited white noise
were used as sources. The power spectrum of the noise signal input into the loudspeakers
was 10 dB down at 100 and 5500 Hz. An array of eight microphones received the source
emissions in the far field, and their signals were recorded on a multichannel digital recorder.
The microphones consisted of Briiel and Kjer model 4145 1-in microphone cartridges,
model 2639 preamplifiers and model 2204 power supplies. The digital recorder was a Sony
PC-216. A sampling rate of 12 kHz was used for each channel. In addition to the array

microphone outputs, the outputs of an anemometer and of a microphone placed near one of
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the sources were also recorded for some experiments. Other environmental parameters were
also kept, such as temperature, humidity, and the condition of the ground. For each
experiment, there were multiple recordings, each with a different source configuration. Due
to the fact that there were only two loudspeakers available, no more than two sources could
operate at once. Table 3.1 summarizes the experiments, giving approximate conditions and
configurations. In general, the sources were located from 0.7 to 1.5 m above the ground

while the array was generally positioned 0.4 m above the ground.

Bldg.

North —» -

source locations
Tm . 7m

o«»o«—»ggzi“»o

105m

e==—==a array

Fig. 3.1: Layout of the experiments at the Monticello Road field site.
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There were three different arrays that were used in the experiments, referred to as
types 1, 3, and 4. Types 1 and 3 were 10-m-long eight-element arrays with minimal
redundancy and unit spacings of 0.4349 and 0.5 m, respectively. Array type 4 was also a
minimally redundant array, but with a unit spacing of 0.2125 m and a total length of 4.25 m.
All three arrays were complete in their spatial frequency coverage, meaning that their set of
spatial frequency samples had no gaps in the Nyquist sense. The three arrays are shown in

Fig. 3.2.

T T T
Array 1
© 0 0o o [} 4] [+} o
L L
0 1 2 3 4 5 6 7 8 9 10
T T T T T
Array 3
o o (o] (o] (o] o] [o] (o}
| 11 1
0 1 2 3 4 5 6 7 8 9 10
T T T
Array 4
o O [ o] [+] o o] o
13 I} 13 1 L I3 L 1L 1 L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Array position [m]

Fig. 3.2: The three arrays used in the experiments. For array 1 the base separation was
0.435 m and for arrays 3 and 4 it was 0.5 and 0.2125 m, respectively. Each array contains all
multiples of the unit separation from 1 to 20. Arrays 3 and 4 are simply scaled versions of
each other.
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Table 3.1: Summary of completed experiments

Experiment | Time Site Number Wind Speed Array | Weather Temp.
Date of and Direction Type and
Config- Used Dew pt.
urations

15SEP95 8-9am Bondville 1 10 mph, E 1 partly cloudy ! 60

230CT95 9-11am | Bondville 3 10-20 mph, SSE | 1 partly cloudy | 60

9FEB96 12-3pm | Bondville 12 5-10 mph, SW 1 mostly sunny | 56

17APR96 8-1lam | Bondville 12 10-15 mph, SE 1,3 mostly sunny | 42-54

05JUN96 10am- Monticello | 5 5-10 mph, SSE 3 mostly sunny | 70-75
1pm

16JUL96 8am- Monticello | 5 3-5 mph, WSW | 3 partly sunny, | 74-82
12pm humid

13AUG96 8am- Monticello | 12 0-3 mph, NW 3 mostly sunny, | 74-85
12pm humid

180CT96 1lam- Monticello | 3 10-20 mph, NW | 3 partly sunny | 74
2pm

06MAR97 9am- Monitcello | 2 15-25 mph, 3 Sunny 32
1pm WNW

04JUN97 {lam- Monticello | 6 15-25 mph, 4 mostly cloudy | 70
3pm ENE

18JUL97 10- Monticello | 3 0-5 mph, SW 4 mostly sunny | 85
1lam

24JUL97 4-5pm | Monticello | 3 0-5 mph, NE 4 mostly sunny | 85, 69

25JUL97 10- Monticello | 3 7-8 mph, S 4 mostly sunny | 79, 73
1lam

05AUG97 12-1pm | Monticello | 3 6-12 mph, NNE | 4 Sunny 73, 54

14AUG97 2-3pm | Monticello | 3 10-12 mph, SSE | 4 mostly cloudy | 79, 65

21AUG97 2-3pm | Monticello | 3 10-18 mph, NW | 4 partly sunny 70, 57

27AUG97 9-10am | Monticello | 3 1-5 mph, NW 4 heavy fog 72,74

03SEP97 11lam- Monticello | 3 8-15 mph, NE 4 mostly sunny | 63, 55
12pm

04SEP97 11lam- Monticello | 3 1-6 mph, NE 4 mostly sunny | 65, 55
12pm

300CT97 11lam- Monticello | 3 8-19 mph, S 4 mostly sunny | 50, 35
12pm

Significant ground impedance effects have been observed in some of the data
collected. The typical manifestation of this effect is the appearance of a significant amount
of excess attenuation in a band of frequencies centered at about 500 Hz. This effect is to be
expected with this type of measurement and is in agreement with similar measurements and
theoretical calculations in the literature [23]-[25]. Figure 3.3, taken from [23], shows the

predicted excess attenuation for various distances of propagation over grass for source and
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receiver heights of 1.8 and 1.5 m, respectively. Figure 3.4 shows typical spectra of the
transmitted and received signals for the experiments conducted for this thesis. The
corresponding overall excess attenuation, based on the spectra in Fig. 3.4, is shown in Fig.
3.5. Generally, close agreement was found between the measured excess attenuation and that
discussed in the literature. The presence of turbulence can significantly alter the amount of

excess attenuation for a given propagation situation [24].

EXCESE ATTEMUATION - dB

56 00 | 500 ® K
FREQUENCY - Hz

Fig. 3.3: Excess attenuation versus frequency and propagation distance for source and
receiver heights of 1.5 and 1.8 m, respectively. Taken from [23].
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Fig. 3.5: Excess attenuation computed from the spectra in Fig. 3.4 taking into account
geometrical spreading and atmospheric absorption.

3.2 Characterization of the Atmosphere

In this section, a basic review of atmospheric turbulence will be given followed by a
description of several atmospheric measurements that were made using the experimental data
described above. The measurements include the calculation of coherence loss, the
computation of wave structure functions, the extraction of turbulent strength and scale

lengths from coherence data, and the computation of the time-varying propagation transfer

function of the atmosphere.
3.2.1 A review of atmospheric turbulence theory

The atmosphere affects acoustic propagation in many ways. A discussion of some of
these mechanisms can be found in [23], [26]. Besides the basic mechanisms, such as

atmospheric absorption, the most destructive phenomenon for imaging is turbulence.
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Turbulent air motion is generated by differential heating and cooling of the Earth due
to the sun and the diurnal cycle. This generates large-scale inhomogeneities in the
temperature of the air, which are broken into smaller inhomogeneities by the wind. The wind
has complex motion and is generally random. Each of these randomly distributed
inhomogeneities contains air having a characteristic temperature. As the index of refraction
for sound is sensitive to temperature, we see that the atmosphere has a random index of
refraction. The statistics of the index of refraction in the atmosphere are of great interest.

It was Kolmogorov who came up with the first comprehensive theories about the
statistical nature of turbulence. Kolmogorov suggested that the large-scale inhomogeneities
are continually broken down into smaller and smaller eddies until the point where the
remaining kinetic energy is dissipated as heat [27]. According to this theory then, there is a
range of scale sizes present at any given time in the atmosphere. Kolmogorov further
suggested that the smaller-scale turbulent motions are homogeneous and isotropic. This gave
rise to an expression for the power spectral density of the variation in the index of refraction,

(O (f(") , where K is the spatial wavenumber vector with orthogonal components «,, K, and
x,. The power spectrum @, (%) can be considered a measure of the abundance of turbulent
eddies having scale sizes [, =27/x, , |, =27/« , and I, = 27r/x, . The spectrum is broken
down into three regions, demarcated by the outer and inner turbulence scales, L, and l,.
The shape and regions of the spectrum are shown in Fig. 3.6 and the characteristics of the
regions are discussed in [28]. Near the ground, the outer scale L, can be approximated as

being on the order of the height above the ground. The inner scale is on the order of a few
millimeters. The region containing scales larger than the outer scale (small x ) is called the
source or input range and is home to those large-scale eddies which break down according to
Kolmogorov’s theory. Turbulence in this region is not well understood and is generally
thought to be inhomogeneous and anisotropic. Unfortunately, it is the eddies in this regime
that most affect acoustic propagation and the imaging process [29]. The region between the
outer and inner scales is called the inertial subrange, and is the regime over which

Kolmogorov’s expression for @, (%) (and those of others) is valid. The turbulence in this

range is generally assumed to be homogeneous and isotropic. The inertial subrange is the
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most well understood. The region of very small scales (large ') is called the dissipation or
viscous subrange. It is in this region where the very small eddies are dissipated as heat
energy. For the inertial subrange, Kolmogorov theory predicts the following form for the
spectrum:

@, (%)=0.033C* (3.1)
where C?. is the structure constant of the index of refraction. The structure constant varies

with local meteorological conditions and with height. Several models have been proposed,
but a general consensus has not yet been met [30], [31]. For mathematical convenience, the
three regions are sometimes combined into one relation with the form

0.033C2 2 (3.2)

(K‘2 +x; )11/6

where &, =27/L, and x,, =5.92/l, . This form is often called the Von Karman spectrum

@, (%)=

[30]. It should be noted that even though Eq. (3.2) describes all three regions, its value in the
source region should be taken as only approximate as the turbulence there depends strongly
on local conditions. Similarly, the Kolmogorov spectrum in Eq. (3.1) should only be used

for the inertial subrange.

Dix)

Fig. 3.6: Diagram showing the general shape of the turbulence spectrum and the three
subranges. Taken from [31].
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It is the structure function of the fluctuating index of refraction that most clearly
shows the influences of turbulence on the performance of an imaging system. Let us assume
that the random index of refraction in the atmosphere can be broken down into the sum of the
mean index and a randomly fluctuating index as

n(F,t)=n,+n/(7,z) (3.3)
where 7 is the three-dimensional position vector and ¢ is time. The structure function of the

homogeneous index of refraction is defined to be

D,(7)=El(m(7)-n G +7) | 34
One can express D, (7) as a function of the power spectral density, @ (&), as
D,(F)=2[dkll-cos(& 7 )@, (%). (3.5)

If we further assume that the index of refraction fluctuations are isotropic, the structure

function then only depends on the scalar variable r = IF ' and one can write
D, ()= 2] dxe, (sfi - 2], (3.6)

For straight-line propagation through atmospheric turbulence over a distance r, the

log-amplitude and phase structure functions are commonly defined as

D(r.p)= El(x(r+ p)- 2()] 3.7)
and

Dy(r.p)=Ell¢(r+p)- ()} G8)
respectively, and where p is the separation along a plane perpendicular to the direction of
propagation, y is the log amplitude, and ¢ is the phase [32], [33]. The log-amplitude
fluctuations typically suffer from saturation, wherein they do not increase with propagation

distance beyond some characteristic distance [32]. The structure functions defined above can

also be written as
1D, (r.p)=Elz*]-B,(p) (39)
%D¢(r,p)=E[¢2]—B¢(p) (3.10)
where B, and B, are the covariances of the log-amplitude and phase fluctuations and where

the mean square log-amplitude and phase fluctuations are given by
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Ely’]= Elin(2 )] (3.11)

Elp*=Elp—0,7 | (3.12)
In the above expression A, A, ¢, and¢, are the amplitude and phase in the absence and

presence of turbulence, respectively. The wave structure function D(r, p) is defined as the

sum of the log amplitude and phase structure functions. The mutual coherence function,
defined to be the correlation function of the complex fields in a plane perpendicular to the
direction of propagation, can be written as a function of the wave structure function as

T(r, p)= e3207) = HoerD) (3.13)

Measurements of the mutual coherence function, and thus of the wave structure function,
were made using the data gathered in the experiments described in the last section. The

results will be discussed in the next section.
3.2.2 Coherence loss measurements

For all the datasets shown in Table 3.1, recordings were made with only one active
source. With these data, one can measure the mutual coherence function in the array plane.
These measurements can also be used to compute the wave structure function, which will be
discussed in the next section. A Guassian turbulence model can be fit to the coherence data
in order to extract turbulence strength and scale length parameters. This will be discussed in
Section 3.2.4.

The mutual coherence function, as shown in Eq. (3.13), can be computed from field
data recordings where only one source was active. The mutual coherence function is
constructed by measuring the visibilities on all baselines in the array. The magnitude of each
visibility is a sample of the mutual coherence function. In the absence of turbulence, the
wave impinging on the array should be perfectly coherent. However, with the addition of
turbulence, the wave suffers a loss of coherence that is an increasing function of the baseline
length. This coherence loss is important for the performance of an imaging system, as it
reduces the resolution possible [2], [32]. The turbulence, by introducing the coherence loss

on the longer baselines, essentially reduces the size of the array.
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Representative examples of measurements of the mutual coherence function are
shown in Fig. 3.7. The magnitude of the measured coherence as a function of sensor
separation and frequency is shown for the three average wind speed cases of 2.4 , 10, and 14
mph in (a), (b), and (c) respectively. The coherence measurements were made using seven
seconds of data over which the wind speed was relatively constant. As the wind speed
increases, and thus the strength of the turbulence increases, ones sees significant loss of
coherence at frequencies above a few hundred hertz. In Fig. 3.7(c) one sees little or no
coherence above 300 Hz. These measurements agree well with those in the literature [32]-
[34]. Figure 3.8 shows a comparison of the point source images that would result from the
measured coherence data in Fig. 3.7(a), (c) at 800 Hz. The images were normalized to have
unity peak power, and perfect phase measurements have been assumed. Note the slight
widening of the mean beam response and the significant rise in sidelobe response.
Aberrations in the measured phase would add additional distortion to the point source

response.

3.2.3 Computations of the wave structure function

In this section, a discussion is presented on the results computing the wave structure
function from coherence data like that discussed in the last section. The relationship between
the coherence function and the wave structure function is given by Eq. (3.13).
Representative results will be shown here. In Fig. 3.9, the computed wave structure
functions at 800 Hz are shown for the three data sets shown in Fig. 3.7. The magnitude of
the structure function increases with the wind speed, as one would expect. In the case of the
14-mph wind data, we are apparently seeing evidence of the outer scale, as the trace seems to
have leveled off at about the 1-m scale. The outer scale would occur at a separation larger
than those measured for the 10- and 2.4-mph cases. In Fig. 3.10, the wave structure
functions for the 10-mph wind data are plotted as a function of frequency. Here we see the
rollover associated with the outer scale in the 1.6- and 3.2-kHz traces. The computed
structure functions verify the assumption that the acoustic waves are strongly affected by

turbulent eddies in and near the outer scale.
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Fig. 3.7: Examples of coherence measurements. The magnitude of the computed coherence
(color coded according to the right of each example) is plotted versus sensor separation and
frequency. The average wind speeds are (a) 2.4, (b) 10, and (c) 14 mph.
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Fig. 3.8: Comparison of the resulting images based on the coherence measurements from
Fig. 3.7 (a) and (c¢). Perfect phase measurement is assumed and the images have been
normalized to have unity peak powers.
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Fig. 3.9: Wave structure functions at 800 Hz, computed from the coherence data shown in
Fig. 3.7 for average wind speeds of 2.4, 10, and 14 mph.
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Fig. 3.10: Wave structure functions for the 10-mph wind case shown as a function of
frequency.

3.2.4 Turbulence strength and scale parameter extraction

Using the coherence data mentioned in Section 3.2.2, turbulence strength and scale
parameters can be estimated by applying a Gaussian turbulence model. Following the
development in [32], the relatively simple theory of homogeneous and isotropic turbulence
will be used. A Gaussian distribution is assumed for the spectrum of eddie sizes in the
source or input subrange, since acoustic waves are most likely influenced by turbulent eddies
having sizes equal to or larger than the so-called outer scale. This model implies that the
fluctuating index is modeled as in Eq. (3.3). In this case, the spatial correlation of the

refractive index will have the Gaussian form
Bl 7 7 + p) = El 7 314
where L is a measure of the scale of the turbulence and p is as was defined in Section 3.2.1.

Using Egs. (3.9)-(3.13), along with the fact that for spherical waves
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B,(p) _B,(p) ¥(p/L) (3.15)
Ely’] Ep’]l p/L

one obtains the following form for the mutual coherence function:

T(r. p)= expl-7 El JerLt~[(o/ L)/ o/ L)) (316

where £ is the wave number, ris the propagation distance, and the function ¥ is given by

pIL

¥(p/L)= [ du. (3.17)
0

The shape of this Guassian spectrum is shown by the dotted line in Fig. 3.6. This model for
the mutual coherence function was fit to the two-dimensional (frequency and space)
measured coherence data discussed in Section 3.2.2. In order to account for the fact that the
coherence does not fall to zero, but rather falls to a nonzero asymptote, two extra parameters
were added to Eq. (3.17) to give

I'(r,p)= A +AT(r,p). (3.18)
The least-squares parameter fits for each data segment were calculated. The results are

shown in Figs. 3.11 and 3.12. The turbulence strength E[nf] is plotted in Fig. 3.11 as a

function of the average wind speed for each of the data segments. The general trend
displayed in Fig. 3.11 is that which one would expect, namely that the strength of the
turbulence increases with increasing wind speed. The characteristic scale lengths extracted
from the same coherence data, shown in Fig. 3.12, exhibit less organized behavior as a
function of wind speed than the strength parameter. This can also be expected as the
structure and size of eddies near the ground generally have a size on the order of the height
above the ground. One would expect a slight decrease in the size of the eddies with

increasing wind speed, and Fig. 3.12 does show a weak dependence.
3.2.5 Propagation transfer function calculations

Data collected with an additional microphone placed at the loudspeaker can be used
to compute estimates of the time-varying propagation transfer function through the

atmosphere using an adaptive filtering method. The method used is described in [35], but

will be summarized here.
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| as calculated by fitting a Gaussian turbulence model
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The sampled signals from the source microphone and a microphone in the array are
input to an adaptive filter which is arranged in what is known as a system identification
configuration. A good treatment of adaptive signal processing can be found in [36]. A block
diagram of the system can be found in Fig. 3.13. The output of the adaptive filter is
subtracted from the actual received signal to form the error signal. The error signal is fed
back to the adaptive filter and is used to control the adaptation process. Several different
adaptive filter algorithms were tested for this application, with the best results coming from
the data-reusing least mean squares (DR LMS) and the recursive least square (RLS) lattice
algorithms [37].

source signal Adaptive - error signal
A Rl ’
1lter l

received signal |

Fig. 3.13: Block diagram of the transfer function calculation system. The delay block A
accounts for most of the propagation delay.

At any time instant, the transfer function is modeled as a linear time-invariant system.
Accordingly, one must be aware of the limitations inherent to this type of representation,
such as the inability to account for Doppler effects. The length of the finite impulse response
(FIR) filter used will set the complexity of the transfer function that can be modeled.

The parameters of the adaptive algorithms should be chosen with care to ensure good
performance. The length of the FIR filter must be chosen long enough to adequately
represent the transfer function while not being so long as to lessen the ability of the adaptive
algorithm to adjust the coefficients fast enough to keep up with the changing propagation
conditions. A general guideline for choosing the maximum filter length is the fact that the

transfer function should remain essentially unchanged over the period of time equivalent to
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the length of the filter. The variability in the transfer function is related to the variability of
the propagation conditions. Various filter lengths were tried and good results were obtained
with 100 to 250 taps (using a 12-kHz sampling rate) depending on the specific propagation
conditions (wind speed, etc.). The adaptation constant # must also be chosen for good
performance. The value of u should be chosen according to guidelines used in the adaptive
filtering literature [36]. The A delay block shown in Fig. 3.13 should be used to account for
an expected minimum propagation delay. The adaptive filter can then account for the
variations in the delay. The variation in the delay will be a function of the propagation
distance and the wind speed fluctuations. Expected standard deviations of the propagation
delay suggest that the filter lengths mentioned above are adequate to account for the
variations [38].

A representative example of a computed transfer function is shown in Fig. 3.14. For
this example, the average wind speed was 0.5 m/s. The data-reusing LMS algorithm was
employed with a filter length of 250, a u value of 0.7, and a constant delay A of 3550
samples using a sampling rate of 12 kHz. The filter coefficients representing the transfer
function were averaged over intervals of 600 samples (1/20 s). Shown in Fig. 3.14 are the
magnitude and phase of the average transfer function over 1 s of data. Note that one would
expect 40 dB of attenuation due to geometrical spreading with the excess attenuation being
caused by interactions with turbulence and the ground. In order to get a sense of the
accuracy of the transfer functions computed using this method, it is illustrative to plot the
estimated power spectrum of the received signal along with the power spectrum of the error
signal. Just such a plot is shown in Fig. 3.15 for the same data that was used to compute Fig.
3.14. From Fig. 3.15 one sees that the model is accurate to about 2 kHz, and has marginal
accuracy in certain frequency bands above that.

One can also view the time evolution of the computed transfer functions. Figure 3.16
shows two examples of the time evolution of transfer functions over 1 s. The magnitude of
the transfer function is shown plotted as a function of frequency and time for average wind
speeds of 0.5 and 4.5 m/s. One can easily see that the evolution of the transfer function for
the low-wind-speed case is much more smooth than for the higher-wind-speed case where

the evolution appears random, especially at higher frequencies. If the rate of change in the
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transfer function becomes too great, the performance of this method may become poor. The
point at which the performance degrades will be a function of the complexity and the

coherence time of the transfer function.
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Fig. 3.14: The average transfer function found using the adaptive method over 1 s of data
having an average wind speed of 0.5 m/s. The magnitude (solid line) and phase (dashed line)
are shown.
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Fig. 3.15: Estimated power spectra of the received signal (solid line) and the error signal
(dashed line) over the same one second data segment used for Fig. 3.14.
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Fig. 3.16: Examples of the time evolution of computed transfer functions over 1 s of data
having (a) 0.5 m/s and (b) 4.5 m/s average wind speeds. Shown is the magnitude of the
transfer function as a function of time and the frequency range 200 to 2000 Hz.
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These computed transfer functions can be used to compute estimates of the coherence time
associated with the atmosphere. The coherence time associated with a process can be

defined as [39]

7, = [[Fe)fae (3.19)

—00

where I~"(T) is the normalized autocorrelation function of the process given by
I'(z)= I(r) : (3.20)

The coherence times found for computed transfer functions from data having various average
wind speeds are shown in Fig. 3.17. Figure 3.17(a) shows the coherence time computed at
400 Hz and (b) shows the coherence times found by averaging over a range of frequencies
from 200 to 2000 Hz. As one would expect, the coherence times drop with increasing wind
speed. Due to the finite time window used in these calculations, the coherence times shown
should be taken as being conservative estimates, meaning that they should generally be
higher than the actual values. Often, the coherence time has been found to be less than 0.25 s )
for moderate wind conditions.

From the measurements discussed in this chapter, one gets a good picture of the
medium through which we are attempting to image. Turbulence in the atmosphere, having
sizes on the order of the outer scale, distorts the propagating acoustic waves. This effect
becomes greater as the wind speed increases. The atmosphere causes significant and often
crippling coherence loss in the arriving acoustic wavefronts. Also, the atmosphere exhibits
coherence times that are often much less than 1 s. In the next chapter, a discussion of the
performance of acoustic imaging will be presented, including the effect of turbulence. The

discussion will focus on the classical narrowband imaging techniques.
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4. IMAGING PERFORMANCE

In this chapter, the performance of the imaging methods outlined in Chapter 2 will be
discussed. First the performance of narrowband imaging will be presented. This discussion
will include background on the effects of bandwidth, and the variance associated with the
visibility measurements in the absence of turbulence or other distortions. Then, a discussion
of the effect of turbulence on narrowband imaging will be given that will include the
variance in visibility measurements and in images as a function of wind speed. Examples of
multifrequency synthesis imaging will be presented. For wideband imaging, results from the
tomographic imaging formulation will be presented along with a short description of
performance issues. Lastly, results using the white noise imaging technique will be

presented.

4.1 Narrowband Imaging Performance

In this section, the performance issues for narrowband imaging will be discussed.
First a discussion of non-turbulence-related performance issues will be presented. Then, the
field data described in Chapter 3 will be used to characterize the effect of the atmosphere on

imaging performance. Finally, a short presentation of multifrequency imaging will be given.

4.1.1 Non-turbulence-related performance issues

Expressions for the variance or self-noise associated with the measurement of
visibilities in interferometric imaging were derived by Kulkarni [40]. He gives expressions
for the variances associated with the real and imaginary parts of the visibilities, and for the
covariances of the real and imaginary parts of the visibilities measured on the same baseline

and on different baselines. The derivations are quite complex, so only a summary discussion
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will be given here. Since the visibility is a complex valued measurement, we must be careful
how we calculate its variance. Kulkarni calculates the variance of the real and imaginary
parts as well as the pseudo-variance, which is a measure of the variance of the complex
quantity. The so called pseudo-variance for a visibility measured on a baseline composed of

sensorsm and n is given by

52 = S+NY @1

mn M

where S is the total flux of the source given by

s = Ely, (t)y, 0)], (4.2)

N is the power of any additive noise in the received signals, and M is the number of
independent samples related to the product of the bandwidth and the integration time. In Eq.
(4.2) we use the same definitions for the received signals as were used in Chapter 2. The

variance of the real and imaginary parts of the same visibility are given by

vl ]= ﬁ ((S +NY +|R,,[ cos(24,, )) (4.3)
V[r,;n]=—i—jlh—((S+N)2 ~|R,,[ cos(24,, )), (4.4)

where V is the variance operator and where IRmn] and ¢, are the magnitude and phase of the

expected value R, of the measured visibility 7. The superscripts i and r in Egs. (4.3)-

(4.4) denote the imaginary and real parts, respectively. In general, for the case of acoustic
imaging, we can ignore the additive noise term. The pseudo-covariance between visibilities
calculated on two different baselines, mrn and ab, is given by

b = 2 @5)

M

This expression holds even when there is a common sensor between the two baselines. From
the above equations, we see that the pseudo-variance of the visibility measurements is
independent of the particular baseline and of the structure of the source. However, the
pseudo-covariance of two visibilities is highly dependent upon the source structure. Also,
the variance of the real and imaginary parts of a visibility are dependent upon the source

structure. With all the expressions we see that the variance falls as one over the number of
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independent samples, which is an expected result. This also means that the variance falls
with increasing bandwidth and/or with increasing integration time. This variance, which is
due only to the fact that the visibility measurements are made using a finite bandwidth and
integration time, can be significant in acoustic imaging. For example, for a typical
bandwidth of 100 Hz, an integration time of 0.1 s, and a sampling rate of 12 kHz, there are
only about 10 independent samples that make up the visibility estimate. By comparison, in
radio astronomy, a typical bandwidth is 50 MHz, meaning that radio astronomers have about
500 000 times more independent samples in their visibility estimates.

At this point, the method used to compute visibilities from sensor time-series data
should be presented. There are several available methods to compute the complex
correlation between two signals [8], [41]. The method that was found to most closely
approach the theoretical variance discussed above is the complex or quadrature correlator.
The theory of sampling a band-pass signal is applied and is discussed in [42]. A block
diagram of the correlator is shown in Fig. 4.1. First, the band-pass filter is applied to both of
the signals, which are assumed to be real and sampled according to the Nyquist criterion.

Then, each signal is split and is multiplied by sin(27 £,¢) and cos(27 f,¢) on each respective

leg to form the quadrature representation of the signals. Each of these signals is then low-
pass filtered to remove spectral copies and then downsampled by a factor related to the
spectral width of the initial band-pass filter. The downsampling rate is approximately given
by the ratio of the sampling rate to the bandwidth. Each pair of quadrature legs is summed
to form a single complex signal for each original band-pass signal. The complex visibility is

then found via the summation operation
M
7p(0)= X vi(k)v; (k) (4.6)
k=1

where M is the block length corresponding to the desired integration time period. The
variance of visibilities calculated using this scheme come within 10% of the theoretical levels

given by Kulkarni.
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Fig. 4.1 Block diagram of the method used to compute complex visibilities from discrete-
time samples of sensor outputs.

Presented in Fig. 4.2 are calculations of the variance of the complex visibilities as a
function of integration time. These data were generated by creating synthetic sensor signals
assuming that two point sources exist, one at each of the locations most used in the field
experiments. This signal configuration is used here to allow for easy comparisons with
similar results using the field data to be discussion in the next section. The visibilities were
computed from synthetic sensor data using the quadrature method discussed above. The
variance is shown normalized by the square of the total flux which is defined in Eq. (4.2).
Once again, this is done to allow easy comparison to the variance values computed from the
field data. The variance drops as the square of the integration time, as one would expect
[43].

Another important performance issue is the variance of the intensity map associated
with the visibilities. In Fig. 4.3, the average of the signal-fo-noise ratios (SNRs) at each

point source location and the overall image SNRs are shown as functions of the integration



time. The SNR is the ratio of the image intensity to the standard deviation of the intensity
variations. As expected, the SNR values increase as the square root of the integration time.
The difference between the two SNR measures can be explained by the fact that the
expressions for the variance of the visibilities are highly dependent on the particular sensors
involved in each baseline, which in turn causes the variance in the resulting image to be
angle dependent. Note that the SNR at each point source would decrease if more sources
were added. In Fig. 4.4, the mean image calculated from the synthetic data is plotted with

the standard deviations associated with integration times of 0.1 and 3 s.
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Fig. 4.2: Normalized visibility variance as a function of integration time. The variance is
normalized by the square of the average power or total flux.
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In the discussion above we saw that the variance of the visibility measurements falls
with increasing bandwidth. We now discuss the effect of increasing bandwidth on the
accuracy of the measured visibilities. In the derivation of the Van Cittert-Zernike theorem in
Chapter 2, we saw that a relationship between the source coherence function and the output

of the correlator can be given by

fotlf )s
r. ()= J'df J‘dé:f‘(f,f)iH(er"ﬂ”f( 2t jonpe %)

fobf o

If we now assume that the bandwidth Af is finite and that the filter response and the source

do not change appreciably over the bandwidth, we can perform the integral over frequency to

obtain

Dmnfoy

1 (0)= B [F(E, £, )sinc(Za £)e22¢ (48)

where 8 is a constant made up of the value of the filter over the bandwidth multiplied by the

bandwidth value itself. The sinc function is defined as sin(x)/ x . The difference between
Eq. (2.22), which is the Van Cittert-Zernike theorem, and Eq. (4.8), is the addition of the sinc
function in the integrand. This sinc function serves to degrade the accuracy of the visibility
measurement by applying an attenuating window to the intensity distribution of the source.
This attenuating sinc window is a function of the baseline length and the bandwidth. The
attenuation mainly affects the intensity distribution at large angles, and is more severe for
longer baseline lengths. Figure 4.5 illustrates this effect. Shown in Fig. 4.5 is the attenuation
in image power as a function of angle and bandwidth. This shows that the bandwidth should
be kept at about 100 Hz or less, unless one is sure that the source distribution is concentrated
mainly in the center of the view. All relationships given in Figs. 4.2-4.5 were made using a
center frequency of 800 Hz. Nearly identical results are obtained at other frequencies. Some
small differences will result from inaccuracies in the design of bandpass filters for some
frequencies.

Two other important aspects of the performance of narrowband acoustic imaging are
the resolution and maximum view angle. The resolution is a function of the ratio of the
operating wavelength to the size of the array. Figure 4.6 shows the relationship between the

half-power beamwidth, which is being used as a measure of the resolution, and the ratio of
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the wavelength to the size of the array. For most cases discussed in this thesis, the typical
operating point would be where the ratio is approximately in the range from 0.08 to 0.2. The
maximum view angle is a function of the ratio of the operating wavelength to the length of
the shortest baseline in the array. This relationship is shown in Fig. 4.7. One must be aware
that if the maximum view angle is less than a full 180°, source components outside the
maximum view angle will cause alaising. The range of ratios generally used in the work in

this thesis is from 1.6 to 4.1.
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Fig. 4.5: Attenuation in image power versus angle and bandwidth. As the bandwidth is
increased, the attenuation becomes significant, especially at larger angles. Larger
bandwidths can be used only with centrally grouped source distributions.
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4.1.2 The effect of the atmosphere

In this section, data compiled relating to the effects of the atmosphere on narrowband
imaging will be presented. The variance of the measured visibilities will be given as a
function of average wind speed. The SNR of the resulting intensity maps will also be
presented as a function of the average wind speed. In both cases, the results will be
compared to the results for atmospheric-distortion-free synthetic data given in the previous
section. Several example images will be presented as well.

A total of 36 segments from the field experiment data were identified that have
relatively constant wind speeds over their durations. The segments vary in length from 4 to
28.8 s. These segments have been used to compute imaging statistics such as the variance of
the visibility measurements and image variations, as a function of the average wind speed.
All the data presented in this section were prepared using an integration time of 0.1 s. This
short time was chosen to ensure that the assumption that the atmosphere is essentially
unchanged during the integration period is valid. This will be important for the maximum
likelihood methods described in Chapter 5.

First, a measure of the amount of distortion present in the images produced from each
segment was calculated. This distortion measure is based upon the total squared error
existing between the images produced over the segment and a theoretical image produced
with knowledge of the positions of the two sources and their relative strengths. The
theoretical image is scaled according to the average power in the measured images and is
translated in angle to best match the measured images. The translation accounts for any
small tilt that may have been present in the setup of the array during each experiment. The
distortion measure is also normalized to the length of the particular segment and to the
average image power in the segment to ensure that those factors do not influence the
distortion measure. Figure 4.8 shows this distortion measure as a function of the average
wind speed for images made at both 800 and 400 Hz. One notices that for both frequencies,
the distortion in the images increases with increasing wind speed. This is as one would
expect, due to the fact that the strength of the turbulence increases with increasing wind

speed as illustrated in Section 3.2.4. Also, we see that the distortion in the 400-Hz images is
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less than for the 800-Hz images. This is in general agreement with the results of Section
3.2.2, where the structure functions implied that the turbulence has less effect at lower
frequencies.

Next, the variance associated with the visibility measurements was calculated as a
function of wind speed from the same set of data segments. The visibility variances for both
800 and 400 Hz are given in Fig. 4.9, where the variance is shown normalized to the square
of the average power, as in the theoretical variance computations shown in Fig. 4.2. Once
again we see the general trend of increasing variance with increasing wind speed. Like the
trend exhibited in the distortion measure, we see that the 400-Hz variances are smaller than
those at 800 Hz. When one compares the variances computed here with those shown in Fig.
4.2, it is clear that the atmosphere has a profound effect on the measurement of visibilities.
The variance is increased over the theoretical value by a factor ranging from about 1.5 to 7.5

times for 400 Hz and from 3.5 to nearly 12 times for 800 Hz.
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Fig. 4.8: A measure of the distortion present in the images as a function of average wind
speed. The results for both 800- and 400-Hz images are shown.
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Fig. 4.9 Normalized visibility variance as a function of average wind speed. The visibility
variance is normalized by the square of the power for each data segment. The results
presented here can be compared the theoretical results presented in Fig. 4.2.

As was done in Section 4.1.1 for the theoretical case, the SNR of the total image, and
that associated with the point sources only, has been computed. The results are shown in
Figs. 4.10 and 4.11. Figure 4.10 presents the total image SNR as a function of average wind
speed for 800- and 400-Hz images. Here we see that the SNR decreases with increasing
wind speed, as one would expect. In Fig. 4.11, the average SNR at the point source locations
for 800- and 400-Hz images are plotted as a function of average wind speed. The SNR
values shown in Figs. 4.10 and 4.11 are significantly lower than the theoretical values shown
in Fig. 4.3. In many cases, especially at higher wind speeds, one is operating in the sub-unity
SNR regime. Based on the results shown here, it can be reasonably stated that creating good

images in the presence of even moderate wind is nearly impossible.
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Fig. 4.10: Total image SNR as a function of average wind speed for 800 and 400 Hz.
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An instructive way of viewing the variation in a series of images is to plot the images
in cascade fashion as a function of time. Examples of these time-series images are shown in
Figs. 4.12-4.14. A total of 7 s of data are shown in each example. Figure 4.12 shows two
examples of time-series images at 800 and 400 Hz that correspond to an average wind speed
of about 0.1 mph. For reference, the distortion measures for these two examples are 1.2 for
800 Hz, and 0.82 for 400 Hz. Figures 4.13 and 4.14 show examples where the wind speed is
6.4 and 17.6 mph, respectively. The distortion measures for these examples are 4.45, 0.53,
11.98, and 2.46, for Fig. 4.13(a)-(b) and Fig. 4.14(a)-(b), respectively. Itis easy to view the
random effects of the atmosphere with this type of picture. Following the trend seen in the
rest of this section, the amount of distortion visible in the time-series images increases with
increasing wind speed and frequency. At 17.6 mph, the 800-Hz image series amounts to
little more than random noise.

To see the associated standard deviation of each of the example image series
presented in Figs. 4.12-4.14, the plots in Figs. 4.15-4.17 were made in which the mean image
over the entire 7 s of data and the corresponding standard deviation of the intensity are
shown. Note that the intensity of each point source at each different wind speed and each
different frequency is different. Those intensity ratios are listed in the figure captions. The
standard deviation of the intensity overtakes the values of the mean intensity for the 800-Hz
examples starting with the 6.4-mph wind speed, but not until the 17.6-mph speed for the 400-
Hz examples. We see that relatively accurate images, in terms of the point source locations
and relative intensities, are formed for the low-wind-speed case shown in Fig. 4.15.
However, for the higher wind speeds shown in Figs. 4.16 and 4.17, the images do not
generally portray the true physical situation. This is especially true at the highest wind
speed, where the image at 800 Hz is extremely poor. It seems that in general, integration
over 7 s is not long enough to produce accurate images in the atmosphere in conditions other
than the most ideal. This also suggests that the atmosphere has a significant, large-scale,
long-term effect on imaging. The effects of these very large-scale inhomogeneities have
been found by others to be on the order of tens of seconds to minutes [44]. As an example,

this effect can be seen in Fig. 4.14(a) where the left point source seems to essentially
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disappear for several seconds and then reappear. This behavior is common to much of the

data that were collected from the field experiments.
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Fig. 4.12: Examples of time-series images for a low wind speed case for (a) 800 Hz and (b)

400 Hz. The wind speed was 0.1 mph. The distortion measure is 1.20 at 800 Hz and 0.28 at
400 Hz. The intensity is given by the color as indicated on the bar on the right. The images

are composed of 70 0.1-s images. The CLEAN algorithm was applied to the images.
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Fig. 4.13: Examples of time-series images for a medium wind speed case for (a) 800 Hz and
(b) 400 Hz. The wind speed was 6.4 mph. The distortion measure is 4.45 at 800 Hz and 0.53
at 400 Hz. The intensity is given by the color as indicated on the bar on the right. The
images are composed of 70 0.1-s images. The CLEAN algorithm was applied to the images.
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Fig. 4.14: Examples of time-series images for a medium wind speed case for (a) 800 Hz and
(b) 400 Hz. The wind speed was 17.6 mph. The distortion measure is 11.98 at 800 Hz and
2.46 at 400 Hz. The intensity is given by the color as indicated on the bar on the right. The
images are composed of 70 0.1-s images. The CLEAN algorithm was applied to the images.
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Fig. 4.15: The mean image (solid line) of the time-series data presented in Fig. 4.12 for (a)
800 Hz and (b) 400 Hz. The computed standard deviation of the intensity is shown with a
dotted line. The relative intensities of the two point sources (ratio of left point source to the
right point source) are (a) 1.32 and (b) 0.82. The CLEAN algorithm was applied to the
images.
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The mean image (solid line) of the time-series data presented in Fig. 4.13 for (a)

Fig. 4.16

800 Hz and (b) 400 Hz. The computed standard deviation of the intensity is shown with a

dotted line. The relative intensities of the two point sources (ratio of left point source to the
right point source) are (a) 4.14 and (b) 1.15. The CLEAN algorithm was applied to the

images.
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The mean image (solid line) of the time-series data presented in Fig. 4.14 for (a)

Fig. 4.17

800 Hz and (b) 400 Hz. The computed standard deviation of the intensity is shown with a

dotted line. The relative intensities of the two point sources (ratio of left point source to the
right point source) are (a) 0.52 and (b) 2.23. The CLEAN algorithm was applied to the

images.
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4.1.3 Multifrequency synthesis results

In Chapter 2, the theory related to the multifrequency imaging technique was
presented. In this section, some results of using this method, and its general applicability to
acoustic imaging, will be discussed.

First some comments on the how the technique was implemented. The process of
computing the multifrequency image begins with the computation of the wideband
correlation function for each baseline in the array. The Fourier transform of each correlation
function is then taken. Each point in the resulting FFTs is a measurement of the complex
visibility at that particular frequency. By using the notion of space-frequency equivalency
mentioned during the theoretical development in Chapter 2, each measurement falling within
a preselected band of frequencies can be placed into a single vector representing the Fourier
transform of the source intensity distribution. This is done by creating a vector that contains
all spatial frequencies from the dc term, up to a maximum value given by

fmax Dmax (49)
c

Unax =

where f_, is the maximum frequency to be used and D___ is the maximum baseline length of

the array. Measurements that might fall into the same spatial frequency bin are averaged.
Once this Fourier transform vector is filled with all the included measurements, the inverse
Fourier transform is applied to obtain the intensity image.

As one adds more frequencies into the process, the effect on the resulting image is
similar to that of increasing the integration time for the standard narrowband imaging
process. Figure 4.18 shows the mean image obtained using synthetic data, like that described
earlier, along with the associated standard deviation. This illustrates the fact that the SNR at
the point source locations drops as the square root of thé number of frequencies used. Also,
as the maximum frequency is raised, the resolution obtained in the image is increased
because the effective size of the array increases with increasing frequency. These seem like
good properties; however, in practice there is little or no apparent advantage in using the
multifrequency techniques on real acoustic imaging problems. The main problem is that the

assumption of little or no change in the intensity of the source distribution over the band of
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frequencies used in the process, does not generally hold. The method was applied to field
data, but there was little success in significantly improving the image over using the standard
narrowband quadrature method described in Section 4.1.1. In fact, often the image was much
worse using multifrequency synthesis, most likely due to significant changes in the intensity
as a function of frequency made even worse by the distorting atmosphere. A typical example
of the best relative performance observed on field data is shown in Fig. 4.19. In this example
a 0.5-s field data segment was used to produce both a standard 400-Hz narrowband image
using the quadrature method, and an image using the multifrequency technique in which six
frequencies in a band extending from 300 to 500 Hz were used. For these particular data, the
ratio of the intensity of the left point source to that of the right should be approximately 0.6.
The multifrequency image does improve on the accuracy of the relative intensity by a small

amount.
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Fig. 4.18: The relationship between the mean image computed using the multi-frequency
technique, and the associated standard deviations for the cases where one, three, or six
frequencies are used. The maximum frequency span is 12 % of 800 Hz. Synthetic data was
used.
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Fig. 4.19: A typical example comparing the standard narrowband quadrature image (solid
line) to an image produced using the multifrequency technique. Both images were made
with center frequency 400 Hz. The multifrequency process used six frequencies in the range
from 300 to 500 Hz. The L/R intensity ratio for these data should be approximately 0.6.

4.2 Wideband Imaging Performance

In this section some results and performance issues related to the wideband imaging
techniques discussed in Section 2.2.1 will be presented. First, the method of producing
images of the power spectrum of the source distribution as a function of angle using a
tomographic formulation will be discussed. Results using two different tomographic solution
methods, direct Fourier inversion, and algebraic reconstruction, will be presented. Then,

results of the white noise imaging technique outlined in Section 2.2.2 will be shown.
4.2.1 Power spectrum imaging using tomographic solution methods
In Section 2.2.1, Eq. (2.37) gives the relationship between the source coherence

function and the array coherence function. As previously stated, this relationship is identical

to that associated with a standard parallel beam tomography problem. Instead of using x-rays
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and solving for the density of tissue inside a person’s head, we can use the same solution
methods to solve for the two-dimensional (2-D) source coherence function. Two methods
will be discussed here. The first method is direct Fourier inversion based on the projection-
slice theorem. The second is an algorithm that is a member of the general class of algebraic
reconstruction techniques.

As discussed in Section 2.2.1, the projection-slice theorem states that the 1-D Fourier
transform (FT) of the projections, which in this case are the cross-correlation functions of
each baseline, are equal to radial slices of the 2-D FT of the unknown source coherence
function at the same angles from which the projections were made. The angle of the
projection in this case is proportional to the baseline length. One must be sure to also include
the complementary projections corresponding to negative baseline lengths. The correlation
functions for these projections are simply the delay-reversals of those for the positive angles.
The 2-D Fourier transform of the source coherence function can thus be constructed by
proper combination of the 1-D FTs of the cross-correlation functions. Since the 1-D Fourier
transforms are aligned radially within the 2-D FT, a re-gridding to Cartesian coordinates is
necessary in order to apply the standard 2-D inverse fast Fourier transform (FFT) to recover
the source coherence function. A cubic interpolation routine called griddata, which is native
to MATLAB, was used for this purpose [45]. One must be concerned with the possibility of
aliasing when applying this reconstruction technique. As mentioned in Section 2.2.1, a
relationship exists between the maximum frequency present in the image and the maximum
angle that can be viewed in the image (see Fig. 4.7). Thus, in order to avoid alaising in the
final image, we must filter in both the frequency and spatial domains. Filtering in the
frequency domain is straightforward. A filter is applied to the sensor data before correlation,
or a window function is applied to the FT of the correlations. Spatial domain filtering
consists of applying a window to the cross-correlation functions. The width of the window,

in terms of correlation lag, is related to the maximum view angle by the simple relationship

T Db (4.10)

c

where 7, is the magnitude of the maximum delay corresponding to the maximum view

angle £, . Note that the maximum delay is a function of the baseline length D.
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Computer code to compute these images was written in MATLAB. The code allows
for arbitrary grid sizes to be used in the reconstruction, with cubic interpolation used to fill
the 2-D FT grid using the radial 1-D FT information. Figure 4.20 shows an example image
computed from synthetic data. This image was found by taking the 1-D FT along the
autocorrelation lag direction in the 2-D reconstructed source coherence function. The
synthetic data used were composed of four point sources. There is a low-pass source
extending to 1500 Hz at 15°, a 1000-1500 Hz bandpass source at 5°, a 500-1000 Hz bandpass
at -10°, and a low-pass source extending to 500 Hz at 20°. All four sources are clearly
visible, along with some artifacts of the reconstruction. These artifacts are a result of issues
such as imperfect spatial filtering and limited temporal resolution. The arching ridges are the
effect of aliasing from imperfect filtering. Note that the resolution is a function of frequency,
as one would expect. Due to this fact, the power spectrum level appears to fall at low
frequencies as the energy is spread out. This is a predictable effect and can be removed.
Shown in Fig. 4.21 is the 2-D coherence function, which shows the autocorrelation of the

source as a function of angle.

1500

Power spectrum level

Angular position [deg]
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00 500 1000 1500

Frequency [Hz]

Fig. 4.20: Example result of an image of the power spectrum versus angle using the direct
Fourier inversion technique. The arbitrary power spectrum level is given by the color scale
at the right. One second of synthetic data was used. Four sources exist: -20° with frequency
band 0-500 Hz, -10° with 500-1000 Hz, 5° with 1000-1500 Hz, and 15° with 0-1500 Hz.
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Fig. 4.21: The coherence function of the source as a function of angle from which Fig. 4.20
was computed. The arbitrary autocorrelation level is given by the color scale at the right.

The second technique to be discussed for recovering the 2-D source coherence
function is a method called SIRT, or simultaneous iterative reconstruction technique [20],
[46]. SIRT is a member of the algebraic reconstruction (ART) family of tomography
methods. The general problem formulation is the same for all ART methods. The unknown
object, in this case the source coherence function, is pixelated. Then, a large set of linear
equations can be constructed by summing the contribution of each pixel to each point in each
projection or cross-correlation function. The resulting set of linear equations can be very
large, usually having several thousand equations and unknown pixels. The SIRT method is a
simultaneous updating iterative solution method that produced good results when applied to
the imaging problem at hand. The problem was generally set up by pixelating the source
coherence function to form an unknown matrix of size 137 x 90 where the autocorrelation lag

dimension received the greater number of pixels. This produces a total number of unknowns
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equal to 12 330. A total of 12 341 measurements are available in the problem. This number
of measurements is a function of the sampling rate used in the sensor data and the number of
unique baseline lengths in the array. The number of baselines is related to the number of
projections, or cross-correlation functions, and the sampling rate gives the number of relevant
points in each projection. The cross-correlation functions for baselines having the same
length are averaged for use. The very large matrix (12 330 x 12 341) of weights is computed
ahead of time by determining, for each projection point, which pixels of the unknown
function are involved. In this case, the width of the projection ray was taken into account,
and the partial contributions of all pixels were computed. Because of memory constraints,
this large matrix was compressed and stored in a multidimensional array for use in the
iterative reconstruction algorithm. Figure 4.22 shows an example of the results obtained
using the SIRT algorithm. Generally, about 100-200 iterations are required for convergence.
Figure 4.22 shows the result of using the SIRT algorithm on the same data that was used to
compute the image in Fig. 4.20 using the direct Fourier inversion technique. The image in
Fig. 4.22 exhibits greater definition of the sources. For example, the low-pass source is
much more visible. Artifacts similar to those found in Fig. 4.20 can be seen in Fig. 4.22 as
well. Figure 4.23 shows the corresponding source autocorrelation function for the SIRT
result. The autocorrelation structure is more visible here than in Fig. 4.21. The SIRT
algorithm requires much greater computational requirement and execution time, but seems to
produce higher quality images. Results using any of the vast number of available
tomographic reconstruction algorithms may indeed offer performance that matches or
exceeds that shown here. The aim here was to show two representative results. Figure 4.24
is an example of the SIRT solution method as applied to a segment of field data. The image
shown here represents what should be considered a good result from field data. The wind

speed for this data segment was 5.5 mph. Two seconds of data were used.
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Fig. 4.22: Example result of an image of the power spectrum versus angle using the algebraic
reconstruction technique, SIRT. The arbitrary power spectrum level is given by the color
scale at the right. One second of synthetic data was used. Four sources exist: -20° with
frequency band 0-500 Hz, -10° with 500-1000 Hz, 5° with 1000-1500 Hz, and 15° with O-
1500 Hz.
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Fig. 4.23: The coherence function of the source as a function of angle from which Fig. 4.22
was computed. The arbitrary autocorrelation level is given by the color scale at the right.
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Fig. 4.24: An example of a result from field data with wind speed equal to 5.5 mph. The
arbitrary power spectrum level is given by the color scale at the right. Two seconds of data
were used.

It should be mentioned at this point that one can produce images like those shown in
this section by simply combining several narrowband images computed at different
frequencies. An example result of this process is shown in Fig. 4.25. One must be careful to
scale each image properly to account for the change in scale due to frequency. There should
be an equivalence between the tomographic and piecemeal methods of producing 2-D
images. That equivalence is not derived here, but it should be noted that any such
equivalence may be destroyed when the distortion of the atmosphere is brought into the
picture. This is due to induced distortions that are a function of frequency and position. The
piecemeal images, like that shown in Fig. 4.25, are generally of superior quality, with fewer
artifacts, than the tomographic-based results. The CLEAN algorithm can be applied to each
narrowband image to further increase image quality. With some modifications in procedure,

this can also be said for the tomographic case.
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Fig. 4.25: An example result of an power spectrum image constructed from several

narrowband images. The same synthetic data that was used to compute Figs. 4.20 and 4.21
was used here.

4.2.2 White noise imaging results

In Section 2.2.2, a method of producing images of source distributions that are
composed of white noise elements was developed. The technique involves arranging wide-
band cross-correlation measurements into a map of the intensity of the source distribution.
For the many cases where multiple measurements correspond to the same point in the image,
an optimal method of combining those measurements was derived based on linear estimation
theory. Figure 4.26 shows a typical result of this method where synthetic data is used. The
data contained five white noise point sources with varying intensities. The intensities were 1
at -20° 0.5 at —15°, 2 at -5°, 1 at 8°, and 0.25 at 18°. The improvement in the image afforded

by the optimal combination method is generally minor. Under certain conditions, the
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improvement is more noticeable. Once such case is when there are sources located at

opposite angles, such as +20°, for example.

Angular position [deg]

Ausuai)

Fig. 4.26: An example image from the white noise imaging technique. The synthetic data

used contain five white noise point sources.
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5. IMAGE ENHANCEMENT

We have seen in the preceding chapters that the atmosphere causes severe distortion
in the signals received at an array of sensors, which results in errors in the measurements of
the visibilities and subsequently in the images formed from those visibilities. In this chapter,
methods for enhancing the quality and accuracy of acoustic images made through the
atmosphere will be discussed. We will start with a discussion of the widely used and
successful family of methods from the radio astronomy community called self-calibration.
Evidence will be presented that shows that these techniques, which revolve around the
concept of phase closure, cannot be applied to the acoustic imaging problem at hand. Next,
an estimation problem based on multiple short-integration-period images, or snapshots, will
be presented. Bounds will be derived for this problem and their implications discussed.

Initial attempts at recovering solutions to the problem will also be presented.

5.1 Self-Calibration and Its Application to Acoustic Coherence Imaging
This section will present the concept of phase closure and the self-calibration family

of methods that have been developed around it. These methods aim to enhance imaging

performance in the presence of atmospheric distortions. Also, the application of these

methods to the acoustic imaging problem at hand will be discussed.

5.1.1 Phase closure and self-calibration

Let us consider the following relationship between the visibility V; (¢) as measured

by sensors j and k and the corresponding actual visibility V,, (2):
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Vj;c (t) = Gj(t)Gl:(t)ij (t)+£jk (t) G.1)
In Eq. (5.1), €, (¢) is the system noise contribution, and the complex gain factors
G,(t) and G, () are lumped parameters that represent the effects of propagation and the
instrumentation chain for each sensor. The time dependence of Vi (¢) can be dropped if the

measuring array does not move relative to the source. If we consider three array elements i,
J» and k, ignore the noise term, and look at the phase part of Eq. (5.1), we find that
W, () = 2V () + 2V, (6) + 2V(1) = 2V, (1) + 2V, (6) + £V, (2) (5.2)

because the phase of the gain factor of each sensor cancels out in the sum. Thus the sum of
measured visibility phases around a triad of sensors yields a measurement that is independent

of phase errors. This relationship was first noted by Jennison [47] and W, is called the

closure phase after Rogers et al. [48]. In fact, closure phases can be formed for any closed
polygon of sensors. In a similar manner, an amplitude closure relation can be constructed

around a quartet of sensors

V(1)
Vi (o)

where the magnitudes of the gain factors all cancel [49]. The important underlying

Ve W, 0]
vile) Ve, 0)

(5.3)

assumption at work here is that the atmospheric phase shifts at each sensor must remain
constant over the angular extent of the source. This implies that the phase distorting
medium, or screen, is located in very close proximity to the array. This assumption holds in
many cases in radio astronomy where the field of view is small and the atmospheric effects
are indeed located relatively close to the array--relatively in regard to the very distant
sources. The implications of this assumption on the applicability of phase closure to acoustic
imaging will be discussed in the next section.

For a nonredundant array of N sensors, there are ¥2(N-1)(N-2) independent closure
phases available and ¥2N(N-3) closure amplitudes. The number of real numbers that are
needed to completely describe all the complex visibilities that are measurable with the array

is N(N-1). Thus, the closure quantities cannot completely specify all the information needed.
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With clever array design using redundancy, it is possible to determine all the complex
visibilities to within an overall linear phase shift [50]. The measured visibility amplitudes
can sometimes be used directly because they are often less affected by the atmosphere than
the phases. Using that fact and array redundancy, one can recover all the potential
information the array has to offer. This is especially true as the number of array elements
grows. A number of related methods have been developed to accomplish this. They are all
based on the closure relation. Some of these will be discussed next.

The closure relation defined above can be used to reconstruct maps which tend to be
closer to the actual brightness of the source. One such method, called hybrid mapping, was
first developed by Readhead and Wilkinson in 1978 [51], with numerous modifications
following. In this class of procedure, a model map is iteratively refined using the closure

relations following a scheme such as the following:

1. Decide upon an initial model.

2. Form a complete set of independent closure equations. Add to those a sufficient
number of visibilities derived from the model such that the total number of
relations equals the number of sensor spacings.

3. Solve these equations for the visibility corresponding to each baseline. Make a
map using this data.

4. Apply the CLEAN algorithm (without using the residual) and use the resulting
map as the new model map.

5. Test for convergence and repeat steps (2)-(4) as necessary.

When closure phases are used one loses the absolute position of the source, and when
amplitude closure is applied, only relative brightness can be discerned. However, it is a
relatively easy task to establish a brightness calibration, and often the visibility amplitude
' measurements are good enough to use without closure.
Closely related to hybrid mapping is the family of methods called self-calibration
[52], [53]. The main thrust of self-calibration is to bypass the closure relations and let the
complex gain factors of Eq. (5.1) be free parameters in a gradient optimization procedure.
The optimization is carried out such that the weighted difference between the measured
visibilities and model visibilities corrected by the gain factors is as small as possible.

Usually, the squares of the residuals
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C=22W,

t <k

V() -G, ()G (1), (1) 54

‘2

is minimized, subject to £G, (t) = 0 for some reference sensor and where Wi are weights

that are related to the inverse of the variance of the noise. The method can be summarized as

follows:
1. Begin with an initial model as in hybrid mapping.
2. Find the visibilities at the observed sample points.
3. Solve for the complex gain factors by minimizing C using a gradient algorithm.
4. Correct the observed visibilities according to

V(1) = GTl(t)G,f"l(t)Vj;c (¢)

J
5. Form a new model from Vj using CLEAN.
6. Test for convergence and repeat steps (2)-(5) as needed.

Despite the fact that these two methods seem unfounded, they have been successfully and

extensively used in the radio astronomy community.
5.1.2 Applicability of phase closure to acoustic imaging

The phase closure based methods described in the last section have been used very
successfully in the radio astronomy community for decades. Unfortunately, in most cases it
seems that the concept of phase closure cannot be applied to acoustic imaging through the
atmosphere. There are two basic reasons why phase closure will not apply to acoustic
imaging.

First, the assumption that the atmospheric phase distortions are constant across the
angular extent of the source is violated. The extent of sources common in acoustic imaging
may be very wide. The field data collected for this thesis include two point sources separated
by about 12°, and there can easily be situations where larger angles will need to be imaged.
Additionally, the distorting atmosphere is present over the entire propagation path. It is
therefore inconceivable that the distortion effects would be independent of the position on the
source. Evidence of this fact can be seen in Fig. 5.1, where the phase responses of transfer
functions calculated using the method described in Section 3.2.5 are shown for three different

sensors in the array. The phase has been compensated for geometrical delays and is shown
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unwrapped for ease of viewing. For the two sensors located 0.22 m apart, their phase angles
match relatively closely, with errors usually being less than about 0.5 rad. However, the
phase of the transfer function for the sensor at 1.7 m behaves very differently than those of
other two sensors. If we employ the concept of reciprocity, we see that this large difference
in phase response between sensors separated by 1.7 m is analogous to the relative responses
that one would see between source elements separated by about 1°. The wind speed
associated with the data used in Fig. 5.1 was low at 3 mph. The requirement that the phase
errors be independent of position on the source is equivalent to requiring that the distorting
phase screen is located at the array. When this assumption is violated, even by a small
amount, the performance of the self-calibration method suffers drastically. To illustrate this,
a simulation was prepared where theoretical visibilities were distorted by a single phase
screen located at varying distances from the array. The self-calibration method was then
applied to the distorted data. The results of this simulation are shown in Fig. 5.2. Plotted in
Fig. 5.2 are measures of the mean squared error in the images reconstructed with the self-
calibration method as a function of the distance from the array to the phase screen. The
simulation was done for two different point source separations. One was done at the 11.4°
separation present in much of the field data, and one at half that, or 5.7°. One sees from Fig.
5.2 that for both point source configurations the image error rises quickly with phase screen
distance, with the smaller source separation case rising more slowly. As evidenced by the
saturation in the traces, the reconstructed images become essentially noise-like when the
phase screen is moved far enough away from the array. For visual reference, examples of the
reconstructed images for phase screen distances of zero and 0.2 m are shown in Fig. 5.3.
Similar simulations by others have shown similar results, although very much more
optimistic in nature [54]. In this case, the optimism was a result of a misinterpretation of the
results. It should be noted that the self-calibration method works fine for the single-point-

source case for all phase screen locations.
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Fig. 5.1: An example illustrating the large difference between the phase responses of
atmospheric transfer functions calculated at three different sensors over the same segment of
data. The phase responses have been altered to remove the effect of the geometrical delay.
The phase is shown unwrapped. The data used were associated with an average wind speed
of 3 mph.
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Fig. 5.2: The mean squared error in images reconstructed using the self-calibration method
from data distorted by a phase screen located at increasing distances from the array. Two
point sources were present. Results for angular separations of 11.4 and 5.7° are shown. The
error was calculated using images normalized to unity maximum intensity.
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Fig. 5.3: Examples of the solutions found using the self-calibration method for phase screen
distances of zero (solid line) and 0.2 m (dotted line). The point source separation was 11.4°.

The second problem in applying the phase closure methods to acoustic imaging is the
high variance associated with the visibility measurements. The phase closure based solution
methods are very sensitive to noise in the visibility measurements. In radio astronomy,
because they deal with much larger bandwidths and integration times, they can collect
visibility measurements that have much less variance associated with them. As an example
of this behavior, Fig. 5.4 shows the effect of measurement noise on the quality of
reconstruction using the matrix equation approach. In this approach, the closure phase
quantities, given by Eq. (5.2), are directly used to solve for the actual visibilities according to
the matrix equation

Av=Db (5.5)
where vis the vector of the unknown actual visibility phases, bis the vector of closure phase
quantities, and A is the matrix that relates the two. The matrix A is rectangular, but is full
rank assuming that care is taken in the design of the array [50]. The equation is solved using
the pseudo-inverse. The condition number of the matrix is typically 500, making the solution

sensitive to noise in the closure quantities. In Fig. 5.4(a), the reconstruction with no
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measurement noise added is shown along with the image distorted by the phase screen. The
reconstruction is perfect. In Fig. 5.4(b), the same distorted image is shown along with the
reconstruction resulting when measurement noise corresponding to an integration time of
0.5 s is added. Note that the reconstruction in (b) is very poor. The self-calibration method

behaves in a similar manner, but is slightly less sensitive to the measurement noise.
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Fig. 5.4: Examples illustrating the effect of noise on closure phase solutions. The image as
distorted by the phase screen is plotted with the reconstructed image for (a) no measurement
noise added and (b) measurement noise corresponding to 0.5 s added.
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5.2 A Discussion of Atmospheric Distortion Models

In this section, a discussion of the modeling of the atmosphere will be presented. In
the last section, the concept of a phase screen was mentioned in the context of phase closure
and self-calibration. Presented here will be a discussion of the form of the imaging equations
now including the phase screen model of the atmosphere. The effect of the phase screen on
the visibilities and resulting images will be discussed as well. It will be shown that the phase
screen model is sufficient to capture most of the behavior exhibited in the field data. The
phase screen model will be used extensively in the next section, where an estimation problem
is set up to solve the image recovery problem.

Following the derivation of the Van Cittert-Zernike theorem in Section 2.1.1, we

begin here by stating the form of the received signal at sensor m in the array as

ult)= TS(&P"T'”f—%(f)/Zﬂf)ds& (5.6)

where ¢, () is phase delay, that is a function of angle, associated with sensor m. The

frequency dependence of this shift is given explicitly in Eq. (5.6). In the same manner as

before, we can then write the sensor signal after the narrowband filter as
v (0= [$: & FIE (e e P ag ar. G-7)

Adherence to the analytic signal formulation is still implied in the above equations.
Proceding in the same way as before, we arrive at a new expression for the Van Cittert-

Zernike theorem originally given in Eq. (2.22). The new expression becomes

=3

(0)= [ B(E, 7, JeOErsleD ani=b e (5.8)

mn

—o0

The addition of the complex exponential comprised of the phase errors will cause an error in

the correlation or visibility measurement. An attenuation or gain function of the form G, (&)

can be added for each sensor to account for amplitude fluctuations. This case is discussed

later in this section.
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If we make the assumption required by the phase closure based method, namely that
the phase errors are independent of angle, we may pull the phase errors out of the integral in

Eq. (5.8), which results in the expression

7, (0)=e/Pne i J T, £, e/ "(x";x’")‘fdf (5.9

that can be directly related to the form of Eq. (5.1), the basis for the phase closure
techniques. As the phase screen is moved away from the array, the angle dependences of the
phase errors come into play. As the phase screen is moved further and further away from the
array, the sensor dependence becomes less significant than the angular dependence. In the
limit where the phase screen is located at the source, the phase errors cancel out and the
effect of the screen is removed.

For the phase screens used in the work to follow in the next section, the screen is
represented in discrete fashion, with equally sized pixels in the lateral direction. Thus the

position on the screen that affects a signal arriving at sensor » from direction &, is
x, = x, + Rtan(sin (£, )) (5.10)
where R is the distance from the array to the phase screen. The maximum extent of the phase

screen is chosen according to the desired maximum view angle. In most cases in this work,

& =0.8 was chosen. Ilustrating the effect of these phase screens on the resultant images,

Fig. 5.5(a) shows the average image SNR at the two point source locations for a phase screen
located 5 m away from the array and with a varying number of pixels. The synthetic data
were created to simulate results from a 0.1 s integration time. The phase pixels were
generated to be independent from one pixel to the next and uniformly distributed from zero
to 2n. The SNR drops as the number of pixels is increased, but quickly reaches what appears
to be an asymptotic SNR value of around 0.75. Looking back at Fig. 4.9, one notes that this
value of SNR was associated with wind speeds in the neighborhood of 8 to10 mph. Show in
Fig. 5.5(b) is the normalized visibility variance corresponding to the SNR data shown in (a).
Note that these variance values correspond to the same range of wind speeds, according to
Fig. 4.11. The effect of moving the phase screen further away from the array is shown in
Fig. 5.6, where the normalized visibility variance is plotted as a function of the range to the

screen for a phase screen having 10 pixels. The variance drops down to the theoretical level
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for a 0.1-s integration time. So it seems that a single phase screen can be used to simulate the

behavior of the atmosphere for wind speeds up to about 10 mph.

The (a) average SNR at the point source locations and (b) normalized visibility

variance as a function of the number of phase screen pixels. Comparisons can be made with
values found in Figs. 4.9 and 4.11 for field data. The phase screen was placed 5 m away

from the array.

Fig. 5.5
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Fig. 5.6: The normalized visibility variance as a function of the distance from the array to
the phase screen for 10 phase screen pixels.

Thus far we have discussed a screen that only affects the phase of an impinging
wavefront. At this point, results will be discussed for the case where each pixel in the screen
is allowed to have not only a phase shift, but also an amplitude gain factor. Equation (5.8)

can now be rewritten as

0= [ GL(E)G, (E)F(E, 1, o r s -rasriezels 511

where the gain factors G are a function of angle in the same manner as the phase shifts.
Figure 5.7 shows the variance of the visibility measurements when a complex valued screen
is located 5 m in front of the array. The phase shifts associated with each pixel were
generated in the same manner as described above. The gain factors were taken to be
Gaussian with a mean of unity and standard deviation of 0.4. The absolute value of any
negative gain was used. The values obtained for the phase alone case are also plotted for

easy comparison. Figure 5.7 shows that when gain factors are included, the visibility
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variance is increased significantly from what one obtains using phases alone. With the gain
factors, the visibility variance corresponds to about 12 mph wind speeds. Also important is
the fact that the gain factors could be used to simulate the scintillation seen in images
computed from actual field data. In Figs. 4.12-4.14, we see that the power in the image
varies with time and that one or both point sources may fade in and out over time. This
ability to model scintillation will become important in the next section, when an estimation

problem is set up to reconstruct images from multiple short integration period images.
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Fig. 5.7: The normalized visibility variance associated with both a phase only screen and a
gain and phase screen. The gains were chosen to be Gaussian with mean unity and standard
deviation 0.4. The screen in both cases was 5 m in front of the array.

5.3 An Estimation Problem Formulation for Image Recovery

In this section, a method for improving the quality of images obtained through the
distorting atmosphere will be presented. This method is based on the idea of estimating a

constant source intensity distribution through the use of several snapshots or short exposure
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narrowband images. The exposure time is assumed short enough so that the atmosphere can
be assumed frozen for each snapshot. The problem boils down to estimating a discrete
version of the intensity distribution jointly with the phases associated with a phase screen
located at some fixed position in front of the array. The phases for each snapshot are
independent and are all estimated. First, more detail about the problem formulation will be
provided. Then, a method for computing the Cramér-Rao bounds associated with the
problem will be derived. The results of these bounds will then be discussed. Finally, some

encouraging initial solutions to the problems of this type will be given.

5.3.1 Problem formulation

A diagram of the setup for this estimation problem is shown in Fig. 5.8. The source

intensity distribution is pixelated as a function of angle, in the range £ =10.8. The intensity

is assumed to be constant with time. A phase screen is located at some range from the array
and is composed of some number of pixels that are equally sized in the lateral dimension and
which cover the lateral distance necessary to include the view angle mentioned above. The
phase pixels are assumed to be independent from one snapshot to the next and within each
snapshot, from one pixel to the next. The distance to the phase screen and the number of

phase pixels can be chosen to suit the situation according to the discussion in Section 5.2.

discrete version of source intensity

LTI T T

discrete phase screen
NN NN NN NN N

¥ ) ¥ y v _¥.¥
S€Nsor array

distance to phase screen

Fig. 5.8: Diagram of the estimation problem setup.
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A discrete approximation to the Van Cittert-Zernike relation is used. For the
purposes of this estimation problem, the complex visibility measured on the baseline

consisting of sensors m and » is given by

L . Do
r,o=y = 2Eemn(é)e—fabm(é.-)eﬂ%Té (5.12)

where L is the number of intensity pixels, P, are the intensities, f, is the frequency, D, is
the baseline length, and ¢, (£, )and ¢,(£,) are the phase screen pixels, which are functions of

angle, affecting sensors m and n. The phase screen pixel that affects a given sensor is found
using Eq. (5.10). The pixel center closest to the value computed from Eq. (5.10) is used.
The visibilities are assumed to be circularly Gaussian. This is somewhat of an
approximation, as the real and imaginary parts of the visibilities have slightly different
variances, depending on the source distribution [40]. The complex covariance matrix
associated with the full set of visibility measurements for a given array can be constructed
using the pseudo-covariances defined in Eq. (4.5). The visibility measurements are assumed
independent between snapshots, such that the covariance matrix of all visibility
measurements from all snapshots would be block diagonal in structure. Also note that if
there are N, phase screen pixels, only N,-1 of those will actually be free variables in the
estimation process. This is because if one writes all the other phases as the difference from a
reference phase, the reference phase cancels from Eq. (5.12).

When picking the number of intensity and phase screen pixels, we must take into
account the number of baselines in the measuring array, and the number of snapshots. The
total number of unknowns must not exceed the number of measurements. For instance, if we
have N, baselines, N, phase screen pixels, V; intensity pixels, and S snapshots, the following
inequality must hold for the problem to have a solution:

SN,2N,+S(N, -1). (5.13)
Next, a method for computing the Cramér-Rao lower bounds for this estimation problem will

be outlined.
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5.3.2 Derivation of the Cramér-Rao bounds

The Cramér-Rao lower bound (CRLB) for an estimation problem gives the lower
bound on the mean square error associated with each estimated parameter [55]. The CRLB is
independent of the method used to solve the problem. Let 0 be the vector of unknown
intensities and phase screen pixels. Since the estimator in this case is unbiased, the CRLB is

given by the relation
El:(ei _éi)z} = [F_l]ii (5.14)

where é,- is the estimated value of the i element of 8, and where the right-hand side is equal

to the i™ diagonal element of the inverse of the Fisher information matrix F. The element at

the /™ row and &® column of the Fisher information matrix is given by

_ 1 9°L(v1e)
[F], = E[maejaek } (5.15)

where L(v 19) is the log-likelihood function of the vector of visibilities given the vector of

unknowns. For the situation at hand, the likelihood function is given by the multivariate

complex Gaussian probability density function

P(vl e)=ag£[”1K—w)]exp[— (v—V(ﬂ))HK‘l(B)(v—V(G))], (5.16)

where V(0)is the vector of the mean values of the visibilities computed according to the

model given in Eq. (5.12), and K(O)is the covariance matrix associated with the mean or
model visibilities. The symbol det[ ] denotes the matrix determinant. The log-likelihood
function is then given by

L(v10)=—(v-v(0)J"K™(8)(v - ¥(8))—log(det[K(8)]) - N log(r) (5.17)
where N is the number of rows in K(8). In order to compute the Fisher matrix, Eq. (5.15)

tells us that we need to take partial derivatives of Eq. (5.17) with respect to all of the

parameters in 0. The diagonal entries of the inverse of the Fisher matrix are then equal to

the CRLBs.
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In the process of deriving a relation for Eq. (5.15), several identities will be needed.

These identities are straightforward to derive and are listed below for reference.

.a.al-g._ K- g;(K (5.18)
5%-1.—{log(det[K])}L= t{K“ —g{—_] (5.19)

2 o' Re{x ;;}HH 2, 520
Elx"Ax|= tr(A Elx"x]) (5.21)

The symbol tr( ) denotes the trace of the matrix. Using Egs. (5.17)-(5.21), the expression for

the /™ row and ™ column of the Fisher matrix becomes

[F]jk _ ZRG{BVH(B)K—1(9\8V( )}—H{Kl(@)MK"I(O)M] (5.22)

%, 30 %, %,

The entries in the vector of model visibilities ¥ are given by Eq. (5.12), and the entries in the
covariance matrix K are given by Eq. (4.5). Computation of the Fisher matrix is complex
because of the nature of unknowns 0 and the form of Eq. (5.12). The derivatives of the
model visibilities, which also appear in the expressions for the entries in the covariance
matrix, differ depending on whether the parameter is an intensity or a phase. Recall that the
phases are functions of angle. That dependence must be calculated and kept track of during
the derivative calculations. In some instances, the phases in Eq. (5.8) or (5.12) may be from
the same pixel and thus cancel out, making the derivative disappear. Also, one must note
that one phase screen pixel in each snapshot must be held constant in order for the Fisher
matrix to be full rank. This is because when all phase pixels are written as differences from
that reference phase, the reference phase cancels from Eq. (5.8). In addition, when a
complex gain screen is used, one must set one gain amongst all the snapshots, or one
intensity pixel equal to a constant. Without this measure, there is an ambiguity in level that
results in a rank deficient Fisher matrix. An example of this ambiguity can be shown if one

divides all gains by one the gains which is equivalent to scaling the intensity distribution by
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the square of that gain. Computer programs to compute the Fisher matrix were constructed

in MATLAB. The results of those computations will be discussed in the next section.
5.3.3 Cramér-Rao lower bound results and discussion

In this section, the results of the CRLB computations for the image recovery
estimation problem will be discussed. Results from both the phase screen and the complex
gain screen cases will be presented. A large amount of computation time is required to
compute the bounds. This is due in part to the use of MATLAB, which is somewhat slow in
executing code with heavy use of looping, and partly due to the complex nature of the
problem. Due to the computation time necessary, only a small number of the many possible
parameter values where tried. However, enough were computed so that the behavior of the
bounds could be adequately characterized.

To begin, one must note that this estimation problem requires that the screen be
sufficiently excited by the source distribution. This means that if there are only a small
number of point sources in the intensity distribution, the Fisher matrix becomes rank
deficient. One way around this problem is to place very small intensities at all angle
positions and then add in the larger intensities of interest. The small intensities can be at a
level such that they are below the noise floor associated with the particular integration time
of interest.

An intensity distribution containing two point sources of equal strength, along with
intensity values at 1/1000™ of that value at all other angles, was used for many CRLB
computations to test the effect of the different parameters. These parameters include the
number of snapshots, the number of screen pixels, the range from the array to the screen, and
the number of intensity pixels. The intensity distribution was normalized to have unity total
flux. Changing the integration time of interest will have no effect on the bounds other than to
shift the absolute level of the intensity bounds. Therefore, an integration time of 0.1 s was
used for all results discussed here. The results of the CRLB computations for the phase
screen case where the intensity distribution described above was used with a total of 20

intensity pixels, four snapshots, five phase pixels, and a range of 8 m are shown in Fig. 5.9.
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The intensities correspond to parameter numbers 1-20, and the phases for all snapshots
correspond to numbers 21-36. The phase screen pixels were chosen at random, according to
a uniform distribution from 0 to 27 rad. The resultant standard deviation of the phase screen
pixels averages about 0.1 rad. The standard deviation of the intensity values at the location
of the two point sources is about 1/12% the actual intensity value. Clearly these bounds are
quite good and suggest that one can do very well when using these parameters. Several
computations were made of the bounds for this case, all with different random phase screen
pixel values. They showed that the intensity bounds were constant, but that the phase bounds

changed by a small amount depending on the values chosen. The average standard deviation

of the phase error remained at 0.1 rad.

Square root of the CRLB

Parameter number

Fig. 5.9: The square root of the CRLB for all parameters for the case where a phase screen
was used. There were 20 intensities, 4 snapshots, 5 phase pixels, and a distance of 8 m to the

screen. The intensity bounds correspond to parameter numbers 1-20 and the phase bounds to
21-36.
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Still concentrating on the phase screen case and using the intensity distribution
discussed above, computations to explore the effect of changing the number of snapshots
were made. The CRLBs were computed for numbers of snapshots equal to 2, 4, 6, and 10.
The effect of the number of snapshots is as one would expect. The resultant standard
deviation of the intensity error decreased as the square root of the number of snapshots. The
level of the phase error remained unchanged. When the distance from the array to the phase
screen is changed, there appears to be no effect on the bounds, at least for distances ranging
from 2 to 10 m. Changing the total number of intensity pixels also does not appear to have a
significant effect on the bounds. Intensity pixel counts of 14, 20, 26, 32, and 38 were tried.

For some cases the phase pixel estimate bounds become very large. One such case is
when the number of phase pixels is increased for the intensity profile described above. For 5
and 10 phase pixels the bound remains small with average standard deviations of 0.11 and
0.22 rad, respectively. However, when the number of phase screen pixels is increased to 13,
the average standard deviation rises to 0.88 rad, and by the time 15 or 20 pixels are used it
rises to about 1.6 rad. The bounds for the intensities remain essentially constant, seemingly
unaffected by the increase in the number of phase pixels. It is not clear whether this behavior
of the phase pixel bounds means that one would be unable to estimate the phases, or whether
the error has increased to a point where the CRLB is no longer providing representative
results [56]. This hypothesis can be tested when, in the next section, we attempt to obtain
maximum likelihood solutions to the estimation problem. Another case where the phase
errors become even larger is when the number of significant point sources is increased. In
the case where there are three point sources, the average standard deviation of the phases is
0.55. But when four point sources are present, the standard deviation rises to 2.58, and with
six it jumps to 33.6. The bounds on the intensities remain reasonable, being in line with what
one would expect as the number of sources increases.

It was mentioned above that the SNR associated with the CRLB for a phase screen
for the two point source case was approximately 12. The theoretical SNR value
corresponding to an integration time of 0.4 s given in Fig. 4.3, for the standard synthesis
imaging case, is approximately 5.5. When we compare these two numbers we see that the

CRLB SNR is a little more than twice what we would normally expect using synthesis
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imaging. Additionally, one can compute the CRLB for the case where there is no phase
screen in the model. In this case the associated SNR at the two point source locations is the
same as is calculated for the two point source case with a phase screen present.

Cramer-Rao lower bounds were also computed for the complex gain screen case. In
computing these bounds, one gain factor was set equal to unity per the discussion in the last
section. This gain factor must be one of the central pixels in the screen in order for the
bounds to be reasonable in level. The performance indicated by the CRLBs for the complex
gain screen is lower than for the phase screen case. This should be expected, as the model
here is of increased complexity. An example CRLB result for the same setup as was used in
Fig. 5.9 is shown for the complex gain screen case in Fig. 5.10. The intensity, phase, and
gain bounds are indicated on the graph. The third gain in the first snapshot was fixed. The
SNR equivalent to the intensity bounds at the point source locations is about 8.5 which is
lower than for the phase screen case, but still above what one would expect with standard
synthesis imaging. The phase bounds always appear as being large. It is expected that this is
the same phenomenon that occurs for some configurations for the phase screen case and
therefore they are not believed to accurately represent the bounds. The bounds for the gain
parameters indicate that the bounds for the outer pixels in the screen are high while those for
the center pixels are much lower. This behavior is likely due to the fact that the central
pixels appear much more often in the visibility computations and thus there is more
information available with which to estimate them. The bounds for the complex gain screen
behave in a manner similar to that for the phase screen case as a function of the parameters
mentioned above.

It seems that in many situations, the CRLBs for this estimation problem are favorable.
Whether these bounds can be achieved is uncertain. If an estimator is unbiased and
consistent, then the maximum likelihood approach can achieve the CRLB [57]. Although
our estimator is unbiased, or at least asymptotically so, it is not consistent. The estimator is
not consistent because the estimation error will never decrease to zero, no matter how many
snapshots are used. This is because each snapshot carries with it an additional set of

unknown screen pixels that need to be estimated. In the next section, a discussion of
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attempts that have been made to solve the estimation problem using maximum likelihood and

least-squares approaches will be presented.
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Fig. 5.10: The square root of the CRLB for all parameters for the case where a complex gain
screen was used. There were 20 intensities, 4 snapshots, 5 phase pixels, and a distance of 8
m to the screen. The intensity bounds correspond to parameter numbers 1-20, the phase
bounds to 21-36, and the amplitudes to 37-55.

5.3.4 Imitial solution attempts and results

Because the bounds discussed in the last section were, in general, very encouraging,
some initial attempts have been made to obtain maximum likelihood and least-squares
solutions to the estimation problem. This section will present these initial solutions and
discuss the method’s applicability to field data.

First, attempts were made to solve the estimation problem on synthetic data sets that

were constructed using the single phase screen model. The negative of the log-likelihood
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function given in Eq. (5.16) was minimized subject to the constraint that the intensity pixels
be nonnegative. A constrained optimization routine available within MATLAB was used to
complete the optimization. This routine, which uses a sequential quadratic programming
(SQP) method, was used as a quick alternative to implementing a similar method from
scratch [58]. The initial condition for the intensity distribution was obtained by first applying
the CLEAN algorithm to each image in the data set, averaging those images, and then
resampling the average image to conform to the discrete intensity distribution model being
used. It was found that the best results were obtained when the initial intensity distribution
was scaled down by an order of magnitude or more. It seems that if the model visibilities
and the measured visibilities start close in magnitude, the optimization routine tended to
continually increase the model intensities. Because the first term of the log-likelihood
function is relatively immune to changes in the total flux, the value of the negative of the log-
likelihood function can remain the same or even decrease when the intensities go off toward
infinity. The determinant term of the log-likelihood function would eventually stop the
increase in the intensities. The phase screen pixel values were either initialized to be all zero,
or randomly distributed over the interval 0 to 2 rad. A typical result of this optimization is
shown in Fig. 5.11, where the normalized intensity distributions of the optimization result
and the initial condition are shown. Note that the initial condition represents the best quality
image obtained for the set of data using the traditional direct method of imaging based on the
Van Cittert-Zenike theorem. The case shown in Fig. 5.11 corresponds to the case for which
the CRLB is shown in Fig. 5.9. Shown in Fig. 5.12 are the phase screen pixel values
corresponding to the synthetic data and those found through the optimization process. The
average phase error in Fig. 5.12 is 0.7 rad.

Better performance was obtained using methods not based on the log-likelihood
function. A weighted least-squares cost function provided the best results. This cost

function takes the form
C = (v=v(8)F W(v—v(0)) (5.23)
where W is a diagonal matrix that can be used to weight each visibility in the cost function.

As will be shown, the weighting becomes important when field data is used. To find the

minimum of Eq. (5.23) with respect to the unknown intensities and phases, two methods
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were tried. The first method tried was the previously mentioned MATLAB routine. This
produced results on synthetic data sets that were far superior to those obtained using the log-
likelihood approach. Even better results were obtained when yet another optimization
routine was applied. With this method, the cost function was minimized one variable at a
time. All the unknowns were cycled through until the change in the cost function value was
less than a specified small value. The optimization was constrained by requiring that the
intensity values be nonnegative. Figure 5.13 shows the result of using this routine, along
with the weighted least-squares cost function, on the same synthetic data set that was used for
the results shown in Fig. 5.11. The actual and estimated phase screen values are shown in

Fig. 5.14. The average phase error here is 0.53 rad.
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Fig. 5.11: The result of applying the maximum likelihood method to 4 snapshots of synthetic
data distorted by a phase screen containing 5 pixels located 8 m from the array. The initial
image, representing the result of traditional interferometry is shown with the dotted line, and
the result of the optimization is indicated with the solid line.
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The phase screen pixel values corresponding to the solution shown in Fig. 5.11.

The model (dotted) and resulting from the optimization process (solid) are shown. The

average phase error is 0.7 rad.
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Fig. 5.14: The model and computed phase screen pixel values corresponding to the solution
shown in Fig. 5.13. The average phase error is 0.53 rad.

In the last section, several combinations of intensity distributions and numbers of
phase screen pixels produced phase bounds that were very large. The optimized result for
one of those cases is found in Fig. 5.15. In this case, there were five phase screen pixels per
snapshot and four point sources. The average standard deviation for the phases was 2.58 rad
according to the CRLB computations. The average phase error for the solution shown in Fig.
5.15 15 0.56 rad, which is significantly lower than the bound. Therefore, it seems reasonable
that the conjecture involving the inaccuracy of the CRLB in these cases is valid.

An example result for the case where a complex gain screen is used is shown in Fig.
5.16. In this case a screen with 5 pixels, 4 snapshots, and a range of 8 m was used. The
result shows degraded performance compared to the phase screen case, as was predicted by
the bounds. The average phase error for this case was 0.65 rad. The error in the amplitude
factors was large, especially for the outer pixels. This shows the importance of phase in the
reconstruction as indicated by the relatively good reconstruction possible with poor

amplitude information. The amplitude factors will be more important when we attempt to
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deal with the scintillation seen in field data. The least-squares cost function and the round-

robin optimization method were again used for this example.

Normalized intensity

Intensity pixel number

Fig. 5.15: The traditional interferometric image (dotted line) and the least-squares solution
(solid) for a synthetic data case with four point sources. The average phase screen pixel error
is 0.56 rad.
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Fig. 5.16: Solution (solid line) sound using the least-squares method for synthetic data
produced using a complex gain screen. The corresponding error in the screen phases was
0.65 rad.
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Two simple cases were investigated to see what happens when the model used to
recover the image is less complex than the model used to create the data. The first case is
where the number of phase screen pixels is reduced during the recovery. The case studied
here is where 13 pixels are used to recover a set of images distorted by 15 pixels. The second
is where one phase screen is used to recover an image distorted by two phase screens. Here,
a single phase screen located at 5 m with 5 pixels is used to recover an image distorted by
two phase screens located at 5 and 10 m with 5 pixels each. The results for these two cases
are found in Figs. 5.17 and 5.18, respectively. Both figures show some improvement in
image quality over the traditional method. As one would assume that the atmosphere will not
be fully modeled by the screen parameter approach, these two results give one some hope

that the method can be successfully applied to real field data.
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Fig. 5.17: The result of attempting to recover an image from a synthetic data set distorted
with 15 phase screen pixels using only 13 pixels. The two point sources are located at
intensity pixel numbers 9 and 12.
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Fig. 5.18: The result of attempting to recover an image using a single phase screen with 5
pixels located at 5 m when the data set was distorted using two phase screens, at 5 and 10 m,
with 5 pixels each. The two point sources are located at intensity pixel numbers 9 and 12.

Several sets of field data were used to test the effectiveness of this recovery method
on real world data. All the results discussed here were computed using the least-squares cost
function minimized using the alternate iterative method that was mentioned above. In
general the results varied greatly. In many cases, real improvements in image quality were
obtained. In other cases, little or no improvement resulted. In general the best results were
obtained when a complex valued screen was used. It is thought that the gains allow the
model to better compensate for the significant changes in the total flux from one snapshot to
the next as well as for variations with angle. The weighting, in the form of the matrix W in
Eq. (5.22), that tended to produce the best results was where the inverse of the square of the
total flux measurement for each snapshot weighted the visibilities of the corresponding
snapshot. This was applied in order to make sure that the one or two most energetic
snapshots did not dominate the solution. One might argue that the most energetic snapshots

may well be the most important; however, experience has shown that the results are generally
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better with the weighting in place. One might also apply a weighting equal to the inverse of
the square of the magnitude of each individual visibility. This makes all visibilities equally
important. It was found that this method did not generally produce results that were as good
as with the flux weighting. The measured data for the examples shown in this section
consisted of a varying number of 0.1-s snapshots taken from the same field data that was
discussed in Chapter 3. In general, the snapshots were chosen from a larger set of data in
such a way that the individual snapshots were not consecutive in time. The time gap between
them was generally 0.3 to 1 s. This was done to obtain greater variety in the data. The best
results are generally obtained when the phase pixel values are initialized to zero. The initial
intensities, as long as they are not too large in reference to the measured visibilities, do not
seem to influence the final solution.

An example of a successful recovery is shown in Fig. 5.19. The data consisted of six
snapshots at 800 Hz with an associated wind speed of 11.7 mph. Two solutions are shown in
Fig. 5.19. Figure 5.19(a) shows the result when a five-pixel phase screen is used, while (b)
shows the result when a five-pixel complex valued screen is used. Both screens were located
at 5 m. The left point source should have an intensity of approximately 0.8, which is nearly
correctly given by the solution in (b). There were 25 intensity pixels. This number was
chosen because it closely matches the theoretical resolution obtainable with the array and
frequency used. Adding more intensity pixels sometimes tended to produce spurious peaks
in the resulting image. Using fewer pixels gave a smeared representation. There also seems
to be an optimal location for the screen. Placing the screen further away or closer to the
array generally produced less favorable results.

Two additional examples of image enhancement are shown in Figs. 5.20 and 5.21.
Again, each data set consisted of six snapshots. The associated wind speeds were 5.7 and
9.7 mph, respectively. In Fig. 5.20 the right point source should have an intensity of 0.76,
and in Fig. 5.21, the left point source should have a level of 0.54. Five complex valued
screen pixels were used for the case in Fig. 5.20, and seven for Fig. 5.21. In both cases 25
intensity pixels were again used. The screens were located at 2 and 5 m, respectively. In
most cases, a good solution was possible with careful choice of the number of screen pixels

and the distance from the screen to the array. At this point, no real guidelines are available
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for the choice of these parameters. Therefore, human intervention in the process is

necessary.
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Fig. 5.19: Successful examples of image recovery from field data using (a) a phase screen
with 5 pixels located at 5 m, and (b) a complex valued screen with 5 pixels located at 5 m.
The average wind speed associated with the data was 11.7 mph. The left point source should
have an intensity of 0.79. There were 25 intensity pixels.
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Fig. 5.20: Another successful recovery example. A complex valued screen at 2 m with 5
pixels was used. The associated wind speed was 5.7 mph. The right point source should
have an intensity of 0.76. There were 25 intensity pixels.
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Fig. 5.21: Another successful recovery example. A complex valued screen at 5 m with 7
pixels was used. The associated wind speed was 9.7 mph. The left point source should have
an intensity of 0.54. There were 25 intensity pixels.
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Although the screen parameter estimation method seems promising for application to
real outdoor acoustic imaging, the results shown in this section are only preliminary. There
is much more testing that can be done and many possible avenues that could be followed for
further performance gains. The method of optimization is one area where further work could
provide performance benefits. The maximum likelihood method was abandoned here
because of difficulties in its interaction with the optimization routine used. It is possible that
other optimization routines might fare better. The maximum likelihood solution model
contains information, in the form of the covariance matrix, that the least-squares method does
not. It is therefore possible that with the right optimization algorithm, the maximum
likelihood approach could perform as well as or better than least-squares. For an image
recovery algorithm like the one presented here to have reliable application to real image data,
much more testing is need. Guidelines on the choice of parameters such as the number and
placement of phase screen pixels would be very important. For example, when a larger
number of screen pixels are used, the level of error given by the cost function always goes
down. However, the quality of the solution, in terms of matching the real physical case, does
not improve, but rather degrades. This behavior is analogous to the case of fitting a |
polynomial to a discrete set of data points. When too many degrees of freedom as given by a
large-order polynomial are allowed, the fitting error can become very small, but the function
may have wild oscillations in the areas between samples. So, one challenge with this image
recovery method is to find that optimal number of pixels, or degrees of freedom, that is
appropriate for the specific data set in question. Two methods that may help in this respect
involve letting the number of screen pixels become a variable of the optimization. First, we
could add a term to the cost function in Eq. (5.23) that would be an increasing function of the
number of pixels. This would penalize solutions with larger number of pixels. Another,
more promising method is cross-validation. With this method, the idea is to leave out data
points, or visibilities in this case, one at a time and to choose the number of pixels for which
the missing data points are best predicted by the remainder of the data [59]-[60]. In addition
to the parameter choice issues, the effect of initial conditions on the result of the optimization

and the possible existence of multiple solutions must be more fully investigated.
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6. CONCLUSIONS

In this thesis, the state of the art for acoustic imaging through the atmosphere has
been described. An overview of imaging techniques and methods was given. These
methods include both the classical narrowband interferometric process and the wideband
tomographic solution methods. Examples of the performance of the wideband methods
on both synthetic and field data were given. Good performance was found using two
different methods borrowed from the tomographic imaging community. In addition to
examples, a detailed discussion of the performance issues related to the narrowband
technique was presented.

Central to the performance of narrowband acoustic interferometry through the
atmosphere is the effect of the atmosphere. In addition to providing imaging data, the
field experiment data also allowed for the measurement of several important physical
characteristics of the atmosphere. Among these were the wave structure function,
coherence loss, and the propagation transfer function. From these measurements we see
that the atmosphere is an unfriendly place to image acoustic sources. The atmosphere has
a very short coherence time, on the order of 0.5 s or less. Acoustic wavefronts suffer
from substantial coherence loss as they propagate through the atmosphere. Using the
field data, a compilation of data were computed that show the effect of the atmosphere on
the variance of visibility measurements and on the quality and signal-to-noise ratio of the
resulting images. These data show that the visibility variance can be increased by a
factor of ten as compared to the theoretical. Image SNR values also suffer greatly, often
becoming less than unity, even for modest wind speeds. In order to produce more

accurate images, long integration times are required. Large-scale effects of the
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atmosphere require that the integration time be on the order of minutes. Even with these
images, the resolution damping effect of coherence loss is still present.

Methods for enhancing the quality of the images produced through the
atmosphere were investigated. First, the widely used and successful self-calibration
family of methods from the radio astronomy community were considered. It was shown
that these methods, which are based on the concept of phase closure, cannot be applied to
the case of acoustic imaging through the atmosphere. This is because the atmospheric
distortion is a function of source coordinates, and because the methods are sensitive to
measurement noise which is much more pronounced here than in radio astronomy where
they deal with much higher bandwidths. As an alternative to self-calibration, an
estimation problem approach was taken in which a discrete version of the source intensity
is estimated along with the parameters of a distorting screen representing the atmosphere.
Several short integration period images or snapshots are used, where the screen
parameters are allowed to vary for each snapshot. Performance bounds, in the form of
the Cramér-Rao lower bound, were calculated. These bounds were encouraging and so
maximum likelihood and least squares techniques were employed to solve several image
reconstructions, both with synthetic and field data. When applied to field data, it was
necessary to make the distorting screen complex valued, which helped to account for
significant variations in the power associated with the visibility measurements from one
snapshot to the next. The least-squares approach was found to be the most successful,
but perhaps only because of the optimization routine used. One can think of this method,
especially the case where a complex valued screen is used with the least-squares cost
function, as an angle-dependent version of the self-calibration method. Several examples
of significant gains in image quality were presented. As was discussed, there is much

work that can be done to further investigate this image enhancement procedure.
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